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ABSTRACT 
Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence 
of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to 
yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in the kidney. More recently TCE and its major metabolite 
trichloroethanol (TCE-OH) have been shown to cause formic aciduria which can cause renal injury after chronic exposure in rats. In this study we have 
compared the renal toxicity of TCE and TCE-OH in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the 
toxicity. Male rats were given TCE (500mg/kg/day) or TCE-OH at (100mg/kg/day) for 12 weeks and the extent of renal injury measured at several time 
points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also 
determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very 
mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 
1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked 
and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-
OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were 
reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal 
toxicity of TCE but do provide some support for metabolism via glutathione conjugation.  
 

INTRODUCTION 

 

Trichloroethylene (TCE) has been widely used as a cleaning and degreasing agent, a de-icing chemical for aircraft and a range of other uses. TCE has 

been examined for carcinogenicity in rodents and in some studies shown to cause a very small number of renal tubule tumours in male rats when 

exposed orally at high doses of 500 or 1000mg/kg/day for typically 2 years (see Lock and Reed, 2006 for details). Over the last 20 years there has been 

considerable debate about the relevance of the animal findings to renal cancer in humans. Several epidemiology studies on the mortality of TCE exposed 

workers and one study on mortality/morbidity did not reveal an association between exposure and renal tumours (Spirtas et al., 1991; Axelson et al., 
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1994; Anttila et al., 1995). Recent studies on occupation exposure to TCE and renal cancer have also reported no association (Kelsh et al., 2010; Hansen 

et al., 2013). Charbotel et al., (2007) examined the relationship between somatic mutation of the Von-Hippel-Landau (VHL) gene and exposure to TCE 

and found no VHL gene mutations in renal tumours from TCE exposed workers. In contrast, an increased incidence of renal tubule tumours was reported 

in a retrospective study by Henschler et al., (1995) in workers exposed to very high concentrations of TCE over a prolonged period of time. Recent 

studies have also reported an association between TCE exposure and an increased incidence of renal tubule tumours (Karami et al., 2012, Scott and 

Jinot, 2011). While Moore and coworkers (2010) have shown that workers exposed to TCE and expressing glutathione transferase T1(GSTT1) were 

more susceptible than GSTT1 nulls which they suggest is consistent with the hypothesis that metabolism by the reductive (glutathione) pathway can lead 

to renal injury. 

 

Bioactivation of TCE is believed to be responsible for the injury to the kidneys. This occurs following glutathione conjugation of TCE by glutathione S-

transferases, followed by further metabolism by enzymes of the mercapturic acid pathway to form S-1,2-(dichlorovinyl)-L-cysteine (DCVC) which 

accumulates in proximal renal tubule cells. DCVC is then cleaved by the enzyme cysteine conjugate β-lyase to produce a reactive thioketene (se Anders, 

2008). This causes marked toxicity to the proximal renal tubules in rats and mice administered DCVC (Gandolfi et al., 1981; Darnerud et al., 1988; 

Vaidya et al., 2003; Green et al., 1997). DCVC is also weakly mutagenic in bacteria, induces mitochondrial toxicity and perturbation of intracellular 

calcium homeostasis (Green and Odum, 1985; Groves et al., 1990; Stonard and Parker, 1971). DCVC can also undergo metabolism by cytochrome P450 

to form a sulphoxide, which is also nephrotoxic and mutagenic to bacteria (Lash et al., 1994; Irving et al., 2013; Irving and Elfarra, 2013). Bioactivation 

of TCE, by a mechanism currently not full understood, can perturb folate metabolism resulting in formic aciduria in rats (Green et al., 1998; Dow and 

Green, 2000; Yaqoob et al., 2013). It has been postulated that a marked and sustained excretion of formic acid, over a prolonged period of time, may 

explain the renal toxicity in long term studies after TCE exposure (Green et al., 1998). The major metabolites of TCE formed by the oxidative pathway 

of metabolism, namely trichloroethanol (TCE-OH) and trichloroacetic acid are also able to perturb formic acid excretion in rats (Dow and Green, 2000; 

Yaqoob et al., 2013). In the rat, TCE metabolism via cytochrome P450 metabolism becomes saturated at doses of 500mg/kg/day and above, allowing 
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metabolism via reductive pathways (Prout et al., 1985). Metabolism of TCE to TCE-OH is a major pathway of elimination with about 54 % of the dose 

excreted in the urine as the glucuronide conjugate, there being little if any free TCE-OH (Prout & Green, 1985).  

 

The aim of this study was to expose rats to TCE at 500mg/kg/day which has the opportunity to undergo metabolism to DCVC and TCE-OH and to TCE-

OH alone, (which cannot form DCVC) at a dose of 100mg/kg/day to see if we could determine which pathway of metabolism leads to renal injury after 

oral exposure over 12 weeks. The dose of TCE-OH was based on an estimate of the likely exposure to free TCE-OH and more importantly was a dose 

that produces the same amount of formic acid excretion to that seen with TCE alone. It should be noted that these doses are very high and many fold 

above occupational exposure to TCE 

  

MATERIALS AND METHODS 

Materials 

Trichloroethylene (TCE), reagent grade, 98%, inhibited with about 1% 1-2-epoxybutane, maleic acid disodium salt hydrate and Dowex 1X8-200 ion 
exchange resin were from Sigma Aldrich, Poole, UK. Deuterium oxide (D, 99.9%) from Cambridge Isotope Laboratories, Inc. Andover, Massachusetts, 
USA. 5-[14C] methyl-tetrahydrofolic acid, barium salt 55μCi, 1.85 M Bq from GE Healthcare, Amersham, UK. Pure corn oil, low in saturates and high 
in polyunsaturates from Tesco Supermarket, Liverpool, UK. Norell 5mm NMR tubes with round bottom and 178mm length from Glass Precision 
Engineering Scientific Limited, Leighton Buzzard, UK. All other chemicals were of the highest purity available commercially.  
 

Animal and treatment 

Male F-344 rats were from the breeding colony at the Life Science Support Unit, Liverpool John Moores University. All rats were housed in North Kent 
Plastic cages on Beta bed sawdust (Grade 5, Datesand Ltd., Manchester, UK) which was changed daily. The animal room was maintained at a constant 
temperature of 20ºC ± 2ºC and humidity of 50% ± 5% with a 12h light-dark cycle starting at 04.00h. Rats were allowed rat expanded diet (Bantin and 
Kingman, Hull, UK.), and water ad libitum. Fifteen male F-344 rats weighing 236-312g (13-14 weeks of age) were used, with 5 rats per cage.  The rats 
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were dosed daily by oral gavage for 12 weeks with either trichloroethylene (TCE; 500mg/kg/day), or trichloroethanol (TCE-OH; 100mg/kg/day) in corn 
oil at 5ml/kg body weight. Controls received corn oil alone at 5ml/kg/day. On week 11 cell proliferative responses in the kidney were evaluated via 
bromodeoxyuridine (BrdU) immunohistochemistry. Five days prior to scheduled necropsy, rats were implanted subcutaneously with osmotic pumps 
(Alzet® 2ML1, Durect Corporation, Cupertino, CA, USA); each pump contained 2 ml of 15 mg/ml BrdU solution in phosphate buffered saline at pH 7.4. 
Dosing solutions was stored in sealed glass containers, covered in aluminium foil at 4ºC, with fresh dosing solutions made each week. All animal 
procedures were performed in accordance with a license issued under the UK, Scientific Procedures Act, 1986. 
 
Urine, blood plasma and tissue collection 
 
Rats were placed in metabolic cages for the collection of urine overnight (16h) after dosing on day 1, weeks 1, 2, 5, 6, 8, 10 and 12. Urine was collected 
from 4 rats of each dosing group into a container which had 0.1ml of 10% sodium azide to prevent bacterial growth. Urine volume and pH was measured 
and a sample taken for 1H NMR analysis, the remainder being frozen -80°C for subsequent analyses. 
Twenty four hours after the last dose the rats were killed by exposure to a rising concentration of carbon dioxide. Blood (4-5ml) was collected from the 
heart by cardiac puncture into heparinised tubes. The blood was then centrifuged at 330g for 10 min at 4°C for separation of plasma. The plasma was 
carefully removed and stored frozen at -80°C for subsequent analysis. The liver and kidneys were removed, weighed and a cross section of kidney fixed 
in buffered formal saline for histological examination. The remaining liver and kidney were stored at -80°C for subsequent analysis. 
 

Measurement of metabolic changes in rat urine and plasma 
1H-NMR spectroscopy was used to measure metabolic changes in urine and plasma. Aliquots of urine (500µl) were mixed with 0.2M phosphate buffer 
pH 7.4 in D2O (250µl) containing sodium-3(trimethylsilyl) propionate-2,2,3,3-d4 (TSP; 0.5mg TSP/ml buffer) and then centrifuged at 14,000g for 10 
min at 4ºC. Aliquots of plasma (500µl) were mixed with 0.2M phosphate buffer pH 7.4 in D2O (250µl) containing maleic acid disodium salt hydrate 
(0.5mg/ml) and centrifuged at 14,000g for 10 min at 4°C.  The supernatants (600µl) were placed into a 5mm NMR tube and 1H-NMR spectra acquired 
using a Bruker 300MHz  instrument (Bruker Analytik GmbH, Germany). The standard ‘noesypr1d’ pulse sequence was utilised for data acquisition on 
urine, which efficiently suppresses the large water signal while the standard pulse sequence ‘cpmgpr1d’ was utilised for data acquisition on plasma 
samples. The Bruker software quantitates the signal intensities and spectra were baseline corrected using Mestrec software and normalised to TSP or 
maleic acid. Urinary metabolites were quantified with reference to TSP, the peak height of TSP being set at 0ppm, while plasma metabolites were 
quantified with reference to the maleic acid signal at 6ppm. The accuracy of the determination of formic acid was measured by spiked addition and 
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found to be 98%. The detection of formic acid using the 3σ method (Miller and Miller, 1993) gave an LOD of 0.004 mg/ml and using the 10σ method an 
LOQ of 0.04 mg/ml. 
 
Clinical chemistry  

Urinary glucose concentration was measured using glucose hexokinase assay reagents from Randox Laboratories Ltd, UK. Urinary protein concentration 
determined using Bio-Rad Detergent Compatible from Bio-Rad Laboratories, UK. While urine and plasma urea and creatinine assays were performed 
using Quantichrome urea assay kit, and creatinine assay kit from Bioassay Systems, Hayward, USA. 
 

Measurement of Kidney injury molecule (Kim-1) and N-acetyl-β-D-glucosaminidase (NAG) in rat urine  

 
Urinary Kim-1 protein was measured using microsphere-based Luminex xMAP technology with monoclonal antibodies raised against rat Kim-1 as 
described by Vaidya et al., (2006). Urinary NAG was measured spectrophotometrically according to the manufacturer’s protocols (Roche diagnostics, 
Basel, Switzerland).  
 

Measurement of methionine synthase activity in rat liver  

The activity of hepatic methionine synthase was determined using radiolabelled 14[C] methyl tetrahydrofolate as described by Banerjee et al., (1997). 
Radioactivity was measured using a liquid scintillation counter (Packard liquid scintillation counter, Model 2100, UK). Specific activity is reported as 
picomol of methionine formed per minute per mg protein.  
 

Histopathology 

One kidney was fixed in buffered formal saline then dehydrated through a series of alcohols and embedded in paraffin wax. Tissue sections (5µm) were 
then cut processed and stained with haematoxylin and eosin. Microscopic examination of the kidney was performed by an experienced pathologist. The 
extent of cell proliferation was evaluated with BrdU incorporation via indirect BrdU labelling assay (Wijsman et al., 1992). For the estimation of the 
proliferation index, the number of BrdU positive cells was counted and expressed as a percentage of the total number of the proximal tubule cell nuclei 
in 10 fields at 40× objective lens in a light microscope. 

http://www.sciencedirect.com/science/article/pii/S0300483X12004118#bib0155
http://www.sciencedirect.com/science/article/pii/S0300483X11005506#bib0345
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Statistical Analysis 

The data are expressed as mean ± standard error of the mean (SEM). The time course data was analysed using two way analysis of variance (ANOVA) 
with repeated measures. Factors considered were time and treatment and then any possible interaction. Multiple comparisons between treatments were 
made using Tukey’s method and analysed using SPSS version 21. End point measurements were analysed using one way ANOVA followed by Tukey’s 
correction. A corrected p-value < 0.05 was considered statistically significant. 
 

 
 
 
 
 
RESULTS  
 
The effect of TCE  and TCE-OH  on body weight, liver and kidney weight, urine volume and pH in male F-344 rats over 12 weeks 

No signs of toxicity were observed following 12 weeks daily oral administration of TCE (500mg/kg/day) or TCE-OH (100mg/kg/day) to male F344 rats 

compared to corn oil treated controls.  Neither treatment had any effect on body weight gain over the 12 week period (data not shown). In contrast, liver 

and kidney weights, expressed as % of body weight were statistically significantly increased in rats dosed with TCE compared to corn oil treated 

controls, while TCE-OH had no effect on the liver or kidney weight (Figure 1). No increase in urine volume compared to controls was observed with 

either chemical over time (data not shown). Daily dosing with corn oil reduced urinary pH by about 0.5 of a pH unit; however, treatment with either 

TCE or TCE-OH produced further acidification of the urine compared to corn oil alone (Table 1). Statistical analysis showed a significant effect of time 

(P< 0.05) with TCE being significantly different from control (P<0.05) while TCE-OH was not quite significant (P, 0.056).   

 
The urinary excretion of formic acid and methylmalonic acid in male F-344 rats following daily oral doses of TCE and TCE-OH over 12 weeks 
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The concentration of formic acid in the urine of male F-344 rats was determined using 1H-NMR spectroscopy (Figure 2). Both TCE and TCE-OH 

produced a marked and sustained increase in formic acid over the 12 week period (Table 1). The urinary concentration of formic acid was elevated 1 

week after dosing, peaked after 5 weeks and then remained elevated for the remainder of the study (Figure 3). Statistical analysis showed a significant 

effect of time and treatment (P< 0.001) with TCE (P<0.01) and TCE-OH (P<0.001) being significantly different from control. The amount of formic 

acid excreted was not statistically different between TCE and TCE-OH treatment, the only difference being observed at 6 weeks when for some 

unexplained reason the formic acid values for TCE exposed rats was rather low. Comparative analysis of the urine 1H-NMR spectra showed treatment-

related metabolic changes between the control and TCE-treated group with increases in TCE-glucuronide, creatine, taurine, with trimethylamine N-oxide 

and dimethylglycine being elevated 2-fold 10 weeks after dosing. Following 2 weeks exposure to TCE there was a small increase in the urinary 

excretion of methylmalonic acid (MMA), which from 5 weeks to the end of the study was increased in both the TCE and TCE-OH treated rats (Table 1). 

Statistical analysis showed a significant effect of treatment (P<0.001) but not time, while both TCE (P<0.001) and TCE-OH (P<0.05) where 

significantly different from control but not from one another. Difference between control and TCE-OH treated rats were less marked and were mainly 

due to TCE-glucuronide (Figure 2). These findings are in agreement with Principal Component Analysis (PCA) which showed clear separation of the 

three dose groups (data not shown).  

 
The urinary excretion of markers of renal injury: total protein, glucose, Kim-1 and NAG in male F-344 rats following daily oral doses of TCE and 

TCE-OH over 12 weeks 

Mild proteinuria was observed in rats treated with TCE one and two weeks after dosing but not after TCE-OH treatment (Table 2). Statistical analysis 

showed the proteinuria was treatment related (P<0.05) with TCE being significantly different from control (P<0.05) but not quite significant from TCE-

OH (P,0.054), while TCE-OH was not significantly different from control.  Glucosuria was only seen during the first 2 weeks of exposure to TCE and 

then returned to normal (data not shown). Kidney injury molecule 1 (Kim-1) was increased in the urine of TCE-treated rats after 1 and 5 weeks exposure 

(Table 2) however neither time nor treatment over the 12 week period was statistical significant from control for both TCE and TCE-OH. The urinary 

excretion of N-acetyl-β-D-glucosaminidase (NAG) showed a small increase 1, 5 and 10 weeks after TCE (Table 2). This showed both a time and  
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treatment dependent increase (P<0.05) with TCE being significant from control (P<0.05) indicating very mild renal tubular injury. In contrast, no 

increase in excretion of NAG was seen after TCE-OH treatment compared to control (Table 2). 

 
The effect of TCE  and TCE-OH  on plasma urea, creatinine and formic acid in male F-344 rats over 12 weeks 

Plasma urea and creatinine concentrations were determined using assay kits and no significant increase was seen with either chemical compared to the 

control (Table 3). The findings for plasma creatinine were confirmed using 1H NMR spectroscopy. Plasma formic acid concentration was determined 

using 1H-NMR spectroscopy following 12 weeks exposure to TCE and TCE-OH (Table 3) and was statistically significantly increased following 

exposure to both chemicals (Table 3). However the concentration of formic acid in plasma was statistically significant higher in the TCE-OH dosed 

group compared to TCE (Table 3).  

 
The effect of TCE and TCE-OH on the activity of hepatic methionine synthase in male F-344 rats following 12 weeks exposure 

The hepatic activity of methionine synthase was statistically significantly reduced by about 45% of the control value after 12 weeks treatment with either 

TCE or TCE-OH (Table 3). 

  

The effect of TCE and TCE-OH on renal pathology following 12 weeks exposure  

No evidence of marked renal tubule necrosis or cytomegaly was observed in either TCE or TCE-OH treated rat kidneys compared to corn oil treated 

controls There was however some indication of more basophilic staining in the renal proximal tubule cells in TCE and TCE-OH treated rats suggesting 

there may have been increased cell proliferation (Table 3). Also some mild degeneration in the proximal tubules with some hyaline inclusions was seen 

in the control and TCE-OH group but not in the TCE treated group (Table 3). Cell proliferation was monitored over the last 5 days prior to termination 

by inserting mini-pump containing BrDU. The number of BrDU positive cells was counted in approximately 400 proximal tubule nuclei, in 5 different 

regions and the labelling index expressed as a percentage (Table 3). The labelling index in renal proximal tubule cells was statistically significantly 
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lower in the TCE-OH and TCE treated rats compared to corn oil treated controls (Table 3). There was no statistical difference between TCE-OH and 

TCE-treatment. 

 

DISCUSSION 

Rats were given daily oral doses of TCE at 500mg/kg, a dose which would saturate the cytochrome P450 pathway of metabolism (Prout et al., 1985) 

such that TCE could undergo glutathione (GSH) conjugation, while another group were given TCE-OH at 100mg/kg/day which could not undergo 

conjugation with GSH. About 50% of a dose of TCE given orally to rats at 500mg/kg is excreted as the glucuronide conjugate of TCE-OH in the urine 

with very little excreted as free TCE-OH (Prout and Green, 1985). Conjugation of TCE-OH occurs primarily in the liver and hence it is difficult to know 

exactly how much free TCE-OH the kidney receives, we therefore selected a dose that produced a similar extent of formic aciduria as TCE. The current 

view is that conjugation of TCE via GSH is responsible for the renal injury, due to the formation of DCVC or its sulphoxide (Anders 2008; Green et al., 

1997; Irving et al., 2013; Lash et al., 1994). In contrast, the production of formic aciduria following TCE or TCE-OH has also been proposed as a 

possible mechanism for causing long term renal injury (Green et al., 1998; 2003). We therefore compare the toxicity of TCE and TCE-OH to the kidney 

at doses which produced a similar urinary concentration of formic aciduria.  

Renal injury following either TCE or TCE-OH 

We found that both these dosing regimens were well tolerated by the rats over 12 weeks of daily dosing. No statistical differences for treatment or time 

were seen in urine volume compared to controls given corn oil alone. However, the excretion of total protein in urine was mildly elevated after 1 day, 1, 

and 2 weeks exposure to TCE, and statistically significantly increased with treatment (Table 2). The biomarkers of kidney injury Kim-1 and NAG were 

increased after 2 and 5 weeks exposure to TCE, but only NAG was statistically significantly with time and treatment (Table 2). However, these changes 

were small, total protein and NAG activity increasing maximally 2-fold after 2 weeks exposure, while Kim-1 was increased 5-fold after 5 weeks 

exposure. Mild glucosuria was seen over the first two weeks of exposure to TCE. These findings suggest a very mild insult to the renal tubules while the 

increase in Kim-1 may reflect renal tubule regeneration. In contrast, following TCE-OH exposure no consistent pattern of increase was seen in urinary 
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protein, Kim-1 or NAG compared to control. No statistically significant increase in either plasma creatinine or urea was observed after 12 weeks 

exposure to TCE or TCE-OH. The mild nature of these changes is reflected in the renal tubular pathology which was within the normal range, with the 

control animals showing slightly more minor pathological changes than those treated with TCE-OH, while the TCE treated rats showed the least 

morphological changes (Table 3). Cell turnover in the kidney was measured during the last 5 days of treatment and showed a similar profile to the renal 

pathology with the labelling index in the controls being higher than after either TCE-OH or TCE (Table 3). Renal proximal tubular cell turnover in the 

control male F344 rats was 4.8 % is similar to that previously reported (Lock et al., 2004). It appears that after 12 weeks daily exposure to either TCE or 

TCE-OH renal cell proliferation is decreased, this was also observed in rats and mice treated with 50mg/kg/day for 5 days/week with 

bromodichloromethane (Lock et al., 2004). Overall, our findings indicate mild renal tubular injury, as judged by urinary biomarkers, after TCE but not 

TCE-OH following 12 weeks of exposure. Similar findings to ours with evidence of only minor changes in biochemical markers of kidney injury and no 

morphological damage to the kidney has been reported following very high dose levels of TCE at 2000mg/kg for 42 days or following inhalation 

exposure to TCE at 500ppm for 6h/day for 28 days (Green et al., 1997; 1998). Others have similarly failed to find evidence of kidney damage or 

increased renal tubule cell proliferation in rats dosed with 1000mg/kg TCE for up to 3 weeks (Goldsworthy et al., 1988; Stott et al., 1982). Thus in TCE 

treated rats there is evidence of mild renal tubular injury which does not result in any renal tubular morphological changes and appears to suppress renal 

tubular cell proliferation after exposure to 500mg/kg/day TCE for 12 weeks.  

We found no evidence of increased urinary markers of renal damage or of any renal pathology following treatment with TCE-OH at 100mg/kg/day for 

12 weeks. However, others giving lower doses of TCE-OH(average of 18 and 54mg/kg/day) to rats in their drinking water for up to 52 weeks, reported 

small increases in urinary NAG and total protein after 4 weeks exposure and then intermittent small increases up to 52 weeks.(Green et al., 2003). These 

workers also measured renal tubule cell proliferation in the kidney after 29 and 40 weeks exposure to TCE-OH and found a significant focal increase in 

cells in S-phase in the outer cortex at the high dose after 29 weeks, with nothing at the low dose after 29 weeks or at the low or high dose after 40 weeks. 

Renal pathology showed an increase in tubular basophilia between 12 and 28 weeks, which by week 40 had progressed to tubular degeneration (Green et 

al., 2003).  
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Thus it is clear that chronic exposure of rats to TCE-OH or TCE can cause renal injury, but continued exposure typically for longer than 12 weeks is 

required to see renal tubule degeneration. 

Formic aciduria following either TCE or TCE-OH  

The major urinary changes observed following both TCE and TCE-OH exposure was acidification of the urine which was associated with a large 

increase in the excretion of formic acid which was both time and treatment related. Urine pH dropped by about 0.5 of a unit in control rats treated with 

corn oil alone, while those given TCE or TCE-OH dropped even further. The basis for the urinary acidification in the controls is not clear but could be 

related to metabolism of corn oil to acidic metabolites. There was a small increase in formic acid in urine after 1 week of exposure to either chemical, 

which was statistically significant after 2 weeks exposure and them remained elevated for the length of the study, being about 50-fold above control after 

12 weeks exposure. These findings are consistent with that reported by Green et al., 1998; 2003; Dow and Green 2000; Yaqoob et al., 2013. Thus under 

the conditions of our study the extent of formic aciduria was similar with both chemicals. We also observed an increase in the excretion of 

methylmalonic acid with both chemicals as reported previously, supporting the hypothesis that these chemicals may be targeting the two enzymes that 

require vitamin B12 as a cofactor (Dow and Green, 2000). Regulation of tissue levels of tetrahydrofolate, the folate involved in the metabolism of formic 

acid, is largely controlled by the vitamin B12-dependent methionine salvage pathway (Eells et al., 1982). Recovery of tetrahydrofolate is facilitated by 

methionine synthase and vitamin B12 acts as a co-enzyme in the transfer of the methyl group from 5-methyltetrahydrofolate to homocysteine resulting in 

the formation of methionine and tetrahydrofolate.  Dow and Green, (2000) reported that TCE-OH caused an increase in N-methyltetrahydrofolate in the 

plasma indicating a blockage of the methionine salvage pathway. We report that the activity of methionine synthase in the liver of both TCE and TCE-

OH treated rats following 12 weeks exposure is reduced by about 50% supporting a reduction in the activity of the methionine salvage pathway. The 

other B12 containing enzyme methylmalonyl CoA mutase, is involved in the regulation of odd chain fatty acids, several amino acids as well as 

gluconeogenesis and haem synthesis. The elevation in urinary methyl malonic acid is indicative of an effect on this pathway, suggesting TCE and TCE-

OH are targeting B12 dependent metabolism.. In many ways the action of TCE and TCE-OH on these pathways resembles that of nitrous oxide (Kondo 

et al., 1981). 



 13 

Conclusion 

Our findings have not been able to clearly identify which pathway of metabolism leads to renal injury following exposure to TCE, although it gives 

some support to the GSH conjugation pathway, based on the finding of mild renal tubular injury after TCE but not TCE-OH. We know that the amount 

of TCE metabolised via the GSH conjugation pathway is very small, 4.6µg of N-acetyl DCVC being detected in a 24h urine sample following ten daily 

doses of 500mg/kg TCE (Green et al., 1997). This shows the amount of S-1,2-dichlorovinyl-L-cysteine (DCVC) undergoing N-acetylation, but does not 

tell us the amount of DCVC metabolised by cysteine conjugate β-lyase, although it is likely to be small. Whether this very small amount of DCVC 

formed could account for the very mild renal tubule injury after TCE exposure is currently unclear. The fact that TCE-OH produced a similar degree of 

formic aciduria to that seen after TCE but without renal injury, suggests that the perturbation of folate metabolism does not cause renal injury over that 

time period of exposure.  However, a more sustained exposure to TCE-OH, which cannot lead to GSH conjugation, does lead to renal tubule injury and 

degeneration after exposure for 40 plus weeks (Green et al., 2003). So the situation is still not clear as to whether the kidney injury seen after chronic 

exposure to TCE is due to metabolism via the glutathione pathway or perturbation of folate metabolism by TCE-OH leading to formic aciduria or a 

combination of both resulting in renal tubule cell degeneration and chronic progressive nephropathy accounts for the very small increase in renal tubule 

tumours in male rats only. 
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Legends to Figures 

 
Figure 1. Liver and kidney weights of male F-344 rats given daily doses of corn oil or TCE-OH or TCE for 12 weeks 
 
Three groups of male F-344 rats were given oral doses of either corn oil, TCE-OH (100mg/kg/day) or TCE (500mg/kg/day) daily for 12 weeks. The rats 
were killed 24h after the last dose and liver and kidneys removed and weighed. Liver and kidney weights are expressed as a percentage of bodyweight. 
Values are mean ± SEM, n=5 
*P<0.05 statistically significantly different from corn oil alone. 
 
 Figure 2. Urine 1H NMR spectra of male F-344 rat given daily doses of corn oil, TCE-OH or TCE for 12 weeks 
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Three groups of male F-344 rats were given oral doses of either corn oil, TCE-OH or TCE daily for 12 weeks. Urine was collected at 8 time points 
during 12 weeks of dosing and analysed using 1H NMR spectroscopy. TSP was used as the standard reference its signal appears at 0ppm.   
 
Figure 3. Time dependent effect of exposure to TCE and TCE-OH on the urinary excretion of formic acid over 12 weeks  
 
Urinary excretion of formic acid was measured by 1H NMR at 8 time points during 12 weeks exposure. The results were analyzed by 2-way analysis of 
variance with repeated time measures. Both chemicals caused a statistically significant increase in formic acid excretion which was time P<0.008 and 
treatment P<0.001 related.  
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Table 1 
 

The effect of daily oral dosing of TCE or TCE-OH on urinary pH and the excretion of formic acid and methylmalonic acid over 12 weeks 

 

Male F344 rats were dosed orally with corn oil (control) or TCE or TCE-OH in corn oil at 500mg/kg/day or 100mg/kg/day respectively and returned to their home 

cage. During late afternoon they were transferred to metabolism cages and urine collected for 16h overnight at the times shown and then returned to their home cage.  

Results are Mean ± SEM n=4/group.* statistically significant from control at the same time point.  + statistically significant from TCE at the same time point. 

Statistical analysis was also made using 2-way ANOVA with repeated measures for time and treatment and the degree of significance is reported in the text.   

Time after 
dosing  

Control TCE-OH TCE Control TCE-OH TCE Control TCE-OH TCE 

 Urinary pH Urinary formic acid (mg/16h) Urinary methylmalonic acid (mg/16h) 

1 day 7.05 ± 0.02 6.99 ± 0.03 
 

6.90 ± 0.02 
 

0.66 ± 0.13 
 

0.93 ± 0.27 
 

1.12 ± 0.26 
 

1.93 ± 0.35 
 

1.03 ±0.16 
 

1.83 ± 0.27 
 

1 week 6.52 ± 0.05 
 

6.34 ± 0.04 
 

6.25 ± 0.02 

 
0.56 ± 0.10 
 

3.4 ± 1.6 
 

4.00 ± 1.3 
 

1.33 ± 0.38  
 

0.83 ± 0.31 
 

2.16 ± 0.26   
 

2 weeks 6.57 ± 0.11 
 

6.30 ±0.05 

 
6.24 ± 0.07* 

 
0.63 ± 0.14 
 

23.2 ± 2.7* 

 
13.9 ± 4.3* 

 
1.13 ± 0.23 
 

2.16 ± 0.76 
 

2.35 ± 0.34 
 

5 weeks 6.39 ± 0.06 
 

5.95 ± 0.06* 

 
6.16 ± 0.10 
 

0.43  ± 0.03 
 

55.2 ±12.2* 

 
39.7 ± 3.3* 

 
1.12 ± 0.08 
 

1.88 ± 0.27*+ 

 
3.01 ± 0.10* 

 
6 weeks 6.40 ± 0.07 

 
6.21 ± 0.13 
 

6.23 ± 0.12 
 

0.50 ± 0.22 
 

36.8 ± 7.7*+ 

 
  9.1 ± 3.5 
 

0.82 ± 0.22 
 

2.13 ± 0.27* 

 
2.66 ± 0.19* 

 
8 weeks 6.47 ± 0.02 

 
6.20 ±  0.12 
 

6.23 ± 0.12 
 

0.38 ± 0.06 
 

35.5  ± 10.2* 

 
23.5 ± 7.4 
 

1.08 ± 0.24 
 

1.81 ± 0.54 
 

2.39 ± 0.62 
 

10 weeks 6.64 ± 0.28 
 

6.42 ± 0.05 
 

6.17 ± 0.04 
 

0.61 ± 0.18 54.8 ± 10.8*+ 
 

26.0 ± 5.6 
 

0.97 ± 0.26 
 

3.14 ± 0.77* 

 
2.35 ± 0.38 
 

12 weeks 6.54 ± 0.16 
 

6.30 ± 0.09 
 

6.06 ± 0.05* 

 
0.96 ± 0.29 
 

45.6 ± 9.1* 

 
48.9 ± 10.6* 

 
1.14 ± 0.20 
 

2.24 ± 0.26* 

 
2.72 ± 0.34* 
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Table 2  The effect of daily oral dosing of TCE or TCE-OH on urinary excretion of protein, Kim-1 and N-acetyl-β-D-glucosaminidase over 12  

week 

 
Male F344 rats were dosed orally with corn oil (control) or TCE or TCE-OH in corn oil at 500mg/kg/day or 100mg/kg/day respectively and returned to their home 

cage. During late afternoon they were transferred to metabolism cages and urine collected for 16h overnight at the times shown and then returned to their home cage.  

Results are Mean ± SEM n=4/group.* statistically significant from control at the same time point.  + statistically significant from TCE at the same time point. 

Statistical analysis was also made using 2-way ANOVA with repeated measures for time and treatment and the degree of significance is reported in the text.   

Time after 
dosing 

 

   Control           TCE-OH             TCE    Control             TCE-OH            TCE    Control             TCE-OH            TCE 

 Urinary protein (mg/16h) Urinary Kim-1 (pg/16h) Urinary NAG (mU/16h) 

1 day    5.3 ± 0.8   4.5 ± 0.51+   7.58 ± 0.31*   689 ± 188   475 ± 150   709 ± 83    22.8 ± 4.6  14.0 ± 2.7    18.9 ± 1.8 

1 week    4.80 ± 1.07   4.85 ± 0.8 7.25± 0.77    811 ± 97   601 ± 85+ 1548 ± 142*    19.6 ± 3.8  17.1 ± 4.4+   44.0 ± 3.3* 

          
2 weeks    3.22 ± 0.36    7.53 ±1.26+           14.28±1.38*    542 ± 43   458 ± 20 1025 ± 262    22.3 ± 3.5  40.1 ± 8.9   46.4 ± 11.4 
          
5 weeks    5.88 ± 1.34   5.43 ± 0.63  8.18 ± 0.17   344 ± 172    582 ± 120+ 1487 ± 286*    20.7 ± 1.1   21.7 ± 3.4+   35.6 ± 3.3* 

          
6 weeks    3.09 ± 1.55   5.05 ± 0.78 6.13 ± 1.83   576 ± 125    414 ± 53   413 ± 101    27.2 ± 3.9   32.3 ± 8.8   36.7 ± 5.4 
          
8 weeks    4.45 ± 0.39   5.75 ± 1.48  6.50 ± 1.69   581 ± 95 1095  ± 166  1337 ± 644    29.3 ± 3.3  32.0 ± 7.6   42.1 ±9.7 
          
10 weeks    6.98 ± 2.14   6.08 ± 1.66 5.80 ± 0.83   750 ± 205   560 ± 90  1100 ± 400     25.4  ± 6.4   30.5 ± 2.9+    59.1 ± 6.5* 

          
12 weeks    6.78 ± 0.68   6.05 ± 0.85  8.57 ± 1.96     745 ± 310   400 ± 110   405 ± 285    27.3 ± 3.2   30.4 ± 2.4    35.4 ± 4.8 



 21 

Table 3 

The effect of daily oral dosing of TCE or TCE-OH on plasma creatinine, urea and formic acid and hepatic methionine synthase activity 

12 weeks after exposure 

 

Measurement Control TCE-OH TCE 

 
Plasma creatinine (mg/dl) 

 
0.89 ± 0.09 

 
1.02 ± 0.04 

 
1.22 ± 0.24 

Plasma urea (mg/dl) 32.8 ± 2.6 32.4 ± 3.0 36.8 ± 2.6 

Plasma formic acid (µg/ml)  10.0 ± 0.3 101.0*+ ± 2.4 62.4* ± 16.2 

Hepatic methionine synthase 

activity (pmol/min/mg protein) 

2.78 ± 0.23 1.58* ± 0.17 1.50* ± 0.11 

Renal pathology (severity 

grade/animal)    

   

Incidence of basophilic tubules  1, 2, 0, 2, 2 2, 2, 2, 2, 2 1, 0,1, 0, 0 

S2 tubular degeneration/intra-
cytoplasmic hyaline inclusions 

2, 2, 2, 2, 2 2, 2, 2, 2, 2 0, 0, 0, 0, 0 

Luminal tubular dilatation with 
protein 

1, 2, 0, 1, 0 0, 0, 0, 1, 1 0, 0, 0, 0, 2 

Renal proximal tubule labelling 
index (% BrDU positive cells) 
 

4.76 ± 0.29 2.61* ± 0.45 1.39* ± 0.18 

 
Male F344 rats were given orally either corn oil (control) or TCE or TCE-OH in corn oil at 500mg/kg/day or 100mg/kg/day respectively for 12 weeks. Five days 

before the last dose Altzet mini pumps containing BrDU were inserted under the skin at the nape, then 24h after the last dose killed by a rising concentration of carbon 
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dioxide. Blood was collected by cardiac puncture into heparinised tubes and a sample of liver rapidly removed and frozen at -80C and a kidney removed and fixed as 

described in the Methods. Light microscopic changes were graded 0,  No abnormality detected; 1, Minimal (Very Slight): A histopathologic change ranging from 

inconspicuous to barely noticeable but so minor, small, or infrequent as to warrant no more than the least assignable grade  2. Mild (Slight): A histopathologic change 

that is a readily noticeable but not a prominent feature of the tissue and/or may be considered to be of no functional consequence. 

Results are Mean ± SEM with 5rats/group. *Statistically significantly different from control P<0.05. + Statistically significantly different from TCE, P<0.05  
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