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ABSTRACT 

 

Peat layers are well represented in the Holocene coastal deposits of the southern North Sea and provide 

evidence as to the extent and nature of the fens and bogs that occupied the region in the mid and late 

Holocene. While natural processes contributed to their demise, without human interference extensive areas 

of peatland would remain. We review the characteristics of the vegetation of these peatlands along with the 

processes that influenced their development. Spatial and temporal trends are explored through the use of 

palaeogeographic maps from three areas: the East Anglian Fenland, the Romney Marsh area and the 

Netherlands. The palaeoecological evidence indicates that eutrophic vegetation promoted by rising relative 

sea level (RSL) dominated in the mid Holocene, with a trend towards the development of oligotrophic and 

ombrotrophic vegetation in the late Holocene as the rate of RSL rise declined. Nevertheless, areas of 

eutrophic vegetation appear capable of long-term stability with areas of fen woodland and herbaceous fen 

persisting at some locations for several thousand years in the mid and late Holocene. Areas of active peat 

growth in the region are now largely confined to small remnants within agricultural settings. To retain their 

characteristic biodiversity these remnants have been managed using traditional practices, although their 

small size and fragmented distribution limits their biodiversity value. Biodiversity concerns and the 
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ecosystem services peatlands provide, notably carbon sequestration and flood attenuation, underlie recent 

restoration projects. These efforts are likely to receive additional impetus as a consequence of rising water 

levels, given projected rates of RSL rise. Future large-scale restoration can be informed by a greater 

understanding of the processes that formed and sustained coastal peatlands in the past. We identify advances 

in palaeoenvironmental research that could enhance restoration efforts and help maximise the ecosystem 

services delivered through such projects. 

 

Key words: bogs, peatlands, coastal lowlands, ecosystem services, fens, Holocene, palaeoecology, 
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I. INTRODUCTION 

(1) General introduction 

Peat-beds, buried within Holocene sedimentary fills, submerged on the sea floor and outcropping on the 

modern foreshore (as ‘submerged forests’), are common features of the estuaries and former wetland areas 

of the southern North Sea and adjacent regions. Such layers have long been used as evidence for relative 

sea-level (RSL) change (Reid, 1913; Swinnerton, 1931; Godwin, 1940) and since the development of pollen 

analysis in the early 20th century AD, have been used for palaeoenvironmental reconstruction and the 

correlation and dating of coastal deposits (Godwin, 1943, 1945, 1978; Godwin, Suggate & Willis, 1958). 

Building on such foundations, research during the last 40 years has considerably enhanced our knowledge of 

the spatial and temporal distribution of these deposits, facilitating a greater understanding of the interacting 

processes that produced them. 

In contrast to their representation in the Holocene, the region contains few extant peatlands. Most that 

survive have been heavily modified by human usage, although they have a high conservation status where 

they retain elements of their characteristic biodiversity. With additional impetus provided by the potential of 

coastal wetlands to mitigate against projected sea-level rise (Schuerch et al., 2018) and the ability of active 

peatlands to act as carbon sinks and provide other ecosystem services (Charman, 2002; Rydin & Jeglum, 

2006; Bonn et al., 2016), there is increasing interest in their restoration and recreation, undertakings which, 



given the paucity of modern examples, may be informed by a better understanding of their Holocene 

predecessors. 

This review examines the nature of the peat-forming vegetation, then reviews current knowledge of the 

processes involved in peat formation and changes in peatland extent. Recent conservation and restoration 

schemes are outlined and we discuss how palaeoenvironmental research can be used to inform large-scale 

restoration and enhance the ecosystem services these peatlands deliver. The southern North Sea and adjacent 

areas (Fig. 1) have been selected as our focus as the coastal deposits here are relatively well documented, 

with peat layers common. Also, the region experienced a consistent general trend of (albeit differential) land 

subsidence and rising RSL (Vink et al., 2007; Shennan, Milne & Bradley, 2012; Shennan, Bradley & 

Edwards, 2018) during the Holocene, which resulted in the accumulation of thick sequences of wetland 

deposits preserving a rich archive of palaeoenvironmental information. 

 

(2) Definitions for Holocene coastal peats 

Peat, comprising partially decomposed plant matter, is a variable substance and as Godwin (1943, p. 203) 

recognised, the term has been rather loosely applied in coastal settings. Definition can be based on the 

percentage organic content (dry mass). Allen (1990), for example, used >75% to define peat, although a 

figure of >65% is more typically applied (e.g. Charman, 2002). Problems arise when describing the often 

extensive bodies of sediment in coastal settings as peat, as the proportion of organic material in such layers 

varies considerably both vertically and horizontally, even when minor minerogenic layers and transitional 

sediments are discounted. The precise organic content has generally not been considered when describing 

units as ‘peats’ (semi-quantitative estimates are common in field descriptions, e.g. Tröels-Smith, 1955) 

although organic sediments with a high inorganic content are often referred to using terms such as organic 

clays or peaty clays. 

Along the east coast of North America predominantly organogenic sediments described as peat derive from 

salt-marsh environments (Johnson, 1913; Allen, 2000). However, this is not the case in the southern North 

Sea region where equivalent coastal and estuarine marshes give rise to sediments that are predominantly 

minerogenic (Pratolongo et al., 2018). In this region, where deposits have high organic content, the in situ 

organic matter derives from plants that grew in transitional (e.g. reedswamp) and terrestrial freshwater 



environments. Coastal peat can therefore be regarded as sediment from which the organic content derives 

predominantly from freshwater plants growing in situ in telmatic (between high and low water levels) or 

terrestrial environments (collectively here termed peatlands), rather than from halophytes in salt-marshes. 

A freshwater origin raises the issue as to in what sense peat/peatlands can be considered ‘coastal’. Peat 

formation is associated with areas where the water level is close to the sediment surface and decay is 

inhibited by anaerobic conditions induced by waterlogging. In estuaries and coastal wetlands there is an 

expectation that the water table will be influenced by sea level and this could be considered a useful 

distinguishing feature (Tooley, 1986). For example, Hageman (1969, p. 377) defined a ‘perimarine’ area 

‘where sedimentation or seditation took place under the direct influence of the relative sea-level movements 

but where marine or brackish sediments themselves are absent’. However, the utility of such terms is open to 

question as it can be very difficult to determine whether deposition was under the influence of sea level or 

not; in a number of circumstances (see Section III.2) water levels in coastal wetlands can become decoupled 

from sea level. While many of the peat layers of the southern North Sea region are likely to have formed in 

what can be termed ‘tidal freshwater wetlands’ (between the upstream limits of the tide and downstream 

saline estuarine environments; Barendregt & Swarth, 2013), this is not universally the case. A ‘coastal’ peat 

is used here to refer to a deposit that formed at the interface between the marine and fluvial domains, 

irrespective of whether this occurred under the direct influence of sea level or tides.  

Gyttja – organic sediment formed below water level (in a limnic environment) – also occurs within the 

coastal deposits of the region and can form extensive layers (e.g. the calcareous gyttja/shell marl of the 

Fenland basin; Waller, 1994b). Gyttja rich in terrestrial plant matter can also accumulate within certain 

terrestrial environments (Bos, Busschers & Hoek, 2012; and Section II.2) and, resembling humified peat, 

can be difficult to distinguish without laboratory-based examination. As a consequence, organic material 

deposited below water level is likely to have been described as peat in many studies of Holocene coastal 

sediments. Recognising this, the term peat is used here sensu lato, following published descriptions. 

 

(3) Stratigraphic architecture  

The contribution of peat to the Holocene sediments of the region varies considerably through space and 

time, with the complex three-dimensional geometry of the coastal deposits reflecting the variety and size of 



coastal settings (open coasts, back-barrier locations, estuaries, and tidal basins notably including the Rhine–

Meuse delta) and the number of processes that influence both sediment type and sediment preservation. 

Variation in peat presence and thickness within the depositional complexes of the region also reflects the 

fundamental sedimentary architecture of back-barrier and estuarine environments (Fig. 2). Where fluvial 

systems enter the coastal zone, three sedimentary complexes can be distinguished. Firstly, a landward 

sediment body comprising predominantly minerogenic sediment, although isolated peat layers may be 

encountered, deposited within fluvial systems (e.g. the Echteld Formation in the Netherlands; De Mulder et 

al., 2003). Secondly, a peat complex (the Nieuwkoop Formation of De Mulder et al., 2003) that landward 

can either interdigitate with, or grade into, the fluvial complex. Peat can fill the vertical sedimentary 

sequence, the stratigraphic column, particularly adjacent to upland areas where major fluvial systems are 

absent and basal layers often extend both landward and seaward of the main bodies of peat. Seaward, peat 

layers interdigitate with sediment deposited under marine/brackish conditions. Such layers are referred to 

here as ‘terrestrialization’ peats. Minerogenic sediments deposited under marine/brackish conditions 

comprise the third sedimentary complex (the Naaldwijk Formation of De Mulder et al., 2003). The growth 

of peat over pre-Holocene surfaces (basal peat) is influenced by groundwater level rise and topography. 

Such peat often occurs extensively in valley bottoms, on low-gradient slopes and where tributaries join (Vis 

et al., 2015) and, by contrast, is frequently absent from steeply sloping surfaces.  

Not all organic deposits situated in what might be considered as the coastal zone owe their origin to high 

regional groundwater levels. Peats, the formation of which commenced in the Late Glacial or early 

Holocene at altitudes well above contemporaneous sea level, occur in valley bottoms or small closed 

depressions and relate to the drainage topography. Such deposits feature prominently in the research of 

earlier workers, particularly Godwin in the East Anglian Fenland, as they enabled long pollen sequences to 

be constructed (providing a chronostratigraphic framework), and some were of notable archaeological 

interest (Godwin, 1940; Clark & Godwin, 1962). Additionally, in the late Holocene areas of coastal peat 

merged laterally with ombrotrophic (raised) bogs, which originated in depressions in the uplands of the 

northern Netherlands (Vos, 2015). Such stratigraphic continuity between deposits of differing genesis 

presents difficulties for the understanding Holocene coastal evolution, with information on the age, altitude 



and relationship to contemporaneous sea level required to determine whether a particular deposit can be 

considered ‘coastal’.  

 

II. THE VEGETATION OF COASTAL PEATLANDS  

(1) Peatland terminology  

Peatlands have been classified in a variety of ways (Wheeler & Proctor, 2000; Charman, 2002; Rydin & 

Jeglum, 2006). The vegetation is influenced by water chemistry and nutrient status (Fig. 3), which in turn is 

dependent upon hydro-topographic relationships. Peatlands that are rain-fed are termed ombrotrophic while 

those that receive groundwater are termed minerotrophic. The former are inevitably nutrient poor 

(oligotrophic) and acidic and (following Wheeler & Proctor, 2000) termed bogs, while the latter tend to be 

more nutrient rich (meso- or eutrophic). Those with a high pH are termed fens. However, minerotrophic 

peatlands are by no means always base-rich and some give rise to vegetation communities similar to those 

associated with ombrotrophic bog. Such communities can be termed poor fen or, as preferred here, 

mesotrophic bog. Vegetation communities where the water level is above the ground surface for most of the 

year are referred to as swamps (Wheeler & Proctor, 2000).  

 

(2) Botanical and physical characteristics of coastal peatland habitats 

The modern vegetation types likely to have contributed to the formation of Holocene peat deposits of the 

region are described in a number of sources (notably Zonneveld, 1960; Wheeler, 1980a,b; Rodwell, 

1991a,b; 1995; Den Held, Schmitz & Van Wirdum, 1992; Wiegers, 1992). The variable nature of the 

depositional environments present in coastal wetlands is reflected in the complexity of the vegetation. Den 

Held et al. (1992), for example, defined 35 types of open terrestrialising vegetation from the Netherlands 

alone. Palaeoecological studies often suggest that Holocene peat deposits contain communities that are 

closely analogous to extant types, although non-analogue communities, such as the occurrence of Taxus in 

fen woodland (Godwin, 1968; Deforce & Bastiaens, 2007; Branch et al., 2012; Waller & Early, 2015), have 

been reported and additional communities (e.g. pools created by beaver dams) are likely to have occurred.  

The communities represented in coastal peat deposits of the southern North Sea region can be divided into 

five major types. First, swamps are species-poor communities dominated by tall monocotyledons, which 



occur at transitions to open water, where the sediment surface is seasonally or permanently submerged. The 

species commonly associated with such areas is the reed Phragmites australis, although other grasses with 

similar growth forms can also dominate (e.g. Phalaris arundinacea, Glyceria maxima). Scirpus spp. 

typically occur in brackish swamps (Den Held et al., 1992; Rodwell, 1995). Phragmites-dominated swamps 

(reedswamp) generally give rise to sediment in which fragments (up to 2 cm) of the leaves, stems and 

rhizomes are embedded within a fine-textured clay-rich matrix (Bos et al., 2012). 

Second, herbaceous fens occur in seasonally or periodically flooded areas. These communities are both 

floristically and ecologically varied. Sedges are often, although not always dominant, with other 

monocotyledons including rushes (e.g. Juncus subnodulosus) and grasses (e.g. Calamagrostis canescens) 

frequently abundant. The sedges present include both tussock-forming species, individuals of which in the 

case of Carex paniculata can attain heights of c. 0.6 m and be separated by water or bare peat, and species 

with stout shoots that form dense clumps (e.g. Cladium mariscus). Sedge-dominated communities occupy a 

continuum between eutrophic and oligotrophic conditions (Fig. 3C) with species such as Carex rostrata 

characteristic in nutrient-poor environments (mesotrophic bog/oligotrophic fen). The sediment commonly 

produced comprises flat dark-surfaced rhizomes <0.5 cm wide, some of which are distinct (e.g. the salmon-

pink axes of Cladium have long been distinguished in coastal peats; Godwin, 1975). 

Third, fen carr is a term used to describe a number of woodland and shrub communities associated with 

freshwater wetlands, which are generally regarded as representing a comparatively dry environment where 

the sediment surface is close to the average water level (Wiegers, 1992). On nutrient-rich substrata, Alnus 

glutinosa frequently forms the canopy layer in what is often a species-diverse community. Typically, the 

vegetation additionally comprises an under-storey shrub layer, often with Salix cinerea, but many other 

species are possible. At ground level, conditions vary from the presence of tall herbs (those associated with 

herbaceous fens) and climbing/trailing plants, to a carpet of small herbs (e.g. Chrysosplenium 

oppositifolium) and grasses, to ‘hummock’ areas (moss-covered tree bases and sedge tussocks) interspersed 

between pools of water. Carr dominated by Salix can form communities or transitional zones between 

herbaceous fen and Alnus carr, while Betula-dominated communities (often again with Salix) occur in meso- 

and oligotrophic situations (Fig. 3B). The sediment produced comprises a mixture of wood (from fallen 

trunks to the remains of twigs), coarse organic detritus (e.g. fruits and cones of Alnus), and fine gyttja 



deposited in the pools. In riparian areas, organic content can be low (<50% dry mass) due to the inwash of 

alluvial clay sediment. 

Fourth, mesotrophic–oligotrophic bog (Fig. 3A) refers here to a range of vegetation types that occur in 

environments with a low pH, but remain influenced by groundwater (which occurs close to the surface). The 

species present include those found at the mesotrophic end of the herbaceous fen continuum to those present 

in ombrotrophic bog (members of the Ericaceae and Sphagna). The sediments produced vary accordingly, 

potentially containing fibrous sedge remains, twigs and roots of the Ericaceae and the spongy remains of 

Sphagnum spp. 

Fifth, ombrotrophic bog is distinguished from the previous community by the vegetation not being 

influenced by the groundwater, with rainfall being sufficient to maintain surface saturation. The Ericaceae 

and Sphagna dominate along with sedges, notably Eriophorum. Such an environment does not produce 

vegetation, or consequently sediment, that is fundamentally different from other bog types. Some species 

(e.g. Sphagnum austinii, Empetrum nigrum, Andromeda polifolia) can be considered indicative of 

ombrotrophy, however, recognition from peat deposits may depend more on the balance between species 

that thrive in ombrotrophic conditions and those that, as a result of competition, rarely dominate in more 

nutrient-poor environments (Tuittila et al., 2013).  

Spatial (zonal) and temporal (successional) relationships between these communities are often seen as 

expressions of their tolerance of a different range of water depths (between the sediment surface elevation 

and the water level). In practice, the range of water levels that these communities can tolerate and their 

relationship (if any) to tidal constants is poorly understood (see Table 1 for various estimates) due to the 

fragmented and much altered state of the extant coastal wetlands of NW Europe. With tussock-forming 

plants and deep pools common features in a number of these communities, a sediment surface level may be 

impossible to define and measurement is therefore limited to the range of fluctuations (Wiegers, 1992). 

Wheeler & Proctor (2000) caution that in addition to average water depth and the frequency and duration of 

fluctuations in water surface level, the distribution of species and communities can be influenced by factors 

such as extreme minima and maxima and the timing of these events. In addition to such hydrological 

stresses, vegetation patterns in tidal freshwater wetlands are strongly influenced by salinity and tolerance to 

burial by sedimentation (Leck et al., 2009). 



 

III. PROCESSES INFLUENCING THE FORMATION OF COASTAL PEATS 

(1) Introduction 

Peat formation requires the elevation of the sediment surface in relation to the water table to be suitable for 

the growth of wetland plants and the preservation of organic material. Factors influencing accumulation 

include processes that contribute sediment, either autochthonously (deposited in situ by the peat-forming 

vegetation) or allochthonously (transported to the site of deposition), and processes that result in a reduction 

in the elevation of the surface: decomposition and compaction. Other processes, notably RSL movements in 

coastal situations, can change the absolute height of the water table. Allen (1990) introduced a model of peat 

growth in coastal marshes under rising RSL that incorporates these processes (Equation 1) 

   (1) 

The elevation (E) of sediment surface over time (  is determined by the supply of sediment, 

the net accumulation of organic matter  and any minerogenic sediment ( ), RSL movement ( ), a 

rise in which was treated as positive, and the shortening of the sediment column due to compaction through 

loading (  

The influences of these factors on peat formation are discussed below, although many are interrelated, with 

interactions among processes underlying both peatland stability and change. 

 

(2) Water-table relationships and RSL 

The Holocene RSL history for the region is summarised in Fig. 4. Spatial variability in several Holocene 

geological processes, mainly glacio and hydro-isostatic movements, resulted in differential subsidence 

across the southern North Sea area, estimated at between 0.1 and 1 mm yr–1, which has operated non-

linearly over time (Kiden, Denys & Johnston, 2002; Vink et al., 2007). The northern areas experienced the 

highest rates of RSL rise in the early Holocene (with the greatest subsidence), but the RSL curves presented 

in Fig. 4 converge so that rates of RSL rise in the late Holocene are broadly similar across the region. 

During the early Holocene, defined as c. 11,700–8200 cal. yrs BP [following Walker et al. (2012), with all 

radiocarbon dates expressed here in calibrated years before present, i.e. 1950 AD], the southern North Sea 



region experienced average rates of RSL rise >7 mm yr–1 with short-lived jumps likely relating to sudden 

meltwater release events associated with the disintegration of major ice sheets (Hijma & Cohen, 2019). The 

latter have been implicated in the final inundation of Doggerland and other now-submerged early Holocene 

landscapes in the southern North Sea (e.g. Brown et al., 2018). The rate of RSL rise gradually decreased 

during the mid-Holocene (c. 8200–4200 cal. yrs BP) and was further reduced in the late Holocene (c. 4200 

cal. yrs BP to present) to <1 mm yr–1 after 3000 cal. yrs BP (van de Plassche, 1982; Denys & Baeteman, 

1995; Long, Waller & Plater, 2006a; Hijma & Cohen, 2019).  

There has been considerable debate as to the influence of RSL movements on the formation of coastal peats. 

Basal peats form under the influence of rising water levels and can preserve a record of increasing E with 

eutrophic vegetation communities indicative of increasing water depth (a retrogressive series; Behre, 1986) 

occurring successively over time (Fig. 5A). In such circumstances rising RSL is providing ‘accommodation 

space’ into which the peat can accumulate. In addition to the rate of RSL rise and topography, other 

processes that add to or cause a reduction in the sediment column will influence whether peat formation 

continues over an extended time period. However, that rising RSL is conducive to peat formation, if other 

conditions are met, is suggested by the accumulation of thick deposits of fen origin in back-barrier and 

deltaic settings in a region that experienced a general trend of rising RSL during the Holocene (see Section 

IV).  

The formation of peat above intertidal sediments (terrestrialisation) has long been regarded as indicative of 

falling RSL, an interpretation that persists in the southern North Sea region (e.g. Behre, 2007). Issues such 

as the reliability of the evidence for such falls (e.g. the use of sea-level index points potentially subject to 

compaction, see Section III.5) and the lack of known mechanisms for large-amplitude RSL fluctuations, 

particularly during the mid- to late Holocene, has led others to questions this (e.g. Baeteman, Waller & 

Kiden, 2011). The seaward extension of freshwater conditions clearly requires an increase in E, although in 

addition to RSL change this can also be produced by an excess supply of minerogenic sediment that fills the 

sediment column (Gerrard, Adam & Morris, 1984). Following a fall in RSL peat could fill any residual 

accommodation space, with communities indicative of decreasing water depth (a progressive series; Behre, 

1986; Fig. 5B) occurring successively over time. However, the continued long-term accumulation of 

eutrophic peat is doubtful under falling or stable RSL. Freshwater input would need to exceed water loss 



through seepage, the latter being influenced by factors such as the depth, composition and degree of 

humification of the peat. Confined estuarine settings would be more suitable environments for this to occur 

than large back-barrier/deltaic environments. Relatively low rates of peat accumulation would be expected 

as would, with movement of water through the profile promoting acidification, the development of bog 

communities and eventually ombrotrophy.  

More northerly regions, which have experienced isostatic uplift and provide evidence for the onward growth 

of peat in these circumstances, show such successional trends [e.g. the work of Tuittila et al. (2013) on 

eastern coast of the Gulf of Bothnia]. However, such areas will have experienced precipitation and 

evaporation rates that are more favourable for bog development than the southern North Sea region. Given 

the lack of independent evidence for large-amplitude falls in RSL we interpret the presence of progressive 

series in the terrestrialisation peats of the southern Northern Sea region as indicating a state where peat 

accumulation exceeded the rate of RSL rise, a situation (along with ombrotrophy) that would be expected to 

become increasingly common as the rate of RSL rise declined in the late Holocene (see Section IV.4).  

In addition, it cannot simply be presumed that the water table in freshwater areas reflects coastal sea level. 

Higher or lower water levels can be created by a number of processes (van de Plassche, 1982; Vink et al., 

2007; Kiden, 1995; Kiden, Makaske & van de Plassche, 2008; Vis et al., 2015). These include the effect of 

estuary morphology on tidal amplitude, where high water level increases up-estuary as the tidal system 

narrows. There is also the ‘flood basin effect’, which dampens the tide range as a result of water storage in 

tidal basins, and the ‘river gradient effect’ whereby, as a result of a sloping groundwater table, local water 

levels increase upstream along a tidal river. Channel migration (avulsion) in river deltas can also influence 

water levels. For example, new channels may lack well-developed levees, with consequent effects on 

floodplain groundwater levels.  

 

(3) The organic component 

In addition to external (allogenic) influences on the water table, the development of peatlands is influenced 

by internal (autogenic) processes, most notably by the change in E brought about by the accumulation of 

peat (hydroseral succession). The quantity of autochthonous organic sediment added through time ( ) is 

determined by the difference between net primary production and losses through decay, herbivory and, in 



areas influenced by tides, the export of litter. Vegetation type and water level are likely to be important in 

determining rates of production and decomposition, although both processes are influenced by a much wider 

set of factors. 

For production, information from analogous communities and situations to coastal peatlands is lacking, as 

are data on below-ground productivity in general. However, productivity is influenced by nutrient 

availability and therefore in general terms should increase along a gradient from bog to fen, with some 

authors indicating that the highest productivity occurs in wooded fens (Szumigalski & Bayley, 1996). With 

nitrogen potentially a limiting factor, nitrogen fixation by fungi (Frankia spp) in the root nodules of Alnus 

glutinosa is likely to influence the relative productivity of carr communities. In terms of water level, 

productivity increases with water depth in certain herbaceous peatland types but decreases in shrub 

communities (e.g. Thormann & Bayley, 1997), with evidence that the growth rate of wood in Alnus carr 

decreases from wet to very wet conditions (Schäfer & Joosten, 2005).  

However, rather than high primary productivity, it is low decomposition rates that are largely responsible for 

the accumulation of organic matter in fens and bogs (Clymo, 1984). As well as environmental factors, the 

chemical composition of the plant material has a strong influence on the processes that cause decay. 

Decomposition can occur syn- and post-depositionally and ultimately transforms fibrous peat into a black 

amorphous homogeneous deposit with a reduced volume. With aerobic decay faster than anaerobic, surface 

aeration caused by fluctuating water levels and drainage will significantly increase rates of decomposition 

(see Section V.1). In general terms, decomposition is slower in bogs than fens (Aerts, Verhoeven & 

Whigham, 1999), with rates for Sphagnum notably lower than for other growth forms. Wood and roots 

decay at slower rates than leaf litter (Clymo, 1983), while rates for the latter are higher in deciduous wet 

woodland than herbaceous fen (Aerts et al., 1999). Barthelmes (2009) suggests that rates are relatively high 

for Alnus glutinosa-dominated communities as a consequence of fluctuating water levels, the transportation 

into and release of O2 by deep roots, and high nutrient availability.  

The accumulation of partially decomposed vegetation results in large amounts of carbon sequestration in 

peatlands (see Section V.3). As a result of the balance between production and decomposition, in general 

terms fens show similar or lower carbon sequestration rates compared to bogs (see Table 1 and Limpens et 

al., 2008). Peat derived from ‘lowland fens’ (mostly coastal lowland deposits and therefore with a complex 



genesis) is thought to account for between a quarter and a third of the total soil carbon stored within UK 

peatlands (Natural England, 2010), with carbon storage within the Fenland basin estimated at around 53 Tg 

(Holman & Kechavarzi, 2011). 

 

(4) The minerogenic component 

The minerogenic component of coastal peats may be fluvial, marine or aeolian in origin. However, with peat 

formation associated with freshwater environments, in estuarine/deltaic settings the non-organic component 

is most likely to be fluvially derived and, with peat grading into the fluvial minerogenic domain, forms an 

increasing proportion of the sediment matrix landward (Fig. 6). In such settings, variations in sediment 

supply, and therefore catchment processes (climate and land-cover changes), are a potentially important 

influence on the vertical distribution of the minerogenic component (Burrin & Scaife, 1984; Buckland & 

Sadler, 1985). Other factors that control the proportion of minerogenic sediment in coastal peats include the 

elevation of sediment surface, proximity to channels and the net productivity of the plant community.  

Reedswamp, sedge fen and fen carr will all occur over mineral substrata and unsurprisingly there is 

considerable variation in the minerogenic content of sediment derived from these communities. For 

example, organic content of the peat units present in the valleys feeding into Romney Marsh is highly 

variable (Fig. 6) and can be as low 30% (dry mass), with similar figures reported from sediment bodies 

described as peat elsewhere (Bos et al, 2012). Oligotrophic, and particularly ombrotrophic communities, 

isolated from sediment-rich water sources produce peats with a low minerogenic content (e.g. Little Cheyne 

Court; Fig. 6). Irrespective of the community, the minerogenic content of basal peats is often high 

immediately above the bedrock surface, which can be attributed to bioturbation in the early stages of peat 

formation over a terrestrial soil.  

Minerogenic (and detrital organic) sediment not only provides nutrients but also fills accommodation space. 

By increasing E, the deposition of such sediment within marine–brackish environments is required to create 

suitable conditions for peat to form above sub-tidal sediments. In addition, during peat formation it has been 

suggested that, under conditions of rising RSL, the addition of allochthonous material can be important in 

preventing ‘drowning’, with the shutting off of sediment supply providing an explanation for the cessation 

of peat formation (Koshers, Chmura & Bailey, 1987). Neubauer (2008), however, notes that per unit mass, 



organic material contributes four times more to sediment volume as a result of water and air held in 

interstitial spaces.  

 

(5) Compaction 

Compaction refers to the reduction in volume of sediment that occurs as a result of sediment burial, self-

weight and any subsequent loading and is caused by biological and chemical (decomposition), as well as 

physical processes (van Asselen, Stouthamer & van Asch, 2009; Brain, 2015). Peats are particularly 

susceptible to compaction and deposits with a high organic content can experience a reduction in volume of 

up to 90% (Shennan & Horton, 2002). The lowering of E that may result has important implications, both 

for the evolution of the coastal wetlands and for palaeoenvironmental and RSL reconstructions that utilize 

coastal peat deposits.  

Peat compaction can, by reducing sediment volume, result in continued, renewed or increased rates of 

sedimentation (Haslett et al., 1998; Allen, 1999). If sediment accumulation keeps pace with the creation of 

accommodation space, compaction need not result in land subsidence (van Asselen et al., 2009). However, 

water-table lowering can result in the differential compaction of lithologically varied sediments and produce 

subsidence, which affects both wetland topography and evolution. Preferential compaction of peat-

dominated sequences can magnify the elevation of channel and levee deposits composed of sand and silt. 

Such features, known locally in the East Anglian Fenlands as ‘roddons’, have been widely reported across 

the region (Godwin, 1938; Green, 1968; Vos & Van Heeringen, 1997; Berendsen, 2007; Smith et al., 2010), 

and are often co-incident with patterns of early settlement. Differential compaction can also produce channel 

avulsion, bringing river systems to new areas (van Asselen et al., 2009) and raise groundwater levels and 

thereby change the distribution of vegetation. For example van Asselen, Cohen & Stouthamer (2017) report 

the replacement of a highly organic wood peat by a low-organic reed peat in the vicinity of an avulsed 

channel. 

Peat compaction distorts sediment accumulation rates (see Section IV.5) and in sea-level research lowers the 

elevation of sea-level index points, that is sediment or fossil remains, the deposition of which was controlled 

by palaeo sea level (Shennan, Long & Horton, 2015). Mitigation is therefore important and there is 

increasing interest in using geotechnical modelling to make corrections, although these require local 



calibration (van Asselen et al. 2009; Brain, 2015) and will increase altitudinal (vertical) error ranges. Sea-

level researchers have long made use of basal peats (Jelgersma, 1961; van de Plassche, 1982; Gehrels, 1999; 

Meijles et al., 2018) as such layers usually directly overlie incompressible substrates. Peat initiation in such 

circumstances can however be influenced by local groundwater conditions and therefore factors such as 

topography and substrate permeability. For sea-level reconstructions, Vis et al. (2015) advocate using the 

uppermost part of such layers, combined with a good understanding of palaeogeography, to eliminate points 

with anomalous elevations unrelated to RSL. 

 

IV. TEMPORAL AND SPATIAL TRENDS  

(1) Introduction 

Many authors have attempted to identify trends in peat formation across the southern North Sea region by 

correlating deposits using stratigraphic position and chronostratigraphy, both as individual units and 

schemes of stratigraphic subdivision, notably the Calais–Dunkirk system (De Jong, 1971; Roeleveld, 1974; 

Behre, 2003, 2007). Such schemes were underpinned by the belief that regional reductions in RSL 

determined peat formation and consequently they have now largely been abandoned (Streif & Zimmermann, 

1973; Baeteman, 1981; van Loon, 1981; Denys, 1999; Wheeler & Waller, 1995; Ebbing, Weerts & 

Westerhoff, 2003; Weerts et al., 2005). Peat has been recorded from a large number of coastal locations in 

the region with considerable variation in the quantity of the litho-, bio-, and chronostratigraphic data 

available. Therefore rather than attempting to correlate sequences from many different areas, in the 

following discussion emphasis is placed upon regions where palaeogeographic maps, showing broad 

changes in the extent of peat formation, are available.  

The maps utilized are from three contrasting coastal settings. These are: the Fenland basin (Waller, 1994b), 

where the coast is believed to have been open throughout the Holocene (Shennan, 1986b), the Romney 

Marsh area in the eastern English channel (Long et al., 2006a; Long, Waller & Plater, 2007), where peat 

formation occurred in back-barrier environments and the adjacent valleys, and the Netherlands (Vos, 2015). 

In the Netherlands, in addition to barrier islands, complexity is added by the presence of the Rhine–Meuse 

delta and, in the north, by the coalescence of coastal and inland peatlands and differences in tidal range 

along the coast.  



One of the difficulties in comparing peat sequences among different depositional complexes is highlighted 

by this selection: that of scale. The Romney Marsh area comprises c. 270 km2 (Eddison, 2000), the Fenland 

basin c. 4,000 km2 (Waller, 1994b) and the coastal plain of the Netherlands c. 15,000 km2 (Pons, 1992). In 

general terms, small systems are more prone to local influences with such differences likely to influence 

peat initiation (e.g. the amount of sediment required to fill the accommodation space to raise E), onward 

growth (influencing for example the freshwater input relative to the size of the peatland) and cessation (with 

peripheral areas in large wetlands less likely to be susceptible to marine inundation). The preservation of 

sequences is also likely to be influenced by scale: for example Waller & Long (2010) suggest that the 

absence of peat from some of the narrow Sussex valleys may reflect the potential for channel migration to 

rework sediment in such confined settings.  

Limitations in the construction of the palaeogeographic maps include the quantity of data available for the 

early Holocene and the upper part of the stratigraphic column being preferentially impacted by various 

destructive processes, as outlined in Section V. In addition, with the timing of events based on radiocarbon 

dates that cannot be resolved to less than a few hundred years, correlating events within individual basins is 

inevitably subject to chronological uncertainties. The presence of bog vegetation is shown using the 

palaeoenvironmental data summarised in Waller (1994b), Long et al. (2007) and Pons (1992). Such 

evidence is however particularly vulnerable to destruction, inevitably less abundant than lithostratigraphic 

data, and the boundaries of such communities are inherently difficult to define. 

 

(2) Trends in peat formation 

In the early Holocene, prior to the connection of the North Sea with the English Channel (c. 9000 cal. yrs 

BP; e.g. Shennan et al., 2000), the Fenland rivers fed into a southward expanding North Sea coastline while 

the eastern English Channel and the Rhine–Meuse palaeovalley were inundated from the south-east (Fig. 1). 

Thin basal peats have been recorded from both basins (e.g. Jelgersma, 1961; Shennan et al., 2000; Brown et 

al., 2018). Hijma & Cohen (2011, 2019) provide detailed palaeogeographic maps showing that basal 

peats/organic palaeosol layers are commonly present in the Rhine–Meuse palaeovalley. However, they 

caution that only those occurring over permeable surfaces (e.g. on the flanks of aeolian dune fields in the 

Rhine–Meuse palaeovalley) are likely directly to reflect rising water levels in response to RSL (see also 



Hepp et al., 2019). More surprisingly, terrestrializing peats have also been recorded from both the Rhine–

Meuse delta and the south coast of England. The latter are also situated in palaeovalleys, the Arun (Gupta et 

al., 2004) and at Eastbourne (Jennings & Smyth, 1987), and range in age from c. 11,200 to 9650 cal. yrs BP. 

They imply that sufficient minerogenic sediment was locally available to fill the accommodation space 

created by RSL rise and bring the elevation of the sediment surface within the range in which organic 

sedimentation could occur, allowing brief periods of peat growth before continued RSL rise resulted in 

further flooding. Jennings & Smyth (1987) considered that a protected setting, coupled with early temporary 

barriers were required at Eastbourne, however, the Rhine–Meuse and Arun peats are seen as being distal to 

active tidal channels (Gupta et al., 2004; Hijma & Cohen, 2019).  

The connection of the English Channel to the North Sea resulted in what are likely to have been rapid 

changes in tidal regime and patterns of sediment movement in the region at the beginning of the mid-

Holocene (c. 8200–4200 cal. yrs BP). Initially rates of RSL rise remained high and peat development 

relatively limited. Sufficient data are available to map the distribution of basal peat across the Netherlands c. 

7450 cal. yrs BP (Fig. 7), which was particularly extensive in the vicinity of the Rhine–Meuse delta (Vos, 

2015). Elsewhere  terrestrializing peats appear still to be confined to valley situations, with the earliest 

recorded in Fenland occurring at Adventurers' Land c. 7200 cal. yrs BP and Welney Washes and Spalding c. 

6700 cal. yrs BP (Shennan, 1986a; Waller, 1994b), in the Thames estuary c. 7900 cal. yrs BP (Devoy, 1979) 

and in the Romney Marsh area c. 7800 cal. yrs BP (Waller & Kirby, 2002). In general terms, however, the 

scarcity of terrestrializing peats in the stratigraphic record during the early part of this period is an indication 

that away from valley situations and the availability of local source material (as indicated for Fenland by 

Brew et al., 2000), the creation of accommodation space as consequence of RSL rise continued to outstrip 

sediment supply. 

River valley locations remain the focus of peat formation until after c. 6000 cal. yrs BP with the onset of 

extensive peat formation in the Romney Marsh area beginning in the Brede and Rother valleys from c. 6600 

cal. yrs BP (Waller, Burrin & Marlow, 1988) and the sea and landward expansion of peat in the Rhine–

Meuse delta by 5800 cal. yrs BP (Vos, 2015). The essential prerequisite to provide a platform upon which 

peat could expand seaward, i.e. the build-up of sediment onshore, combined with further reductions in the 

rate of RSL rise, seem not to have been more generally met in the region until after c. 5500 cal. yrs BP. 



Extensive peat formation began over the western side of the Romney Marsh basin at this time, probably 

promoted by the growth of a gravel barrier (Fig. 8; Long et al., 2006a). In the Netherlands, peat 

development over the central tidal basin of the Oer-Vecht had taken place by 4700 cal. yrs BP (Vos, 2015), 

while the first major seaward expansion of a thin peat in western Fenland reached its maximum extent c. 

4600 cal. yrs BP (Fig. 9; Waller, 1994b).  

At the beginning of the late Holocene (c. 4200 cal. yrs BP to present), in the Romney Marsh area and 

Zeeland and North Holland, terrestrializing peats continued to expand seaward reaching the coastal barrier 

systems c. 3300 and c. 3450 cal. yrs BP respectively (Long et al., 2006a; Vos, 2015). By contrast, possibly a 

consequence of vulnerability to flooding events as a result of a more open coast, the Fenland basin 

experienced fluctuations between freshwater and marine brackish conditions. The maps (Fig. 9) suggest 

differences between the south-eastern and south-western parts of the Fenland basin c. 4600 cal. yrs BP and 

c. 3700 cal. yrs BP, with marine conditions reaching their maximum inland extent in one area while peat 

expanded seaward in the other (Waller, 1994b). Spatial variability is also recorded in the Netherlands, where 

peat expansion over the tidal basins in the north began in the late Holocene 1000–2000 years later than in 

the western Netherlands (Vos, 2015). In the Netherlands, differences in tidal range along the coast (Van der 

Molen & De Swart, 2001) may provide a partial explanation, while in the smaller systems such disparities 

are most likely to reflect variation in the supply of sediment to the shoreline although this requires further 

research. More certainly the relatively rapid development of peat over large parts of the Fenland basin (e.g. 

c. 3400 and 2900 cal. yrs BP) suggests a pre-peat surface of tidal flats, while the markedly diachronous peat 

growth recorded in the Romney Marsh area (from c. 6600 cal. yrs BP in the valleys to its maximum extent c. 

3000 cal. yrs BP) is indicative of the gradual and progressive infilling of a basin. In both Fenland and the 

Netherlands, the palaeogeographic maps (Figs 9 and 7) show that the margin of peat growth continued to 

encroach landward during the mid and well into the late-Holocene (this is not evident on the Romney Marsh 

maps due to the much steeper topography). The rising water levels implied are consistent with the trend of 

rising RSL (albeit rising at a declining rate). In the Netherlands this resulted in the coastal peatlands 

coalescing with inland bogs (e.g. Bourtanger Moor at c. 3500 cal. yrs BP). Pons (1992) indicates their 

maximum extent was attained c. 3200 cal. yrs BP when almost all of the coastal plain from Calais to 

southern Denmark was peatland.  



The subsequent history of the peatlands of the North Sea region is one of diminution as a result of 

freshwater and marine flooding and human activity. For example, in the delta of the Rhine–Meuse, peat was 

increasingly replaced by the deposition of fluvial clays from c. 3500 cal. yrs BP onwards (Vos, 2015). It is 

likely that the progressive removal of catchment woodland from the Bronze Age onwards resulted in the 

erosion of soils and increased alluviation (Burrin & Scaife, 1984; Buckland & Sadler, 1985; Smyth & 

Jennings, 1988; Erkens, 2009). Such processes are also likely to have been an important sediment source for 

material deposited under marine–brackish conditions. 

The late Holocene saw major marine incursions in all three regions. Whilst locally variable in composition, 

silty clays typically 1–3 m thick form the uppermost unit in areas fringing the coast. Given the decline in the 

rate of RSL rise, compaction and the erosion of the underlying peat is likely to have provided the 

accommodation space required for deposition of these sediments (Long, Waller & Stupples, 2006b). 

Deposition is frequently associated with tidal channels that are incised into the underlying organic deposits 

(Baeteman, 2005). Consistent dates can therefore be difficult to obtain from the upper contact of these peats 

(Waller, Long & Schofield, 2006), although inundation appears to have occurred in Fenland c. 1900 cal. yrs 

BP and on the eastern side of the Romney Marsh area after c. 1800 cal. yrs BP (Waller, 1994b; Long et al., 

2006a,b). In the Netherlands, the area covered with peat also contracted from c. 1850 cal. yrs BP with 

marine inlets developing in Zeeland and at the Rhine–Meuse mouth (Vos, 2015). By c. 1150 cal. yrs BP 

Zeeland had been extensively inundated.  

A number of potentially interacting natural and anthropogenic factors have been suggested as drivers of 

these inundations. The natural factors include the depletion of near-shore sediment sources and resultant 

erosion of barrier systems, an increase in storm conditions and a lack of vertical peat accumulation due to 

the slow RSL rise lowering the peat surface relative to the tidal frame, making the peatlands vulnerable to 

inundation (Long et al., 2006a; Hamilton et al., 2019). Baeteman (2005) suggests excessive run-off during 

the late Holocene (either relating to climatic deterioration or a change in hydrological conditions connected 

to anthropogenic deforestation) resulted in the flushing of sediment from channels draining the peat, 

enabling tidal conditions to re-enter these areas. Others have implicated human activity more directly, with 

inundation initiated by peat cutting (Vos & van Heeringen, 1997) or subsidence occurring as a consequence 

of drainage associated with early reclamation (Pierik et al., 2017). 



Human activity has certainly played an important role in the history of these areas over the last 1000 years 

(Section V). Organic sedimentation ceased over large parts of central Holland from c. 1100 cal. yrs BP as a 

result of reclamation, and the subsequent reconstructions of Vos (2015), from c. 450 cal. yrs BP through to 

the modern era (Fig. 7), show the further diminution of coastal peatlands due to human intervention. Peat 

formation effectively ended in the Romney Marsh region when the unreclaimed western side was flooded c. 

1200 cal. yrs BP as a consequence of barrier breaching (Fig. 8; Long et al., 2006a). However, in Fenland 

human intervention appears not to have prevented a renewed phase of extensive peat growth from c. 1650 

cal. yrs BP (Fig. 9; Waller, 1994b), and although this uppermost deposit is now poorly preserved/absent, 

over large areas of southern Fenland active peat formation appears to have continued until drainage from c. 

400 cal. yrs BP onwards (Darby, 1983). 

(3) Vegetation trends: basal peats 

While predicated by rising water levels, the nature of basal peats is controlled by local groundwater 

conditions and influenced by factors such as topography, substrate permeability and water source. In the 

Rhine–Meuse palaeovalley, from c. 10,000 to 7000 cal. yrs BP, Bos et al. (2012) record the presence of 

gyttja and a range of peat types reflecting the variety of water sources. Oligotrophic peats are rare but occur 

over cover-sand ridges and are fed by precipitation. In the mid-Holocene slower rates of RSL rise and areas 

with shallow slopes provided the opportunity for the development of thicker peats accumulating at the 

landward margins of sedimentation. In the northern Netherlands and eastern Belgian coastal plain the 

nutrient-poor cover-sands enabled the development of meso-oligotrophic bog, with communities dominated 

by Eriophorum and Sphagnum occurring above Phragmites or Betula carr (Pons, 1992; Allemeersch, 1991). 

A rare example of such vegetation in Fenland occurred in Holme Fen basin where oligotrophic bog 

developed from c. 5700 cal. yrs BP (Godwin & Vishnu-Mittre, 1975). Comparable ages have been obtained 

for basal peat development in eastern Belgium (Allemeersch, 1991) and the onset of acidification in the 

northern Netherlands (from c. 5300 cal. yrs BP; Pons, 1992).  

By contrast, over most of Fenland and in the Romney Marsh area, basal peats and the peats that remained 

beyond the landward marine limit (the latter are poorly preserved) largely appear to have been eutrophic. 

Marine incursions into the basins of southern Fenland over the period c. 5400–3400 cal. yrs BP gave rise to 

basal peats c. 30–40 cm thick, with eutrophic communities indicative of increasing water depth occurring 



successively over a few hundred years (Fig. 5A) as rising water levels outstripped sediment supply. 

Southern Fenland is also noted for an abundance of ‘bog oaks’, trees that have emerged at the surface, 

beyond the landward limits of marine sedimentation, since drainage. The prevalence of oak in such 

situations is likely to reflect relative tolerance to waterlogging, although may also be influenced by 

preservation bias with early workers (Godwin, Godwin & Clifford, 1935; Godwin & Clifford, 1938) 

indicating the presence of additional taxa. 

 

(4) Vegetation trends: territorialisation peats 

The terrestrializing peats of the region record progressive series in their initial stages of growth. Saltmarsh 

communities are replaced by reedswamp (with visible Phragmites remains common), and in turn these are 

replaced by sedge-dominated communities. Where macrofossil data are available, Cladium mariscus and 

Carex spp., notably Carex elata (a eutrophic species associated with the margins of open water) are 

frequently recorded (Allemeersch, 1991).  

Above the initial stages, a distinct eutrophic pathway can be identified with Alnus- and Salix-dominated fen 

carr communities becoming established and being sustained for long periods (Waller et al., 1999). Such 

communities developed (and bog communities were absent) where fluvially derived water is likely to have 

retained a dominant influence, in confined valley settings such as the Sussex Ouse valley (Waller & 

Hamilton, 2000; Waller & Early, 2015), the western valleys of Romney Marsh (Waller, 1994a) and the 

Thames estuary (Devoy, 1979; Branch et al., 2012; Waller & Grant, 2012). On the Rhine–Meuse deltaic 

plain Van der Woude (1984) describes a fluviolagoonal environment, consisting of a mosaic of fen carr, 

Phragmites swamp and lakes, that was present for much of the mid-Holocene. In south-eastern Fenland 

open eutrophic communities also persisted in the thicker terrestrializing peats of the late Holocene (Waller, 

1994b), occurring both above fen carr deposits (e.g. Redmere) and throughout peat formation (Welney 

Washes).  

A wide variety of vegetation types that fall within the category of bog have been recorded within 

terrestrializing peats. Betula-dominated fen carr commonly occurs and can be preceded by both open and 

woody fen (e.g. Allemeersch, 1991; Waller et al., 1999) and open bog communities (e.g. Pons, 1992). On 

both the coastal plains of eastern Belgium and the Netherlands, communities with Carex/Eriophorum and 



mosses indicative of meso-oligotrophic conditions commonly occur above the initial terrestrializing stages 

(Allemeersch, 1991; Pons, 1992). Such communities often merge into vegetation in which Sphagna are 

abundant. The presence of Sphagnum Section Acutifolia and Section Cuspidata, which are frequently 

recorded alongside mesotrophic taxa, indicates these communities were not all initially ombrotrophic.  

Sphagnum subsequently dominates, occupying the upper, and often greater, parts of the terrestrializing 

deposits of Belgium (>60%; Allemeersch, 1991) and the Netherlands (Pons, 1992). Here, raised bogs 

occupied most of the coastal plain in the late Holocene. Ombrotrophic conditions are confirmed by the 

presence of taxa such as Sphagnum imbricatum which also demonstrates the presence of ombrotrophic bog 

at Little Cheyne Court on Walland Marsh (Fig. 8; Waller et al., 1999). Pons (1992) provides descriptions of 

the bogs of the Netherlands envisaging a complex of meso-scale bogs intersected by mesotrophic and 

eutrophic communities along drainage routes. Their size reflects the much more extensive coastal plain, that 

over Schouwen, Zeeland is envisaged as having a diameter of 12 km, occupying 12,000 ha, with the dome 

rising to c. 2.5 m above modern sea level. 

In Fenland, aside from the Holme Fen sequence, there is no evidence that sequences progressed beyond 

meso-oligotrophic bog, although the highly humified nature of the late Holocene deposits generally prevents 

the identification of macrofossils. Pollen assemblages with Sphagnum also contain an abundance of 

Ericaceae, Cyperaceae and Pinus pollen (Godwin et al., 1935; Waller, 1994b). The extent of such bogs in 

the late Holocene in Fenland is largely a matter of conjecture due to their subsequent destruction (Section 

V), although is likely to have been greater than indicated in Fig. 9 and they may have been widespread 

(Godwin, 1978). On the northern and western fringes of Walland Marsh mesotrophic vegetation developed 

in the late Holocene with Myrica gale an important vegetation component, occurring above fen carr (both 

Alnus- and Betula-dominated). With its establishment requiring either dry elevated surfaces or little lateral 

movement of water (Wheeler, 1980b), it appears to form an alternative minerotrophic pathway (Long et al., 

2007; Kirby et al., 2010). 

As Godwin & Clifford (1938) recognised, isolation from eutrophic water sources appears to be the critical 

factor in enabling the widespread development of bog vegetation. Initial development occurs where there is 

spatial separation from such sources, either basins remote from the major rivers (e.g. the Holme–

Woodwalton and Wood Fen basins in Fenland) or during periods when peat formation would have been 



particularly extensive in a region (e.g. Walland Marsh). Bogs did not become widespread in the region until 

the late Holocene: c. 2800 cal. yrs BP in Fenland (Waller, 1994b), c. 3000 cal. yrs BP on Walland Marsh 

(Waller et al., 1999), and from c. 4600 cal. yrs BP in North Holland and Zeeland (Pons, 1992). That their 

most extensive development occurs in the upper part of the Holocene sequence suggests that vertical 

separation – the ability of peat to keep pace or outgrow rising water levels (through autogenic succession) – 

is also likely to have been an influential factor.  

Not only was the rate of RSL rise declining but precipitation was increasing. Climate change, the shift from 

relatively warm continental to wetter oceanic conditions in the period c. 2800–2700 cal. yrs BP (Kilian, van 

der Plicht & van Geel, 1995), appears to have been a significant factor promoting acidification. Witte & van 

Geel (1985) record a shift from Phragmites to mesotrophic Molinia at Assendelver Polder at this time, and it 

is also likely to have resulted in the switch from minerotrophic to ombrotrophic conditions in many pre-

existing bogs (e.g. Waller et al., 1999). In modern mire systems the shift from fen to bog can occur within a 

few decades if vertically mobile surfaces (floating mats of herbaceous vegetation) develop and prevent 

flooding with eutrophic water (Giller & Wheeler, 1988; Van Digglen, Molenaar & Kooijman, 1996). 

 

(5) Stability 

Stratigraphic and palaeoecological data suggest that stability, both in terms of continuous peat growth and 

individual communities, can be measured over not just a few hundreds of years but several thousands of 

years in the southern North Sea region. In the case of the extensive accumulations of peat within 

ombrotrophic communities, in the upper part of sequences such stability is unsurprising. This would be 

expected as a result of the independence of such bogs from minor fluctuations in the groundwater table and, 

under at least the climatic conditions of the late Holocene (with active peat accumulation continuing in parts 

of the Netherlands), ombrotrophic peat growth being self-sustaining. 

More interestingly the data also suggest the long-term (>1000 cal. yrs) stability of fen vegetation, both carr 

and herbaceous communities. Waller (1993, 1994a), Deforce (2011), Branch et al. (2012), Deforce et al. 

(2014) and Waller & Early (2015) all record the extended presence of fen carr during the mid-Holocene 

(with sustained sediment accumulation rates >2 mm yr–1 recorded), while the persistence of areas of swamp 

and herbaceous communities is indicated by Waller (1994b), Long & Innes (1995), Waller et al. (1999) and 



Jennings et al. (2003) in the late Holocene. This raises the question as to what factors enabled these plant 

communities to sustain a sediment surface elevation within their range of tolerance over an extended period 

of time. In the mid-Holocene the rate of RSL rise had evidently declined to the point where in protected 

settings the accumulation of organic material was capable of filling the accommodation space created. 

However, as the rate of rise is unlikely to have remained constant over long periods of time, other factors are 

likely to have been involved. These include the wide ecological amplitude in respect of the height of the 

water table of many of the dominant plants including Alnus glutinosa (see Table 1). In addition, higher rates 

of decomposition would be expected if the supply of organic material outstripped the rate of water table rise, 

while increased flooding, and therefore potentially the supply of additional allochthonous sediment, would 

be expected if RSL rise outstripped organic production. Data from the valleys leading into Romney Marsh 

(Fig. 6) show that while the minerogenic component is highly variable, temporal trends are difficult to 

discern. Unfortunately, the distortion of sediment accumulation rates by compaction and a lack of detailed 

chronologies hinder our ability to analyse the sedimentary responses to water-level changes. In addition, 

although methods are available to determine the degree of peat decomposition or ‘humification’ (as a proxy 

for hydrological change), these have been considered not to be worthwhile in coastal areas that have been 

subject to modern drainage. Factors that may limit the successional trend towards fen carr in open eutrophic 

communities, with herbaceous peats tending to persist in seaward locations, include exposure and high 

salinity. The inability of thick peat sequences to support the weight of large trees may also promote and 

sustain a trend towards open vegetation through time (Waller & Early, 2015) with subsidence an additional 

factor in creating the accommodation space needed to maintain eutrophic peats into the late Holocene.  

 

V. EXPLOITATION, CONSERVATION AND POTENTIAL RESURRECTION 

(1) Exploitation 

During the late Holocene the much-reduced areas of peatland in the Netherlands and Fenland were subject 

to extensive human exploitation. Peat cutting to provide fuel for domestic and industrial purposes (e.g. salt 

production) was practiced across the region from the Roman period onwards (Hall & Coles, 1994; Vos & 

van Heeringen, 1997; Baeteman, 2007). Becoming increasingly extensive in medieval times, the custom 

continued into 20th century AD (Borger, 1992). Flooding of the resultant turbaries produced areas of open 



water, notably the Norfolk Broads (Lambert et al., 1961), with exploitation continuing below water level in 

the central Netherlands (Borger, 1992). Other widespread practices included mowing, the cutting of reeds, 

rushes and sedges for construction materials (particularly thatching), and the use of peatland for summer 

pasture, fishing and wildfowling (Rippon, 2000). In the Netherlands, areas of peat remained sufficiently 

above the groundwater table to enable, if fertilised, grain cultivation into the 14th century AD (Borger, 

1992).  

Reclamation through the use of dykes, ditches and sluices extends back in the region to the late Iron Age 

(Lascaris & De Kraker, 2013), although settlement in tidal environments continued along the Belgian 

coastal plain into the 13th century AD (Tys, 2013). The use and spread of more-advanced water-

management techniques from the 17th century AD onwards, including networks of pumping stations and 

areas set aside to retain flood water (e.g. the Fenland Washes), facilitated agricultural use of the remaining 

peatland areas. The cycle of events initiated by such drainage is well documented (e.g. Hutchinson, 1980). 

The loss of water results in contraction of the sediment volume and subsidence. Oxidised peat begins to 

decompose and those constituents not converted to volatile products are washed or blown away: a process 

that is collectively referred to as ‘peat wastage’. This lowering of the land surface then necessitates further 

action to lower the water levels. In coastal areas, the lack of sedimentation in the enclosed areas in itself 

contributes to land lowering relative to the coastal zone, increasing vulnerability to flooding from storm 

surges (Section IV.2).  

Peat wastage rates are highly variable, and depend on site-related factors such as peat thickness and land 

use. In Fenland, the Holme Fen post indicates a fall in the ground surface of 3.74 m between 1848 and 1978. 

However, the wider applicability of this often-quoted figure is doubtful, since the post provides a guide to 

subsidence rates over thick peat during the early dewatering phases (2.34 m between 1848 and 1871), but 

such deposits are rare in Fenland and subsequent land use around the post (pasture from as early as 1880s 

and woodland from the 1920s) is atypical (Hutchinson, 1980). In the Netherlands, Erkens, van der Meulen 

& Middelkoop (2016) have estimated peat-surface lowering as a result of wastage and excavation at an 

average of 1.9 m over the past 1000 years. Current estimated wastage rates in Fenland vary from 2.1 cm yr–1 

for thick peat under arable land use to 0.1 cm yr–1 for thin peats under semi-natural vegetation (Holman & 



Kechavarzi, 2011), while in the Netherlands, Acreman & Miller (2007) provide an estimate of 1 cm yr–1 for 

peatland under normal agricultural use.  

Drainage and conversion to agriculture alters the carbon balance in peatlands from a sink to a source, 

resulting in the oxidative release of greenhouse gases (CO2 and N2O). The figures Holman & Kechavarzi 

(2011) provide for the current rate of release in Fenland at around 0.4 Tg C yr–1 are equivalent to about 0.4% 

of the UK’s current industrial emissions of CO2 (DBEIS, 2018). 

 

(2) Conservation of the remnants  

At the start of the 20th century the active coastal peatlands remaining in the region survived as remnant 

semi-natural ecosystems within agricultural settings. These consisted of fen vegetation, with only small 

areas of bog (<10,000 ha in 1985) persisting in the Netherlands (Vermeer & Joosten, 1992). Emphasis was 

placed first upon the acquisition and then the management of these remnants for biodiversity conservation.  

Management for conservation has frequently been aimed at preventing succession, maintaining 

minerotrophic vegetation by biomass removal. This has generally involved continuing or reinstating historic 

practices, particularly mowing, but also grazing and peat-cutting. The rationale for such practices is that 

vegetation such as fen meadow is rare; fen forms less than 1% of UK peatland (JNCC, 2011), and has a high 

biodiversity value (Van Wirdum, Den Held & Schmitz, 1992; Wheeler, 1988). In the absence of such 

management, nutrients build up and competitive fast-growing species soon dominate and begin to outgrow 

the groundwater level.  

The natural successional trend towards a bog system is not the only challenge to maintaining the nutrient 

balance in peatland remnants. Draining of the surrounding agricultural land increases flow rates and, by 

lowering the hydrologic head, shifts the balance of water input from groundwater to precipitation. 

Acidification can also be accelerated by air pollution, particularly the influx of HNO3. Consequent 

vegetation changes include the loss of minerotrophic vegetation with the invasion of Sphagnum and the 

development of embryonic bog (Van Digglen et al., 1996). Efforts to mitigate acidification include the 

removal of surface peat, liming and the use of manure (Vermeer & Joosten, 1992; Beltman et al., 1996; 

Leon et al., 2002; Van Digglen et al., 2015). Increased levels of nitrogen or phosphorus (i.e. eutrophication) 

are also a major threat, particularly to the surface waters associated with such remnants. External inputs 



arise through increased atmospheric deposition and run-off or drainage water derived from agricultural 

lands. In addition, the release of internal nutrient sources can occur as a result of low water levels through 

the mineralisation of surface peat (Koerselman & Verhoeven, 1995).  

While management can be directed at maintaining past diversity and rare species, these aims are intrinsically 

threatened by the small size and fragmented distribution of the remnants. Size, with the individual 

communities within the remnants inevitably small, can prevent the long-term maintenance of viable 

populations and/or result in the genetic deterioration of small populations. The challenges posed can be 

illustrated through the fate of two species, the fen violet (Viola stagnina) and the large copper butterfly 

(Lycaena dispar) in the UK. In the early 1990s the violet was confined to two Fenland peatland remnants 

(Woodwalton and Wicken Fen), although only one plant was recorded in 2005 from Woodwalton and none 

were found for a 15-year period at Wicken Fen. The plant has a persistent seed bank and requires periodic 

disturbance (e.g. peat cutting), although in addition to competition from surrounding vegetation, the 

maintenance of pure populations is threatened by its readiness to hybridise with another Viola species 

(Porter & Foley, 2017). After UK extinction in the 19th century the large copper butterfly was reintroduced 

into Woodwalton Fen in 1927. The population was subsequently maintained, through the management of 

open fen communities, but also in part by protecting larvae and the supplementary release of adults. 

However, periodic prolonged flooding events killed the larvae and by the 1990s it was concluded that the 

fen was of insufficient size to maintain a self-sustaining population and attempts at reintroduction were 

abandoned (Barnett & Warren, 1995).  

 

(3) Large-scale restoration and the future 

These problems highlight the need for management at the landscape scale and recent years have seen the 

development of large schemes aimed at peatland restoration [see Bonn et al. (2016) for detailed discussion 

of this topic and further examples]. In coastal lowland regions these typically involve areas from which peat 

was formerly excavated (e.g. Thorne and Hatfield Moors comprising 3,300 ha in the Humberhead Levels 

and the Weerribben-Wieden, a 10,500 ha reserve in the central Netherlands) or the retransformation of 

agricultural land back into peatlands (e.g. The Great Fen and Wicken Fen Projects in the UK Fenland). 

Restoration of the former has generally involved raising the water table and revegetating areas of bare peat. 



It is intended that the Fenland projects will also raise water levels and, by utilising differences in the 

underlying substrate and topography, create gradients within the landscape, and re-establish a variety of 

wetland communities. Greater connectivity is also an important element of these schemes. The Great Fen 

Project (initiated in 2001) will reconnect two existing remnants in Fenland (Holme Fen and Woodwalton 

Fen), creating, in addition to other habitats, 2250 ha of reed bed, tall herb fen and fen meadow (Mountford et 

al., 2002). It is nevertheless recognised that establishment of fen from agricultural land through natural 

recolonisation is likely to be a slow process and species reintroduction, through the use of seed, hay or 

animal vectors, will be required. The Wicken Fen Project (initiated in 1999), which will add an additional 

5,300 ha of wetland to the current 255 ha area, is non-proscriptive about both the habitats to be created and 

the target species. Here, in what is intended to be a more financially sustainable form of management, free-

roaming self-reliant animals (‘naturalistic grazing’) are being used to influence vegetation development 

(National Trust, 2009). 

As well as benefits for biodiversity, such schemes have the potential to provide additional regulating 

ecosystem services, including turning areas from carbon sources to sinks. Unfortunately peatlands can 

exhibit initial increases in the emission of greenhouse gases after rewetting, with carbon loss occurring as a 

result of increasing pH and high rates of organic breakdown, and the higher water levels produced 

increasing emissions of CH4 (Lamers et al., 2015). Nevertheless, it is has been estimated that the Great Fen 

Project will prevent an annual loss of 325,000 tonnes of CO2 equivalents and over a 100-year period the area 

should act as a carbon sink, with the presence of sulphate-rich clays in the subsoil potentially mitigating 

against the production of CH4 (Gauci, 2008). Other studies have also shown the potential for rewetted 

former agricultural pasture to reduce carbon losses over shorter timescales, providing the water table can be 

carefully managed and kept close to the peat surface throughout the year (Huth et al., 2018; Peacock et al., 

2019).  

Other ecosystem services result from the catchment-scale hydrological management that such schemes 

require. Areas of open water at the Weerribben-Wieden and envisaged in the Great Fen and Wicken Fen 

Projects are designed to enable excess upland run-off to be stored and used to control the degree of water 

level fluctuation. Such stores can additionally help with groundwater regulation and flood attenuation 

downstream. In addition, such wetland complexes act as nutrient sinks and purify water. Nitrogen and 



phosphorus pollution has been a particular problem at Weerribben-Wieden, which receives water derived 

from adjacent fertilised agricultural polders. Here through effective water regulation, the wetlands now act 

as a filter, so that the more isolated parts can sustain the water quality required for the persistence of 

biodiverse rich fen communities (Cusell et al., 2014).  

Functioning peatlands also provide cultural and natural heritage services that include the educational value 

of continuing with historic management practices and preserving what can be extensive waterlogged 

archaeological remains (e.g. Hall & Coles, 1994) that occur both within and beneath the peat along with 

palaeoenvironmental records. They also afford outdoor recreational opportunities otherwise lacking in what 

are now heavily populated regions (National Trust, 2009). 

The benefits of restoration schemes are challenging both to measure and monitor (Hughes et al., 2016) and 

they inevitably involve trade-offs, both in terms of potentially conflicting ecosystem services (Acreman et 

al., 2011; Lamers et al., 2015) and their value when set against productive agricultural land and issues 

relating to food security. Nevertheless, Peh et al. (2014) suggest that in 2011 the Wicken Fen Project had 

achieved a net gain to society. With the cycle of wastage necessitating further drainage of agricultural land 

likely to be exasperated by future climate change and sea-level rise, the balance between costs and benefits 

is likely to increasingly favour peatland restoration (Alonso et al., 2012).  

The current rate of global mean sea-level rise, estimated at 3.1 ± 0.3 mm yr−1 for the last 25 years 

(Cazenave, Palanisamy & Ablain, 2018) has not been experienced since the mid-Holocene, when the 

palaeoecological evidence shows not only the expansion, but also the long-term persistence of peatland 

including eutrophic vegetation across the southern North Sea region. Rising groundwater levels will provide 

the accommodation space for peat accumulation and the opportunity to recreate the eutrophic communities 

abundant in the past including fen carr. The presence of Alnus glutinosa in the early stages of rewetting can 

reduce CH4 emissions (Huth et al., 2018). If unmanaged and therefore with biomass retained, fen carr 

communities have the ability to store large quantities of carbon, particularly when the water level is 

maintained close to the surface (Barthelmes, 2009; Table 1). A. glutinosa is also reported as showing long-

term resilience (the ability of a system to tolerate change while retaining essentially the same function and 

structure) to climate change with stands regenerating after diebacks if environmental conditions improve 



(Latałowa et al., 2019). As peatland areas are expanded, greater consideration should therefore be given to 

converting areas into A. glutinosa woodland either by planting or allowing succession to occur.  

The ability of peatlands to response to water-table rises and provide ecosystem services adds considerable 

value to such projects and brings into question the use of heavy grazing regimes in coastal rewilding 

projects. For example, at Oostvaardersplassen, a 5,600 ha reclaimed polder in Flevoland, the desire to 

maintain the early successional stages for biodiversity conservation has been achieved through naturalistic 

grazing with herd size determined by availability of natural food. Such an approach limits the build-up of 

biomass, potentially negating the benefits that might arise through uninhibited peatland development. 

Research on biodiversity and ecosystem functioning has demonstrated that plant traits interact with abiotic 

variables to modulate ecosystem properties (e.g. soil carbon, above-ground biomass) in peatlands (Lavorel 

& Garnier, 2002; Moor et al., 2017). Restoration that focuses on ecosystem services should therefore aim at 

restoring vegetation with traits that maximise specific functions. For example, carbon sequestration in fens 

may be enhanced by the presence of species with specific leaf traits (Carvalho et al., 2019a). Here, 

palaeoecological evidence has the potential to provide information about how different plant traits affect the 

rates of delivery of ecosystem processes through time. Numerical techniques are being developed that link 

plant functional information to pollen data (Reitalu et al., 2015) so that inferences about ecosystem 

properties such as biomass accumulation and decomposition rates can be made using Holocene pollen-based 

trait reconstructions from fen deposits (Carvalho et al., 2019b). 

It is currently difficult to assess the long-term role of minerogenic sediment supply in maintaining coastal 

peatland. This is an important area for future palaeoenvironmental research as the re-establishment of a 

minerogenic component through natural flood regimes would require the considerable obstacles (e.g. costs) 

to restoration of free-flowing rivers and estuaries to be overcome. 

 

VI. CONCLUSIONS  

(1) The combination of rising RSL and the onshore movement of sediment in the early and mid-Holocene 

created conditions suitable for peat formation in coastal lowland areas adjacent to the North Sea. From c. 

5500 cal. yrs BP onwards peat-forming vegetation, initially largely eutrophic communities, became 



widespread. A decline in the rate of RSL rise and autogenic succession then promoted bog vegetation as 

these peatlands expanded to reach their maximum extent in the region c. 3000 cal. yrs BP.  

(2) Natural processes, such as declining sediment supply at the coast and a slower rate of rise in RSL, 

contributed to the loss of peatland in the late Holocene. However, human interference has been both a major 

and long-term influence, without which extensive areas of peatland would exist today.  

(3) Biodiversity conservation and a growing awareness of the ecosystem services provided by peatland 

communities (notably carbon storage in active peatlands) have led to increased efforts towards their 

restoration. This development is likely to receive further impetus as a result of future RSL rise. In addition 

to adding to the costs of maintaining current agricultural activities, rising RSL could provide the 

accommodation space needed for future peat accumulation and the opportunity for the restoration of a 

variety of wetland communities.  

(4) Restoration would be aided by a better understanding of the factors that promote both peat formation and 

onward growth in coastal lowland situations. These include further investigations into the range of water 

levels that extant communities can tolerate and their relationship to tidal constants, the decompaction of 

sequences and more detailed chronologies. Such research would enable a better understanding of the 

sedimentary response to water-level changes, including the role played by minerogenic sediment supply and 

flood regime in maintaining conditions suitable for peat accumulation. 

(5) Linking palaeoecological data and plant traits has the potential to provide information as to how 

ecosystem services can be maximised in peatland-restoration projects. 
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Fig. 1. Map of the southern North Sea and eastern English Channel. The dotted line shows the approximate 

position of the coastline c. 9000 cal. yrs BP from Shennan et al. (2000).  
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Fig. 2. Schematic representation of the stratigraphic architecture of the coastal peat deposits of the southern 

North Sea region. 
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Fig. 3. The position of modern vegetation analogous to Holocene coastal communities in relation to 

variations in pH and substratum fertility (modified from Wheeler & Proctor, 2000). See Wheeler & Proctor 

(2000) for an explanation of the measure of fertility. (A) Main phytosociological alliances of mires. (B) 

Position of the main categories of mire vegetation assumed to be self-sustaining. (C) Position of herbaceous 

vegetation types and some important herbaceous taxa. 
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Fig. 4. Relative sea-level curves from the eastern North Sea, showing differential north–south subsidence 

across the southern North Sea area, with the eustatic element distinguished. NN refers to the German 

ordnance datum (Normalnull). Modified from Vink et al. (2007). 
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Fig. 5. Examples of retrogressive (communities indicative of successively higher water levels relative to the 

sediment surface) and progressive (communities indicative of successively lower water levels relative to the 

sediment surface) series from Fenland. (A) Lithology, organic content (determined by loss-on-ignition) and 

select pollen data showing a retrogressive series from a basal peat at Lade Bank. (B) Lithology, organic 

content (determined by loss-on-ignition) and select pollen data showing a progressive series from a 

terrestrialisation peat at Wiggenhall. Data from Waller (1994b) and M. Waller (unpublished data). OD refers 

to the UK ordnance datum. See Fig. 9 for site locations. 
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Fig. 6. Organic content (determined by loss-on-ignition) from the main peat bed of the Romney Marsh 

region (excluding transitional layers and thin clay lenses). Valley sites are represented by open symbols, 

sites from Walland Marsh by filled symbols, see Fig. 8 for site locations. Data from Waller (1994a) and M. 

Waller (unpublished data). 
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Fig. 7. Location of sites and palaeographic maps from the Netherlands (after Vos, 2015). See Fig. 9 for key.  
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Fig. 8. Location of sites and palaeogeographic maps from the Romney Marsh area (after Long et al., 2007). 

See Fig. 9 for key.  
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Fig. 9. Location of sites and palaeogeographic maps for the Fenland area (after Waller, 1994b). 
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Table 1. The height relationships and properties of coastal peat types. Reference water level refers to the 

modern equivalent elevation at which the vegetation type or transition occurs, defined with reference to a 

tide level; mean high water of spring tides (MHWST), mean tide level (MTL), highest astronomical tide 

(HAT), mean high water (MHW). TOC, total organic carbon based on loss-on-ignition; NA, not applicable. 
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