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Abstract  

Novel psychoactive substances have been increasing over the last decade with more 

than 450 derivatives available on the market. The issue with novel psychoactive 

substances is much more complicated than their effects/side effects. Hence, these 

substances often contain mixtures of pharmacologically active/inactive impurities 

which interfere with their effects. The accelerated development of these substances 

(at a rate above once a week) urges the need to develop rapid and mobile techniques 

for their characterisation. Handheld Raman spectroscopy offers the advantage of 

being quick, non-destructive and specific to chemical entities within the measured 

analyte. One issue with the Raman signatures of analytes is associated with several 

variables including the laser wavelength that could be shorter (such as 532 - 785 nm) 

or longer wavelength lasers (such as 833 – 1064 nm). Using a longer wavelength laser 

decreases the fluorescence of the sample, but decreases peak resolution and thus 

limits the sensitivity of detection. Up-to-our knowledge the use of dual laser 

wavelength for identifying novel psychoactive substances has not been explored. 

Therefore, this work aims to evaluate the use of dual laser handheld Raman 

spectroscopy for identifying novel psychoactive substances. 

 

Introduction 

 

The last decade has witnessed the emergence of novel psychoactive substances 

(NPS) as analogues of classical drugs of abuse (such as amphetamine and cocaine) 

in order to escape the regulations surrounding them [1]. The first NPS derivative on 

the market was mephedrone (4-methyl methcathinone) which appeared on the UK 
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market in 2007 [2]. Since its emergence, mephedrone (meow meow, MKat) became 

popular due to its strong stimulant and subjective effects. It has been used at variety 

of scenes including festivals, parties, nightclubs and users’ homes. Mephedrone was 

then followed by the appearance of numerous cathinone derivatives such as 

naphyrone, methylone, butylone, methylenedioxypyrovalerone, etc… Though 

cathinones offered strong stimulant and subjective effects, many side effects were 

associated with their use. However, the aforementioned side effects could not be 

attributed to the particular cathinones, the impurities present in them or the 

combination of drugs taken. Cathinones were banned in 2010 [3], and the ban was 

the first world’s generic ban that was based on chemical structure [4]. Subsequently, 

new classes emerged such as aminoindans (amphetamine analogues) and 

phencyclidines (ketamine analogues). Phencyclidines were subsequently banned in 

2012 [5], and newer derivatives of diverse classes started to appear on the market. 

Until 2015, the European Monitoring Centre for Drug and Drug Addiction-Early 

Warning system reported more than 450 NPS derivatives on the market [6].   

 

The popularity of these products were attributed to several reasons: (1) they are often 

advertised as ‘legal highs’ and thus perceived as safe by the users, (2) they are 

cheaper than classical drugs of abuse, (3) they are easily purchased via the Internet 

and (4) they have the ability to produce unique subjective effects [1]. 

 

However, the issues associated with NPS products are much more complicated than 

their effects/side effects. Hence, these substances often contain impurities which can 

interfere with their effectiveness and toxicities. Impurities present could be 

pharmacologically active or inactive substances [7]. Reported impurities found in NPS 

products ranged between two and up to six impurities. Reported pharmacological 

active ingredients were: alternative NPS derivatives (for example 2-aminoindan 

instead of 5-iodo-2-aminoindan), benzocaine, caffeine, lidocaine, procaine and 

paracetamol. Furthermore, celluloses, sugars and talc were stated as pharmacological 

inactive ingredients present in NPS products [1]. 

 

The rapid and continuous emergence of these products, alongside their complex 

matrices, stimulates the need for developing rapid and mobile technologies for their 

identification. In this respect, the ideal technique would be rapid, non-destructive and 
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able to identify multiple ingredients present in a single product. Handheld 

spectroscopic techniques offer the advantage of being mobile, quick and inexpensive 

for identifying various drug products including NPS. More specifically, handheld 

Raman provides distinct signatures of the measured NPS products which 

corresponded to specific chemical constituents within a sample [8]. However, the 

Raman activity of the analyte measured is highly dependent on the interaction of the 

analyte with the laser and the laser wavelength used. Hence, fluorescence decreases 

with the use of longer wavelength lasers such as 1064 nm [8]. On the contrary, 

sensitivity is better with shorter wavelength lasers such as 785 nm. Consequently, an 

ideal approach to Raman measurements would incorporate the use of two lasers in 

order to achieve sensitive detection with low/no fluorescence [8]. Up-to-date, the use 

of dual laser Raman for identifying NPS products has not been explored. 

 

Therefore, this work aims to evaluate the application of dual laser handheld Raman 

for identifying drugs/impurities present in NPS products. 

 

Methods 

A total of 10 NPS products were purchased from four Internet websites (Table 1). 

Pharmacologically active and inactive constituents that are commonly present in NPS 

products were purchased from chemical suppliers.  

 

Table 1. Details of the NPS products used in this study. 

N Product name Label Claim Substance(s) 
detected 

P1 2AI 2-aminoindan 2-aminoindan 
MCC 

P2 2AI 2-aminoindan 2-aminoindan 
MCC 

P3 3-FMP 3-fluorophenmetrazine 2-aminoindan 
benzocaine, 
paracetamol 

P4 4-FMPH 4-
fluoromethylphenidate 

MCC 

P5 China White methiopropamine benzocaine 

P6 Diclazepam diclazepam diclazepam 
MCC 

P7 Doves butylone butylone 
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P8 Flubromazepam flubromazepam flubromazepam 
MCC 

P9 Phenazepam phenazepam phenazepam 
MCC 

P10 Poke  methiopropamine methiopropamine 

N: Product number, MCC: Microcrystalline cellulose 

 

Three handheld Raman instruments were used in this study. Two of these instruments 

had mono-laser wavelengths that were 785 and 1064 nm respectively. The third 

instrument was equipped with a dual laser wavelength. All instruments used a laser 

output < 100 mW and were equipped with cooled charge-coupled device detector. 

 

Samples were measured ‘as received’ without any treatment. Tablets were placed in 

direct contact with the sample holder and both sides of each tablet were measured. In 

addition, powders were measured via transparent glass vials. In all cases, three 

spectra were collected per sample such that each spectrum was the sum of one scan. 

For data analysis, spectra were exported into Matlab 2014b, where spectral 

comparison and principal component analysis (PCA) were applied. 

 

Results and Discussion 

 

The majority of the NPS products investigated in this study did not match their label 

claim. Hence, these products showed the presence of variable impurities which 

included both pharmacological active and inactive ingredients (Table 1). This 

confirmed the literature regarding the impurities present in NPS which could results in 

unpredicted health consequences [1]. The presence of inactive ingredients was not 

an issue in tablets-NPS products (P6, P8 and P9) which were expected to have 

excipients as part of their formulation. Hence, both P6 (diclazepam) and P8 

(flubromazepam) contained MCC as an excipient. However, the presence of additional 

ingredients was not expected in powder-NPS products (P1-P5) which contained 

mixtures of pharmacologically active and inactive substances. For instance, P1 and 

P2 (2AI) were advertised as 100% pure; yet, both products contained a mixture 2-

aminoindan and MCC (inactive substances). Additional products did not match their 

‘label claim’ and contained pharmacological active ingredients. For instance, China 
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White was advertised as an NPS product containing methiopropamine, yet it showed 

to contain benzocaine as pharmacological active ingredient. Only one NPS product 

matched its label claim and was Doves which showed Raman spectra corresponding 

to butylone (its pharmacological active ingredient). 

 

As the aforementioned NPS products were in mixture-form, the choice of handheld 

Raman spectroscopy was ideal for their characterisation. Hence, handheld Raman 

spectroscopy gave signatures of the analyte(s) of interest [8, 9]. These signatures 

corresponded to the Raman active species that were present at detectable 

concentration(s). The choice of the Raman laser wavelength in this case was critical 

[9]. Using a handheld Raman equipped with a 785 nm wavelength-laser the Raman 

signature of the NPS product corresponded mainly to the pharmacological active 

substances present in the product (such as diclazepam in P6 (diclazepam), and 

benzocaine in P5 (China White)) provided they were at a detectable concentration 

(Assi et al. 2013). Conversely, pharmacological inactive ingredients (such as MCC) 

fluoresced and masked the overall signal of the NPS product when measured using a 

785 nm wavelength laser (Figure 1).  

 

 

Figure 1 Raw Raman spectra of standards of (a) 2-aminoindan hydrochloride 
measured using a handheld Raman equipped with 785 nm wavelength laser, (b) 
2-aminoindan hydrochloride measured using a handheld Raman equipped with 
dual wavelength laser, (c) benzocaine measured using a handheld Raman 
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equipped with 785 nm wavelength laser, (d) benzocaine measured using a 
handheld Raman equipped with dual wavelength laser, (e) MCC measured using 
a handheld Raman equipped with 785 nm wavelength laser and (f) MCC 
measured using a handheld Raman equipped with a dual wavelength laser.  
 

 

The movement towards a longer wavelength lasers (such as 1064 nm) overcame the 

fluorescence issue but decreased the peak resolution; thus, interfering with the 

sensitivity of detection (Assi et al. 2013). Therefore, the choice of a dual laser Raman 

instrument within the near infrared range (NIR) range would offer the best of both 

lasers; i.e. increased peak identification and sensitivity. Figure 1 shows the raw Raman 

spectra of pure 2-aminoindan hydrochloride, benzocaine and MCC measured with a 

monolaser (785 nm wavelength) and a dual laser wavelength Raman (700 – 1100 

nm). For all three materials, the range of the spectra acquired by both lasers had a 

wider range up to 3200 cm-1. The latter range between 2800 and 3200 cm-1 

corresponded to the CH and OH peaks. The aforementioned range could easily 

distinguish between the three raw materials (i.e. 2-aminoindan, benzocaine and 

MCC). This was an advantage over the monolaser Raman (both 785 nm and 1064 

nm) which showed Raman signatures up to 2000 cm-1 only. Up to 2000 cm-1, both the 

mono- and dual-lasers showed similar peak scattering. However, the peak resolution 

and the overall spectral quality was better using the dual laser. This impacted the 

classification of the NPS products which hugely corresponded to their main 

constituents (Figure 2).  

 

 

Figure 2 PCA score plots of the NPS products labelled as 4-FMPH (magenta), 
diclazepam (cyan), flubromazepam (green), 2-aminoindan (red and blue) and 3-

b a 
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FMP (black) measured using handheld Raman instruments equipped with (a) 
1064-nm laser wavelength and (b) dual laser wavelength.  
 

 

Hence, the dual laser wavelength Raman showed better discrimination (as four 

individual clusters) than the monolaser wavelength Raman (three clusters). The 

clusters obtained using the dual laser wavelength Raman incorporated: cluster 1 (P4: 

4-FMPH), cluster 2 (P1 and P2: 2AI), cluster 3 (P3: 3-FMP) and cluster 4 (P6: 

diclazepam and P8: flubromazepam). Nevertheless, using the monolaser wavelength 

Raman only three clusters were obtained and corresponded to cluster 1 (4-FMPH), 

cluster 2 (P6: diclazepam and P8: flubromazepam) and cluster three (P1 and P2: 2AI, 

and P3: 3-FMP). P6 (Diclazepam) and P8 (flubromazepam) were both tablets and 

shared a common inactive ingredient which was MCC. The clustering between P1, P2 

(2AI) and P3 (3-FMP) was not expected as P3 (3-FMP) contained three additional 

ingredients to the 2-aminoindan hydrochloride, which were: MCC, benzocaine and 

paracetamol. Thus, the overlap encountered between the three aforementioned 

products could be attributed to the poor spectral resolution and overlapping features 

of the spectra acquired using the handheld Raman equipped with 1064 nm wavelength 

laser. 

 

Consequently, the choice of the dual laser Raman was ideal for acquiring NPS 

products’ spectra which contained multiple impurities (both pharmacologically active 

and inactive). The NPS products’ signatures matched constituents present in these 

products which included both active and inactive constituents. For instance, China 

White consisted of pure benzocaine and showed Raman spectrum corresponding to 

benzocaine (Figure 3 a and b). Additionally, diclazepam and flubromazepam showed 

corresponding peaks to MCC (main inactive ingredient) in addition to their main 

pharmacological active ingredients peaks (Figure 3 c and d).  
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Figure 3 Raw Raman spectra of (a) China white NPS product, (b) standard 
benzocaine, (c) diclazepam and flubromazepam NPS products and (d) standard 
MCC measured using a handheld Raman spectrometer equipped with a dual 
wavelength laser. 
 

Also, P3 (3-FMP) showed spectral features corresponding to 2-aminoindan, 

benzocaine and paracetamol (Figure 4 c, e and f). Additionally, 2-aminoindan products 

showed peaks corresponding to both 2-aminoindan hydrochloride and MCC (Figure 4 

a, b, and d). 
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Figure 4 Raw Raman spectra of (a) 2-aminoidan NPS product, (b) standard 2-
aminoindan, (c) 3-FMP NPS products and (d) standard MCC, (e) standard 
benzocaine and (f) standard paracetamol measured using a handheld Raman 
spectrometer equipped with a dual wavelength laser. 
 

Conclusion 

Although NPS products are advertised as highly pure, they often contain a mixture of 

pharmacologically active/inactive ingredients which result in unpredicted 

consequences. The use of handheld Raman spectroscopy equipped with dual laser 

wavelength showed to be accurate in identifying both pharmacologically 

active/inactive ingredients present in NPS products. Future work involves the 

quantification of multiple ingredients present in NPS products using handheld Raman 

equipped with dual laser wavelength. 

 

References 

 

[1] Assi, S., Fergus, S., Stair, J., Corazza, O., & Schifano, F. (2011). Emergence and 

identification of new products of designer drug products from the Internet. European 

Pharmaceutical Review. 



 10 

[2] Kelly, J. P. (2011). Cathinone derivatives: a review of their chemistry, pharmacology and 

toxicology. Drug Testing and Analysis, 3(7‐ 8), 439-453. 

[3] ACMD, Consideration of Cathinones. Advisory Council on the Misuse of Drugs 2010. 

[4] Morris, K. (2010). UK places generic ban on mephedrone drug family. The Lancet, 

375(9723), 1333-1334. 

[5] ACMD. Methoxetamine Report. London: Home Office; 2012. 

[6] European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Statistical 

Bulletin. European Monitoring Centre for Drugs and Drug Addiction. Available at: 

http://www.emcdda.europa.eu/data/stats2015/ (accessed 20th September 2016). 

[7] Giné, C. V., Espinosa, I. F., & Vilamala, M. V. (2014). New psychoactive 

substances as adulterants of controlled drugs. A worrying phenomenon?. Drug testing 

and analysis, 6(7-8), 819-824. 

[8] Assi, S. (2013). Identification of Legal Highs using Handheld Raman Spectroscopy. 

American Pharmaceutical Review. 

[9] Assi, S. (2013). Raw material identification using dual laser handheld Raman 

spectroscopy. European Pharmaceutical Review, 18(5), 25-31. 

 

 

http://www.emcdda.europa.eu/data/stats2015/

