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Abstract: Path planning is an essential tool for smart cargo ships that navigate in coastal 

waters, inland waters or other crowded waters. These ships require expert and intelligent 

systems to plan safe paths in order to avoid collision with both static and dynamic obstacles. 

This research proposes a novel path planning approach based on the anisotropic fast marching 

(FM) method to specifically assist with safe operations in complex marine navigation 

environments. A repulsive force field is specially produced to describe the safe area distribution 

surrounding obstacles based on the knowledge of human. In addition, a joint potential field is 

created to evaluate the travel cost and a gradient descent method is used to search for 

appropriate paths from the start point to the end point. Meanwhile, the approach can be used to 

constantly optimize the paths with the help of the expert knowledge in collision avoidance. 

Particularly, the approach is validated and evaluated through simulations. The obtained results 

show that it is capable of providing a reasonable and smooth path in a crowded waters. 

Moreover, the ability of this approach exhibits a significant contribution to the development of 

expert and intelligent systems in autonomous collision avoidance. 
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1 Introduction 

In recent decades, Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles 

(UAVs) and Unmanned Surface Vessels (USVs) have been well developed and researched. 

With the maturing of technologies, the rapid development of UGVs, UAVs and USVs has 

inspired many researchers to explore unmanned or smart cargo ships. In addition, the reshaping 

of the shipping industry also contributes to the development of smart cargo ships, especially 

with the aim of reducing crew costs and human errors. Such a drive can be further revealed 

from recent maritime market needs. First, the Baltic Dry Bulk Index (BDI), which is the 

economic indicator of the shipping industry, has been hovering at a low level for years. 

Shipping enterprises are required to reduce costs by cutting down crews. In the meantime, 

authoritative maritime accident investigations elaborate that about 80% of marine accidents are 

caused by human failures (Spahn, Dorp, & Merrick, 1998; Antão & Soares, 2008; Celik & 

Cebi, 2009; Chen, Yan, Huang, Yang, & Wang, 2018). Lastly, the energy saving and emission 

reduction of ships have become a realistic requirement of the shipping industry. According to 

a number of reports published by relevant authorities, it has been claimed that the success in 

developing and utilising autonomous navigation can effectively improve the operating 

efficiency of a cargo ship, and reduce carbon emissions (Rolls-Royce, 2016). 

The intelligence in autonomous navigation of USVs, including path planning and obstacle 

avoidance has been comprehensively studied, which has promoted the wide application of 

USVs in many fields such as surveying and mapping, military investigation, search and rescue, 

and hydrogeological investigation. However, the intelligence of USVs is difficult to be applied 

in common cargo ships. This is because, in general, the USVs are small, fast and easy to be 

manoeuvred. For instance, it is always easy to make a sharp turn for collision avoidance for 

USVs even in a complex navigation environment. In contrast, ships, especially cargo ships, are 

usually larger, slower and more difficult to manoeuvre. Therefore, a collision is often 

inescapable when the obstacle is in a position that is too close for a cargo ship to make evasive 

actions. In order to achieve the autonomous navigation of a cargo ship, Yan et al. (2017) put 

forward an intelligent system, namely Navigation Brain System (NBS), which is composed of 

three subsystems: a perception module, a cognizing module and a decision and manipulation 

module. Particularly, path planning for obstacle avoidance is an integral part of this system. It 

should be noted that an appropriate path should always be planned in advance not only for 

static obstacles but for dynamic ones. This is because when avoiding a static obstacle, it 

becomes relevantly easy to retain a safe distance to obstacles, which is the principle of collision 

avoidance. However, when a ship is encountering with a dynamic obstacle, especially with 

another ship, different risk levels exist due to different encountering situations with such a 

dynamic obstacle. In general, a conservative distance is recommended in collision avoidance, 

and many traditional methods, including Artificial Potential Field (APF), A*, Rapidly-
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exploring Random Tree (RRT) and RRT*, have been introduced in such an application, but 

none of them is able to fully satisfy the dynamic characteristics of a cargo ship and the 

navigational conventions. For example, by taking into account the modelling of the motion of 

a moving ship, APF generally describes the ship (dynamic obstacle) as a gradient eclipse, of 

which the major axis is consistent with the course of the corresponding ship (Ma, Chen, Huang, 

Yan, & Wang, 2016). However, the risk levels of the convergence situations with its bow and 

stern are different for another ship. Also, the local optima problem remains to be complicated 

and tricky in APF, which will cause the ship to fail to find any evasive route. 

Hence, the motivation of this paper is to develop a reliable path planning approach for 

smart cargo ships in autonomous intelligence based on their manoeuvring characteristics and 

the human knowledge of the safe area surrounding obstacles. In this research, a novel 

anisotropic FM-based path planning approach is proposed. First, based on the anisotropic FM 

method, a potential field model of an oval shape is proposed to describe the motion of moving 

ships or other dynamic obstacles. With the help of such a shape, the speed and course, or the 

dynamic characteristics of the ship can be fully described. Then, the isotropic FM method is 

used to generate a consuming time field by taking into account the start point as a zero value. 

Subsequently, a satisfied, reasonable and smooth path can always be found by applying the 

gradient descent method. The prominent advantages of this approach include that a potential 

field model is specially designed for both static and dynamic obstacles, and the path generated 

is relatively safe and short. Moreover, the smooth path can be directly used in ship path tracking. 

The approach can work well on the condition that the exact information of the involved ships 

or obstacles including the position, course, size and shape can be obtained and the clearances 

between any two ships or obstacles on either side of the path are large enough for navigation. 

Otherwise, the reliability of the approach may decrease. 

The presented approach is specially designed for safe navigation of cargo ships. At the 

beginning, the approach with different parameters can be integrated into an advisory system, 

which provides several paths for selection. Based on the operators’ decisions, the parameters 

can be optimized gradually. Furthermore, the proposed approach with optimized parameters 

can be developed into an autonomous system, which automatically controls a ship together 

with an automatic pilot. The main contributions of this paper include the formulation of a novel 

potential field model to describe the safe area surrounding obstacles based on the knowledge 

of human and the development of a novel and feasible path planning approach for smart cargo 

ships to navigate in crowded waters. To sum up, the proposed path planning approach is based 

on the collision risk knowledge of human. Meanwhile, the approach can be used constantly 

optimize the path for navigation with the help of the expert knowledge. It is of great 

significance to promote the development of expert and intelligent systems in autonomous 

collision avoidance. 
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The rest of this paper is organised as follows. In Section 2, a variety of path planning 

methods are reviewed and analysed. Section 3 describes the fundamentals of the FM method 

and the details of an anisotropic FM-based path planning approach. The proposed approach is 

verified by simulations in Section 4. Section 5 concludes this paper and discusses future 

research. 

2 Literature review 

Path planning algorithms are one of critical aspects in robotic related research and have 

attracted substantial interests in its application in USVs. In the early stages, the evolutionary 

algorithm (EA) was frequently adopted to search for feasible navigation routes. Smierzchalski 

(1999) firstly employed the genetic algorithm to generate an appropriate route for a marine 

vessel and developed a solution for collision avoidance with moving ships by adopting ship 

domain areas. A similar approach was also used by Tam and Bucknall (2010), with a specific 

emphasis on the fact that the practical approach should comprise generating practical evasive 

manoeuvres adhering to International Regulations for Preventing Collisions at Sea 

(COLREGs). Tsou and Hsueh (2010) implemented an ant colony-based algorithm to design a 

decision-making system which can assist vessels in navigating in the maritime environment 

and also obey the COLREGs. However, the major drawbacks of the EA are the inconsistency 

and incompleteness of the searching result, which hinders its adoption for practical applications 

as the properties of the algorithm cannot be guaranteed (Tam & Bucknall, 2013; Kala, 2012). 

The probabilistic path planning algorithm is also a commonly-used method, including 

Probabilistic Roadmaps (Kavraki, Svestka, Latombe, & Overmars, 1994) and RRT (Jaillet, 

Cortes, & Simeon, 2008; Hidalgo-Paniagua, Bandera, Ruiz-de-Quintanilla, & Bandera, 2018). 

The basic idea of probabilistic path planning is to randomly select non-collision candidate 

points in a space, then connect them to generate a path. Therefore, the reproducibility and 

repeatability of these algorithms cannot be guaranteed. In addition to this, the paths generated 

by these algorithms do not take safe distances to obstacles into consideration. 

Hence, in recent years, to meet the needs of path planning, some other algorithms have 

also been applied, such as the grid-based and artificial potential field (APF) methods. Xue et 

al. (2011) improved the APF to provide a safe collision free path in congested environments 

where multiple vessels are required to avoid. Abu-Tair and Naeem (2012) designed a 

COLREGs compliant path planner by using a modified A* algorithm. A path trimmer is 

integrated into the A* algorithm to smooth the generated path, making it more feasible for the 

vehicle to follow. Tam and Bucknall (2013) proposed a cooperative path planning algorithm 

for USVs with the major objective of increasing the practicability and the completeness of the 

corresponding algorithm. In particular, improved consistency and completeness can be further 

achieved in a way that the same path can always be generated when the corresponding 

environment does not change. However, all of these studies consider the path planning problem 

from a conventional perspective, i.e. generating the path with the shortest distance while 
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avoiding obstacles. The performance of such methods does not fully satisfy the requirements 

of cargo ships, which needs to take the dynamic characteristics of ships into consideration.  

Over the past few years, the FM method-based path planning algorithm has become a 

novel approach to generate smooth and persuasive paths for robots. The FM method searches 

for a path based on the potential field. However, different from the conventional way of 

combining all fields to generate the joint potential field, the FM method produces the potential 

field by simulating the propagation of an electromagnetic wave. Hence, the generated potential 

field has no local minima problems, which is the main drawback of the APF (Garrido, Moreno, 

& Blanco, 2008; Montiel, Orozco-Rosas, & Sepúlveda, 2015). 

The FM method generates a path with the help of a gradient descent method over the joint 

potential field from the destination to the start point, and one of the most appealing features of 

the generated path is the guaranteed smoothness that the generated potential field does not have 

any discontinuity (Garrido, Moreno, & Lima, 2011). No further path smooth processing is 

required, since the path can be easily executed by a proper controller in practical applications 

(Alvarez, Gómez, Garrido, & Moreno, 2015). In the meantime, the FM method is generally 

with fast computation, which further promotes its utilisation in real-time navigation on practical 

platforms of autonomous underwater vehicles (Petres, Pailhas, Patron, Petillot, Evans, & Lane, 

2008), unmanned aerial vehicles (Garrido, Malfaz, & Blanco, 2013) and USVs applications 

(Liu, Bucknall, & Zhang, 2017). 

However, when facing the problem of collision avoidance on dynamic obstacles, the 

isotropic FM-based path planning approach uses the same method in the scenario of avoiding 

static obstacles. In this occasion, such a method does not take the type, velocity and direction 

of the dynamic obstacles into consideration. In fact, such factors are essential in the path 

planning when avoiding a collision. Hence, some researchers integrate the isotropic FM-based 

path planning approach with other models to deal with dynamic obstacles (Liu & Bucknall, 

2015). However, this makes the approach complex and difficult to be applied. 

In order to address the above problem, this research improves the isotropic FM-based path 

planning approach and proposes a novel path planning approach based upon anisotropic FM-

based path planning approach. The main feature of the algorithm is that when planning a path 

in a complex navigation environment, the proposed approach is capable of optimising its 

coefficients by considering the characteristics of the corresponding obstacles and subsequently 

generating an appropriate and practical path for smart ships. 

3 A proposed approach 

This research proposes a novel path planning approach based on the anisotropic FM 

method. In order to elaborate the approach in detail, this section describes how it is applied for 

path planning. First, a problem of the minimum cost path is introduced and analysed. 

Continuous forms of the minimum cumulative with isotropic and anisotropic cost functions are 

provided subsequently. Then, in order to allow these cost functions to be solved in practice, the 
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functions are discretized and the corresponding numerical solutions are introduced in detail. 

Eventually, an anisotropic FM-based path planning approach is provided for smart ships to 

avoid obstacles in dynamic environments. 

3.1 The minimum cost path problem 

The minimum cost path problem is the priority in many fields including robotics, 

geometric optics, geographic information system and wire routing. Hence, it has been 

extensively researched for many years.  

One form of the minimum cost path problem is to find the shortest path on a finite graph 

where every arc between any two adjacent vertices is assigned with a weight. The shortest path 

between the start point and the end point in the finite graph means the lowest cumulative cost 

among all legal paths. In graph theory literatures, many shortest path planning algorithms based 

on graph search and dynamic programming are proposed. The best-known one is proposed by 

Dijkstra (1959). 

A more general form of the minimum cost path problem, which is put forward by 

Papadimitriou (Mitchell & Papadimitriou, 1991) and Mitchell (2000), is based on the 

propagation of light. The optimal path between two arbitrary points is found according to the 

well-known law of optics refraction. By comparison, this solution of minimum cost path 

problem is more suitable for smart ships, since it is always capable of generating smooth paths. 

Such a solution can be elaborated briefly as follows. 

When facing the problem of path planning for smart ships, the cost function  is defined 

by the Cartesian sampled data in 2D image space. The objective is to find a path 

  2:[0, )P s R   that minimizes the cumulative travel cost from a start point sx  to random 

end point ex  in
2R . If the cost   is only a function of the location x  in the image domain, the 

cost function is called isotropic. The minimum cumulative cost at ex  is defined as:  

     
0

min
s e

L

e
P

U P s ds 
x x

x . (1) 

where s is the path length from start point to point  P s . 
s e

Px x
is the set of all paths linking sx

and ex . The path distance is L and the start and end points are  0s Px and  e P Lx  

respectively. 

If the cost function  is not only a function of the location  P s  but also dependent on 

the local direction  'P s  of travel, it can be called anisotropic in this occasion. The minimum 

cumulative cost is then defined as: 

       '

0
min ,

s e

L

e
P

U P s P s ds 
x x

x . (2) 

Solving Eq. (2) is considerably more challenging than solving Eq. (1). In a continuous 

space, the solutions for the minimum cumulative cost are given by the Hamilton-Jacobi (HJ) 
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equation (Tsitsiklis, 1995) in principle. However, it is generally impossible to find a perfect 

solution for the HJ equation. In practice, numerical solutions are consistent with the viscosity 

solution, which is a compromised but feasible solution to the HJ equation (Crandall & Lions, 

1983). 

3.2 The isotropic fast marching (FM) method  

It is very difficult to solve Eq. (1) directly. Usually, Eq. (1) will be transformed into 

another form (Cohen & Deschamps, 2001). During the researching process, some researchers 

found that the minimum cumulative cost U, also called the arrival time, satisfies the Eikonal 

equation as follows: 

 U   . (3) 

In applications, the discrete version of Eq. (3) needs algorithms to reduce the 

computational cost. Hence, Rouy and Tourin (Rouy & Tourin, 1992) gave a discrete solution 

of Eq. (3) on a 2D Cartesian grid map (Fig. 1) as shown below, making a small step forward. 

    
2 2 2max , ,0 max , ,0C A C A C B C B Cu u u u u u u u          . (4) 

where the arrival time at point A+, A-, B+, B- and C are denoted as Au  , Au  , Bu  , Bu   and Cu  

respectively. C  is the cost function at point C. 

Tsitsiklis (1995) and Adalsteinsson and Sethian (1995) proposed a solution independently 

to solve Eq. (4) by using a single-pass algorithm, which was named as “fast marching method” 

by Adalsteinsson and Sethian (1995). This algorithm calculates the value at every grid point in 

accordance with a strategy that is similar to the Dijkstra algorithm (Dijkstra, 1959). This 

strategy is based on the fact that the arrival time U at any point only depends on the 

neighbouring points. In fact, such neighbouring points generally have smaller values. Thus, it 

is only necessary to calculate the one sided differences when solving Eq. (4). 

Taking the quadrant 1 as an example (Fig. 1), the solution of Eq. (4) is given by: 

 
  

 

221
2

2

min ,

A B C A B C A C B

C

A B C

u u u u       if  u u  and  u u
u =

u u +                                  otherwise





     

 


     





 (5) 

The same result can also be derived from the optimal trajectory problem rooted in the 

control theory as shown by Tsitsiklis (1995). In Fig. 1, it can be assumed that the minimal path 

starts from point D to point C. The arrival time at point C is denoted as Cu and calculated based 

on Au   and Bu  . If the arrival time at point D is denoted as Du , the arrival time Cu is the sum 

of Du  and the traveling time of wave from D to C. It can also be a reasonable hypothesis that 

the wave is planar. As a result, a linear interpolation can be used to find an approximated 

solution for Du , defined as: 

  1D A Bu tu t u    . (6) 
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In this occasion, the arrival time Cu can be given by the following equation: 

 
 

  
0,1

min 1C A B C
t

u tu t u   


    . (7) 

where t is given in Fig. 1, satisfying the conditions 0 < t < 1.   is the length of vector CD 

and equal to  
22 1t t  . The remaining three quadrants are handled in the same way and 

the arrival time value assigned to Cu is the smallest value of the four. 

Eq. (7) can be solved either iteratively or analytically. The analytical solution can be 

deduced as below and it is exactly the same as Eq. (5). 

 

 

  

22

1,2
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22
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0,
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1
,

2 2

1
2 .

2

C
A B C

A B

C A B

C A B C A B

du t
u u

dt t t

u u
t

u u

u u u u u







 

 

 

   


   

 


  

 

     

 

The isotropic FM method uses Eq. (5) to update the minimum cumulative cost at each 

point. Compared with the Dijkstra algorithm (Dijkstra, 1959) the FM method is capable of 

providing a more smooth and continuous path. The isotropic FM method is summarized in 

Algorithm 1 and illustrated in Fig. 2. During the initialisation process, all the grid points are 

assigned with an infinity arrival time and grouped into three different categories, i.e. the Far, 

Accepted and Trial point sets. The operation is similar to the Dijkstra algorithm (Dijkstra, 1959). 

Each category is explained as follows:  

 The u-values of points in the Accepted set will not be changed.  

 The u-values of points in the Trial have been computed already but may be changed in 

future calculations. 

 The u-values of points in the Far set have never been computed. 

In each iteration when executing the algorithm, the point x with the smallest u-value will 

be taken out from the Trial set and added into the Accepted set. Such a process is the classic 

find-min operation in computer science, which is considerably time-consuming when the Trial 

set is very large. For better performance, the Fibonacci heap data structure is suggested to store 

the Trial set. The time complexity of find-min operation is Ο(1) (Cormen, Leiserson, Rivest, 

& Stein, 2009). For each neighbouring point a of x, its u-values will be updated by using Eq. 

(5). At the same time, neighbouring points located in the Far point set will be moved into the 

Trial point set. The algorithm will end when the Trial point set is empty. 
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Fig. 1 The arrival time of point C is to be computed from one of the four quadrants around it. (b) The 

situations in four quadrants. 
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3.3 3.32.5 2 2.5

2.5 2.5

2 2
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1.7 1 1.7

1 0 1

1.7 1 1.7
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Trial
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xs

2.2 2.21.3 0.5 1.3
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2.1 2.1

1.7 1 1.7

1 0 1

1.1 0.3 1.1

3.3 2.5 2 2.5 3.3 Far

Trial

Accepted

xs

 
 (e) (f) 

Fig. 2 The updating process when using the FM method. (a), (c) and (e) are based on the isotropic FM 

method while (b), (d) and (f) are based on the anisotropic FM method. 

Algorithm 1 Isotropic _FM Algorithm 

Require: configuration space (M), start points (xs) 

1:    Initialise all the grid points in M with the cost of infinity 

2:    U(xs) ← 0 

3:    Far ← All grid points in M 

4:    Accepted ← All grid points with known cost 

5:    for each neighbouring point a of Accepted point do 

6:        Trial ← a∪Trial 

7:        U(a) ← Update by using Eq. (5) 

8:    end for 

9:    while Trial is not empty do 

10:      x ← point with the lowest cost in Trial 

11:      Remove x from Trial 

12:      Accepted ← x∪Accepted 

13:      for each neighbouring point a of x do 

14:          U'(a) ← Update by using Eq. (5) 

15:          if U'(a)< U(a) then 

16:              U(a) ← U'(a) 

17:          end if 

18:          if a ∈Far then 

19:              Remove a from Far 

20:              Trial ← a∪Trial 

21:          end if 

22:      end for 

23:  end while 
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24:  return U 

 

Algorithm 2 Anisotropic _FM Algorithm 

Require: configuration space (M), start points (xs), start points course (θ) 

1:    Initialise all the grid points in M with the cost of infinity 

2:    U(xs) ← 0 

3:    Far ← All grid points in M 

4:    Accepted ← All grid points with known cost 

5:    for each neighbouring point a of Accepted point p do 

6:        Trial ← a∪Trial 

7:        θ(a) ←θ(p) 

8:        α0 ←θ(a) 

9:        U(a) ← Update by using Eq. (15) with course α0 

10:  end for 

11:  while Trial is not empty do 

12:      x ← point with the lowest cost in Trial 

13:      Remove x from Trial 

14:      Accepted ← x∪Accepted 

15:      for each neighbouring point a of x do 

16:          α0 ←θ(x) 

17:          U'(a) ← Update by using Eq. (15) with course α0 

18:          if U'(a)< U(a) then 

19:              U(a) ← U'(a) 

20:              θ(a) ←α0 

21:          end if 

22:          if a ∈Far then 

23:              Remove a from Far 

24:              Trial ← a∪Trial 

25:          end if 

26:      end for 

27:  end while 

28:  return U 

3.3 The anisotropic fast marching (FM) method 

When computing the minimum cumulative cost, the isotropic FM method only uses the 

location information as input data. It means that the cost function  is a fixed value at each 

point. As shown in Eq. (7), C  is the cost value at point C. However, when facing a dynamic 
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obstacle, a fixed value for each point may not be appropriate. By comparison, the anisotropic 

FM method summarized in Algorithm 2 takes both the location and the local orientation into 

consideration when executing the marching process (Lin, 2003). Hence, it is more practical in 

this occasion. The cost functions of the anisotropic FM method, shown as Eq. (8), are defined 

to be related to both location and orientation. 

 
 

       
0,1

min 1C A B C
t

u tu t u t t   


    . (8) 

where  t  is equal to the vector CD  as shown in Fig. 1 and   C t   is called cost function, 

which is the reciprocal of the speed function. When addressing a particular problem, the speed 

function needs a specific design. 

At any point in the grid map, the cost function depended on location and orientation can 

be described by a cost/speed profile. In the isotropic case, the speed profile is circular, which 

is independent of the direction. In the anisotropic case, we chose an oval shape speed profile, 

which consists of two semi ellipses shown in Fig. 3. Considering the polar coordinate system, 

the speed profile can be described as (r, α), where α is the local orientation and the r indicates 

the value of speed. The shape of the speed profile can be adjusted by the three axes of the two 

semi ellipses. When the three axes are equal to each other, the speed profile becomes the 

isotropic circular profile. Thus, the anisotropic FM is more general than the isotropic FM. The 

oval shape speed profile has the following form: 

 
 

      

 
2 2

2 2

cos sin
1

1 sgn cos / 2 1 sgn cos / 2 c
a b

r r

rr r

 

 
 

  
. (9) 

where  

  
1        cos 0

sgn cos =
1,     cos 0








 

，
. (10) 

α is the intersection angle between  t  and n . The oval shape is aligned with the given 

direction n  as shown in Fig. 3. 

  0 0cos ,sinn   . (11) 

The vector  t  in the four quadrants shown in Fig. 1 is:  

            = , = ,1 ,   ,1 ,   , 1 ,   , 1x yt t t t t t t t t         . (12) 

Since the cost and the speed are reciprocal, the cost function   C t   is given as: 
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The general minimization problem Eq. (8) in this special case is converted into 
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where Cu , Au   and Bu   indicate the cumulative travel cost from start point to point C, A+ and 

B+ respectively as shown in Fig. 1. 
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Fig. 3  (a) An anisotropic oval shape speed profile aligned with the coordinate axis. (b) An oval shape speed 

profile along the preferred direction n . 

Different expressions can be obtained in different quadrants by substituting Eq. (12) into 

Eq. (15). 

Solving Eq. (15) may also be very difficult. Therefore, an iterative method is proposed to 

find the minimum value of the cost function. When analysing the cost function, it can be found 

that its second-order derivative is constantly greater than zero, i.e. its first-order derivative is a 

monotonic function. If the first-order derivative of cost function has a zero value, the bisection 
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method can be used to obtain it efficiently. Then the minimum value of cost function can 

directly be obtained. The bisection method is described in Algorithm 3 (Wikipedia, 2018). 

Algorithm 3 Get_ minimum Algorithm 

Input: lower limit (a), upper limit (b), precision (e) 

Output: minimum value ( Cu ) 

1:     abserr a b   

2:    while (err>e) do 

3:        if (    ' '* 0C Cu a u b  ) 

4:            break 

5:        end if 

6:        if (     ' '* / 2 0C Cu a u a b  ) 

7:              / 2a a b   

8:        else 

9:              / 2b a b   

10:      end if 

11:       abserr a b   

12:  end while 

13:  return     min ,C C Cu u a u b  

3.4 The anisotropic FM-based path planning approach 

There are several steps in the FM based path planning approach. The major step is to 

generate an arrival time map which has a zero value at the start point. Taking the arrival time 

map as input, the gradient descent method will then be employed to obtain an appropriate and 

smooth path. Considering that it is difficult to make a turn for a cargo ship and a smooth path 

is easily tracked, the FM based path planning approach is suitable for ships. Paths with different 

costs can be generated when using different arrival time maps. Therefore, the key to finding an 

appropriate path is to find a satisfied arrival time map. Usually, a map of obstacles, generated 

by target extraction and recognition approaches (Ma, Wu, Yan, Chu, & Zhang, 2015; Ma, Chen, 

Yan, Chu, & Wang, 2016; Ma, Chen, Yan, Chu, & Wang, 2017), will be used as the input for 

the path generator and within such a map, the static and dynamic obstacles can be added using 

a given and unified scale. 

Many researchers have studied the FM method and have developed several FM-based 

path planning approaches. Some of them aim to generate a path by directly using the isotropic 

FM method. However, it turns out that the generated path is always too close to obstacles in 

the subsequent applications (Liu & Bucknall, 2016). Such a drawback is especially impractical 

for smart ships or USVs, since close range areas around obstacles (islands and coastlines) are 
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usually shallow waters, which are not suitable for navigation. In addition, the danger of being 

too close to a moving obstacle would also require the planned path to retain a certain distance 

away from the obstacle. 

To tackle this problem, a novel FM based approach named the fast marching square (FMS) 

was proposed (Gómez, Lumbier, Garrido, & Moreno, 2013). The basic concept behind the 

FMS is to apply the isotropic FM method twice but with different purposes. As presented in 

Algorithm 4, the FMS first generates a safety potential map (Ms), (also called repulsive force 

field) by applying the isotropic FM to propagate interfaces from all the points in the obstacle 

area. Based on the Ms, the isotropic FM is executed again from the start point to generate a 

joint potential field namely the arrival time map mentioned earlier. A gradient descent method 

is used to produce the final path based on the joint potential field. By using the same previous 

planning space, the path generated by the FMS is farther away from the obstacles with 

increased safety. 

However, the FMS also has its defects. In the process of path generation, the map of safe 

area surrounding obstacles is generated by using the isotropic FM method. The planned path is 

advisable for static obstacles and can meet the requirements for static obstacle avoidance. 

However, when it occurs to dynamic obstacle avoidance, especially for collision avoidance 

with ships, the path planned by FMS could not be feasible as they may not be complaint with 

the dynamic characteristics of ships. Because ships have the feature of incapable of 

decelerating or accelerating within a short time or making a sharp turning (Liu, Hekkenberg, 

Quadvlieg, Hopman, & Zhao, 2017), it would become risky for an autonomous ship navigating 

close to the bow of a ship. Correspondingly, the nearby area in the surrounding ship's stern 

direction is relatively safe. Also, in practical ship collision avoidance manoeuvres, the give-

way vessels normally choose the path passing the stern of the moving ship with a short safe 

distance. In contrast, when it is required to choose the path passing the bow of the moving ship, 

a long safe distance is preferred. Therefore, a circular or an eclipse safety area around a 

dynamic obstacle is not reasonable in the dynamic obstacle avoidance. 

To satisfy the requirement of dynamic obstacle avoidance, this paper proposes a novel 

path planning approach based on the anisotropic FM with significant difference from FMS. 

When generating the safety potential map, the anisotropic FM-based path planning approach 

chooses the anisotropic FM instead of the isotropic FM. Considering the characteristics of the 

safe area around the ship, the oval shape velocity field is used in the anisotropic FM. In this 

way, when the ship needs to pass the bow of a dynamic obstacle, a path will be generated with 

a long safe distance to ensure safety. When it is necessary to pass the stern of dynamic obstacle, 

a path with a relatively short safe distance will be given to balance the cost of safety and 

distance. Moreover, the proposed approach is capable of describing static obstacles. If the 

coefficients of anisotropic FM (or the proposed approach) are the same, the anisotropic FM 

becomes an isotropic FM. In practical path planning, different anisotropic coefficients can be 
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set under different considerations, such as the obstacle ship’s type and speed. The anisotropic 

FM-based path planning Algorithm is described in Algorithm 5. 

Algorithm 4 Isotropic _FM based path planning Algorithm 

Require: planning space (M), start point (xs), end point (xe) 

1:    for the ith point a in obstacle with course θ do 

2:        obstaclePoints ←a∪obstaclePoints 

3:    end for 

4:    Ms ←Isotropic _FM(M, obstaclePoints) 

5:    U ←Isotropic _FM(Ms, xs) 

6:    path ←gradientDecent(U, xs, xe) 

7:    return path 

 

 

Algorithm 5 Anisotropic _FM based path planning Algorithm 

Require: planning space (M), start point (xs), end point (xe) 

1:    for the ith point a in obstacle with course θ do 

2:        obstaclePoints(i) ←a 

3:        obstaclePointsCourse(i) ←θ 

4:    end for 

5:    Ms ←Anisotropic _FM(M, obstaclePoints, obstaclePointsCourse) 

6:    U ←Isotropic _FM(Ms, xs) 

7:    path ←gradientDecent(U, xs, xe) 

8:    return path 

4 A case study 

In order to validate the performance of the anisotropic FM-based path planning approach, 

this section builds up a simulation environment to test the approach. Different coefficients of 

the proposed approach, such as safe distance limitation, oval shape speed profile, crossing 

angle and number of dynamic obstacles, are assigned for generating the collision free path. By 

comparing the results of path planning, the relationship between various coefficients and 

specific environmental factors is established, which can provide a guidance on selecting 

suitable coefficients for specified practical task. 

4.1 Test cases with a single dynamic obstacle 

In order to determine the effect of safe distance limitation on path planning, this research 

sets up different safe distance limitation α values when performing path planning in the same 

simulation environment. The three coefficients of an oval shape speed profile are set up with a 
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= 1, b = 0.25, c = 0.25. The course of the obstacle ship is equal to 90°. The path planning result 

is shown in Fig. 4. 

 

 (a) α = 0.25 (b) α = 0.5 

 

 (c) α = 0.75 (d) α = 5, 10, …, ∞ 

Fig. 4 The planning path with different safe distance limit α value, where a = 1, b = 0.25, c = 0.25 and course 

= 90°. 

In order to determine the effect of the oval shape speed profile on path planning, this 

research sets up a series of simulation experiments with different oval shape speed profile 

parameters a, b and c. The other coefficients are also given. The safe distance limit α is set as 

0.25 and the course of the obstacle ship as 90°. The path planning result is shown in Fig. 5. 
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 (a) a = 1, b = 1, c = 1 (b) a = 1, b = 0.5, c = 0.5 

 

 (c) a = 1, b = 0.5, c = 0.25 (d) a = 1, b = 0.25, c = 0.25 

Fig. 5 The planning path with different oval shape speed profile, where α = 0.25 and course = 90°. 

For further analysis, the path lengths and the minimum distances from the path to the 

obstacle ship shown in Fig. 4 and Fig. 5 are given in Table 1. 

Table 1 The path lengths and the minimum distances from path to the obstacle ship 

 Len Dmin 

F
ig

. 
4
 

(a) 182.10 12.47 

(b) 187.14 24.34 

(c) 195.27 36.18 

(d) 284.43 89.92 

F
ig

. 
5
 

(a) 205.63 46.73 

(b) 187.66 25.15 

(c) 185.80 22.01 

(d) 182.10 12.47 

This study also sets up a series of simulation experiments with different courses of moving 

ships to evaluate the effect of course on path planning. The other coefficients are set as follow: 

a = 1, b = 0.25, c = 0.25 and α = 0.25. The path planning result is shown in Fig. 6. 
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In these tests, it can be seen that a reasonable path can always be generated. When 

encountering a dynamic obstacle ship, paths can always be generated to keep far away from 

the bow of the dynamic obstacle ship, meanwhile trying to get pass the stern of the obstacle 

ship. 

 

 (a) course = 0° (b) course = 60° 

 

 (c) course = 120° (d) course = 180° 
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 (e) course = 240° (f) course = 300° 

Fig. 6 The performance of the anisotropic FM-based path planning approach with different crossing angles, 

where a = 1, b = 0.25, c = 0.25 and α = 0.25. 

4.2 Test cases with multiple dynamic obstacles 

To ensure that the proposed path planning approach can be applied to the real environment, 

it is necessary to test the performance of the approach in more complex environments. This 

section builds a set of complex dynamic environments, where two dynamic ships and four 

dynamic ships are involved. The coefficients of simulation environments are set as follow: a = 

1, b = 0.25, c = 0.25 and α = 0.25. The path planning result is reasonable as shown in Fig. 7. 

 

 (a) course = 90° (b) course = 270° 

 

 (c) course = 90°, 270° (d) course = 90°, 270° 

Fig. 7 The path planning result in complex environments with multiple dynamic obstacles. 

In addition, another test is carried out to validate the dynamic performance of the proposed 

path planning approach. In this test, four dynamic ships are involved and the coefficients of 

simulation environments are same as the previous test. Besides, speeds of all the obstacle ships 

are set to 2.0 pixels per time step and the speed of the own ship was equal to 3.5 pixels per time 

step. During the simulation, the courses of obstacle ship 1 and obstacle ship 2 are 270 degrees 
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and the courses of obstacle ship 3 and obstacle ship 4 are 90 degrees, respectively. At every 

time step, the path is updated once and the course of the own ship is changed along the path. 

The movement sequences of collision avoidance are shown in Fig. 8. 

 

 (a) Time step = 1 (b) Time step = 10 

 

 (c) Time step = 17 (d) Time step = 30 

 

 (e) Time step = 45 (f) Time step = 60 
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Fig. 8 The movement sequences of simulation with multiple dynamic obstacles. 

4.3 Comparisons with other path planning approaches 

For comparisons, the research uses three algorithms, A*, RRT, and RRT* to plan a path 

in the same environment. The path planning results are shown in Fig. 9. In the simulation, 

different scenarios have been taken into consideration. As shown in Fig. 9a and Fig. 9b, a 

simple scenario is used to test these algorithms. Meanwhile, the results in a more complex 

scenario are shown in Fig. 9c and Fig. 9d. It should be noted that all four algorithms use the 

same information of the environment. It assumes that the full information including that of 

obstacle ships is available. In addition, the anisotropic FM method uses the same coefficients 

used previously in Section 4.2. As shown in Fig. 9, there are four kinds of paths. The black, 

red, blue and green paths are generated by anisotropic FM, A*, RRT and RRT*, respectively.  

 

 (a) Crossing with one ship (b) Head-on with one ship 

 

 (c) Crossing with two ships (d) Crossing with multiple ships 

Fig. 9 The path planning result with different algorithms (The black, red, blue and green paths are generated 

by anisotropic FM, A*, RRT and RRT*, respectively.) 

In order to quantitatively analyse the performance of the above four path planning 

approaches, the path length Len in pixel is calculated. At the same time, the minimum distance 



23 

 

Dbowi and Dsterni from the path to the bow and stern of obstacle ship i in pixel are calculated. 

The results are given in Table 2. 

Table 2 The performance indexes of paths generated by the four approaches 

 Len DBow1 DStern1 DBow2 DStern2 DBow3 DStern3 DBow4 DStern4 

F
ig

. 
9

a 

FM 190.05 31.96 13.10 \ \ \ \ \ \ 

A* 210.00 0.00 15.00 \ \ \ \ \ \ 

RRT 240.44 6.08 23.87 \ \ \ \ \ \ 

RRT* 184.29 20.22 2.65 \ \ \ \ \ \ 

F
ig

. 
9

b
 FM 184.39 12.41 12.27 \ \ \ \ \ \ 

A* 190.00 0.00 0.00 \ \ \ \ \ \ 

RRT 231.41 7.18 16.15 \ \ \ \ \ \ 

RRT* 182.34 1.11 2.57 \ \ \ \ \ \ 

F
ig

. 
9

c 

FM 180.26 26.39 6.45 13.55 42.94 \ \ \ \ 

A* 180.00 30.00 10.00 10.00 40.00 \ \ \ \ 

RRT 273.02 40.33 25.36 8.76 1.27 \ \ \ \ 

RRT* 181.72 34.41 14.84 5.72 34.17 \ \ \ \ 

F
ig

. 
9

d
 FM 190.84 26.39 6.45 13.54 42.86 15.66 45.15 25.31 4.37 

A* 230.00 5.39 2.00 18.00 48.00 2.00 32.00 39.00 18.00 

RRT 268.85 1.42 14.77 32.75 52.96 11.52 37.86 16.44 4.63 

RRT* 188.67 21.55 1.63 18.01 44.28 19.21 48.37 20.20 1.83 

4.4 Result analysis 

This section analyses the influences of different coefficients in the anisotropic FM-based 

path planning approach. One purpose of the test is to elaborate the relationships between the 

coefficients and factors in path planning. It is possible to figure out how to adjust the 

coefficients when facing different path planning requirements in practice. Then, the path 

planning results in a complex environment are fully studied. The performances of anisotropic 

FM, A*, RRT and RRT* are finally analysed. 

As shown in Fig. 4, it can be found that the safe distance limitation α takes a significant 

influence on planning path. Different α values generate a significant effect on the total length 

as well as the closest distance to the obstacle ship. When α is set to be 0.25 (Fig. 4a), a very 

short total length of the planned path is generated and such a generated path is very close to the 

obstacle ship, with 182.10 pixels and 12.47 pixels respectively. Along with the increase of α 

(Fig. 4b, Fig. 4c and Fig. 4d), the total length and the closest distance to the obstacle ship of 

the path generated by the proposed approach increase at the same time as shown in Table 1. 

When α is large enough, the two features of the generated path discussed previously will reach 

the maximum value and remain unchanged in the same situation. It is worth noting that a longer 

length path means a higher distance cost. A farther distance to the obstacle ship means a safer 

route. In practice, the cost and safety need to be weighed or trade-off when planning a path. If 

a lower cost is preferred, a smaller α can be considered appropriate. On the contrary, if a farther 
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distance to the corresponding obstacle ship is needed (e.g. when avoiding like a ship containing 

hazard chemicals), a larger α is desirable than a smaller one in this occasion. 

The coefficients of the oval shape speed profile have a great influence on the safety area 

map as shown in Fig. 5. When setting these coefficients a, b and c to different values, the shape 

of the safety area around the obstacle gradually changes from a circular shape (Fig. 5a) to an 

oval shape (Fig. 5b, Fig. 5c and Fig. 5d). In practice, an obstacle ship with different speeds will 

be surrounded by different shapes of safe area. A large area in front of a dynamic obstacle and 

a small area behind can be considered dangerous. It is obvious that when the speed of the 

dynamic obstacle increases, the area around the bow will become larger and the area behind 

the stern will decrease at the same time. From Fig. 5, it can be found that, when facing dynamic 

obstacles, the ratio between a and b can be increased in accordance with the speed of obstacle. 

When the speed of the obstacle is zero, the radio of the two coefficients will be equal to one, 

and the anisotropic FM method becomes the isotropic FM. The last coefficient c of the oval 

shape speed profile also has influence on the shape of the safe area. Such a coefficient 

determines both sides of safe area around a ship. In other words, the coefficient c determines 

the lateral distance between the own ship and obstacles in path planning. It is of great 

significance in collision avoidance in inland rivers when two waterways are very close to each 

other. 

Fig. 6 presents a series of simulation experiments with different courses of dynamic 

obstacles in different crossing scenarios. The courses of every two adjacent simulation 

experiments are changing at the interval of 60 degrees. From Fig. 6, it can be found that the 

orientation of the safe area is changed by following the course. The anisotropic FM-based path 

planning approach performs well with different crossing scenarios. No matter what crossing 

angle is implemented, the proposed approach is capable of planning a safe and satisfied path. 

However, from this set of simulation experiments, it also can be found that there are some 

shortcomings in the proposed path planning approach. When the course of the obstacle ship is 

equal to 0, 90, 180 or 360 degrees, the shape of the safe area is normal. However, when the 

course of the obstacle ship is equal to other degrees, the shape of the safe area will be slightly 

deformed. The cause of such a phenomenon is that the anisotropic FM-based approach 

produces approximate solution when calculating the arrival time to reduce computation as 

discussed in Section 3.3 and in practice such a shape deformation of the safe area is acceptable 

(Lin, 2003). 

Section 4.2 provides the simulation experiment results of path planning (Fig. 7) using the 

anisotropic FM-based path planning approach under multiple dynamic obstacles environments. 

In the simulation, the objective is to generate a short and safe path crossing the waterways, in 

which ships pass through. In Fig. 7a and Fig. 7b, only one waterway and two ships are 

considered. The start and end points are on both sides of the waterway. The algorithm should 

be able to plan the path starting from one side of the waterway to cross the waterway and reach 
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the other side. The paths generated by the approach are shown in Fig. 7a and Fig. 7b. With a 

long distance away from the bow of the ship and a short distance away from the stern, the path 

performs well in the balance or trade-off between the safety and efficiency. When the 

simulation becomes more complex, which includes two waterways and four obstacle ships, 

shown in Fig. 7c and Fig. 7d, the path planning approach also performs well. A safe, reasonable 

and smooth path can always be produced using the proposed approach. 

The movement sequences of simulation result with multiple dynamic obstacles are shown 

in Fig. 8. At the very beginning, an initial path is first generated by the proposed approach and 

shown in Fig. 8(a) as the black line. The planned path passes through the bow of obstacle ship 

1 and 4. At time step 10 (Fig. 8(b)), the own ship re-plans its path to avoid the obstacle ship 4. 

It is obvious that the own ship prepares to turn right for keeping away from the bow of obstacle 

ship 4. At time step 17, the own ship safely passes through the bow of obstacle ship 4 as shown 

in Fig. 8(c). As the own ship proceeds, obstacle ship 1 and obstacle ship 2 start to present a 

collision threat to the own ship and a new path is planned to avoid the collision. Fig. 8(d)-(f) 

show how the own ship avoids the obstacle ship 1 and 2 and reaches the end point. The 

simulation result shows that the proposed approach is capable of safely navigating a ship in a 

practical situation by adjusting the path at every time step.  

In Section 4.3, four algorithms, anisotropic FM, A*, RRT and RRT* are used to plan a 

path in different scenarios. As shown in Fig. 9 and Table 2, all four algorithms are capable of 

planning a path without any collision with obstacles. However, it should also be noted that not 

all paths are suitable for ships to track. For example, the path generated by the A* algorithm is 

composed of several straight lines and several sharp turns of 90 degrees, which may not be 

suitable for cargo ships, even if the A* algorithm can sometimes produce a short path as shown 

in Fig. 9(c). The path produced by the RRT algorithm is not smooth and it is much longer than 

paths produced by other algorithms making it not an economical option for ships. Compared 

with the two algorithms, the path planned by RRT* is shorter and smoother. However, all these 

paths are too close to obstacles, which might be dangerous for cargo ships. Different from these 

three algorithms, the path produced by the proposed approach in this research is short and safe, 

and easy to be tracked by a cargo ship. 

5 Conclusions  

In this paper, a novel path planning approach for smart cargo ships operating in a complex 

navigation environment, named as anisotropic FM-based approach, has been proposed. 

Different from the isotropic FM-based path planning approach, the proposed approach uses the 

anisotropic FM method to obtain a safe map instead of the isotropic FM algorithm. As 

discussed previously, circular safe areas will be produced for static obstacles and oval shape 

safe areas will be generated for dynamic obstacles according to their speeds. In other words, 

different coefficients can be set for the approach to generate reasonably safe areas surrounding 

both dynamic and static obstacles with any shape according to demands using the same model. 
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Then, a joint potential field is created to evaluate the travel cost and a reasonable and smooth 

path can be produced. Although the proposed method shows better performance than A*, RRT 

and RRT* algorithms, it is also valuable to be compared with other obstacle avoidance methods, 

including closed-form solutions, for a more complete picture of the advantages and 

disadvantages of this method. These need to be further studied in the future. The main weakness 

of the approach is that navigation rules are not considered in the current model. 

To improve the approach, a novel decision-making algorithm should be invented in the 

future to determine the value of safe distance limit (α). As described in Section 4, α is 

influenced by a number of different factors. For example, when a smart ship is sailing in 

crowded waters, the value of α will be smaller than the one in normal conditions. By 

comparison, a larger α might be more appropriate when it occurs to a large ship sailing in the 

ocean. Research to determine the safe distance limit is of great significance to make use of the 

human knowledge of avoiding collision with the encounter obstacles. In practical applications, 

different coefficients should be given in response to different obstacles (e.g. reefs, container 

ships and chemical carriers). Based on sufficient samples collected by radar or Automatic 

Identification System (AIS), such coefficients should be obtained by machine learning 

algorithms. 

The second improvement is to optimize the coefficients of oval shape speed profiles in 

practical environmental constraints. As discussed previously, an oval shape speed profile is 

specifically designed for dynamic obstacles when producing a safe area map. The key 

distinction between dynamic and static obstacles is the speed. Hence, it is necessary to consider 

the moving speed of obstacles when determining such coefficients in practical. If an obstacle 

moves with a high speed, a long safe distance will be required when passing through the bow 

of such an obstacle. On the contrary, a short safe distance will be required when passing through 

the stern of the obstacle. Such research can improve the knowledge of inherent relation between 

the speed and surrounding safe area of obstacles. In practice, the historical data from ferries 

can be used to train the coefficients of the oval shape speed profile.  

The third improvement is to take the navigation rules into consideration. In particular, 

evasive actions should be generated by adhering to the maritime navigation regulations 

(COLREGs). Therefore, a reasoning model is required for the agent to obey the COLREGs. 

This kind of research contributes to build rule-based intelligent systems. It is important to note 

that ships navigating in different waters may need to obey specific rules. 
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