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The analysis of human and animal tracks in archaeolog-
ical and palaeontological contexts can provide information 
about the composition of local fauna that would otherwise 
be unavailable from body fossils alone (e.g., Falkingham, 
2014; Lallensack et al., 2015; Helm et al., 2020). However, 
identifying trackmakers remains a difficult task, especially 
for morphologically similar ichnotaxa (e.g., Lucas and Hunt, 
2007; Klein and Lucas, 2015; Ledoux and Boudade-Maligne, 

2015; Buchwitz and Voigt, 2018; Buckley et al., 2018).  
In some substrates, sediment collapse and flow exacerbate 
the difficulty in identifying tracks. For example, human 
feet can often leave an elongated shape with no distinct toe 
impressions (e.g., Marty et al., 2009; Bennet and Morse, 
2014; Marchetti et al., 2020). In such cases, identification 
relies on successive tracks, and thus a given track may be 
identified as hominin from context of trackways, rather than 
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Abstract: The Vértesszőlős quarry, the Palaeolithic site where the “Samu” hominin fossil remains (Homo  
heidelbergensis) were found, is located in North West Hungary. The site is dated between the Early and Middle 
Pleistocene (ca. 310 ka). A short distance from where the Samu remains were found is an exposed surface of cal-
careous mudstone, preserving numerous fossil tracks made by a range of mammals and birds. Of particular interest 
are three elongate impressions - two potentially successive and one isolated. These tracks have previously been 
referred to either hominin or ursine trackmakers. Since bear pes tracks can superficially resemble human tracks, 
we attempted to discern the 3D morphology of the traces using digital photogrammetry. Our analysis suggests  
the isolated impression is likely the product of two superimposed tracks of a cloven hoofed ungulate. However,  
the two potentially successive tracks are more problematic. The highly weathered surface (first exposed in  
the 1960’s) has made interpretation difficult. Both impressions seem to possess a narrow, rounded end similar 
to the posterior heel margin of a human track. At the anterior end the impressions are broader, and bounded by 
smaller impressions that could be interpreted as toe marks. However, these two tracks differ considerably in their 
length/width ratios and are too widely spaced to be part of a single bipedal trackway. It is conceivable that one or 
both of these impressions may be highly weathered hominin tracks. However, given the highly weathered nature  
of the exposed surface, and the lack of morphological detail in the tracks, we cannot at this time confidently  
attribute the tracks to any specific trackmaker, despite our digital models of the tracks which provide a relatively 
objective means of analysis independent of prior assumptions.
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from isolated tracks (e.g., Mietto et al., 2003; Lockley et al., 
2008; Bennet and Morse, 2014). Other terrestrial mammals, 
e.g., bears and bovids, have also been known to leave elon-
gated tracks on occasion, either as the result of an elongate 
foot, or through a complex interaction of quadrupedal over-
stepping (Elbroch, 2003; McDougall, 2015). Consequently, 
human tracks, even when shod, can in some circumstance 
leave tracks of a similar shape to those left by bears and bo-
vids (Gierliński et al., 2017). We collected, from soft muddy 
substrates, digital images of bovid and bear tracks of similar 
size to human tracks, to be compared with the fossil tracks 
from Vértesszőlős, Hungary. 

The purpose of this study is to re-analyse three tracks pre-
viously regarded either as being produced by Ursus stehlini 
(Kretzoi) (small bear) (Kretzoi and Dobosi, 1990) or as pro-
duced by hominins (Vértes, 1964). Throughout the analysis, 
we combine standard visual descriptions with 3D digitiza-
tion methods, in order to objectively describe these tracks. 

Geological Setting
The Vértesszőlős freshwater limestone quarry (N47.63, 

E18.38) is located in the northwestern part of Hungary, in the 
Western foothills of the Transdanubian mountains (Fig. 1).  
Quarry excavations were operated by the project team of 
Dr. László Vértes during the 1960s. The Vértesszőlős site is 
known for fossils of Homo heidelbergensis (Stringer, 2012), 
Palaeolithic tools (Dobosi, 2003), and several mammal 
skeletal remains (e.g., horse, bullocks, bison, bear, rhinocer-
os, stag and rodent) (Kretzoi and Vértes, 1965). 

The Quaternary sediments of the quarry represent flu-
vial (sand, gravel), aeolian (loess, sand) and freshwater 
limestone deposits (Haas, 2013; Fig. 2). Within the quarry,  
8 sites have been excavated (Fig. 3). Fossil tracks have 
previously been reported from site III and attributed to 
mammals such as Ursus, Stephanorhinus, Capreolus and 
Megaloceros (Kretzoi and Dobosi, 1990). Site III has also 
yielded lithic tools from the palaeosurface above the tracks, 
but no hominid and mammalian skeletal remains have 
been found here. The trace fossils are preserved in calcar-
eous mudstone which has been dated to 310±30ka using  
Th230/U234 (Kele et al., 2016; Fig. 2). This constrains the 
tracksite at approximately the same age as the deposits from 
which the Homo remains were uncovered at site I, which 
have been dated to 315±72ka using a radiosiotopic method 
(Th230/U234; Kele et al., 2016).

The track site (site III) is now protected as an open-air 
museum, as part of the Vértesszőlős Hungarian National 
Museum. The site III extends approximately 40 m2, and the 
trampled surface is on a laminated calcareous mudstone 
layer (itself partly overlain by a tuffaceous calcareous mud-
stone). The record consists of 125 tracks, 106 of which iden-
tified as produced by mammals (e.g., bison, bear, rhinoceros 
and stag) and some others attributed to avian trackmakers 
(Kretzoi and Dobosi, 1990). There are three elongated 
tracks (one isolated and two possibly associated), previous-
ly attributed to Ursus stehlini (small bear), and interpreted 
as a left manus imprint and a right pes imprint (Kretzoi and 
Dobosi, 1990; Fig. 4).

Fig. 1.	 Geographical location of the Vértesszőlős quarry, Hungary (marked with a star).
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Fig. 2.	 Lithological log of Sites I and III. Track layer found in alternating calcareous mudstone (travertine), and calcareous tuff (trav-
ertine). Dates included are from Hennig et al. (1983) and Kele et al. (2016). The grey ones show the estimated time by ESR method in 
Hennig et al. (1983).

Methods
Collecting tracks of extant taxa

We used photographs of manus and pes tracks of two 
Asian black bears (Ursus thibetanus Cuvier), that were pro-
vided by Mr. Yoshiaki Okamura, one from the Shiga pre-
fecture, and the other from the Ishikawa prefecture, Japan. 
Photographs of tracks from four bovid species were also 
provided by Mr. Yoshiaki Okamura: 
–– Indian bison (Bos gaurus (Smith)) from Khao Yai 

National park, Thailand, 

–– Asian water buffalo (Bubalus arnee (Keer)) from north-
ern Thailand, 

–– Asian water buffalo (Bubalus arnee) from Koshi Tappu 
Wildlife camp, Nepal, and 

–– aurochs (Bos primigenius indicus) from northern 
Thailand. 

–– additionally, photographs of two human tracks from ac-
tualistic experimental studies (I. Tanaka and M. Tanaka 
as trackmakers) and made in mud and sand were used 
(Fig. 5).
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Fig. 3.	 Map of the Vértesszőlős quarry, with previous sites and finds labelled. Site I: osteological material of Homo heidelbergensis and 
other mammals, and tools. Site II: osteological mammal remains and tools. Site III (focus site of this study): Tracks attributed to mammals 
and birds. Reproductive by Kretzoi and Dobosi (1990). 

Fig. 4.	 Interpretive map of the track surface at site III (modified from Kretzoi and Dobosi, 1990). The black track sketches, numbered 
1–3, are those previously interpreted as being made by a small bear and analysed in detail here. 



5Pleistocene tracks from Hungary

Fig. 5.	 Comparative tracks from extant taxa. A. Bos gaurus (tjhe manus is overlapped by the pes) in mud substrate. B. Bubalus arnee 
in mud substrate. C. Bubalus arnee in muddy-sandy substrate. D. Bos primigenius indicus, plaster cast, convex hyporelief. E. Ursus  
thibetanus, plaster cast, convex hyporelief (left manus imprint and right pes imprint). F. Ursus thibetanus (right manus) in clay. G. Ursus  
thibetanus in clay (left pes). H. Manus and pes of Ursus thibetanus. I. Right pes track of Homo sapiens in moist, coarse- to medi-
um-grained substrate. J. Right pes track of Homo sapiens in moist, medium- to fine-grained substrate. White arrows in A–D show the edge 
of hooves, and in Figure C also point to the dew claw. Photographs in A–H by courtesy of Mr. Yoshiaki Okamura.
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Photogrammetric digitization at Vértesszőlős

The elongated fossil tracks from Hungary were digi-
tized using photogrammetry (Falkingham, 2012; Mallison 
and Wings, 2014; Falkingham et al., 2018), albeit post-hoc 
(i.e. photos were taken prior to considering the application 
of photogrammetry, e.g., Falkingham et al., 2014, 2018; 
Lallensack et al., 2015). Because photogrammetric digiti-
zation was not a primary aim during fieldwork, only three 
tracks were digitized. The maximum track length was meas-
ured according to the zone of “negative displacement” fol-
lowing Falkingham (2016). Photogrammetric models were 
produced from multiple digital photographs (camera mod-
el: OLYMPUS OM-D E-M5) which were converted into 
scaled, 3D textured mesh models using the software Agisoft 
Photoscan v1.4 (standard edition). The mesh models were 
then imported into the software Cloud Compare (www.
couldcompare.org, version 2.9) where the they were ren-
dered with scaled false-colour topographic profiles. Our 3D 
models are available on figshare: https://doi.org/10.6084/
m9.figshare.12753212

Results 

Tracks left by living animals

The bovid tracks are round in shape, with two distinctive 
thick hoofs (clear impression of the edge of the hoof; see 
arrows in Figure 5A–D) and possess a narrow medial ridge. 
Some tracks have the shape of an inverted V (Fig. 5A, B).  
They usually have a larger manus width than pes width.  
The anterior margin of the hooves is more pointed than the 
posterior edge. The anterior part of the impressions is gen-
erally much deeper than the posterior portion. The surfaces 
in Figure 5A–D are produced in moist clay.

The bear tracks are wider anteriorly and possess 5 for-
ward pointing digit impressions (Fig. 5E–H). When tracks 
faithfully record foot morphology, as in our examples, the 
bear tracks lack a medial arch and possess digit impressions 
of sub-equal length. The bear tracks also have a digit I that 
is relatively longer than digit V, and display a distinctive 
fleshy metapodial pad. The manus claw impressions of  
the black bear (Ursus thibetanus) are sharper, shorter, and 
more curved than those of other bears that do not climb trees. 
The pes of the black bear shows the human-like configuration 
of a plantigrade or flat-footed posture (McDougall, 2015). 
The manus tracks of the black bear possess a large proxi-
mal palm, and the size of the fifth digit is larger than that of  
the  first digit. Meanwhile, the pes tracks of the black bear 
retain their sole, and are more elongate compared to manus 
tracks (Fig. 5E–H).

For comparison with modern human tracks, we present 
images of two tracks made by humans on multi-layered pal-
aeosurfaces (Fig. 5I, J). This study as well as others (e.g., 
Bennett and Morse, 2014; Roach et al., 2016) present ex-
amples of the morphological variability of human tracks 
left in different substrates. The infill is of a relatively small 
grain size, while the grain size of the surrounding surface 
is larger. These tracks may resemble those of bears. Should 
we not know the trackmaker, their elongation and weak 

medial arch would offer a small possibility that these were 
human tracks, so they might be confused with bear tracks. 
In fact, if substrate conditions are not ideal, unshod hu-
man tracks can record very little detail and appear as little 
more than elongated impressions, sometimes with a cen-
tral constriction.

Tracks from Vértesszőlős

The trampled surface is on a calcareous mudstone, partly 
overlain by calcareous tuff. We re-describe three tracks pre-
viously studied by Kretzoi and Dobosi (1990). It is difficult 
to assess if these tracks are true tracks, because the palaeo-
surface comprises several (partially thin) layers. 

Track 1 (isolated impression)
This track was previously interpreted as being made by 

a small bear (Kretzoi and Dobosi, 1990). However, we find 
little similarity between this track (Fig. 6A–C) and those left 
by modern bears (Fig. 5E–H). The anterior part of the track 
has the shape of an inverted V, whereas the posterior part of 
the track has a rounded outline with a less evident V shape. 
Therefore, we interpret this morphology as being produced 
by two superimposed hoof tracks oriented towards the 
south of the site: a pes (Fig. 6B, blue) overstepping a manus  
(Fig. 6B, red), this is common in bovid tracks. This com-
posite impression is the clearest of the three detailed here, 
possessing sharp edges and a mostly distinct outline.

Tracks 2 and 3 (associated impressions)
Two elongate impressions located in close proximity to 

each other (Fig. 6D and G, tracks 2 and 3) were previous-
ly identified as being made by bears (Kretzoi and Dobosi, 
1990), but originally interpreted as hominin tracks (Vértes, 
1964). If these impressions are truly tracks, then either they 
have been subjected to severe weathering/erosion, and are 
now poorly preserved, or they lacked anatomical fidelity 
when they were produced and are relatively well preserved 
as regards the post-formation processes (see Gatesy and 
Falkingham, 2017; Marchetti et al., 2019; Falkingham and 
Gatesy, 2020). 

Topographically, the impressions cannot be objectively 
identified from the surrounding uneven surface (Fig. 6E). 
However, one of us (IT) visited the site and was able to dif-
ferentiate between the base of the impressions and the sur-
rounding surface based on texture. When the imprint and 
surrounding surface show different grain sizes, the infill is 
of a relatively small grain size, while the grain size of the 
surrounding surface is larger, suggesting that these may be 
modified true tracks, as opposed to undertracks (Fig. 6G). 
However, morphology does not allow to assess if these are 
single tracks or couples of two tracks, therefore, we refer to 
one track, which means either one track or one couple. On 
this basis, and in conjunction with the 3D model, outlines 
were produced of tracks 2 and 3 (Fig. 6E and H, respectively).

Superficially, the impressions resemble the general shape 
of unshod human tracks, with broader anterior ends and  
a narrower middle portion. The impressions are also of 
approximately the same size as a modern human track  
(~250 mm in length). 
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We find no evidence that the two impressions, if indeed 
they are tracks, form part of a trackway, and although 
both impressions are aligned in approximately the same 
orientation, this may be coincidental. Any mammal track-
way comprising these two impressions would be unusu-
ally wide. We found no evidence of subsequent impres-
sions that could be associated forming part of a longer 
trackway.

Discussion

Of the three elongate impressions studied here (Fig. 5A, 
F, H), only one (Fig. 5A; Track 1) possesses enough mor-
phological distinctiveness to be identified. Based on the 
sharp edges and central ridge, we interpret this track as be-
ing made by the superimposed manus and pes of a bovid, an 
interpretation which is supported by skeletal material found 

Fig. 6. Putative fossil tracks from Vértesszőlős. A. Bovid tracks, photo taken in 1960s. B. Textured photogrammetric model generated 
from recent photos. C. Photogrammetric model coloured according to height (blue is high, red is low, blue-red = 5 cm). D–F. Track 2. 
G–I. Track 3 presented as textured photogrammetric models (D, G), interpretative outlines (E, H) and contour-mapped 3D model (F, I). 
J–K. Surface with Track 2 and Track 3 and position on the map. Models are in supplemental data (S1).
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nearby (Kretzoi and Dobosi, 1990). The anterior hooves of 
the track are clear (Fig. 6A–C), therefore we assume the foot 
was parallel to the sediment during contact (Fig. 5B, D).  
Unfortunately, the highly irregular surface upon which the 
tracks are impressed precludes identification of any subse-
quent tracks constituting a trackway. Based on the shape of 
the central ridge, which is wider at the posterior margin in 
our extant bovid tracks (Fig. 5A–D), we interpret the track-
maker to have been moving toward the south of the site.

Tracks 2 and 3 are more problematic, and based on objec-
tive topography alone, one would be hard pressed to identify 
any specific impression. However, the infill is of a relative-
ly small grain size, while the grain size of the surrounding 
surface is larger, suggesting that these may be modified 
true tracks. Superficially, they do resemble hominin tracks 
in both their general shape and size. Track 2 may have 
been a pes, because it seems to have a medial arc, while it 
is hard to assess whether track 3 is either a pes imprint or  
a manus-pes couple, because it is separated in two parts that 
may have had digit-like impressions. The distance between 
track 2 and track 3 (measure between top of both tracks) is 
about 70 cm. If track 3 is indeed a pes impression, the track-
way width between track 2 and track 3 would be notably 
wide. Surrounding tracks do not reflect this, and therefore 
we do not know the relationship between track 2 and track 
3. Previous studies have highlighted the morphological 
variability in tracks even from a single human trackmak-
er (Lockely et al., 2008; Marty et al., 2009; Morse et al., 
2010; Wall-Scheffler et al., 2015; Marchetti et al., 2019) and 
it is quite conceivable that the studied impressions (tracks 
2 and 3) were made by a hominin foot, given the gener-
al form, which is supported by the presence of tools and 
Homo heidelbergensis body fossils in nearby strata. If they 
are indeed hominin tracks, the global average foot-length/
stature ratio of 15% (Mietto et al., 2003) would indicate that 
the trackmakers were approximately 1.65m tall. This value 
falls in the range of height estimated for Homo heidelber-
gensis from skeletons, which is 1.57–1.75m (male average 
= 1.75 m; female average = 1.57 m; Carretero et al., 2012). 
However, the tracks lack any distinctive morphological fea-
tures that could conclusively say if they were produced by 
hominins and not bears.

Conclusion
We investigated three tracks in the Vértesszőlős quarry 

using 3D photogrammetry techniques. All three impressions 
have previously been attributed to an Ursine trackmaker or 
to hominin tracks. Our analysis does not support either of 
these hypotheses. Instead, we attribute one track (Track 1) 
to a bovine trackmaker produced through a superimposition 
of manus and pes impressions. 

The other two tracks remain inconclusive. Both impres-
sions lack sufficient morphological features to interpret 
the trackmaker identity. Early human tracks are rare in the 
fossil record, and it is possible that tracks of Homo heidel-
bergensis are present at Vértesszőlős, given the presence of 
Palaeolithic tools and Homo skeletal remains in the area. 
Despite lacking anatomical details, the putative traces do 
share similarity with some modern human tracks made in 

similar limestone-mudstone deposits. However, the attribu-
tion to a hominid trackmaker of any of the three analysed 
tracks at site III cannot be supported unless future excava-
tions expose more diagnostic impressions.
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