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Abstract 

 

Resistive switching memory devices can be categorized 

into filamentary RRAM or non-filamentary RRAM 

depending on the switching mechanisms. Both types of 

RRAM devices have been studied as novel synaptic 

devices in hardware neural networks. In this work, we 

analyze the amplitude of Random Telegraph Noise (RTN) 

and program-induced variabilities in both TaOX/Ta2O5 

filamentary and TiO2/a-Si (a-VMCO) non-filamentary 

RRAM devices and evaluate their impact on the pattern 

recognition accuracy of neural networks. It is revealed 

that the non-filamentary RRAM has a tighter RTN 

amplitude distribution than its filamentary counterpart, 

and also has much lower programed-induced variability, 

which lead to much smaller impact on the recognition 

accuracy, making it a promising candidate in synaptic 

application. 

 

1. Introduction  

 

Oxide based resistive switching memory devices 

(RRAM) has emerged as an attractive candidate not only 

for the next-generation emerging memory technology 

[1-2], but also as synapses in large-scale artificial neural 

networks (ANNs) due to its natural synaptic response, 

simple structure, low energy consumption, and 

CMOS-compatible 3D integration potential [1]. There 

are mainly two types of transition-metal-oxide (TMO) 

based resistive switching devices (RRAM): the 

conductive filamentary type (CF) that can be 

implemented with a range of materials, for example, 

HfO2 and Ta2O5 [2], etc.; and the non-filamentary type 

(NCF) such as TiO2/a-Si a-VMCO [3].  

In filamentary RRAM devices, variable resistance is 

induced by repeatable rupture and restoration of a 

conductive filament (CF) of nanometer scale. The large 

variations in read current distribution at high resistance 

state (HRS) is a major concern, as it deteriorates the 

resistive switching window and causes endurance and 

retention problems. This has been attributed to defects 

movement into/out of the constriction of the filament 

where only a few defects exist. The conductance of 

individual defect in the constriction has significant 

impact on the overall resistance levels, and the stochastic 

nature of individual defect causes large resistance 

variability and large read instability [4]. Non-filamentary 

RRAM (NCF) devices have been proposed to overcome 

the above problems, in which the resistance switching is 

controlled through the uniform modulation of the defect 

profile [3]. The a-VMCO RRAM device consists of two 

layers, in which TiO2 serves as the switching layer and 

amorphous-Si as the barrier layer. The non-filamentary 

switching behavior is demonstrated as its resistance is 

inversely proportional to the area at both HRS and LRS, 

and the resistance distributions at both HRS and LRS in 

a-VMCO RRAM show smaller variations [3, 5]. 

Random Telegraph Noise (RTN) is the current 

fluctuation between discrete levels caused by electron 

trapping and de-trapping in defects. RTN has become a 

critical issue in nanoscale semiconductor devices where 

the impact of a single defect becomes significant [6, 7, 

8]. As RRAM devices can be scaled down below 10 nm 

[2], RTN can significantly reduce the memory window 

and cause read errors in RRAM devices. It is therefore 

essential to evaluate the impact of RTN disturbance on 

the performance of RRAM-based synaptic arrays. 

Program-induced conductance variability in both 

filamentary and non-filamentary RRAM devices also 

need to be evaluated in synaptic applications.   

In this work, we analyze the amplitude distributions of RTN 

and program-induced variability in both Ta2O5 CF RRAM 

and TiO2/a-Si (a-VMCO) NCF RRAM devices. The 

experimental results are used to simulate their impact on the 

synapse arrays in a trained artificial neural network. It is 

revealed that the NCF RRAM has a tighter RTN amplitude 

distribution and smaller program-induced variability than its 

filamentary counterpart, leading to much less impact on 

pattern recognition accuracy and making it a promising 

candidate as synapse in neural network applications.  

2. Devices and Experiments 

 

Both types of RRAM devices were fabricated in a cross- 

point structure with the size of 75 nm × 75 nm and show 

bipolar switching characteristics (Fig. 1(a) and (b)). The 

Ta2O5 device consists of a TiN/4nm stoichiometric 

mailto:w.zhang@ljmu.ac.uk


Ta2O5/20nm nonstoichiometric TaOx/10nm TaN/TiN 

stack (inset of Fig. 1 (a)). The a-VMCO device has a 

stack of TiN/8nm amorphous-Si/8nm anatase TiO2/TiN 

structure (inset of Fig. 1(b)). The detailed process 

parameters can be found in refs. [5,9]. All electrical tests 

were carried out with a Keysight B1500A analyzer. 

Analogue resistance levels are obtained in both devices, 

between 25 kΩ and 200 kΩ for Ta2O5, and between 1 

MΩ and 7.5 MΩ for aVMCO, by incrementing the 

program pulse number and amplitude. The read-out is at 

0.1V and 3V for Ta2O5 and aVMCO devices, 

respectively, by a read pulse width of 100 us. RTN 

measurement is then carried out at each R level at the 

read-out voltage, with a sampling time of 2 ms/point and 

10,000 sampling points per resistance level for a RTN 

measurement period of 20 s. A 3-layer ANN was 

simulated using Matlab. The neural network was trained 

and tested with the MNIST handwritten digit database. 

Out of the total 60,000 images, 50,000 were used for 

training and the remaining 10,000 images unseen during 

training were used for testing.  
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Fig.1 I-V switching curves of (a) Ta2O5 and (b) aVMCO devices; 

The insets are the schematics of the corresponding structures and the 

switching mechanism: the restore/rupture of a conductive filament 

(CF) or the areal modulation of defect distribution inside the oxide 

(NCF).  

3. Results and discussions 

 

3.1 RTN signals in CF and NCF RRAM devices 

As shown in Fig. 2(a) and (b), the maximum relative 

RTN amplitude, ΔI/Iread, can be as high as ~300% in the 

filamentary Ta2O5 RRAM device, but only ~10% in the 

non-filamentary aVMCO. Their CDF distribution plots 

measured at 8 selected resistance levels are shown in 

Fig. 2 (c) and (d), respectively. RTN amplitude in Ta2O5 

device spreads widely from 0.1% to 300%, whilst it is 

only from 1% to 10% in aVMCO. For both devices, the 

RTN amplitude follows the lognormal distribution. 

Moreover, RTN in Ta2O5 device has a much higher 

occurrence rate than in aVMCO device (not shown). The 

parameters of the distributions are extracted and shown 

in Fig. 2e & 2f, which will be used in the simulation. 

This significant difference in RTN amplitude distribution 

and occurrence rate can be attributed to the different 

switching mechanisms, as shown in the insets in Fig.1: 

in the CF Ta2O5 device, the resistance switching is 

caused by the rupture and restoration of a conductive 

filament. After the reset, there are only a few defects in 

the constriction of the CF, and each of them is critical in 

current conduction, so that its trapping / detrapping leads 

to large RTN, and hence the higher the resistance level, 

the larger the RTN amplitude. In the NCF aVMCO 

device, resistance switching is caused by the uniform 

modulation of defect distribution. Resistance becomes 

higher when the “defect-less” region is uniformly 

widened. A single defect has limited contribution in 

conduction, hence the much smaller RTN amplitude, and 

much smaller occurrence rate (not shown), and the 

amplitude is also only slightly larger at higher resistance 

levels.  
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Fig. 2 (a-b) Examples of largest RTN signal in (a) Ta2O5 and (b) 

a-VMCO devices. The relative RTN amplitude can be as high as 

~300% for Ta2O5 device, but only ~10% for a-VMCO. (c-d) CDF of 

relative RTN amplitude in (c) Ta2O5 and (d) a-VMCO devices, 

respectively, both following the lognormal distribution. (e-f) Extracted 

parameters of lognormal RTN amplitude distribution in both devices. 
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3.2 Program-Induced Variability in CF and NCF 

RRAM devices 

The program-induced variability is defined as the 

relative variation at a target conductance level, i.e. ΔG/G 

induced by the programming. In Fig. 3a, four curves 

programmed at different constant pulse amplitudes in an 

NCF aVMCO RRAM device are shown as an example, 

where the typical exponential program kinetics are 

observed. A linear program approximation can be 

achieved in a small range on each curve, which is similar 

to the small signal approximation in AC circuit analysis. 

By applying a number of smaller identical pulses in each 

range and incrementing the bias in consecutive ranges, a 

much improved linearity in the program kinetics can be 

achieved during both set and reset operations, as shown 

in Fig. 3b.  

The program-induced variability obtained in CF and 

NF devices with the linear response are compared in Fig. 

3c and 3d. The program-induced variability in CF device 

has a wider distribution, leading to much larger 

variability than that in the NF device. In both devices, 

the distributions of the relative conductance variability 

are largely independent of the conductance levels. This 

allows the use of the observed distribution function to 

reproduce the variability distribution at any target 

conductance levels in simulation. which will be 

demonstrated later.  

 
Fig.3 (a) Illustration of the program kinetics in an NCF RRAM. (b) Linear 

response can be achieved by applying a number of smaller identical pulses in 

each range and incrementing the bias in consecutive ranges.  (c) Distribution 

of the program-induced variability at 8 selected conductance levels across the 

memory window in CF RRAM and (d) in NCF RRAM.  

3.3 Impact of RTN on NN accuracy 

The impact of RTN on the pattern recognition accuracy 

of RRAM based synaptic neural network is analysed first. 

The neural network consists of 3 layers with 30 neurons in 

the hidden layer, as shown in Fig. 4(a). The neural network 

is trained with the mini-batch gradient descent 

backpropagation algorithm. The accuracy after training 

without and with the RTN induced disturbance in both CF 

and NCF RRAM are statistically shown in Fig. 4(b). The 

change of weights in one of these procedures is visualized 

in Fig. 4(c), in which the weights are shown in (1) without 

disturbance, (2) after the CF disturbance, and (3) after the 

NCF disturbance. The weight differences are shown in (4) 

after CF disturbance and (5) after NCF disturbance. 
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Fig. 4. (a)  Schematic of the pattern recognition ANN. (b) Statistical 

accuracy in 50 training-disturbance procedures: Accuracy is hardly affected 

with the NCF disturbance, while with the CF disturbance the accuracy is 

severely deteriorated. (c) Visualization of weights: (1) directly after training; 

(2) with CF RTN disturbance; (3) with NCF RTN disturbance; (4-5) their 

differences to case (1), respectively. (d) Accuracy of ANN with different 

neuron number without and with CF and NCF RTN disturbance. ANN with 

NCF devices needs fewer neurons/synapse and have better accuracy. 

As shown in Fig. 4(b), after the CF RTN disturbance, the 

average accuracy drops to ~75% with a wide repeatability 

distribution and its lowest is less than 50%, while after the 

NCF disturbance the accuracy drops negligibly only to 94% 

with a similar repeatability to that without disturbance, as 

can also be clearly seen in the weight differences shown in 

Fig. 4(c). This proves that the non-filamentary RRAM 

device has a strong advantage compared to the conventional 

filamentary devices in the synaptic application, due to its 

small RTN amplitude and low RTN occurrence rate. 

Furthermore, as shown in Fig.4(d), the neural network with 

NCF synaptic devices maintains a high accuracy of ~90% 

even when only 10 neurons are used in the hidden layer, 

whilst the accuracy drops sharply with the CF devices. NCF 

synaptic devices allows a much smaller ANN to achieve 

better accuracy due to its robust RTN resilience, therefore. 

3.4 Impact of program-induced variability on NN 

accuracy 

The impact of program-induced variability on the pattern 

(b) 

(c) 



recognition accuracy in CF and NCF RRAM devices are 

compared in Fig. 5. The accuracy loss caused by 

program-induced variability in non-filamentary RRAM 

device is significantly smaller than that in the filamentary 

RRAM device, thanks to the much smaller variability. 

RTN-induced accuracy loss is also shown for comparison, 

and it is even larger than that induced by the 

program-induced variability. The overall pattern recognition 

accuracy is limited by RTN in the NCF devices. 

Program-induced variability in CF RRAM and RTN 

induced variability in NCF RRAM are the most significant 

sources responsible for accuracy loss, respectively. 

 

Fig. 5. Comparison of the NN accuracy loss caused by different sources of 

variability of (a) NCF RRAM and (b) CF RRAM, including RTN and 

program-induced variability (PIV) programmed with linear (LR) kinetics. 

NF device shows much lower variability-induced accuracy loss compared 

with its CF counterpart. RTN in NCF RRAM and program-induced 

variability in CF RRAM are the dominant sources of accuracy loss. 

   The difference in program-induced variability in NF 

and CF RRAMs can also be attributed to their different 

switching mechanisms. The area-dependent resistance in 

non-filamentary devices supports that the resistance is 

uniformly modulated across the lateral device area 

during the switching and individual defect movements 

are averaged out, leading to the much smaller variability 

in device conductance. In contrast, the area-independent 

resistance in conductive filamentary devices supports 

that the switching is controlled by the rupture and 

restoration of one local filament between the two 

electrodes. where individual defects play a significant 

role in the conductance change of the CF device. This 

translates into not only a more pronounced RTN 

amplitude with wider distribution, but also in higher 

program-induced variability. Non-filamentary RRAM 

demonstrates far better immunity to variability and 

hence better inference accuracy in HNN applications, 

therefore. 

3.5 Conclusions 

In this paper, two different variability sources are 

statistically measured and evaluated at different 

conductance levels across the memory window in both 

conductive-filamentary and non-filamentary RRAM 

devices. Based on the statistical distributions of the 

program-induced variability and RTN in both NF and CF 

RRAM devices, their impact on the pattern recognition 

accuracy of a RRAM-based 3-layer feedforward HNN 

are simulated and compared. It is revealed that NF 

device shows much lower variability and accuracy loss 

than its CF counterpart. RTN remains a major variability 

source in both devices. A comparison between the NF 

and CF switching mechanisms can explain the 

differences in the variability and their distributions.  
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