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Abstract: Elite rugby league and union have some of the highest reported rates of concussion
(mild traumatic brain injury) in professional sport due in part to their full-contact high-velocity
collision-based nature. Currently, concussions are the most commonly reported match injury during
the tackle for both the ball carrier and the tackler (8–28 concussions per 1000 player match hours)
and reports exist of reduced cognitive function and long-term health consequences that can end a
playing career and produce continued ill health. Concussion is a complex phenotype, influenced by
environmental factors and an individual’s genetic predisposition. This article reviews concussion
incidence within elite rugby and addresses the biomechanics and pathophysiology of concussion
and how genetic predisposition may influence incidence, severity and outcome. Associations have
been reported between a variety of genetic variants and traumatic brain injury. However, little effort
has been devoted to the study of genetic associations with concussion within elite rugby players.
Due to a growing understanding of the molecular characteristics underpinning the pathophysiology
of concussion, investigating genetic variation within elite rugby is a viable and worthy proposition.
Therefore, we propose from this review that several genetic variants within or near candidate genes of
interest, namely APOE, MAPT, IL6R, COMT, SLC6A4, 5-HTTLPR, DRD2, DRD4, ANKK1, BDNF and
GRIN2A, warrant further study within elite rugby and other sports involving high-velocity collisions.

Keywords: genomics; rugby; polymorphisms; concussion; mild traumatic brain injury

1. Introduction

Rugby union (RU) and rugby league (RL) are both full-contact collision-based codes of
rugby, which have some of the highest reports of concussion in professional sports (“rugby”
will be used to refer to both RU and RL). Rugby-related concussions have been the focus of
recent concern over the potential short- and long-term neurodegenerative consequences.
In addition, athletes who have had a prior concussion have a higher risk of repeated
concussions and subsequent time-loss injury [1–4]. There is a reported increased risk of
potential short- and long-term consequences associated with concussion such as increased
injury risk, cognitive impairment, forms of dementia, chronic post-concussion syndrome,
migraines, sleep dysfunction, anxiety, post-traumatic stress disorder and second-impact
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syndrome [5–14]. These consequences could interrupt or terminate an athletic career,
causing short- or long-term ill health.

Sport-related concussion has been defined as a traumatic brain injury (TBI) induced by
biomechanical forces [5]. However, many factors contribute to concussion risk such as age,
sex, playing position, playing level, behaviour, rules of the sport, neck strength, nutrition,
and sleep quality [15–17]. Concussion has been widely studied in relation to environmental
factors, especially in rugby, where factors considered include activity when concussion
occurred (e.g., tackling/being tackled), playing experience, history of concussion, positional
differences, use of protective equipment (e.g., headgear/mouth guards) and return-to-
play protocols and standard of competition [18,19]. However, a further step to better
understanding inter-individual variability involves genetic variation and its association
with concussion and related phenotypes. Evidence already exists suggesting an association
between several genetic factors and inter-individual variability in traumatic brain injury
incidence and severity [20–28].

Classical genetic studies (twin or family studies) quantify the heritability of phenotypic
traits [27]. As concussion is only experienced by a small proportion of the population [28],
recruiting a sufficient number of twins/family members who have experienced concus-
sion is difficult (though not impossible) and has not been undertaken, to our knowledge.
Consequently, a classical study on the inheritance of concussion risk, to elucidate the
relative contribution of environmental versus genetic factors affecting inter-individual vari-
ability in concussion incidence, severity and outcome, would be extremely valuable. Many
other sport-related injuries or risk factors for injury have substantial genetic contributions
to their inter-individual variability, such as tennis elbow (epicondylitis), for which heri-
tability has been estimated at a substantial ~40% in women [29] and bone mineral density
(a predictor of osteoporotic fracture), for which heritability is even greater at 50–85% [30].
Substantial heritability estimates for brain structure (~90%) and cognitive performance
(~60%) have also been reported [31–34]. Given these and other observations of substantial
genetic contributions to inter-individual variability in most human traits, it is likely that a
substantial genetic component also applies to concussion.

Indeed, the substantial inter-individual variability in injury occurrence, and in out-
comes following concussion, is probably due to the interaction of multiple genes in a
polygenic manner that reflects the complex pathophysiology [35,36]. Prediction of recov-
ery and future risk is therefore currently difficult [5]. This unexplained inter-individual
variability could suggest a future role for genetic screening of concussion-associated risk
polymorphisms in order to (i) stratify potential risk of initial injury, for individuals (ii) iden-
tify players with a greater risk of prolonged recovery and potential concussion-associated
neurological issues, (iii) identify those at risk of repeated concussions, (iv) provide further
insight into concussion pathophysiology, and (v) inform concussion management strategies
at a practical level in elite sport.

Therefore, the aims of this narrative review are to (1) describe the current data on
incidence rates and severity of concussion in elite rugby; (2) provide an overview of the
mechanisms and pathophysiology of concussion; (3) evaluate how genetic variation could
affect predisposition for and recovery from concussion; and (4) inform the future direction
research regarding genetic aspects of concussion in rugby.

2. Incidence Rate and Severity of Concussion in Rugby

The professionalisation of rugby has resulted in alterations in the physical character-
istics of players [37–40]. These alterations in physical characteristics such as body mass,
strength, power and speed have increased the physical demands of modern rugby, such as
more tackles and rucks per match [40–44]. This increased physicality has contributed to
increased incidence rates of concussion in rugby [45,46].

There are many similarities in anthropometric and physiological characteristics of
players in RU and RL that reflect comparable physical demands including frequent, heavy
physical contact in both rugby codes [40]. Elite rugby (RU and RL) has been reported to
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have a concussion incidence of ~8–28 concussions per 1000 match hours [47,48], which is
lower than sports such as horse racing (17–95) and boxing (13) but higher than sports such
as soccer (0.4) [49–51]. Seventy percent of head injury assessments in elite RU as a result of
a tackle are experienced by the tackler and 30% by the ball carrier [52]. This concussion
risk is influenced by athlete speed, playing position, impacting force, body position, type
of tackle, tackle technique, and physiological and anthropometric characteristics [53,54].

Recovery from concussion has been defined as a return to sport that encompasses a
resolution of post-concussion-related symptoms and a return to clinically normal balance
and cognitive functioning [5]. Within 7–10 days, 80–90% of adults with sport-related
concussions could be clinically recovered and returned to play (Figure 1) [5,55,56].
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Figure 1. Sequence of events and possible recovery durations post-concussion.

For 10–20% of concussion cases, symptoms can persist for >10 days [55]. Time taken
to recover from a concussion differs for individuals, as 6.5% of concussed athletes have
been reported to not return to play until 14 days post-concussion. For 1.6% of concussed
athletes, recovery can take longer than 14 days and these individuals could have chronic
post-concussion symptoms for up to 12 months [56,57].

Concussion prevalence during the Rugby World Cups has seen a small increase from
~14% of all injuries in 2015 to ~16% in 2019 [58,59]. In the English Rugby Premiership (the
top tier of competition in England), concussion incidence increased dramatically from 8 per
1000 match hours in the 2013–2014 season to 22 in 2016–2017, although this is thought to
be largely due to increased awareness and reporting [60]. However, concussion incidence
within the English RU Premiership decreased to 18 concussions per 1000 match hours
in 2017–2018 (~1 concussion per match) [48]. In elite RL, concussion incidence in the
National Rugby League (the top tier of competition in Australia) has ranged from ~9 to 28
concussions per 1000 player match hours over a 17 year period with a tendency to increase
over time [61–63].

The incidence of concussions in RU is similar for forwards (4–19 per 1000 player
match hours) and backs (5–18 per 1000 player match hours) [18,64]. In RL, incidence of
concussions ranges from 12 to 48 per 1000 player match hours in forwards and a similar
14 to 44 per 1000 player match hours in backs [65]. Concussion incidence in both codes
during training is much lower, accounting for only ~5% of concussions (0.03–0.07 per
1000 player training hours) [18,66]. Fluctuations in incidence over time could be attributed
to developments in concussion education or operational strategies such as using ‘Hawkeye’
video analysis [48]. Increased awareness of players, support staff and coaches could
account for the increased incidence of concussion reported in recent years [48]. Awareness
is thought to be increased due to education initiatives by rugby governing bodies and
player associations involving increased recent media attention [67].

The average range of concussion severity in RU ranges from 9 to 21 days absence (pe-
riod from injury to availability for match selection) [4,48,61,65]. However, inter-individual
variability means that severity can range from 2 days to >84 days absence [49]. Data from
the 2013–2015 Super League RL seasons suggest severity can range from 9 to 15 days
absence [47].

3. Mechanisms of Concussion

Rugby-related concussions can be the result of either direct head contact or inertial
causes, but each concussion is a unique event. Contact injuries (e.g., from collisions) cause
the brain to impact on the internal surfaces of the skull. Particularly injurious are incidents
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involving the frontal and temporal fossae regions due to ridges and bony protuberances
that deform brain tissue [68]. Kinematic analysis indicates that inertial forces from direct or
indirect impacts resulting in angular/linear acceleration/deceleration of the brain from
head and neck motions can lead to concussion [69].

The contributions of angular or linear acceleration/deceleration to concussion is
debated in the literature [70]. Linear acceleration is associated with changes in pressure
gradients within the skull, compared to angular acceleration/deceleration that is associated
with shear stresses on the brain forcing tissues to slide over one another and stretch [71].
Shear and stretch mechanical forces stretch axons to the point of axotomy (physical break-
ing) or partial breaking in areas, such as grey and white matter junctions, small blood
vessels and axonal projections [69,72,73].

Concussions appear to vary in impact locations (front, top, back and sides of the
head), linear acceleration/deceleration magnitude (61–169 g in collegiate American Foot-
ball players, although there are concerns about the validity of those high values [74]) and
clinical outcomes [75]. However, head impacts from high-magnitude angular accelera-
tion/deceleration result in more severe clinical outcomes due to the propensity of brain
tissue to deform more readily from shear forces and are the predominant mechanism in
multifocal concussion [71,75]. A tackle or collision may produce whiplash, which in turn
produces both linear and angular acceleration/deceleration to the player’s brain [75].

4. Pathophysiology of Concussion

In rugby, the primary mechanical stress injury to neurons is likely the result of a
collision that elicits a neuronal stretch. A stretch of ~10–20% of a neuron’s resting length
within 100 ms (sublethal axonal injury threshold) can trigger the secondary biochemical
response of the neurometabolic cascade [76,77]. The resultant microstructural damage
caused by the stretch is hypothesised to be the root cause of all forms of TBI [78–80]. The
neurometabolic cascade following a concussive event (Figure 2) has been reviewed by Giza
and Hovda [76,77].

The initial disturbance and stretch result in the release of depolarising extracellular
K+ due to voltage-dependent channels opening in the neuronal membranes and this can
last up to 6 h post-concussion [81,82]. Further K+ flux is caused by the release of the
excitatory amino acid glutamate [83]. Proteolytic digestion of the axon membrane skeleton
occurs due to Ca2+ activation of cysteine proteases and apoptotic genetic signals [84].
Ca2+ influx has been reported to contribute to axonal microtubule breakdown 6–24 h
after a concussive event [82]. During smaller insults to the brain, surrounding glial cells
remove extracellular K+ in order to maintain homeostasis [85]. However, this cannot be
achieved during larger concussive events and greater quantities of excitatory amino acids
are released, resulting in ‘spreading depression’ [86]. Multiple mechanisms are responsible
for elevated Ca2+ levels—firstly, the physical disruption of membranes through primary
injury [87]; secondly, increased glutamate binds receptors such as n-methyl-d aspartic acid
(NMDA) subunit NR2A, increasing Ca2+ influx through the NMDA channel, prolonging
neuronal dysfunction [88].

Disruption of ionic homeostasis leads to an energy crisis within the injured brain.
Re-establishment of ionic homeostasis is further attempted by the employment of ATP-
fuelled membrane pumps, which results in increased glycolysis to meet energy require-
ments due to reduced activity of cerebral oxidative metabolism and reduced cerebral blood
flow of up to 50% [89]. Increased intracellular Ca2+, Na+ and K+ can result in swelling and
contribute to further reduced cerebral blood flow [90]. Mitochondrial oxidative metabolism
is impaired due to the influx of extracellular Ca2+, thus contributing to the energy cri-
sis [91]. As part of the neurometabolic cascade, pro- and anti-inflammatory cytokines are
released [92]. Cytokines from this neuroimmune response can play both beneficial and
detrimental roles in the neuroinflammatory response following a concussion [92].



Sports 2021, 9, 19 5 of 19

Sports 2021, 9, x FOR PEER REVIEW 5 of 20 
 

 

crisis [91]. As part of the neurometabolic cascade, pro- and anti-inflammatory cytokines 
are released [92]. Cytokines from this neuroimmune response can play both beneficial and 
detrimental roles in the neuroinflammatory response following a concussion [92]. 

  
Figure 2. Concussive event leading to the neurometabolic cascade. Glut, glutamate; K+, potassium; Ca2+, calcium; Mg2+, 
magnesium; AMPA, α -amino-3-hydroxy-5methyl-4-isoxazole-propionic acid. 

5. Genetic Associations with Concussion 
Genome-wide association studies (GWAS) enable the genome to be searched for un-

suspected variations as opposed to candidate areas as in a gene association study [93,94]. 
In elite sport, however, the maximum number of individuals available for study is limited. 
For example, the English Rugby Premiership comprises ~600 players and Super League 
~360 players. This limited sample size reduces the feasibility of GWAS, as considerably 
larger sample sizes are often required to meet the traditionally accepted significance value 
of p < 5 × 10−8. Genetic association studies utilising a candidate gene approach enable the 
study of genetic variance within a complex polygenic trait [95]. An advantage of the can-
didate gene approach is that genes are selected utilising an a priori hypothesis based on 
the biological function of a particular protein and the specific phenotype [95,96], and sta-
tistical power can be sufficient to test specific hypotheses using sample sizes available in 
elite sport. A disadvantage of the candidate gene approach is that only genes/variants 
already suspected are investigated, excluding the possibility of discovering hitherto un-
suspected genes/variants that might be important. 

Functionally, significant polymorphisms (single-nucleotide polymorphisms (SNPs), 
repeat polymorphisms, insertions or deletions) used in the candidate gene approach are 
often selected based on the likeliness to affect gene function. Priority polymorphisms in-
clude those that alter an amino acid in a protein (missense variation) or produce a stop 
codon (nonsense variation) [95]. Polymorphisms in promoter and regulatory regions of a 
gene could also have functional consequences by influencing transcription rate [95]. 

  

Figure 2. Concussive event leading to the neurometabolic cascade. Glut, glutamate; K+, potassium; Ca2+, calcium; Mg2+,
magnesium; AMPA, α -amino-3-hydroxy-5methyl-4-isoxazole-propionic acid.

5. Genetic Associations with Concussion

Genome-wide association studies (GWAS) enable the genome to be searched for un-
suspected variations as opposed to candidate areas as in a gene association study [93,94].
In elite sport, however, the maximum number of individuals available for study is limited.
For example, the English Rugby Premiership comprises ~600 players and Super League
~360 players. This limited sample size reduces the feasibility of GWAS, as considerably
larger sample sizes are often required to meet the traditionally accepted significance value
of p < 5 × 10−8. Genetic association studies utilising a candidate gene approach enable
the study of genetic variance within a complex polygenic trait [95]. An advantage of the
candidate gene approach is that genes are selected utilising an a priori hypothesis based on
the biological function of a particular protein and the specific phenotype [95,96], and statis-
tical power can be sufficient to test specific hypotheses using sample sizes available in elite
sport. A disadvantage of the candidate gene approach is that only genes/variants already
suspected are investigated, excluding the possibility of discovering hitherto unsuspected
genes/variants that might be important.

Functionally, significant polymorphisms (single-nucleotide polymorphisms (SNPs),
repeat polymorphisms, insertions or deletions) used in the candidate gene approach are
often selected based on the likeliness to affect gene function. Priority polymorphisms
include those that alter an amino acid in a protein (missense variation) or produce a stop
codon (nonsense variation) [95]. Polymorphisms in promoter and regulatory regions of a
gene could also have functional consequences by influencing transcription rate [95].

5.1. Candidate Genetic Variants

A complex array of physiological and psychological responses to concussion have
been reported, so the proposed influencing genes have been categorised into four groups.
These groups are based on current knowledge and some genes fit into more than one
category due to the nature of their functions: 1. genes that affect the severity of concussion;
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2. genes that affect repair and plasticity of the brain; 3. genes that affect post-concussion
cognitive behavioural capacity; and 4. genes that affect personality traits and concussion
risk. The genes are listed in Table 1 and addressed in Sections 5.1.1–5.1.16.

Table 1. Candidate genes linked to TBI.

Gene Name Gene
Abbreviation

Polymorphism
Identifier Relevant Effects Associated with TBI

Apolipoprotein E APOE
rs429358
rs7412
rs405509

Affects repair and plasticity of the brain [97,98].
APOE isoforms have differing effects on neurite
extension, which can influence ability to recover
post-concussion [97–100].Associated with
functional regulation of APOE transcription
[101,102].

Microtubule-associated protein tau MAPT
rs10445337
rs2435211
rs2435200

Affects repair and plasticity of the brain via
modulation of microtubule formation, structural
stabilisation of the neuronal axons and drives
growth of neurites [103,104].

Neurofilament heavy NEFH rs165602

Affects repair and plasticity of the brain via
modulation of the neuronal cytoskeleton is to
resist the resultant strain caused by biomechanical
forces [105].

Membrane metalloendopeptidase MME
GT repeat promoter
polymorphism of
neprilysin

Affects repair and plasticity of the brain as this
gene encodes for the neprilysin protease which
degrades Aβ proteins [106–108].

Brain-derived neurotrophic
factorantisense RNA BDNF-AS rs6265

Affects repair and plasticity of the brain via
strengthening existing synaptic connections and
modulating the creation of new synapses
[109–111].

Glutamate ionotropic receptor
NMDA type subunit 2A promoter GRIN2A rs3219790

Affects duration of concussion via potential
modulation of glutamate-gated ion channel
proteins [112–115].

Catechol-O-methyltransferase COMT rs4680
Affects cognitive behavioural capacity
post-concussion and could increase impulsivity
and risk taking [116–118].

Ankyrin repeat and kinase domain
containing 1 ANKK1 rs1800497 Affects cognitive behavioural capacity via

modulation of expression of D2 receptors [119–124].

Dopamine receptor D2
Dopamine receptor D4

DRD2
DRD4

rs12364283
rs1076560
rs1800955

Affects personality traits, associated with
risk-taking behaviours (impulsivity, behavioural
inhibition and novelty seeking) [125,126].

Solute carrier family 6 member 4 SLC6A4 rs4795541
rs25531

Reported to play a role in personality and behavior
via increased harm avoidance and impulsivity
behaviours [127–131].

Endothelial nitric oxide synthase NOS3 rs2070744
Could affect severity of concussion and cognitive
behavioural capacity post-concussion via
modulation of cerebral vasospasm [132–137].

Angiotensin I-converting enzyme ACE
rs4646994
rs7221780
rs8066276

Affects cognitive behavioural capacity
post-concussion via modulation of cerebral blood
flow [138–140].

Tumour necrosis factor TNF
rs1800629
rs1800468
rs1800469

Could affect neuroinflammation and severity of
concussion [141–143].

Transforming growth factor beta 1 TGFB1 rs1800468
rs1800469

Regulation of the anti-inflammatory mediator
TGFB1 could affect severity of concussion
[144,145].
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Table 1. Cont.

Gene Name Gene
Abbreviation

Polymorphism
Identifier Relevant Effects Associated with TBI

Interleukin 1 alpha
interleukin 1 beta

IL1A
IL1B

rs1800587
rs16944
rs1143634

Affects severity of TBI via potential modulation of
the inflammatory process and secondary
conditions [146].

Interleukin 6 receptor IL6R rs2228145
Affects severity of concussion potential via
modulation of the inflammatory process and
cognitive behavioural capacity post-concussion [147].

5.1.1. Apolipoprotein E

Apolipoprotein E (APOE) is the most researched gene in respect to TBI. APOE isoforms
have both protective and detrimental effects (Supplementary Figure S1). These effects are
dependent upon which specific alleles an individual carries and thus gene expression after
the TBI event. APOE has three common allelic isoforms ε2, ε3 and ε4 which differ by amino
acid substitutions at residues 112 and 158 [148]. Two C/T SNPs at residues 112 (rs429358)
and 158 (rs7412) result in amino acid substitutions of arginine (C) to cysteine (T) at each
residue (Supplementary Figure S1). The two nonsynonymous SNPs at residues 112 and
158 can produce the three isoforms of ε2, ε3, ε4 and six possible genotypes (Table 2) of
relevance to concussion.

APOE isoforms have differing effects on neurite extension, which can influence ability
to recover post-concussion. APOE ε3 stimulates neurite growth in cultured neuronal
cells [97,98]. In contrast, APOE ε4 suppresses neurite growth [97,98]. These findings suggest
that APOE ε2 and ε3 would provide more effective neuronal repair, such as proliferation
of dendrites post-concussion compared to APOE ε4 [97,98]. In addition, the ε4 alleles
have been associated with the formation of neurodegenerative amyloid plaques (Aβ) and
increased risk of Alzheimer’s disease [99].

Table 2. Three isoforms and six possible genotypes of APOE.

APOE Isoform APOE Genotype rs429358 rs7412

ε2 T T
ε3 T C
ε4 C C

ε2/ε2 TT TT
ε2/ε3 TT CT
ε2/ε4 CT CT
ε3/ε3 TT CC
ε3/ε4 CT CC
ε4/ε4 CC CC

Despite the pathophysiological roles that APOE ε4 plays in TBI, studies associating
APOE ε4 and sport-related concussion are few and findings are conflicting. Kristman
et al. [100] showed no association between APOE ε4 carriers and incidence of concussion
in Varsity level athletes. These findings have been supported by Terrell et al. [2] and
Tierney et al. [1], who also reported no association between concussion incidence and
APOE genotypes in collegiate athletes. More recently, Abrahams et al. [149] reported no
association in APOE ε2, ε3 and ε4 genotypes and incidence of concussion in a mixed cohort
of youth, amateur and professional South African RU players.

Early findings from Jordan et al. [150] indicated that APOE ε4 carrier boxers expe-
riencing high-exposures (>12 professional bouts) had greater chronic brain injury scale
scores than non-ε4 carrier high-exposure boxers. Indeed, it has been suggested that the
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APOE ε4 allele may be responsible for up to 64% of the ‘hazardous influence’ of TBI [151]
and athletes who possess the ε4 allele suffer from prolonged physical (Cohen’s d’ = 0.87)
and cognitive (d’ = 0.60) symptomatic responses to concussion [152].

Polymorphisms within the promoter region of APOE have been associated with
functional regulation of APOE transcription and quantitative impacts on apolipoprotein
E levels in brain tissue, as well as unfavourable outcomes post-TBI [101,102]. It has been
hypothesised that the -219 T allele at rs405509 exacerbates the effects of the ε4 allele through
upregulation of APOE gene transcription and increased Aβ plaque accumulation [102].

Lendon et al. [102] observed an association between individuals with rs405509 TT
genotype and unfavourable outcomes post-TBI over a six-month recovery period. Tierney
et al. [1] reported that carriers of the T allele had an 8-fold greater risk of experiencing two
or more concussions. Similarly, Terrell et al. [2] suggest that the TT genotype is associated
with a 3-fold greater risk of previous concussion and a 4-fold greater risk of a history of
concussion with loss of consciousness. In contrast, Abrahams et al. [149] reported that TT
genotype was associated with a 45% reduced risk of and concussion and the T allele was
associated with a <1-week recovery period post-concussion in a mixed cohort of youth and
professional South African RU players. These conflicting findings could be in part due to
differences in sport and, in particular, geographic ancestry of the participants. Nevertheless,
the plausible physiological mechanisms and the limited number of association studies
warrant further investigation of this concussion-associated SNP.

5.1.2. Microtubule-Associated Protein Tau Polymorphisms

The functions of microtubule-associated protein tau (MAPT) include encoding the tau
protein that modulates microtubule formation, structural stabilisation of the neuronal
axons and driving growth of neurites [103,104]. Elevated post-TBI plasma levels of tau
have been observed for up to 90 days [153]. Autopsies on American football players’ brains
who had experienced repetitive concussions indicate the presence of neurofibrillary tangles
(aggregates of hyperphosphorylated tau protein) and neuropil filaments (abnormal neurite
formations) [154]. These neurotoxic formations have been associated with neurodegenera-
tive diseases such as Alzheimer’s disease, chronic traumatic encephalopathy, Parkinson’s
disease, frontotemporal dementia and a range of other neurodegenerative diseases under
the term tauopathies [155–158]. The MAPT (rs10445337) T/C SNP is postulated to modu-
late the formation of neurotoxic-paired helical filaments composed of hyperphosphorylated
tau [159,160] (Supplementary Figure S2).

Terrell et al. [2] reported a nonsignificant observation that the MAPT rs10445337 TT
genotype was weakly associated with a history of one or more concussions (odds ratio,
2.1; 95% CI, 0.3 to 14.5). Similarly, in a later study, no association was observed between
concussion incidence and MAPT rs10445337 [22]. Recently, other MAPT SNPs (rs2435211
and rs2435200) have been implicated as potential pathophysiological mechanisms in RU
players [20]. The AG genotype of rs2435200 has been associated with an increased risk
of sustaining multiple concussions in senior (>18 years old) RU players [20]. In addition,
the T-G haplotype (rs2435211 and rs2435200) has been associated with an increased risk of
sustaining a concussion in senior amateur and elite RU players [20].

5.1.3. Neurofilament Heavy Polymorphism

Approximately 50% of the neuronal cytoskeleton is comprised of light, medium and
heavy neurofilaments [105]. A function of the neuronal cytoskeleton is to resist the resultant
strain caused by biomechanical forces during a head impact [105]. In one study, a small
cohort of 48 college level athletes with self-reported history of concussion were genotyped
for an A/C polymorphism (rs165602) of the neurofilament heavy (NEFH) gene (Supplemen-
tary Figure S3) [161]. The authors observed no association between the polymorphism and
incidence or severity of concussion in college athletes.
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5.1.4. Membrane Metalloendopeptidase Polymorphism

The membrane metalloendopeptidase (MME) gene encodes the neprilysin protease
(Supplementary Figure S4) that degrades amyloid plaque (Aβ) proteins [106]. A GT repeat
within the promoter region of MME regulates expression of neprilysin in neurons [107].
Greater Aβ deposits were observed after severe TBI in patients who had long MME GT
repeats (>41) [108]. It was also observed that carrying at least one 22-repeat allele was
associated with increased risk of Aβ plaque deposition and carrying at least one 20-repeat
allele associated with decreased risk.

5.1.5. Brain-Derived Neurotrophic Factor Polymorphism

Brain-derived neurotrophic factor (BDNF) is a gene that affects the repair and plasticity
of neurons. It is a member of the neurotrophin family, responsible for mediating neuronal
plasticity [109,110]. Neurotrophins aid in the development, differentiation, proliferation
and survival of neurons (dopaminergic, serotonergic and cholinergic) [109,111]. A widely
studied SNP is the C to T missense variation at nucleotide 196 resulting in a valine to
methionine (Val66Met) substitution at codon 66 [162] (Supplementary Figure S5). BDNF
mRNA is upregulated post-TBI event and can remain elevated for up to three days post-
TBI [162–165]. BDNF plays an important role in strengthening existing synaptic connections
and modulating the creation of new synapses [110]. The Met allele impairs intracellular
tracking and packaging of precursor-BDNF (pro-BDNF) and activity-dependent secretion
of BDNF [162].

Dretsch et al. [166] reported that ~17% of Met/Met homozygotes suffered a concus-
sion during military deployment compared to ~4% of Val carriers. Narayanan et al. [167]
found that the rs6265 polymorphism was associated with neurocognitive performance
in concussed individuals acutely and 6 months post-event, as Val/Val homozygotes per-
formed better in measures of memory, executive function, attention and overall cognitive
performance [167].

5.1.6. Glutamate Ionotropic Receptor NMDA Type Subunit 2A Variant

Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A) encodes glutamate-gated
ion channel proteins. A variable number tandem repeat (VNTR) polymorphism within
the promoter region of GRIN2A modulates n-methyl-d aspartic acid (NMDA) receptors
within the brain. The NMDA NR2A subunit has been associated with neuronal plasticity,
spatial and episodic memory [112,113]. The VNTR GT (rs3219790) repeat within the pro-
moter region affects transcriptional activity in a length-dependent manner (Supplementary
Figure S6) [114,115]. The longer the GT repeat, the lower the GRIN2A promoter activ-
ity [115]. Longer repeats of >25 (GT) can be termed long alleles (L) and shorter repeats of
<25 (GT) termed short alleles (S) [114,115].

Findings from McDevitt et al. [168] indicate that L allele carriers were twice as likely
to recover in >60 days than S allele carriers. A dose response was also reported: LL carriers
were 6-fold more likely to have a prolonged recovery (>60 days) compared to individuals
of SS genotype.

5.1.7. Catechol-O-methyltransferase Polymorphism

The catechol-O-methyltransferase (COMT) gene has been postulated to affect post-
concussion cognitive behavioural capacity [116]. COMT encodes an enzyme that methylates
and in turn deactivates catechol-based neurotransmitters such as synaptic dopamine and
noradrenaline [117] (Supplementary Figure S7). Optimal cognitive function is affected by
the prefrontal cortex’s sensitivity to dopamine, which makes COMT an ideal candidate
gene for influencing inter-individual variability in cognitive function post-concussion. A
widely studied SNP within the COMT gene is the G to A missense variation at codon 158
resulting in a valine (Val) to methionine (Met) amino acid substitution. Val/Val carriers
have greater COMT activity than Met/Met carriers [118].
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Lipsky et al. [116] reported that Val allele carriers performed poorer on tests of ex-
ecutive function compared to Met allele carriers post-TBI. More recently and in contrast,
Willmott et al. [169] reported no significant influence of COMT polymorphisms on cognitive
performance in moderate to severe TBI patients. However, Lipsky et al. [116] employed
a battery of executive function tests including the Wisconsin Card Sorting Test, while
Willmott et al. [169] used the Glasgow Outcome Scale-Extended as a measure of functional
outcome post-TBI. Mc Fie et al. [21] reported that Met carriers in a cohort of youth and
professional South African RU players were ~3-fold more likely to have a history of con-
cussion and, accordingly, it has been postulated that elevated dopamine could increase
impulsivity and risk taking meaning Met allele carriers could place themselves at increased
risk of sustaining a concussion [170,171].

5.1.8. Ankyrin Repeat and Kinase Domain Containing 1 Polymorphism

Ankyrin repeat and kinase domain containing 1 (ANKK1) is a dopaminergic gene known to
affect working memory, reward and motivation [119,120]. ANKK1 was originally referred
to as Taq1A and is in linkage disequilibrium (D’ > 0.80) with the 10 kB downstream dopamine
receptor D2 (DRD2) gene [121]. The ANKK1 C/T (rs1800497) SNP is hypothesised to be in
a regulatory region within DRD2 (Supplementary Figure S8) [121]. ANKK1 is expressed
in astroglial cells (a type of brain-derived glial cell), post-mitotic neurons and neural
precursors from neurogenic niches and as a member of the serine/threonine receptor-
interacting protein kinases is responsible for dopaminergic signal transduction and cellular
response [121,122].

ANKK1 polymorphisms affect dopamine transporter densities within the striatum
which influences working memory, reward and motivation [121,122]. The T allele of
ANKK1 has been associated with a 30–40% reduction in the expression of D2 receptors
within the ventral striatum [123,124]. ANKK1’s polymorphic role in modulating working
memory and cognitive performance vis-à-vis concussion/TBI is limited to three studies.
McAllister et al. [172,173] observed concussed T allele carriers performed significantly
worse in measures of learning, working memory and response latencies. Similarly, Yue
et al.’s [174] findings support McAllister et al. [172,173] and indicate a dose-dependent
association with the T allele. Thus, this polymorphism could influence recovery from a
concussive event.

5.1.9. Dopamine Receptor-Related Polymorphisms

Dopamine receptors (DRD2 and DRD4) have been associated with risk-taking be-
haviours (impulsivity, behavioural inhibition and novelty seeking) [125,126]. Polymor-
phisms within DRD2 and DRD4 genes have been postulated to affect personality traits,
possibly via inhibition of neurotransmission [175]. DRD2 SNPs rs12364283 (A/G) and
rs1076560 (C/A) have been associated with altered D2 receptor expression (Supplemen-
tary Figure S9) [175]. The DRD4 promoter rs1800955 C allele has been associated with
higher DRD4 expression compared to the T allele (Supplementary Figure S9) [125]. Further-
more, the DRD4 (rs1800955) CC genotype and inferred haplotype of DRD2 (rs12364283–
rs1076560)–DRD4 (rs1800955) A–C–C alleles associated with decreased concussion sus-
ceptibility in junior South African RU players (12–18 years old) [176]. It is suggested
that carriers of the DRD4 (rs1800955) C allele could have reduced concussion susceptibil-
ity via a neuro-protective response from greater D4 receptor availability, thus inhibiting
risk-taking behaviour.

5.1.10. Serotonin Transporter Polymorphisms

The serotonin transporter gene (solute carrier family 6 member 4, SLC6A4) is reported
to play a role in personality and behavioural traits [127]. The 5-HTTLPR (rs4795541) poly-
morphism is a variable number tandem repeat (up to 28 bp) insertion (long (L) allele)
or deletion (short (S) allele) located in the promoter region of the 5-HTT-encoding gene
SLC6A4. Reduced serotonin transporter expression is reported for the S allele (Supple-
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mentary Figure S10) [128]. An additional an A/G SNP (rs25531) within the long allele of
rs4795541 appears to modulate serotonin transporter expression further, as the LG allele
has been associated with lower serotonin expression than the LA allele [177]. The S allele
of rs4795541 has previously been associated with harm avoidance, impulsive behaviours
and risk taking, though inconsistently. In 78 sibling pairs, harm avoidance scores were
higher for S allele carriers than L allele carriers [129] and individuals possessing the LL
genotype have been observed to be more risk taking during decision-making trials [130].
However, children and adolescents carrying the S allele showed more impulsive behaviour
such as delay aversion during target-game activity [131]. Recently, it has been observed
that 5-HTTLPR low (SA/SA) and intermediate (SA/LA, SA/LG, LA/LG, LG/LG)-possessing
junior RU players displayed less harm avoidance behaviour [21]. These findings suggest
that genetic variants associated with personality and thus behavioural traits could influence
concussion risk in rugby.

5.1.11. Endothelial Nitric Oxide Synthase Polymorphism

Nitric oxide (NO) plays a major role in the maintenance of cerebral blood flow and
is synthesised by three NO synthase isoforms—endothelial (eNOS), neuronal and in-
ducible [132,133]. Nitric oxide is reduced post-TBI under experimental conditions [134,135]
and the NOS3 -786T/C (rs20707044) promoter polymorphism has been associated with pro-
moter region activity, reduced NO synthesis and cerebral vasospasm [136] (Supplementary
Figure S11).

Robertson et al. [137] reported lower cerebral blood flow in -786 C allele (rs2070744)-
carrying patients with severe TBI. Multifactorial pathophysiological mechanisms contribute
to the reduction in cerebral blood flow as a result of sustaining a concussion [89]. Thus, it
could be postulated that possession of a -786 C allele could negatively affect a concussed in-
dividual, due to further reduced cerebral blood flow and this warrants further investigation.

5.1.12. Angiotensin I-Converting Enzyme Variants

Cerebral blood flow and autoregulation can be reduced following TBI [178]. The
angiotensin I-converting enzyme (ACE) (rs4646994) insertion (I)/deletion (D) polymorphism
(Supplementary Figure S12) has been associated with regulating blood pressure and cere-
bral circulation [138]. The DD genotype is associated with higher ACE activity [138] and
the D allele has been associated with worse cognitive and motor outcome one month after
moderate–severe TBI [139]. Other ACE polymorphisms (rs7221780 and rs8066276) have
been associated with worse Glasgow Outcome Scale scores 6 months post-TBI [140].

5.1.13. Tumour Necrosis Factor Polymorphisms

Inflammatory mediator cytokines can play contrasting roles in TBI, as they could exac-
erbate effects in early phases and could affect recovery and repair in the later phases [87,179].
Immediately post-TBI, proinflammatory cytokine tumour necrosis factors (TNFs) are
upregulated and return to baseline levels within 24-h [180]. TNFs mediate neuronal
apoptosis in the early phase of TBI and facilitate repair in the long term [141,142]. In pa-
tients with moderate–severe TBI, carriers of an A allele at position TNF-308 (rs1800629)
(Supplementary Figure S13) had an increased risk of unfavourable outcome six months
post-TBI compared to noncarriers [143]. Located in the promoter region of TNF, the A
allele has been associated with increased gene expression and as a result is postulated to
increase risk of unfavourable outcome post-TBI [143,181].

5.1.14. Transforming Growth Factor Beta1 Polymorphism

The suppressive cytokine transforming growth factor beta1 (TGFB1) plays a role in
regulating inflammation and is encoded by the transforming growth factor beta 1 (TGFB1)
gene [144]. Two polymorphisms within the promoter region of TGFB1 (-800 G/A rs1800468
and -509 C/T rs1800469) (Supplementary Figure S14) have been associated with altered
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TGFB plasma levels [145]. However, Waters et al. [143] reported no association between
these TGFB1 polymorphisms and overall outcome in severe TBI patients.

5.1.15. Interleukin 1 Alpha and Interleukin 1 Beta Polymorphisms

Interleukin 1 alpha (IL1A) and interleukin 1 beta (IL1B) are proinflammatory cytokines
(Supplementary Figure S15). In experimental models, both IL1A and IL1B levels are
increased within hours following a TBI and can remain elevated for days [182]. There are
inconsistent findings regarding IL1A and IL1B polymorphisms and outcome post-TBI. The
G allele of IL1B -511 (rs16944) and the T allele of +3953 (rs1143634) have been associated
with a six-month unfavourable outcome in severe TBI patients [146]. However, Waters
et al. [143] observed no association between IL1A and IL1B polymorphisms and a six-month
unfavourable outcome. Furthermore, associations with secondary complications such as
seizures and raised intracranial pressure have been reported for the T allele of IL1A -899
(rs1800587) and the T allele of IL1B +3953 (rs1143634).

5.1.16. Interleukin 6 Receptor Polymorphism

Interleukin 6 plays a role in the inflammatory process following injury through both
pro- and anti-inflammatory properties [147]. A SNP exists at residue 358 (rs2228145) of the
interleukin 6 receptor (IL6R) gene (Supplementary Figure S16), the CC genotype of which has
been associated with an increased risk of concussion in college athletes [22]. It is postulated
that the CC genotype could increase the early inflammatory response post-concussion
and lead to reduced cognition [22]. However, Waters et al. [143] reported no associations
between IL6R promotor polymorphisms and outcome in severe-TBI patients.

6. Conclusions and Future Directions

Elite rugby players are exposed to a higher risk of concussion during a playing career
than athletes in many other sports. A critical step in better understanding inter-individual
variability in the risk of sustaining a concussion and the duration of recovery following a
concussion involves identifying genetic variations associated with those risks. The literature
has already identified several genetic factors with inter-individual variability in concussion
and TBI incidence, severity and recovery. The genes and polymorphisms reviewed here,
along with many others, need to be investigated further in relation to incidence rates
and recovery from concussion, particularly in a sport such as rugby with a relatively
high concussion risk. The number of individuals competing in truly elite rugby is low, so
highly collaborative research is required to achieve sample sizes sufficient for satisfactory
statistical power.

The inter-individual variation in outcomes following concussion makes predictions of
recovery and future risk difficult. This variability could mean there is a future valuable role
for genetic screening of concussion-associated risk polymorphisms to complement other
data. Achieving elite status in a sport such as rugby is a multifactorial accomplishment due
to the complex interactions of multiple environmental factors and the polygenic nature of
inherited characteristics and predispositions. Epigenetic regulation of genome function
in the context of particular environmental stimuli might also be important in modulating
the risk of concussion injury and the rate of recovery. Elite rugby players are exposed to
one of the highest risks of concussion in team sports, so distinctive genetic characteristics
may exist in those athletes that offer advantages in resisting frequent or severe concussions,
relative to those less successful in the sport. Athletes in other sports with a high risk of
concussion are also particularly likely to benefit from this kind of genetic resistance to
injury. The findings, however, could be applied to a wider range of sports, including those
with a lower but still extant risk of concussion. Thus, future research that combines an
individual’s concussion history and other phenotypes with detailed genomic information
could facilitate more personalised management of concussion and eventually help protect
athletes from unfavourable longer-term health outcomes.
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