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Abstract 

Purpose of Review: To highlight recent breakthroughs and controversies in the use of 

myoblast models to uncover cellular and molecular mechanisms regulating skeletal muscle 

hypertrophy and atrophy.   

Main Findings: Myoblast cultures provide key mechanistic models of the signalling and 

molecular pathways potentially employed by skeletal muscle in-vivo to regulate hypertrophy 

and atrophy. Recently the controversy as to whether IGF-I is important in hypertrophy 

following mechanical stimuli vs. alternative pathways has been hotly debated and is 

discussed. The role of myostatin in myoblast models of atrophy, and interactions between 

protein synthetic pathways including Akt/mTOR and the ‘atrogenes’ are explored.  

Summary: Targeted in-vivo experimentation directed by skeletal muscle cell culture and 

bioengineering (3-dimensonal skeletal muscle cell culture models) will provide key 

biomimetic and mechanistic data regarding hypertrophy and atrophy and thus enable the 

development of important strategies for tackling muscle wasting associated with ageing and 

disease processes.  

 

Keywords: muscle precursor cell, satellite cell, IGF-I, myostatin, 3D muscle 

constructs. 
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Introduction: The use of Myoblast Models to Investigate Mechanisms of 

Skeletal Muscle Size Regulation 

Adult skeletal muscle fibre number is set in-utero and adult fibres are terminally 

differentiated or incapable of division. Despite these phenomena, adult skeletal muscle is 

highly adaptable, responding to the soluble and biophysical cues that it encounters on a daily 

basis. Skeletal muscle undergoes rapid growth (hypertrophy) during development, exercise, 

stretch and mechanical loading (weight bearing) and also severe loss (atrophy) with ageing, 

disuse and disease. It is also capable of repair and regeneration following injury. Much of 

this adaptability (growth and repair) is achieved via resident adult stem cells, termed 

satellite or muscle precursor cells (MPC) that have mitotic potential. Recent data suggest 

that blocking myostatin (a negative regulator of muscle mass), enables hypertrophy not only 

via satellite cell accretion but also via increased modulation of the synthesis and turnover of 

structural proteins within a myotube/fibre (1)*.  

 

Satellite cells are fundamental to muscle adaptation; they are specialised cells, normally 

residing in a quiescent state beneath the basal lamina of myofibres.  Following physiological, 

bio-mechanical or pathological cues, they are activated to myoblasts and become committed 

to the muscle/mesenchymal linage, adopting not only a muscle phenotype, but given 

relevant cues, also neural (2), osteoblast (3, 4), chrondocyte (5) and adipocyte (6) linages. In 

order to elicit reparative responses, satellite cells must i. be activated, ii. increase their 

numbers (proliferation), iii. migrate to the site of injury and iv. fuse (differentiate) with the 

damaged fibre (7). Because of their fundamental roles in muscle maintenance and 

adaptation, myoblasts are frequently studied as in-vitro models of growth, migration, 

differentiation and death. Basal, hypertrophic or atrophic conditions are used and provide 

relevant models of muscle growth (exercise and puberty) or wasting in catabolic conditions 

(e.g. cancer, AIDS, congestive heart failure, sepsis, COPD, rheumatoid arthritis and 

sarcopenia (muscle wasting associated with ageing)). These myoblast models use either 

primary skeletal muscle cells derived from human or animal biopsies, or, more frequently, 
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established cell lines such as the mouse C2, C2C12 (a clonal derivative and daughter of the C2 

cells), or rat L6 cells. Advantages of cell lines vs. primary human culture include: Availability, 

ethics, reduced cost, access to cells, speed of growth and pure myogenic populations. 

Disadvantages of muscle cultures vs. in-vivo models include: Reduced differentiation 

capacity with passage, an inability to sustain myotubes for extended periods in culture and 

the environment of 2-D monolayer that lacks bio-mimicity, thus making direct comparisons 

with muscle in-vivo difficult. Development and manipulation of models using both collagen 

and fibrin gels to incorporate a 3-Dimensional (3-D) structure for myoblasts in culture 

(8)**(9) will potentially enable more physiological experimentation and analyses of the 

regulators of hypertrophy and atrophy.  

 

This review will therefore highlight the most recent breakthroughs in the use of myoblasts as 

models to investigate and manipulate cellular and molecular regulators of hypertrophy and 

atrophy. Given the nature of this review, in-vivo data will be reported only to portray the 

relevance of the in-vitro findings. 

 

 

 

Myoblast Models of Hypertrophy: Insulin-like Growth-Factors (IGFs) versus 

Mechano-Transduction. 

Insulin-like Growth Factors (IGFs) influence hypertrophy of skeletal muscle primary and cell 

line cultures, enhancing proliferation, differentiation (reviewed in (10)), survival (11), 

satellite cell recruitment (12) and myofibrillar protein accretion (13). Despite high levels of 

systemic liver-derived IGF, a recent in-vivo study suggests that local production of IGF-I by 

skeletal muscle is imperative in hypertrophy. Where liver deficient IGF-I mice demonstrate 

similar strength gains to controls with larger increases in IGF-I receptor tyrosine 

phosphorylation (14) and associated PI3K/Akt/mTOR induced protein synthesis (14). 

Despite these compelling data, the importance of IGF-I in mechanical load (weight bearing) 
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induced hypertrophy has recently been debated (15, 16)**. Never the less, the withdrawal of 

serum in-vitro is sufficient to induce myoblast differentiation in both cell lines and primary 

cultures which are able to produce endogenous IGF-I that facilitates the fusion process 

(17)**, furthermore, supplementation with IGF-I augments hypertrophy compared with 

basal conditions (18-20). Validation of the mechanisms pertaining to IGF, hypertrophy and 

mechanical load in-vivo therefore continues and would be facilitated by an in-vitro model 

that incorporates mechanical load. A recent study, using stretch, illustrated that primary 

chick myotubes undergo significant hypertrophy following activation of the PI3K/Akt/mTOR 

pathways (which lie downstream of IGF-I/IGF-IR activation). Hypertrophy was also 

prevented using pharmacological inhibitors of PI3K and mTOR (21), however, the authors 

did not measure endogenous production of IGF-I. Therefore, explicit confirmation of the role 

of IGF in these models is awaited.  

 

 

Mechano-Transduction Signalling 

The mammalian target of rapamycin, mTOR, can be activated via signals independent of 

IGF-I, via a pathway involving phospholipase D (PLD), phosphatidic acid and a downstream 

regulator Rheb (ras homologue enriched brain) (see (22-24). Furthermore, mTOR can be 

stimulated via amino acids, particularly leucine (25, 26), potentially via Rheb binding and 

interaction with amino acid sensitive phosphatidylinositol 3-kinase/Vps34 (24) or MAP4K3 

(27). The stress response gene Redd 2, may also be important in inhibiting mTOR via the 

tuberous sclerosis 1 (TSC1) and 2 (TSC2) complex (28), and following mechanical overload 

Redd 2 is reduced to enable mTOR to initiate p70S6K expression, which is involved in 

protein synthesis and hypertrophy (29) (see Figure 1). To substantiate that mechanical 

signals can operate independently of IGF-I signalling; in-vivo evidence from Spangenburg et 

al. (30)** suggests that mice overexpressing a dominant negative form of IGF-IR (MKR 

mice), elicited similar hypertrophic responses, following synergistic ablation of the plantaris 

muscle compared to wild-type mice. Suggesting that IGF-I is not required for load-induced 
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hypertrophy. By contrast, Heron-Milhavet et al. (31)** also using the MKR mouse showed 

IGF-I to be fundamental in myoblast fusion, with primary MKR myoblasts showing impaired 

differentiation, versus wild-type controls, following damage (31). Interestingly, MKR-derived 

muscle cells had equivalent levels of myogenin (a myogenic regulatory factor fundamental to 

lineage and hypertrophy) positive cells to wild type. However, the ability of the myogenin 

positive cells to fuse into multinucleated myotubes was significantly lower in MKR vs. wild-

type-derived myoblasts. Indeed, a significantly greater proportion of fusion-hampered MKR-

derived myoblasts compared with control cells (31), suggests that IGF-I does play an 

influential role in differentiation and hypertrophy but that other factors enable hyperplasia. 

Although data from Spangenburg et al. (30) appear to contradict the observations by Heron-

Milhavet et al. (31), different modes of hypertrophy were being examined. Spangenburg et 

al. (30) performed no cellular or histological analyses, thus questioning whether the increase 

in muscle mass observed in MKR mice (similar to controls) corresponded to a true 

hypertrophic vs. hyperplastic responses.  

 

A Biphasic Role for IGF-I? 

Utilising an in-vitro model of hypertrophy and atrophy (comparing younger phenotypes of 

clonally derived daughter C2C12 vs. parental C2 cells), we have recently published that IGF-I is 

important for the greater differentiation potential of C2C12 vs. C2 cells (17)**. Importantly, 

IGF-I expression was similar at 48 hrs following initiation of differentiation in both cell 

types, despite greater morphological differentiation in the C2C12 cells. By 72 hrs, however, 

IGF-I expression was significantly greater in C2C12 vs. C2 cells as were morphological and 

biochemical differentiation. These data indicate a potential biphasic role for IGF in 

underpinning the temporal complexity of differentiating myoblasts. Despite similar levels of 

IGF-I expression at 48 hrs, reductions in myoD and myogenin were evident in the C2 vs. 

C2C12 cells and this may underpin the reduced potential for differentiation of these cells. 

Finally, an inverse expression pattern of IGF binding protein-2 (IGFBP2) was evident in the 
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two cell types. The role for IGFBP2 warrants further investigation as it may be crucial in 

modulating IGF-induced differentiation especially with age (17)**. 

 

 

 

Other Potential Hypertrophic Mechanisms  

A recent study, using a single fibre approach, suggested that extracellular matrix and 

fibroblasts are fundamental for muscle hypertrophy, enabling increases in hepatocyte growth 

factor (HGF) expression. HGF binds to the c-met receptor on the cell membrane of skeletal 

muscle, thus enabling satellite cell activation (32). Importantly, however, high levels of HGF 

are not only associated with satellite cell activation, but also the up-regulation of myostatin 

(discussed below) mRNA, the product of which leads to satellite cell quiescence. These data 

suggest a fine regulatory role for HGF, distinct from IGF/mTOR signalling, in hypertrophy 

vs. self-renewal of skeletal muscle cells (33)*. Nitric oxide (NO) is also reportedly increased 

following mechanical stretch and leads to the up-regulation of matrix metalloproteinase 

activity, enabling matrix remodelling required to support hypertrophy (32). Indeed, 

overexpression of MMP-9 in C2C12 cell clones (C2M9) improves their migration in-vitro and 

their engraftment in-vivo, both of which are required for hypertrophy and regeneration 

(34)*. β-catenin/c-Myc-signaling, important in ribosomal biogenesis, also increases 

following mechanical overload (load on the muscles, which leads to failure), with 

inactivation of β-catenin completely preventing hypertrophy in response to mechanical 

overload in mice (35). Indeed, hypertrophy induced in C2C12 myoblasts using both IGF-IEa 

and MGF increased nuclear β-catenin in-vitro (36) implicating a role for this molecule in 

potentially linking hypertrophy following IGF signalling and/or following a mechanical 

stimulus. 
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MicroRNAs at the Cutting Edge 

The class of approximately 22 nucleotide noncoding RNAs (microRNAs) that regulate gene 

expression at the post-transcriptional level may play fundamental roles in skeletal muscle 

hypertrophy. Recently, both miR-1 and miR-206 have been implicated in skeletal muscle cell 

differentiation. Overexpression in C2C12 myoblasts reduced proliferation and induced 

differentiation in-vitro (37)*. These miRNAs also function to control among other 

regulators, Pax7, which is required for appropriate satellite cell survival, proliferation, and 

differentiation. The role of miRNAs in a myoblast model of mechanical load requires further 

investigation. 

 

Summary: Myoblast Models of Hypertrophy 

Overall, the convergence of mechanical, endocrine, autocrine and pancrine signals results in 

activation of PI3K, Akt, mTOR leading to protein synthesis and hypertrophy via proliferation 

and differentiation of myoblasts, as well as corresponding ribosomal biogenesis through β-

catenin/c-Myc-signaling. However, the relative contribution of each parameter, especially 

following mechanical load remains to be determined and has implications for therapeutic 

interventions aimed at improving hypertrophy during disease, ageing and following exercise. 

Finally, the importance of the implementation of 3-D myoblast models to study the 

integration of skeletal myoblasts with the ECM  in-vitro, and to apply to situations of 

mechanical load/overload or stretch in-vivo are important for future developments in the 

field.  
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Muscle Atrophy: The Problem 

Skeletal muscle atrophy occurs when proteolysis overwhelms protein synthesis. Increased 

protein degradation may occur as a consequence of many factors, including changes in 

anabolic hormones e.g. IGF-I, GH, testosterone, glucocorticoids; and increases in TGF-β, 

myostatin, and cytokines such as TNF-α, TWEAK and IL-6. Oxidative stress and reduced 

amino acid availability can also tip the balance in favour of atrophy. Muscle wasting can 

occur as a consequence of: mechanical unloading, a reduction in use/exercise (disuse 

atrophy), chronic catabolic disease (cachexia) and ageing (sarcopenia). Even though 

resistance exercise may slow the atrophy process, many patients are too old, ill or simply 

unable (frail or obese) to exercise. Furthermore, resistance exercise has to be continually 

undertaken to be of long-term benefit, meaning high cost of skilled trainers and high drop-

out due to its demanding physical nature. It is therefore important to also develop 

pharmalogical therapies to treat muscle atrophy. 

 

Myostatin and Atrophy 

It is beyond the scope of this review to discuss all factors that contribute to muscle atrophy 

(for excellent current reviews see (7, 38, 39)). However, recent in-vitro myoblast research 

has focussed on myostatin (growth differentiation factor- 8/GDF-8). Myostatin is a member 

of the Transforming Growth Factor-Beta (TGF-β) family of proteins and a negative regulator 

of skeletal muscle growth. Pioneering work by McPherron and collegues (40, 41) using knock 

out technologies, demonstrated the important inhibitory role of myostatin in skeletal muscle 

of mice and also reported that the ‘double muscling’ phenotype in Belgian Blue and 

Piedmontese cattle occurred as a result of mutations in the myostatin gene (41). As a 

consequence, this inhibitory growth factor has received a lot of attention as a potential 

therapeutic target to combat muscle wasting. Myostatin−/− mice that are crossed with 

follistatin transgenic mice display even larger muscle phenotypes as a result of blocking 

other inhibitory TGF-β family members such as GDF-11 and activins (42). However, the first 

human trial using low dose anti-myostatin antibodies in muscular dystrophy patients did not 
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enable hypertrophy (43). However, this is a complex disease, where the underlying disorder 

is due to a lack of dystrophin rather than an increase in myostatin and it may not be the best 

model (44). 

 

Myostatin Signalling 

As a consequence of these data, mouse and rat myoblasts have been utilised to investigate 

the molecular mechanisms of myostatin in muscle. Myostatin reportedly blocks 

differentiation of myoblasts into myotubes (45) by reducing myoD (46), myogenin and 

protein synthetic pathways via Akt in C2C12 myotubes (47) and via Akt/TORC1/p70S6K in 

human skeletal myoblasts (48)**. Myostatin signals via the type IIb activin receptor that 

enables interactions with activin receptor-like-kinase 4 (ALK4) or ALK5 (both type I 

receptors- see Figure 1) (49). As a consequence of the association of these 

myostatin/receptor complexes, phosphorylation of transcription factors Smad2 and Smad3 

occurs followed by their translocation to the nucleus (50) where they alter gene 

transcription. Trendelenburg et al. (48)**, demonstrated that follistatin (myostatin 

inhibitor) and type I ALK receptor inhibitors increased both the size and number of human 

skeletal myoblasts in culture and, in the presence of exogenous myostatin were able to 

restore differentiation capacity. Furthermore, siRNAs for Smad 2 or 3 reduced the effect of 

myostatin on differentiation, with both in combination eliciting an additive effect. 

Interestingly, there was a 50% reduction in phosphorylated Akt and p70S6K in the presence 

of myostatin in differentiating myoblasts and exogenous IGF-I could rescue this effect. 

However, IGF-I did not change Smad2/3 reporter activity indicating that IGF-I did not 

oppose myostatin actions via Smad, but via Akt and the induction of protein synthesis via 

p70S6K. Overall, therefore the IGF-I/Akt/protein synthesis signalling seems dominant over 

the myostatin/Smad inhibition. Conversely however, Smad 2 or 3 siRNAs restored Akt 

activation in the presence of myostatin, suggesting Smad2/3 do regulate Akt function but 

distinctly to IGF-I (48)**.   
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A recent study by Satori et al. (51)** published simultaneously with that of Trendelenburg et 

al. (48)** showed that activation of the Smad 2 and 3 pathway using electroporation to 

introduce genes encoding active forms of ALK4 or 5 and TGF-β itself, induced myofibre 

atrophy. This effect could be reversed using small hairpin RNAs (shRNAs) blocking Smad2 

and Smad3. Importantly, constitutive overexpression of Akt prevented the muscle fibre 

atrophy induced by Smad2/3 activation (electroporation for ALK4 or 5 mentioned above), 

further co-borating the in-vitro role of Akt in reducing the impact of myostatin.  

 

Myostatin: Protein Synthesis or Protein Degradation? 

Some controversy remains over whether myostatin functions via traditional expression of 

“atrogenes” that promote protein degradation via E3 ubiquitin ligases such as MuRF1 and 

MAFbx. Early work strongly suggested that myostatin increased levels of FOXO1 that in turn 

up-regulated MAFbx (47) that leads to protein degradation of cytoskeletal proteins such as 

desmin and titin. Similarly in C2C12 myoblasts the addition of myostatin increased MAFbx, 

but not MuRF1. Data were confirmed in murine models where myostatin increased MAFbx 

but not MuRF1 expression (51)**. By contrast, the study by Trendelenburg et al. (48)** 

reported a decrease in both MuRF1 and MAFbx mRNA. However, Welle (52) reviewed that 

neither publication included a direct measure of proteolysis,  however, that the vast majority 

of evidence suggests that changes in protein synthesis rather than degradation are key. 

Although compelling in-vitro/in-vivo signalling evidence suggests reduced protein synthesis, 

unresolved studies regarding the protein degradation remain.  Indeed, very recent findings 

suggesting that the in-vivo murine or in-vitro myoblast knockdown of MAFbx, using 

shRNAs, supresses myostatin expression and muscle atrophy (53)**, suggesting a feed-

forward loop whereby increased MAFbx influences the local production and hence action of 

myostatin.  
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Myostatin and Premature Ageing? 

Although myostain inhibitor studies have shown some success in reducing wasting in 

rodents (54, 55), myostatin inhibitors in human studies should be approached with care 

when considering regeneration with age. McFarlane et al. (56) showed that blocking 

myostatin, causes high Pax7 expression resulting in increased self-renewal of  C2C12 

myoblasts followed by quiescence. However, they also reported that over expressing Pax7 in 

C2C12 cells conferred increased self-renewal but reduced myogenic proliferation and 

differentiation. Therefore, blocking myostatin in adults may be advantageous in the short-

term; however, high expression of Pax7 would influence self-renewal and differentiation and 

potentially affect subsequent regeneration in later life. This may further compound ageing 

where myostatin levels are already higher than in younger individuals (57). Indeed, 

myostatin knock out animals, although displaying larger muscle mass, are not proportionally 

stronger (58), this too would be detrimental, i.e. increased weight, but not strength to lift in 

older people.  

 

Conclusion 

Myoblast models have paved the way for understanding the convergence of key mechanisms 

involved in hypertrophy and atrophy of skeletal muscle; some of the most pertinent recent 

findings have been discussed in this review. However, future development of myoblast 

models must incorporate engineering strategies to make the models more reflective of the in-

vivo situation and evolve the current 3-D models already available (8)**(9). In this way, cell-

based models in a dish can be utilised to address key in-vitro questions, which can then be 

focussed to address more challenging in-vivo questions. 
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Figure Legend 

Figure 1. The regulation of protein synthesis and muscle hypertrophy vs. protein degradation and muscle atrophy.  
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