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Abstract. Oil seed crops, especially oil palm, are among the most rapidly expanding agricultural land uses, and
their expansion is known to cause significant environmental damage. Accordingly, these crops often feature in
public and policy debates which are hampered or biased by a lack of accurate information on environmental im-
pacts. In particular, the lack of accurate global crop maps remains a concern. Recent advances in deep-learning
and remotely sensed data access make it possible to address this gap. We present a map of closed-canopy oil palm
(Elaeis guineensis) plantations by typology (industrial versus smallholder plantations) at the global scale and
with unprecedented detail (10 m resolution) for the year 2019. The DeepLabv3+ model, a convolutional neural
network (CNN) for semantic segmentation, was trained to classify Sentinel-1 and Sentinel-2 images onto an oil
palm land cover map. The characteristic backscatter response of closed-canopy oil palm stands in Sentinel-1 and
the ability of CNN to learn spatial patterns, such as the harvest road networks, allowed the distinction between
industrial and smallholder plantations globally (overall accuracy= 98.52±0.20 %), outperforming the accuracy
of existing regional oil palm datasets that used conventional machine-learning algorithms. The user’s accuracy,
reflecting commission error, in industrial and smallholders was 88.22± 2.73 % and 76.56± 4.53 %, and the pro-
ducer’s accuracy, reflecting omission error, was 75.78± 3.55 % and 86.92± 5.12 %, respectively. The global oil
palm layer reveals that closed-canopy oil palm plantations are found in 49 countries, covering a mapped area
of 19.60 Mha; the area estimate was 21.00± 0.42 Mha (72.7 % industrial and 27.3 % smallholder plantations).
Southeast Asia ranks as the main producing region with an oil palm area estimate of 18.69± 0.33 Mha or 89 %
of global closed-canopy plantations. Our analysis confirms significant regional variation in the ratio of indus-
trial versus smallholder growers, but it also confirms that, from a typical land development perspective, large
areas of legally defined smallholder oil palm resemble industrial-scale plantings. Since our study identified only
closed-canopy oil palm stands, our area estimate was lower than the harvested area reported by the Food and
Agriculture Organization (FAO), particularly in West Africa, due to the omission of young and sparse oil palm
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stands, oil palm in nonhomogeneous settings, and semi-wild oil palm plantations. An accurate global map of
planted oil palm can help to shape the ongoing debate about the environmental impacts of oil seed crop ex-
pansion, especially if other crops can be mapped to the same level of accuracy. As our model can be regularly
rerun as new images become available, it can be used to monitor the expansion of the crop in monocultural
settings. The global oil palm layer for the second half of 2019 at a spatial resolution of 10 m can be found at
https://doi.org/10.5281/zenodo.4473715 (Descals et al., 2021).

1 Introduction

Crops that produce vegetable oils, such as soy, rapeseed, oil
palm, and sunflower, take up ca. 6 % of all agricultural land
and ca. 2.3 % of the total global land area and are among the
world’s most rapidly expanding crop types (OECD, 2018).
Demand for vegetable oils is increasing with one estimate
foreseeing an increase from 205 Mt in 2019 (OECD, 2018) to
310 Mt in 2050 (Byerlee et al., 2017). This has created a need
to optimize land use for vegetable oil production in order
to minimize environmental impacts and maximize socioe-
conomic benefits. One of the requirements for this is accu-
rate global maps for all oil-producing crops. The most com-
prehensive maps available (International Food Policy Re-
search Institute, 2019) map these crops by disaggregating
crop statistics identified at national and subnational units for
the year 2005 to 5 arcmin grid cells, which is a relatively
coarse spatial resolution. Direct identification of crops from
satellite imagery is likely to result in more accurate maps that
delineate where different crops have been planted. One of the
most extensively mapped crops is oil palm (Elaeis guineen-
sis) because of societal concerns about the associated envi-
ronmental impacts on tropical forests and social disruption.
However, only the global extent of industrial plantations is
reasonably well known, while the more heterogeneous plant-
ings at smallholder scales remain largely unmapped (Mei-
jaard et al., 2018).

A global map of oil palm at each production scale pro-
vides critical insights into the current debate about the so-
cial and environmental sustainability of the crop (Meijaard
et al., 2018, 2020b). What would allow for a more accurate
determination of the environmental impacts from oil palm
expansion, for example, is assessing the deforestation that
preceded oil palm development and the related carbon emis-
sions, as well as the impacts on species’ distributions, key
biodiversity areas, and socioeconomic impacts. As total and
local production volumes of palm oil are reasonably well
known, a comparison to the total planted area would allow
more accurate average yield estimates and regional varia-
tions in yield. Similarly, accurate maps of planted oil palm
can determine the extent to which oil palm development has
displaced other food crops, an important element in the pol-
icy debate in the European Union regarding the use of palm
oil in biofuels (Meijaard and Sheil, 2019). Such information
is important for comparing oil palm to other vegetable oil

crops, such as soy, rapeseed, sunflower, groundnut, and co-
conut, once global maps for these crops become available.
The challenge is thus to develop a method to accurately map
large industrial plantations, as well as smallholder oil palm
areas.

Previous studies have demonstrated the usefulness of radar
imagery for the detection of closed-canopy oil palm stands.
Palm-like trees have a characteristic backscatter response
which consists of a low vertical transmit and vertical receive
(VV) and high vertical transmit and horizontal receive (VH)
in Sentinel-1 or a high horizontal transmit and vertical re-
ceive (HV) and low horizontal transmit and horizontal re-
ceive (HH) in PALSAR imagery (Miettinen and Liew, 2011).
This characteristic backscatter response is a consequence of
the canopy structure of palm-like trees and allows for the
detection of closed-canopy palm plantations, particularly oil
palm. Several studies have taken advantage of this character-
istic backscatter response for mapping oil palm at the local
and the regional scale (Koh et al., 2011; Lee et al., 2016; No-
mura et al., 2019; Oon et al., 2019) and similarly for using
supervised classification models (Descals et al., 2019; Sha-
harum et al., 2020; Xu et al., 2020).

The mapping of oil palm plantations by typology (small-
holder versus industrial) with remotely sensed data presents
a more challenging classification problem than the detection
of only closed-canopy oil palm. In addition to the backscat-
ter response of radar data, texture analysis also offers a com-
plementary method to distinguish between smallholders and
industrial-scale plantations (Descals et al., 2019). Contextual
information, such as the presence and shape of harvesting
road network and drainage structures, can be included as pre-
dictive variables for the classification of industrial and small-
holder plantations.

Deep learning, in particular semantic segmentation, is a
subfield of machine learning with characteristics suitable for
the distinction of smallholder and industrial oil palm planta-
tions. Deep learning employs a series of models for com-
puter vision that excel in very complex classification sce-
narios (LeCun et al., 2015), and, in particular, convolutional
neural networks (CNNs) have recently been embraced by the
remote-sensing community due to the ability to recognize in-
tricate patterns in the images (Ma et al., 2019). To date, there
are no studies that consider CNNs for the land use classifica-
tion of oil palm plantations at regional or global scales. One
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study used deep learning for object detection, focusing on the
identification of single palm trees (Li et al., 2017).

The aim of this study is to (i) present an up-to-date map
of oil palm plantations by typology (industrial versus small-
holder plantations) at the global scale and with unprece-
dented detail (10 m resolution) for the year 2019 and (ii)
show the suitability of deep learning in remote sensing for
complex classification scenarios in which contextual infor-
mation may be useful.

2 Methods

2.1 Overview

The classification model for oil palm plantations used the
Sentinel-1 and Sentinel-2 half-yearly composites as input im-
ages (Fig. 1). The maps presented in this study correspond
to the second half of 2019. We used a deep-learning model
that was trained with 296 images of 1000× 1000 pixels dis-
tributed throughout the main oil-palm-producing regions and
applied over Sentinel-1 and Sentinel-2 composites in the po-
tential area (Fig. 2) where oil palm can grow. Table 1 shows
the geospatial data used in the study. The links to the datasets
appear in Sect. 6. The processing steps depicted in Fig. 1
were implemented in different computing environments (Ap-
pendix Fig. A1) depending on the convenience of the pro-
cessing. The annual compositing of Sentinel-1 and Sentinel-
2 images was done in Google Earth Engine (GEE) (Gorelick
et al., 2017) since a cloud-processing platform was suited
for this task considering the high amount of satellite data re-
quired in the compositing. The visual interpretation of train-
ing and validation data was also done in GEE. The training
of the CNN and the classification of images, however, was
performed with a local computer using Matlab 2019a since
the implementation of the CNN model was less feasible in
GEE. The CNN model can also be trained and used for the
prediction of images with Python (code accessible through
Sect. 5). The Sentinel-1 and Sentinel-2 images taken in 2019
are the only data necessary to reproduce the results of the
global oil palm map. The rest is auxiliary data used for the
identification of the oil palm distribution, the visual interpre-
tation of oil palm plantation, and the comparison with other
oil palm maps.

2.2 Potential distribution of oil palm

The classification of oil palm plantations was restricted to
those areas where the climatic conditions were favorable for
oil palm growth. In order to delimit the potential distribution
of oil palm, we used climate data and an existing global oil
palm dataset. The climate dataset was obtained from World-
Clim V1 Bioclim (Hijmans et al., 2005), which provides 19
gridded variables at a spatial resolution of 30 arcsec that are
generated from monthly temperature and precipitation. This
study’s existing oil palm layer was obtained from the Interna-

tional Union for Conservation of Nature (IUCN; Meijaard et
al., 2018) and shows the industrial oil palm plantations at the
global scale (link to the IUCN layer is available in Sect. 6).
This map was derived from a compilation of all published
spatial data on oil palm combined with the manual digitiza-
tion of characteristic spatial signatures of industrial-scale oil
palm using cloud-free Landsat mosaics acquired in 2017 and
created in GEE.

The potential area where oil palm can grow was estimated
with the climate variable range in the IUCN layer. We es-
timated the histogram of the 19 bioclimatic variables in the
areas that were classified as industrial oil palm plantations
in the IUCN layer. Appendix Table A1 shows the minimum
and maximum of each bioclimatic variable for the industrial
plantations. A pixel in the WorldClim dataset was considered
favorable for oil palm growth when at least 17 out of the 19
bioclimatic variables fell within the climate range observed
in the IUCN layer (Appendix Fig. A2). The resulting poten-
tial oil palm distribution map encompasses similar areas as
used in previous studies (Pirker et al., 2016; Strona et al.,
2018; Wich et al., 2014). The classification of oil palm plan-
tations was processed in a grid of 100× 100 km that cov-
ers the area with favorable conditions for oil palm growth
(Fig. 2).

2.3 Sentinel-1 and Sentinel-2 preprocessing

The CNN classifies radar and optical images collected by
Sentinel-1 (C-band) (Torres et al., 2012) and Sentinel-2 (mul-
tispectral) (Drusch et al., 2012) satellites, respectively, both
of which missions were launched by the European Space
Agency and were part of the Copernicus Programme (https:
//www.copernicus.eu, last access: 17 March 2021). The im-
ages were preprocessed and downloaded from GEE (code is
available in Sect. 5, Descals, 2021). We used the Sentinel-
1 synthetic aperture radar (SAR) Ground Range Detected
(GRD), which has a temporal resolution of 12 d, in both as-
cending and descending orbits. We used the Interferomet-
ric Wide Swath images processed at a spatial resolution of
10 m. The scenes were processed with the local incident an-
gle (LIA) correction, and then the median value was com-
puted over the second half of 2019 for the ascending and
descending scenes separately. The final composite is the av-
erage of the two orbit composites.

We also used Band 4 (red band; central wave-
length= 665 nm) of Sentinel-2 Level 2A (surface re-
flectance). Different feature selection algorithms highlighted
the relevance of Band 4 for predicting industrial and oil palm
plantations in a previous study (Descals et al., 2019). Band 4
is the 10 m resolution band that best shows the roads in indus-
trial plantations because of the high contrast in terms of re-
flectance between the road and the surrounding oil palm. The
high light scattering of vegetation in the near-infrared spec-
trum makes the recognition of roads less feasible in the 10 m
near-infrared band (Band 8). The Sentinel-2 images were
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Figure 1. Diagram of the algorithm used to generate the global oil palm layer. The input images, Sentinel-1 and Sentinel-2 half-yearly
composites, were obtained from Google Earth Engine on a grid of 100× 100 km. The Sentinel-1 and Sentinel-2 tiles were classified with a
convolutional neural network (CNN). The CNN model was trained with labeled images with constant size (1000× 1000 pixels). The output
classification layer was validated with 13 495 points that were randomly distributed.

Figure 2. Localization map of the grid cells where the convolutional neural network (CNN) was applied for the classification of industrial
and smallholder plantations. The grid cells cover a potential distribution area (blue line) over seven tropical regions of the world where oil
palm can grow: Central and South America, Central and West Africa, South and Southeast Asia, and the Pacific. Cells in red depict the areas
where there is the presence of industrial oil palm plantations in the IUCN layer. Cells filled with green signify areas where closed-canopy oil
palm was detected by the CNN.

masked with the quality flag provided in Level 2A, which is
produced by the ATCOR algorithm and provides information
about the clouds, cloud shadows, and other non-valid obser-
vations (Drusch et al., 2012). The images were aggregated
for the second half of 2019 using the normalized difference
vegetation index as the quality mosaic. The 5 d revisit time
of Sentinel-2 allowed for the generation of cloud-free com-
posites over the study area.

2.4 Image labeling

Semantic segmentation models require input images with a
constant size for both training and prediction. The size of
the input images in this study was set to 1000× 1000 pix-
els, which corresponds to an area of 10× 10 km in a 10 m
resolution image. We set an input size of 10 km because
it captures the contextual spatial information necessary for
identifying smallholders and industrial plantations (e.g., har-
vesting road network). Consequently, the model was trained
with Sentinel-1 and Sentinel-2 half-yearly annual compos-
ites of 10× 10 km. The oil palm plantations that were present
within the Sentinel composites were labeled by visual inter-
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Table 1. Data sources used in the study.

Source Band/input Spatial Usage∗ Reference
resolution

Sentinel-1 GRD VV and VH 10 m 1, 3 Torres et al. (2012)
Sentinel-2 Level-2A B4 10 m 1, 3 Drusch et al. (2012)
IUCN industrial layer Land cover (oil palm map) 30 m 2, 4 Meijaard et al. (2018)
Oil palm layer Sumatra Land cover (oil palm map) 10 m 2 Descals et al. (2019)
Oil palm layer Indonesia Land cover (oil palm map) 30 m 2 Gaveau et al. (2021)
Oil palm layer in SE Asia Land cover (oil palm map) 100 m 2 Xu et al. (2020)
WorldClim V1 Bioclim 19 bioclimatic variables 30 arcsec 4 Hijmans et al. (2005)
DigitalGlobe imagery RGB orthoimages <1 m 3 Google Earth Engine (2020)
FAOSTAT Oil palm harvested area Country-level statistics 2 FAO (2020)

∗ The column describes how the data were used in the study: (1) input of the convolutional neural network (CNN), (2) used for comparison with the results of the
CNN, (3) base layers for the visual interpretation of oil palm plantations, and (4) used for the identification of the potential distribution of oil palm.

pretation. We digitized the oil palm plantations also by in-
terpreting the very high-resolution DigitalGlobe images that
are displayed as the base layer in GEE. The DigitalGlobe
images have a sub-meter spatial resolution and are displayed
as true-color composites in GEE. These images are updated
regularly, and the date depends on the location, but usually
the images were taken during the past 1 to 2 years. The Dig-
italGlobe images were used as complementary data to the
Sentinel-1 and Sentinel-2 composites in the visual interpre-
tation. We used the geometry editing tool in GEE for labeling
smallholder and industrial plantations. Once the training ar-
eas were labeled, we downloaded the truth images from GEE
along with the Sentinel-1 and Sentinel-2 composites for the
second half of 2019. The image labeling was carried out in
84 different regions of the world where oil palm is cultivated
(Appendix Fig. A3) and resulted in 200 training images.

Deep-learning algorithms require large amounts of data to
ensure good performance, and data augmentation is a tech-
nique used to improve the performance of the models when
the size of the training data is small (Shorten and Khosh-
goftaar, 2019). Data augmentation aims to generate a more
diverse training dataset with certain affine transformations
applied to the original training data. Data augmentation tech-
niques have been used in remote-sensing studies (Yu et al.,
2017), in which affine transformations, such as flips, trans-
lations, and rotations, have improved the accuracy results of
deep-learning models. We used the rotation of images (90◦

clockwise) as the data augmentation technique for this study
(Appendix Fig. A4). The rotation was applied only to the
training images that presented more than 10 % of the pixels
labeled as smallholders in order to reduce the class imbal-
ance between industrial and smallholder plantations. We also
clipped the central area of 4× 4 blocks of labeled images and
rotated them by an angle of 45◦. This process resulted in 96
additional images that were added to the 200 original training
images.

2.5 Definition of industrial and smallholder plantations

Definitions of smallholders and industrial plantations differ
per country, and many variations within each of these classes
exist (Bronkhorst et al., 2017; Glenday and Gary, 2015; Mei-
jaard and Sheil, 2019). For the current study, we used the
following generalized classifications. An industrial oil palm
plantation typically covers several thousand hectares of land
and is very well structured and homogeneous in tree age. It
consists of an area bounded by long linear, sometimes rectan-
gular boundaries. It has a dense trail and a road and/or canal
network. Roads in industrial plantations are developed at the
start of plantation development and, therefore, equidistantly
placed for optimal harvesting. In flat surface plantations, the
harvesting trails are usually built in straight lines and thus
form a rectilinear grid (Fig. 3a). In contrast, the industrial
plantations that are constructed over steep terrain usually
present curvy trails (Fig. 3b). A smallholder oil palm plan-
tation must be typically smaller than 25 ha to be recognized
as “small” by the Indonesian government. These definitions
vary by country, with Malaysia using a 4 ha cut-off, while in
Cameroon, this varies from 8 to 40 ha (for an overview, see
Table 2 in Meijaard et al., 2018). Compared to an industrial
plantation, a smallholder plantation tends to be less struc-
tured in shape and more heterogeneous in tree age. Small-
holder plantations tend to form a landscape mosaic composed
of small plantations of varying shape and size mixed with
other types of land cover (e.g., idle land or other plantation
types) (Fig. 3d). When smallholder plantations form a large
homogenous cluster, this cluster has a less dense trail net-
work than industrial plantations (Fig. 3a, c).

2.6 Semantic segmentation

Image segmentation is the subfield of deep learning that aims
to link each pixel of an image to a class label. Thus, se-
mantic segmentation is the analog of the standard pixel-wise
machine-learning algorithms that are used in remote sensing
for image classification (Ma et al., 2019). The difference is

https://doi.org/10.5194/essd-13-1211-2021 Earth Syst. Sci. Data, 13, 1211–1231, 2021



1216 A. Descals et al.: Global oil palm map

Figure 3. Examples of industrial and smallholder oil palm plantations seen by a 10 m resolution Sentinel-1 and Sentinel-2 composite (red
channel: VV; green channel: VH; and blue channel: Band 4). The VV and VH bands were transformed and stretched so that the closed-
canopy oil palm appears in green. (a) An industrial plantation on a flat surface in Brazil with harvesting trails built in straight lines and thus
forming rectilinear grids. (b) An industrial plantation on hilly terrain in Indonesia, with curvy harvesting trails. (c) Smallholder plantations
forming a large homogeneous cluster in Indonesia. (d) Smallholder plantations of varying shape, size, and tree age in Côte d’Ivoire (image
source: Copernicus Sentinel data 2019).

Table 2. Accuracy assessment of the global oil palm layer for the second half of 2019 and comparison of the global layer with the results of a
previous study (Descals et al., 2019) which used a random forest in Sumatra for the same year. The accuracy metrics of the global layer were
estimated with 10 816 points randomly distributed in the main oil-palm-producing areas in the world, while the comparison used only the
validation points that were located in Sumatra (2463 points). The reported metrics are the overall accuracy (OA), the user’s accuracy (UA),
and the producer’s accuracy (PA). The accuracy metrics are reported with a confidence interval (95 % confidence level).

Global OP Global OP (Sumatra) Descals et al. (2019) (Sumatra)

OA (%) 98.52 (99.42, 99.61) 94.02 (93.13, 94.91) 91.31 (90.34, 92.28)

Other 99.19 (99.01, 99.36) 97.00 (96.27, 97.73) 96.97 (96.24, 97.71)
UA (%) Industrial 88.22 (85.49, 90.96) 89.25 (85.10, 93.40) 88.70 (84.04, 93.36)

Smallholder 86.92 (81.80, 92.04) 63.27 (55.47, 71.06) 45.85 (39.03, 52.67)

Other 99.52 (99.42, 99.61) 97.99 (97.41, 98.57) 96.59 (95.86, 97.31)
PA (%) Industrial 75.78 (72.23, 79.33) 69.15 (64.54, 73.77) 54.26 (49.83, 58.68)

Smallholder 84.94 (81.36, 88.51) 81.44 (75.26, 87.63) 83.30 (77.47, 89.13)

that semantic segmentation, as any model based on a CNN,
automatically learns and exploits the spatial patterns within
the image by tuning the parameters of different convolutional
operations.

This study employed the classification model
DeepLabv3+ (Chen et al., 2017, 2018) with the Mo-
bileNetV2 (Sandler et al., 2018) as a backbone network.
DeepLab has a series of versions for semantic segmentation.
DeepLabv3+ is the latest version (link to the code in
Sect. 5). The model uses an encoder–decoder architecture in
which the image is downsampled with max-pooling layers
during the encoder part and spatial information is retrieved
during the decoder part. A characteristic of DeepLabv3+
is that the CNN uses atrous convolutions which enhance
the field of view of filters to incorporate a larger spatial and
informational context. The second-last layer of the CNN
shows the probability that a pixel belongs to a certain class,
and the last operation of the CNN assigns the class with the
maximum value in the probability layers, resulting in the
final classification layer.

2.7 Validation

The accuracy of the global oil palm classification layer was
evaluated with 10 816 reference points: 544 points were in-
dustrial plantations, 305 were smallholders, and 9967 were
other types of land uses. The points were randomly dis-
tributed using a simple random sampling, which means that
each pixel on the map had an equal chance of being selected,
and were distributed in the 100× 100 km cells where the
IUCN oil palm layer showed the presence of industrial plan-
tations (cells outlined in red in Fig. 2). This sample method
led to a high imbalance between the points labeled as “Other
land uses” and the points labeled as oil palm, both industrial
and smallholder, since oil palm plantations present a rare oc-
currence in the study area. The rare occurrence of oil palm
implied that the probability of randomly selecting an oil palm
plantation was also low. This low representation of oil palm
plantations in the simple random sampling resulted in a high
uncertainty in the oil palm area estimates at the regional and
country level. For this reason, we included 2679 points that
were distributed with a stratified random sampling in order to

Earth Syst. Sci. Data, 13, 1211–1231, 2021 https://doi.org/10.5194/essd-13-1211-2021



A. Descals et al.: Global oil palm map 1217

achieve a minimum sample size in the industrial and small-
holder oil palm classes. The size of each stratum was 977
points in the class industrial oil palm and 802 in the class
smallholder oil palm, and 900 were other types of land uses.
The 2679 stratified points were merged with the 10 816 sim-
ple random points, making a total of 13 495 points that were
used to calculate the oil palm area estimates.

Since the study aims to classify closed-canopy oil palm
against other land uses, we included young oil palm and plan-
tations that have not reached the full canopy coverage in the
class “Other land uses”. The points were visually interpreted
using the Sentinel-1 and Sentinel-2 annual composites of the
year 2019 (See Sect. 2.3) and the DigitalGlobe orthoimages
(<1 m spatial resolution) that are displayed as the base layer
in the GEE code editor.

The accuracy metrics that we reported were the overall ac-
curacy (OA), the user’s accuracy (UA), and the producer’s
accuracy (PA) (Olofsson et al., 2014). The OA is the pro-
portion of reference points that have been correctly classified
and is calculated by summing the number of correctly clas-
sified points and dividing by the total number of points. The
OA represents the probability that a randomly sampled pixel
is correctly classified. The PA results from dividing the num-
ber of correctly classified points in each class by the number
of visually interpreted points for each class. The PA is the
complement of the omission error: PA= 100 % – omission
error. Thus, the PA for the classes “industrial” and “small-
holder” is a relevant accuracy metric that shows the rate at
which the oil palm plantations were missed in the classifica-
tion image. On the other hand, the UA results from dividing
the number of correctly classified points in each class by the
number of points classified in each class. The UA is the com-
plement of the commission error: UA= 100 % – commission
error). The UA for the classes “industrial” and “smallholder”
indicates the rate at which land uses have been incorrectly
classified as oil palm plantations.

The accuracy metrics were evaluated following the good
practices for estimating area and assessing accuracy reported
by Olofsson et al. (2014). The practices explain the post-
stratified estimation of the OA, PA, and UA with a confidence
interval. Olofsson et al. (2014) also describe the formulation
for the area estimation for the classes that are present in the
land cover map. The area estimates are also calculated with a
confidence interval (here, a 95 % confidence interval for both
accuracy metrics and area estimates was utilized). Here, we
used the term “area mapped” for the total area classified as a
given class and the term “area estimate” for the estimation of
the actual area and the associated uncertainty following the
practices in Olofsson et al. (2014). The area mapped is sub-
ject to the good accuracy of the classification; for instance,
a high omission rate in the class “industrial closed-canopy
oil palm” would potentially lead to a small area mapped,
which would represent an underestimate of the actual indus-
trial oil palm area. The area estimate and its confidence in-

terval, however, cover the actual area with a given confidence
level.

Owing to the high imbalance in the validation dataset, we
tested whether the overall accuracy of the CNN was higher
than the no-information rate. The no-information rate was
computed as the overall accuracy obtained if all pixels were
classified as the major class, which is the class “Other land
uses” in our study. The hypothesis test evaluates whether the
overall accuracy obtained in the CNN classification is sig-
nificantly higher than the no-information rate with a 95 %
confidence level. If the null hypothesis is rejected (OA > no-
information rate), we can be assured that the CNN did bet-
ter than predicting indiscriminately all pixels with the class
“Other land uses”.

2.8 Comparison with other oil palm datasets

The accuracy of the CNN classification was compared with
existing oil palm maps of Sumatra for the year 2019 (Descals
et al., 2019) and Southeast Asia for the year 2016 (Xu et al.,
2020). Also, we compared our oil palm area estimates with
the oil palm harvested area included in Food and Agricul-
ture Organization of the United Nations (FAOSTAT) data at
the country level and with the area estimates obtained from
an oil palm map developed in Gaveau et al. (2021) over In-
donesia for the year 2019. The oil palm maps in Descals et
al. (2019) and Xu et al. (2020) were generated with a random
forest classification, while the map developed by Gaveau et
al. (2021) was generated by digitizing the oil palm planta-
tions in Landsat and SPOT6 images.

In order to compare the current results with our previ-
ous study in Descals et al. (2019), we reclassified the young
oil palm classes in this existing dataset to the class “Other
land uses”. We also kept only the validation points that cover
Sumatra; this resulted in 2463 points out of the 13 495 total
points. For the comparison with Xu et al. (2020), we used
our CNN model to classify Sentinel-1 and Sentinel-2 com-
posites for the second half of 2016. Moreover, we reclassi-
fied the smallholders and industrial plantations as a single
class since the oil palm map in Xu et al. (2020) does not
make distinctions between oil palm typology (industrial ver-
sus smallholder plantations). We also removed the validation
points that were placed in young plantations because the tem-
poral analysis in Xu et al. (2020) aimed to detect young oil
palm and the plantations that had been clear-cut in the previ-
ous years. Note that the dataset of Xu et al. (2020) includes a
100 m multi-year classification for the years 2001–2016 and
that we only compared the last year (2016) to ensure data
availability in Sentinel-1 and Sentinel-2 over the study area.

3 Results

The global map of industrial and smallholder plantations re-
veals the importance of high-resolution images (10 m) for
the accurate delimitation of smallholder plantations. Figure 4
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shows the degree of detail of the classification image ob-
tained with Sentinel-1 and Sentinel-2 composites. The fig-
ure also exemplifies the classification of industrial planta-
tions with the characteristic road network and the surround-
ing smallholder plantations. Appendix Fig. A5 shows exam-
ples of landscape types of oil palm plantations that were suc-
cessfully detected and others that were omitted.

We estimated the global area of planted closed-canopy
oil palm at 21.00± 0.42 Mha, of which 15.26± 0.40 Mha
(72.7 %) was industrial plantations and 5.72± 0.22 Mha
(27.3 %) was smallholders. The map confirms that Southeast
Asia is the highest-producing region in the world (Fig. 5)
with a total surface area of 18.69± 0.33 Mha. It is fol-
lowed by South America (0.91± 0.06 Mha), West Africa
(0.79± 0.11 Mha), Central America (0.52± 0.04 Mha),
Central Africa (0.21± 0.6 Mha), and the Pacific
(0.14± 0.00 Mha). Oil palm plantations were found in
49 tropical countries (see Appendix Table A2). However, the
estimated oil palm area varies greatly among countries, with
Indonesia and Malaysia representing the bulk of the total
surface area, while most other countries have a plantation
area below 2 Mha (Fig. 6).

The region with the highest percentage of smallholder
oil palm was West Africa (68.7 % of total plantings; Ap-
pendix Fig. A6). Elsewhere, the percentage of smallholders
varied from 14.5 % in Central Africa to 26.8 % in the Pacific.
As Fig. 6 illustrates, however, countries in the same region
might show different proportions of smallholders and indus-
trial plantations. For instance, Thailand showed the high-
est proportion of smallholders (71.5 %), which differed from
the low ratio in neighboring Malaysia (15.4 %). Countries in
Southeast Asia also showed the highest oil palm surface per
total land area, followed by smaller countries that allocate the
majority of their cropland to oil palm production (Guatemala,
Honduras, Costa Rica, and São Tomé and Príncipe).

The accuracy metrics obtained with the 10 816 points
show an OA of 98.52± 0.20 % (Table 2) for the global oil
palm map (Appendix Table A3 shows the confusion matrix).
This OA is significantly higher than the no-information rate
(92.00± 0.51 %), and, thus, we can be assured that the CNN
classification did better than assigning the major class to all
the validation points. The UA and PA were lower in indus-
trial and smallholder plantations than the same accuracies
obtained in the class “Other land uses”. Smallholder planta-
tions showed the lowest UA (76.56± 4.53 %), while the in-
dustrial plantations showed the lowest PA (75.78± 3.55 %).
The UA and PA accuracies were lower when evaluated
only in Sumatra (smallholder UA= 63.27± 7.82 % and in-
dustrial PA= 69.15± 4.62 %). However, these accuracies
were considerably lower in Descals et al. (2019), which
presented a UA= 45.85± 6.84 % for smallholders and
PA= 54.26± 4.42 % for industrial plantations. The state-
of-the-art methodology using CNN also showed a higher
overall accuracy than the random forest classification for

the case study in Sumatra (91.31± 0.97 % compared to the
94.02± 0.89 % in the current study).

Our results (OA= 96.59± 0.50 %) performed better than
the classification image (OA= 91.35± 0.69 %) of Xu et
al. (2020) for 2016 (Appendix Table A4). The pro-
ducer’s accuracy for industrial plantations in the results
(PA= 76.41± 3.08 %) of Xu et al. (2020) is higher than
our results (PA= 73.65± 2.94 %), although this difference
is not significant for a confidence level of 95 %. The main
difference between the datasets, however, was found in the
user’s accuracy for smallholders, in which our results ex-
celled (UA= 96.60± 0.51 % compared to 57.36± 3.76 % in
the dataset of Xu et al., 2020). The comparison with the data
of Xu et al. (2020), however, only reflects the accuracies for
closed-canopy oil palm plantations; the multi-annual analysis
in Xu et al. (2020) also included the detection of disturbances
in the time series to classify young plantations (Fig. 7). Sim-
ilar to the data of Xu et al. (2020), the dataset produced in
Gaveau et al. (2021) also mapped young oil palm and ar-
eas that were clear-cut for oil palm plantation in Indone-
sia. For this reason, our closed-canopy oil palm area esti-
mate was 12.05± 0.23 Mha in Indonesia – area mapped was
11.54 Mha with 7.71 Mha (66.8 %) industrial and 3.83 Mha
(33.2 %) smallholder – but, by comparison, Gaveau et al.
(2021) found a higher oil palm area for Indonesia for the
same year: 16.26 Mha. Despite this difference, Gaveau et al.
(2021) found a similar ratio between industrial and small-
holder plantation extent: 10.33 Mha industrial (64 %) and
5.93 Mha smallholder (36 %).

The comparison with inventories from FAOSTAT is also
evidence of a large omission of oil palm plantations in West
Africa (Appendix Fig. A7). The total surface reported as har-
vested area in FAOSTAT is 4.16 Mha in West Africa, while
our oil palm area estimate was 0.79± 0.11 Mha and the area
mapped 0.42 Mha. The country with the highest difference is
Nigeria with an area estimate of 3.02 Mha reported by FAO-
STAT that contrasts with the 0.01 Mha classified by the CNN
and the 0.25± 0.07 Mha total closed-canopy oil palm area
estimate.

4 Discussion

The results confirm previous findings on the suitability of
radar satellite data for mapping closed-canopy oil palm plan-
tations at the regional scale (Miettinen and Liew, 2011) and
the improved accuracies obtained with the combined use of
radar and optical data for mapping smallholder and indus-
trial oil palm plantations (Descals et al., 2019). Our study
further shows that these plantations can be mapped globally
and by typology at high spatial resolution (10 m). The re-
sults obtained with the CNN outperformed previous stud-
ies and provide evidence that deep learning is more suit-
able than standard machine-learning algorithms, such as ran-
dom forests, when contextual information is required for
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Figure 4. Example of the global oil palm layer in Côte d’Ivoire. Panel (a) shows a Sentinel-2 true color image. Panel (b) shows the resulting
classification image obtained with a convolutional neural network (CNN). The classification image depicts an industrial plantation (red)
surrounded by smallholder plantations (purple). The CNN learns contextual information, such as the rectilinear road network in the industrial
plantation, which is noticeable in the Sentinel-2 composite. Panel (c) shows the probability of closed-canopy oil palm. The probability
layer was generated from the second-last layer of the CNN which reflects the probability of each class (image source: Copernicus Sentinel
data 2019).

class prediction. Overall, the results show a high accuracy
(OA= 97.46± 0.26 %). The accuracy assessment and the
comparison with other products also provide evidence of
uncertainties associated with the oil palm definition: young
plantations, plantations that have open canopies, and planta-
tions mixed with non-palm tree species, such as semi-wild
oil plantations in Africa.

We compared our findings with three studies, Descals et
al. (2019), Xu et al. (2020), and the dataset developed by
Gaveau et al. (2021). Our CNN model applied to Sentinel-1
and Sentinel-2 classified closed-canopy oil palm stands with
higher detail (10 m spatial resolution) than existing datasets,
although, at a coarser resolution (100 m spatial resolution),
the temporal analysis used in Xu et al. (2020) aimed to de-
tect disturbances (e.g., land clearing and burning) that may
or may not result in the development of oil palm plantations.
Thus, Xu et al. (2020) classified open-canopy plantations that
remained undetected in our classification. Accordingly, the
omission error for oil palm was lower in the case of Xu et
al. (2020), although this difference was not significant. How-
ever, Xu et al. (2020) detected much more than oil palm plan-
tation, including scrubs and grasslands, and, therefore, the
commission error for oil palm was significantly higher in the
map of Xu et al. (2020) (UA= 57.36± 3.76 % compared to
96.55± 1.92 % in our study).

Gaveau et al. (2021) did not directly measure planted ar-
eas, but instead, they identified areas that were “cleared to
develop plantations”. An area may have been cleared for
oil palm and left idle because of several constraints, or the
area may have been planted, but the plantation may have
failed. The comparison with the maps of Xu et al. (2020)
and Gaveau et al. (2021) provides evidence for an important
shortcoming with our method: the classification of oil palm

with radar data can only detect closed-canopy oil palm stands
and, thus, excludes areas cleared for oil palm that have been
left idle or where oil palm trees died. Moreover, oil palm
must be at least 3 years old (Descals et al., 2019) to reach
the full canopy closure. Therefore, it is likely that our maps
missed young oil palm plantations developed after 2016. The
dataset developed in Gaveau et al. (2021) is more suited to
verify the impacts of the oil palm industry on forests, while
our method is more suited to map the productive planted area,
i.e., closed-canopy oil palm stands >3 years old. In contrast,
the dataset of Gaveau et al. (2021) was produced mostly by
the visual interpretation and manual delimitation of oil palm
development, while our method consisted of a supervised
learning algorithm; our trained CNN can automatically clas-
sify remotely sensed data into oil palm maps for future land
cover monitoring.

Since our method classified only closed-canopy oil palm,
it also struggled to detect oil palm in nonhomogeneous set-
tings (e.g., oil palm mixed with other crops), plantations
with low canopy coverage, and naturally occurring and semi-
wild oil palm trees, known as feral oil palm, that are present
in Africa. These semi-wild oil palm plantations explain the
large difference with the harvested area reported by FAO-
STAT in West Africa. This means that our global estimate of
total planted oil palm areas (21.00± 0.42 Mha) is an under-
estimate which considers only closed-canopy oil palm plan-
tations. It is difficult to say by how much we underestimate
the total planted area if considering young, nonhomogeneous
settings and sparse oil palm plantations, but, assuming con-
stant planting rates and an average palm age of 25 years
before replanting, we could miss 3/25= 12 % of the total
planted area.
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Figure 5. Density maps generated with the global oil palm layer. Panels (a, b, c) show the density maps of industrial oil palm plantations,
and panels (d, e, f) show the density maps for smallholder plantations. The maps have a spatial resolution of 10 km and represent the surface
of closed-canopy oil palm, in hectares, in an area of 109 hectares. The values on the map were obtained by dividing the area of the oil palm
within the 10 km pixel by the total area covered in the pixel.

Figure 6. Oil palm plantation area per typology (industrial versus smallholder) for the second half of 2019 in the 10 first countries with the
largest oil palm area. The figure reflects the area mapped (asterisk mark), which resulted from the classification of Sentinel-1 and Sentinel-2,
and the area estimate with a confidence level of 95 %.
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Figure 7. Comparison of the classification image obtained with the convolutional neural network (CNN) and the last year of the multiannual
analysis presented in Xu et al. (2020). Panel (a) shows a Sentinel-1 composite (VV-VH-VV) for the second half of 2016 in Riau province
(Indonesia). The VV and VH bands were transformed and stretched so that closed-canopy oil palm appears in green. Panel (b) shows the
classification image that results from the CNN using the Sentinel-1 and Sentinel-2 composites for 2016. Panel (c) shows the oil palm layer
presented in Xu et al. (2020) for the year 2016 (image source: Copernicus Sentinel data 2019).

Despite the caveats regarding the total areas of planted
oil palm, our findings of the ratio between smallholders and
industrial-type plantings are still relevant as both types of
oil palm are similarly affected by omission in our analysis
(except the oil palm we miss in agroforestry-type settings,
which is mostly smallholders). Evidence of this is that the
ratios reported by Gaveau et al. (2021) are similar to our esti-
mates in Indonesia. Globally, our data indicate that 72.7 % of
planted oil palm is under industrial-scale management and
27.3 % is managed by smallholders. These percentages di-
verge from the commonly stated claim that 40 % of the palm
oil produced globally is from smallholders (Meijaard et al.,
2018). Not only is the land managed in smallholder-type
settings less than 40 %, but there is also a significant yield
gap between industrial-scale and smallholder-scale opera-
tors. Smallholder yields are often 40 % or lower than yields
in industrially managed plantations (Woittiez et al., 2017),
which suggests that the overall contribution of smallholders
to global palm oil production is about 18 % rather than 40 %.
Industrial-scale operators thus appear to produce about 82 %
of the global palm oil. We note that this excludes the lo-
cally produced palm oil in agroforestry-type settings in the
African tropics, where oil palm is traditionally produced for
local consumption.

Our findings on the ratio between smallholder- and
industrial-scale oil palm are different from those reported
by various governments. For example, the government
of Indonesia estimates that 40.8 % of the country’s oil-
palm-planted area is developed under smallholder licenses,
whereas our analysis of the typical characteristics of planted
crops indicate that this ratio is 66.8 % industrial and 33.2 %
smallholder for the country. To qualify as a “smallholder

farmer” in Indonesia, according to the government, farms
must be less than 25 ha. Those that cultivate less than 25 ha
of oil palm are required to apply for a plantation registra-
tion certificate (STD-B), while those producers cultivating
more than 25 ha require a plantation business license (IUP-B;
Jelsma et al., 2017). The latter involves more complex proce-
dures and regulatory requirements, such as an environmental
impact assessment (Paoli et al., 2013). Those with an STD-
B are exempted from most of these requirements (Jelsma et
al., 2017). This creates an incentive for producers to clas-
sify their plantations as nonindustrial scale because the pa-
perwork and licensing involve fewer hurdles. This mismatch
between land occupancy (de facto) and legal allocation (de
jure) was also noted by Gaveau et al. (2017) in Sumatra,
who noted unregistered medium-sized landowners operating
like companies in terms of their approach to oil palm devel-
opment but without formal company status. Missing young
plantations cannot explain the large difference we noticed in
Indonesia between our planted area estimate and FAO har-
vested area because expansion has gone down in recent years
(Gaveau et al., 2019). In important producing regions (Riau,
Sumatra), only 15 % of all agricultural land parcels have a
national-level registration, and 26 % of all oil palm planta-
tions were only registered at the village level (Meijaard et
al., 2018). Unregistered plantations explain why we found
more plantations than FAOSTAT. Discrepancies between this
study’s findings and those of various governments on the ra-
tio between smallholder- and industrial-scale oil palm could
result from underestimations by authorities as identified by
Oon et al. (2019). As with Indonesia, it indicates how diffi-
cult it is to accurately map smallholder oil palm because of
the heterogeneous characteristics of this land use, the lack of
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legal registration of smallholder lands, and potentially vested
interests in running large-scale operations under smallholder-
type licenses (Appendix Fig. A8).

The CNN model trained for the year 2019 is planned to be
used for follow-up monitoring once a year to generate global
oil palm maps. The shortcomings of deep learning include
the high computational cost for training the models and the
high cost for gathering labeled data compared to the stan-
dard machine-learning algorithms commonly used in remote
sensing, such as random forest. In this study, 296 images of
1000× 1000 pixels were used as a training dataset, consist-
ing of 200 labeled images and 96 augmented images, and the
computing time for training a pretrained DeepLabv3+ was
nearly 8 d with an office computer. Despite this, the com-
puting time and the size of our training dataset were con-
siderably lower than state-of-the-art deep-learning studies in
computer vision (i.e., more than 200 000 labeled images in
the Common Objects in Context, COCO, dataset) in which
the number of classes and complexity of the classification
problem surpasses the current study.

5 Code availability

The code that generates the Sentinel-1 and
Sentinel-2 composites can be found at:
https://doi.org/10.5281/zenodo.4617748 (Descals, 2021).

The original code of the semantic segmentation model
DeepLabv3+ can be found at: https://github.com/tensorflow/
models/tree/master/research/deeplab GitHub (2021).

6 Data availability

The dataset presented in this study is freely available for
download at https://doi.org/10.5281/zenodo.4473715
(Descals et al., 2021). The dataset contains 634
100× 100 km tiles covering areas where oil palm plan-
tations were detected. The file grid.shp contains the grid
that covers the potential distribution of oil palm. The file
grid_withOP.shp shows the 100× 100 grid squares with
the presence of oil palm plantations. The classified images
(oil_palm_map folder, in GeoTIFF format) are the output
of the convolutional neural network based on Sentinel-1
and Sentinel-2 half-yearly composites. The images have a
spatial resolution of 10 m and contain three classes: (1) in-
dustrial closed-canopy oil palm plantations, (2) smallholder
closed-canopy oil palm plantations, and (3) other land covers
and/or uses that are not closed-canopy oil palm. The file
Validation_points_GlobalOilPalmLayer_2019.shp includes
the 13 495 points that were used to validate the product. Each
point includes the attribute “Class”, which is the labeled
class assigned by visual interpretation, and the attribute
“predClass”, which reflects the predicted class by the convo-
lutional neural network. The “Class” and “predClass” values
are the same as the raster files: (1) industrial closed-canopy

oil palm plantations, (2) smallholder closed-canopy oil
palm plantations, and (3) other land covers/uses that are not
closed-canopy oil palm.

The data can be visualized online at the BIOPAMA ap-
plication portal: https://apps.biopama.org/oilpalm/ (last ac-
cess: 18 March 2021). The BIOPAMA application por-
tal also includes the probability layer, which shows the
probability (from 0 to 100) that a pixel is a closed-
canopy oil palm plantation. The data can also be vi-
sualized on the Google Earth Engine (GEE) experi-
mental app: https://adriadescals.users.earthengine.app/view/
global-oil-palm-map-2019 (last access: 18 March 2021).
The global oil palm map is hosted in GEE as an Im-
age Collection: https://code.earthengine.google.com/?asset=
users/adriadescals/shared/OP/global_oil_palm_map_v1 (last
access: 18 March 2021).

The Sentinel-1 SAR GRD and Sentinel-2 Level-2A
used in this study (scenes taken in the second half of
2019 in the tropics and second half of 2016 in Suma-
tra) are available at https://scihub.copernicus.eu/ (last
access: 18 March 2021) and can be retrieved in GEE.
When using GEE, the Sentinel-1 and Sentinel-2 data are
hosted and accessed in the Earth Engine data catalog
(the links to the data are https://developers.google.com/
earth-engine/datasets/catalog/COPERNICUS_S1_GRD, last
access: 18 March 2021, Earth Engine Data Catalog, 2014,
and https://developers.google.com/earth-engine/datasets/
catalog/COPERNICUS_S2_SR, last access: 18 March 2021,
Earth Engine Data Catalog, 2017, respectively). Despite the
fact that the data are hosted by GEE, these satellite data are
the same as those accessed via the official portal (Copernicus
Open Access Hub: https://scihub.copernicus.eu/, last access:
18 March 2021); data ingested and hosted in GEE are always
maintained in their original projection, resolution, and bit
depth (Gorelick et al., 2017).

The WorldClim bioclimatic variables (WorldClim
V1 Bioclim) (Hijmans et al., 2005) were also accessed
through GEE: https://developers.google.com/earth-engine/
datasets/catalog/WORLDCLIM_V1_BIO (last access:
18 March 2021). The data can be accessed in the official
portal at https://www.worldclim.org/data/v1.4/worldclim14.
html (last access: 18 March 2021).

The IUCN industrial oil palm layer (Meijaard et al., 2018)
can be found at https://doi.org/10.5061/dryad.ghx3ffbn9
(Meijaard and Gaveau, 2021). The oil palm layer of In-
donesia and Malaysia for the year 2016 (Xu et al., 2020)
can be found at https://doi.org/10.5281/zenodo.3467071
(Xu et al., 2019). The oil palm layer of Sumatra for
the year 2019, developed with the same methodol-
ogy as in Descals et al. (2019) for Riau province
(Indonesia), is hosted as a GEE asset at https:
//code.earthengine.google.com/?asset=users/adriadescals/
shared/Sumatra_oilPalm_L2_Descals_et_al_2019 (last
access: 18 March 2021).
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Very high-resolution images (spatial resolution <1 m)
from DigitalGlobe can be visualized in the GEE code ed-
itor or Google Maps (i.e., https://www.google.com/maps/
@-3.969372,105.048514,782m/data=!3m1!1e3, last access:
18 March 2021; Google, 2021).

The country-wide harvested area of oil palm was extracted
from the FAOSTAT database (accessed on 10 Jun 2020): http:
//www.fao.org/faostat/en/ (FAO, 2020).

7 Conclusions

This study presents the first global map of oil palm planta-
tions for the year 2019 derived from remotely sensed data
with a spatial resolution of 10 m. We classified Sentinel-1
and Sentinel-2 data onto a map that discriminates between
smallholders and industrial oil palm plantations. We obtained
high accuracies with user’s and consumer’s accuracy gen-
erally above 80 % thanks to the use of cutting-edge deep-
learning algorithms. The method is deployable and can gen-
erate yearly maps for oil palm monitoring in a cloud pro-
cessing environment and based on freely available satellite
imagery.

Our global oil palm map makes an important contribu-
tion to the palm oil debate. It will be useful to solve or at
least clarify a range of social and environmental debates.
We know that oil palm plantations are a major cause of de-
forestation in Indonesia and Malaysia (Austin et al., 2019;
Gaveau et al., 2019), but the share of oil-palm-driven defor-
estation to global tropical forest loss is not known. This map
will help to inform the debate on oil-palm-driven deforesta-
tion globally. Forest clearing for oil palm is associated with
negative socioeconomic impacts on forest-dependent com-
munities (Santika et al., 2019). This map validates a novel
approach to mapping where oil palm is grown by smallhold-
ers who generate direct income or consumption from their
own plantations as opposed to industrial-scale oil palm (or
industrial-scale plantings disguised as smallholdings) where
plantations provide labor opportunity, but profits are pri-
marily channeled to company owners and the government
(through taxes). The data can thus guide better planning
for maximizing socioeconomic benefits from oil palm. The
global oil palm layer also assists in the discussion about en-
vironmental impacts of oil palm, including on biodiversity
(Fitzherbert et al., 2008; Meijaard et al., 2018) and regional
climate (McAlpine et al., 2018). These negative impacts are
real but need to be considered in the light of meeting the
global demand for vegetable oil through the optimal alloca-
tion of land not just to oil palm but to all major oil-producing
crops. This requires high-resolution spatial data for all oil
seed crops (Meijaard et al., 2020a) so that informed deci-
sions can be made about land use based on yield differences,
past environmental and social impacts of different crops, and
the different characteristics of oils from different crops and
their particular end uses. Finally, and relevant to the current

COVID-19 pandemic, our global map can help localize ar-
eas where zoonotic diseases can originate from, especially
in areas where oil palm expansion was associated with re-
cent deforestation. Such insights are essential for the health
of people and the economy (Wardeh et al., 2020).
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Appendix A

Table A1. Range of climate values in industrial plantations. These ranges represent the minimum and the maximum values of the WorldClim
bioclimatic variables observed in the industrial oil palm plantations of the IUCN layer. The variable names bio05 and bio06 represent the
maximum temperature of the warmest month and the minimum temperature of the coldest month.

Bio-variables Min. values Max. values Units

Annual mean temperature 18.50 28.90 ◦C
Mean diurnal range 6.00 14.50 ◦C
Isothermality 57.00 95.00 %
Temperature seasonality 1.19 22.19 ◦C
Max. temperature of warmest month 24.10 36.50 ◦C
Min. temperature of coldest month 12.90 24.20 ◦C
Temperature annual range (bio05-bio06) 7.10 18.30 ◦C
Mean temperature of wettest quarter 18.70 29.00 ◦C
Mean temperature of driest quarter 18.30 29.00 ◦C
Mean temperature of warmest quarter 18.90 29.60 ◦C
Mean temperature of coldest quarter 18.20 28.10 ◦C
Annual precipitation 987.00 5032.00 mm
Precipitation of wettest month 134.00 831.00 mm
Precipitation of driest month 1.00 274.00 mm
Precipitation seasonality 9.00 101.00 Coef. of variation
Precipitation of wettest quarter 386.00 2069.00 mm
Precipitation of driest quarter 7.00 911.00 mm
Precipitation of warmest quarter 107.00 1795.00 mm
Precipitation of coldest quarter 8.00 1955.00 mm

Table A2. List of countries where we confirmed the presence of oil palm plantations with the global oil palm layer for the second half of
2019.

North and Central America South America West Africa Central Africa South and Southeast Asia Pacific

Dominican Republic Ecuador Togo Angola Indonesia Papua New Guinea
Mexico Venezuela Ghana Burundi Singapore Solomon Islands
El Salvador Colombia Côte d’Ivoire Rwanda Brunei Vanuatu
Guatemala Peru Guinea Uganda Philippines
Panama Brazil Guinea-Bissau Tanzania Malaysia
Costa Rica Sierra Leone Cameroon Thailand
Nicaragua Liberia Equatorial Guinea Burma
Honduras Benin São Tomé & Príncipe Cambodia
Belize Nigeria Gabon Vietnam

Rep. of the Congo India
Central African Rep. Sri Lanka
Dem. Rep. of the Congo
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Table A3. Confusion matrix of the global oil palm layer (second
half of 2019) validated with 10 816 points. Columns represent the
mapped classes, and rows are the true label.

Other Industrial Smallholder

Other 9863 58 30
Industrial 66 472 49
Smallholder 15 5 258

Table A4. Comparison of the classification image obtained with the convolutional neural network (CNN) and the classification image
presented in Xu et al. (2020) for 2016. In order to compare both methodologies, we applied the CNN to Sentinel-1 and Sentinel-2 composites
of the second half of 2016, which corresponds to the last year of the multi-annual analysis in the dataset of Xu et al. (2020). We used
5199 points randomly distributed in the study area, which covers Malaysia, Sumatra, and Borneo. The accuracy metrics are reported with a
confidence interval (95 % confidence level).

Global OP year 2016 (SE Asia) Xu et al. (2020) for 2016

OA (%) 96.59 (96.10, 97.09) 91.35 (90.65, 92.04)

Other 96.60 (96.09, 97.11) 97.37 (96.91, 97.84)
UA (%) Industrial+ smallholder 96.55 (94.63, 98.47) 57.36 (53.60, 61.11)

Other 99.65 (99.46, 99.84) 92.79 (92.20, 93.38)
PA (%) Industrial+ smallholder 73.65 (70.71, 76.58) 79.49 (76.41, 82.57)

Figure A1. Diagram of the workflow for the generation of the oil palm map. The color of the square that surrounds the processing steps
depicts the programming environment used. The classification of satellite images was done with Matlab 2019a, but alternatively, the images
can be classified with the code distributed in Python.
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Figure A2. Maps generated for the estimation of the study area. The upper map (a) shows the number of WorldClim bioclimatic variables
that fall within the range observed in the industrial oil palm plantations (IUCN layer). The middle map (b) shows the potential area for oil
palm growth, which represents the pixels with more than 17 bioclimatic variables out of 19 falling within the range observed in the IUCN
layer. The lower map (c) reflects the grid used to cover the study area.

Figure A3. Location of areas where Sentinel-1 and Sentinel-2 was collected for training the convolutional neural network.
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Figure A4. Data augmentation used in the training data. Sentinel-1 and Sentinel-2 were labeled in images 1000× 1000 pixels in size. These
training images were rotated 90◦ clockwise to increase the size and quality of the training dataset. We also applied a rotation of 45◦ in labeled
images 2000× 2000 pixels in size (image source: Copernicus Sentinel data 2019).

Figure A5. Examples of oil palm plantations around the world that have been detected or not detected by the model. One square is about
390 m× 390 m= 15 ha. Source: see individual images and map data from © Google Earth 2021.
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Figure A6. Ratio of smallholder and industrial plantations at the sub-continental scale. The ratio was obtained with the global oil palm layer
for the second half of 2019.

Figure A7. Oil palm surface per country generated with the global oil palm map (2019) and extracted from the FAOSTAT “harvested area”
for the year 2018. The error bar in the global oil palm map shows the confidence interval with a confidence level of 95 %.

Figure A8. Smallholder oil palm planted right up to the river edge in Sumatra. These large areas of industrial-scale oil palm plantings are
operated under smallholder licenses, potentially making it easier to bypass environmental legislation to prohibit the planting of oil palm
within 50 m of river banks (Foto: Erik Meijaard).
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