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Abstract 

Media claims suggest that use of pharmacological cognitive enhancers (PCE) in UK 

universities is significant and is increasing, though academic research has come to less 

consistent conclusions. While there has been expansion of research in this area, the public 

health impact of long-term PCE use, including the potential for adverse effects to cognitive, 

neurological and physiological functioning remains unclear. Consequently, this thesis aimed 

to investigate the aetiology and long-term effects of PCE use in some UK universities. Study 

1 aimed to investigate CE use in four UK universities, including: which substances are 

commonly used, the reasons for use and which factors relate to consumption. Here, 

caffeinated products were the most popular, followed by modafinil. Furthermore, several 

sociodemographic and personality variables were part of a statistical model to predict CE 

use, although only gender, age and moral perceptions of modafinil use were found to be 

significant. Study 2 focussed on modafinil as the most popular PCE aiming to assess the 

long-term impact (> 3 months) of use on executive functioning by administering various 

cognitive performance measures.  Despite no behavioural differences on the 2-back 

(working memory) and the continuous performance task (sustained attention), modafinil 

users responded to both horizontal and vertical cues more quickly than nonusers on the 

cued go/no-go task (inhibitory control) without experiencing an accuracy trade-off or 

performance decrement. To investigate the neural substrates of any potential cognitive 

deficits, Study 3 assessed cognitive and neurophysiological processes by using functional 

near-infrared spectroscopy, electrocardiogram and a digital sphygmomanometer alongside 

cognitive performance measures designed to increase cognitive workload. It was found 

that there were no behavioural performance differences on easy and difficult variants of 

the multitasking framework (stressor) or 3-back (working memory) between groups, but 

users experienced significantly lower systolic blood pressure across the tasks and greater 

haemodynamic change during the 3-back. Blood pressure indicated that users appeared 
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less physiologically aroused during performance measures, but increased haemodynamic 

response compared with controls revealed possible underlying cognitive deficits. Taken as 

a whole, modafinil appears to be the most popular PCE in the UK for university students, 

and long-term use unexpectedly revealed enhanced inhibitory control but possible deficits 

to working memory performance. This research consolidates previous claims about 

modafinil as the most popular PCE among UK university students. Furthermore, this is the 

first study to investigate long-term modafinil use and establish behavioural and 

neurophysiological differences with nonusers.  
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Chapter 1: An Overview of Substances used for Cognitive Enhancement. 

 

1.1 Chapter Overview 

 

Cognitive enhancement (CE) strategies (also termed neuroenhancement strategies) are 

techniques used with the intention of enhancing cognitive performance or mood. 

Numerous CE techniques exist, including use of food supplements, pharmaceutical 

products and illegal drugs. This chapter explores the different substances which are most 

regularly purported to enhance cognition and investigates their pharmacology, mechanism 

of action and estimated level of use. Moreover, for the remainder of the thesis, the term 

‘cognitive enhancement’ refers to the user’s intention to enhance performance more so 

than the efficacy of the substance itself, which will be further explored in Chapter 2 when 

the pharmacological cognitive enhancement (PCE) modafinil is examined (Maier, Haug, & 

Schaub, 2016; Maier & Schaub, 2015).  

1.2 What are Cognitive Enhancement Drugs? 

 

The most popular CE drugs can be divided into two groups: soft enhancers and PCE. Soft 

enhancers are popular, legally available substances which include food products, herbals 

substances and tonics and products containing caffeine. On the other hand, PCE use is 

often prohibited, and includes synthetic pharmaceutical substances and some illegal drugs 

(Maier, Ferring & Winstock, 2018). Both CE groups differ in the magnitude of their effect on 

cognitive performance and in mechanism of action, although variations also exist within 

each group. Differences between the various CE substances are discussed below, including 

the primary differences which are apparent between soft enhancers and PCE.  
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1.2.1 Soft Enhancement 

 

Some soft enhancers are commonplace in society, particularly those products containing 

caffeine, which is the most widely consumed psychoactive substance in the world (Zhang, 

Jiang, Liu, & He, 2017). Further to this point, caffeinated beverages are among the most 

popular caffeine-based products because they act as a minor stimulant and promote 

feelings of alertness and wakefulness which often become integrated into a person’s daily 

routine. Consequently, it has been suggested that use of caffeine for CE is less explicit than 

other soft enhancers or PCE (Rosen & Weil, 2004). For example, nutraceuticals (herbal pills 

and tonics) are more explicitly marketed as CE drugs but are considerably less popular, 

owing to the fact that these drugs each have medicinal properties that are purported to act 

differently on cognitive performance and mood with some more successful than others 

(Rai, Bhatia, Sen, & Palit, 2003; Tsai, Lin, Simon Pickard, Tsai, & Mahady, 2012). Moreover, 

these substances are less widely obtainable and are often only available at speciality 

retailers, which suggests that users who seek them do so with a specific intention in mind, 

one of which could be CE purposes. Of course, nutraceutical drugs are not just marketed as 

CE substances, they are also lauded for their various physical health benefits (Ward et al., 

2019), meaning the reasons for their consumption are not always clear.  

Caffeine, a psychostimulant, acts on the autonomic nervous system and shifts dominance 

from the sympathetic (SNS) to the parasympathetic nervous system (PNS). Unlike PCE, its 

effects are non-selective as it acts through blocking adenosine receptors (A1 and A2) in the 

prefrontal cortex which in turn promotes monoamine release. As such, the 

neurotransmitters dopamine, serotonin and noradrenaline are released, which facilitate 

feelings of wakefulness and alertness (Fredholm, Yang, & Wang, 2017). Therefore, caffeine 

shares more similarities with pharmaceuticals used for PCE than nutraceuticals which 
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operate through enzyme synthesis (Ahmed et al., 2016), although effects are less 

pronounced and the substance has a shorter half-life than PCE (Franke et al., 2017). 

Notable soft enhancers which contain caffeine include; coffee, energy drinks, caffeine pills 

and guarana (Maier, Liakoni, Schildmann, Schaub, & Liechti, 2015). 

Of the nutraceutical substances, ginseng is perhaps the most popular and has been used in 

Eastern medicine for thousands of years (Geng et al., 2010). This drug comes from the root 

of the ginseng plant and can be brewed in tonics and formulated as a tablet, and is popular 

in alternative medicine because of a variety of medicinal properties, including: lowering 

fatigue, acting as a powerful antioxidant and boosting the immune system (Scholey et al., 

2010). There are two variants of the substance; Panax (Asian) and American ginseng which 

share many properties but have subtle variations (Scholey et al., 2010). Research has 

revealed that effects on cognitive performance appear to be linked to constituent saponins 

called ginsenosides, which are divided into two main groups: protopanaxadiol and 

protopanaxatriol which vary in concentration between Panax and American ginseng. 

However, studies suggest that the enhancing effects of the two types are similar, as each 

has been shown to improve working memory, memory retention and neural plasticity to 

some degree (Vogler, Pittler, & Ernst, 1999). Furthermore, long-term use may also be 

neuroprotective as ginseng proliferates antioxidants which are known to prevent cognitive 

impairment by eliminating free-radical compounds (Ramesh et al., 2012). 

Similar to ginseng, ginkgo biloba (ginkgo) is a nutraceutical plant extract which has 

garnered popularity for its medicinal properties (Major, 1967). This substance can be taken 

as a dietary supplement and can also be brewed in tonics and made into a tablet. Unlike 

ginseng, there is little knowledge about the precise mechanism of action of ginkgo, but 

some evidence suggests that it acts on adrenergic receptors which in turn promote 

wakefulness and vigilance (Blecharz-Klin, Piechal, Joniec, Pyrzanowska, & Widy-Tyszkiewicz, 
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2009; van Beek & Montoro, 2009). Moreover, bilobalide is the active saponin identified in 

the substance which is linked to acute increases in cognitive functioning. Similar to 

ginsenosides, bilobalide is an antioxidant and free-radical scavenger which increases 

adenosine triphosphate production which appears to reduce memory impairments and 

other reductions in cognitive functioning found as a result of mild cognitive impairment 

(MCI) (Duverger, DeFeudis, & Drieu, 1995). As such, ginkgo has been marketed as a useful 

drug to combat and slow the memory loss symptoms associated with dementia and 

Alzheimer’s disease which has been supported in a recent systematic review (Yuan, Wang, 

Shi, & Lin, 2017), although the authors state that benefits are only apparent when the drug 

is consumed daily for 22 weeks or longer. Furthermore, there is some evidence to suggest 

that ginkgo does not possess CE properties at all, despite marketing which promotes the 

drug for this purpose (Canter & Ernst, 2007). Overall, evidence for ginkgo as a CE is not 

definitive, despite the substance’s popularity. 

Bacopa monnieri (bacopa) is less popular than ginseng or ginkgo but is purported to have 

several CE effects. The cognitive effects of the drug resemble ginseng, with improvements 

observed in various executive functions such as attention and working memory (Stough et 

al., 2008). Some improvements are also apparent in attentional speed, but these findings 

are not consistently reported (Kongkeaw, Dilokthornsakul, Thanarangsarit, Limpeanchob, & 

Norman Scholfield, 2014). Bacosides, the constituent saponins thought to govern the CE 

effects of bacopa, are similar to ginsenosides as they act as antioxidants and may be 

neuroprotective with continued use (Calabrese et al., 2008). However, there is limited 

understanding of bacopa as a CE substance compared to ginseng and ginkgo, as such the 

effectiveness of the drug cannot be properly determined without further research. 

1.2.2 Pharmacological Cognitive Enhancement 
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Distinct from soft enhancers, PCE are typically synthetic pharmaceutical substances and 

illegal drugs, whose use is controlled or prohibited by law. Most studies on PCE effects 

focus on amphetamines, particularly dextroamphetamine (d-amphetamine) which is sold 

under the popular trade name ‘Adderall’, and racetams like piracetam. However, evidence 

in support of these drugs as effective PCE is limited, with the studies that exist identifying 

only modest enhancements with single periods of use. Effects are often also outweighed by 

high expectations, suggesting that the efficacy of these drugs does not often exceed user 

perceptions (Bagot and Kaminer, 2014; Battelday and Brem, 2015; Linssen, Sambeth, and 

Riedel, 2014). Some research has also looked at use of illegal drugs in the UK such as 

psychedelics (Elsey, 2017) and cannabis (Franke, Roser, Lieb, Vollmann, & Schildmann, 

2016), but as these techniques appear to be rare they will not be discussed further in this 

Chapter. Instead, the focus will be on substances which are most commonly self-reported 

by users for PCE, namely, d-amphetamine, methylphenidate (MPH) and modafinil. 

Amphetamine is a central nervous system (CNS) stimulant which is used as a treatment for 

attention deficit hyperactivity disorder (ADHD). D-amphetamine in particular has been 

identified to have modulatory effects on neurotransmitter networks, predominantly; 

dopamine, serotonin and noradrenaline (Darracq, Blanc, Glowinski, & Tassin, 1998). 

Alterations to monoamine neurotransmission are linked to feelings of increased 

wakefulness and alertness in humans, which has also made the substance useful for the 

treatment of narcolepsy syndrome in the past (Parkes & Fenton, 1973). Furthermore, in 

adolescents with ADHD, studies show improved learning outcomes during schooling, owing 

to a long half-life which extends the overall effect of the drug throughout the day (Pelham 

et al., 1999). Moreover, dopaminergic drugs like Adderall are shown to positively impact 

mood, which evidence suggests can increase creative thought processes (Farah, Haimm, 

Sankoorikal, Smith, & Chatterjee, 2009). Equally, benefits to cognition in healthy people do 

not appear to be as extensive as with other PCE, although findings are comparatively 
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limited (Bagot & Kaminer, 2014; Ilieva, Boland, & Farah, 2013). However, users regularly 

self-report pleasurable experiences with the drug which may contribute to the perception 

of enhanced cognition (Vargo & Petróczi, 2016; Vrecko, 2013). 

Similar to Adderall, MPH is prescribed for ADHD, and to a lesser extent, narcolepsy. 

Moreover, the pharmacology of both substances is similar, as MPH also modulates 

noradrenaline and dopamine in the prefrontal cortex which is linked to a reduction of 

symptoms associated with ADHD, as well as selective improvements in cognitive 

functioning (Linssen, Sambeth, Vuurman, & Riedel, 2014). In particular, MPH has been 

shown to be beneficial to cognition in adolescents and adults with ADHD, who exhibit 

improved reaction time, attention and executive and non-executive memory (Coghill et al., 

2014; Storebø et al., 2015). Emerging evidence has also suggested that MPH can ameliorate 

working memory deficits found in stimulant users, although more research must be 

conducted in the area to verify these findings (Moeller et al., 2014). With healthy people, 

studies using MPH to improve cognitive functioning show fewer compelling results. 

Although, some research indicates that the drug is beneficial to certain cognitive functions, 

including processing speed, inhibitory control, working memory and memory consolidation 

(Linssen et al., 2014; Spencer, Devilbiss & Berridge, 2015). While ADHD adolescents gain 

the most benefits from MPH, self-administration by healthy adults has risen, possibly in an 

attempt to medicate undiagnosed symptoms of ADHD or to achieve CE, although reasons 

behind use need to be more comprehensively explored (White, Becker-Blease, & Grace-

Bishop, 2006). Nevertheless, this kind of use appears to be relatively safe, as the potential 

for harm with MPH is seen to be low when taken in clinically safe doses, with the most 

extreme and commonly reported side effects being appetite suppression and disturbed 

sleep, which are symptoms frequently associated with stimulant use (Becker, Froehlich, & 

Epstein, 2016; Jeffers & Benotsch, 2016). 
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Less popular than MPH or Adderall, modafinil is a novel psychostimulant which is primarily 

used to treat narcolepsy but is also used for shift work sleep disorder. The mechanism of 

action of the drug was unknown until recently, where it was found to be a dopamine and 

noradrenaline reuptake inhibitor, as well as having modulatory effects on histamine in the 

prefrontal cortex (d-Angelo, Savulinch, & Sahakian, 2007). Despite similarities with MPH 

and Adderall, modafinil has the longest half-life of the PCE’s, lasting approximately 10 – 15 

hours, which is considerably longer than Adderall at 3.5 hours (Robertson & Hellriegel, 

2003). Modafinil is a prescription drug in the UK and is listed as a controlled substance in 

the US, restricting its possession by healthy people. However, because it is shown to 

increase feelings of alertness and wakefulness, research has revealed that is has gained 

popularity as a CE drug. Moreover, healthy people also exhibit benefits to attentional 

processes, learning and memory (Sahakian et al., 2015; Turner et al., 2003) and self-report 

feelings of increased energy and alertness (Stoops, Lile, Fillmore, Glaser, & Rush, 2005). 

Similar to MPH, it appears to have low potential to cause harm when taken in clinical 

quantities, however; evidence of doses in excess of clinical guidelines is limited, and thus 

potential adverse events cannot properly be evaluated (Battleday & Brem, 2015; Rush, 

Kelly, Hays, Baker & Wooten, 2002).   

1.3 Prevalence estimates  

 

Recently, there have been media reports estimating the prevalence of CE substance use. In 

the UK, an article by a Cambridge University student newspaper reported that of 1,000 

University of Cambridge students surveyed, 10% reported use of modafinil, MPH or 

Adderall for CE. Moreover, one third of the sample were allegedly considering PCE use if 

the opportunity presented itself (Lennard, 2009). A later article by the popular student 

website The Student Room (2016) suggested a similar trend on a national scale, with 1 in 



19 | P a g e  
 

10 students self-reporting use of study drugs at least once in their lifetime on an open 

survey. This anecdotal evidence is corroborated by scientific studies indicating that use of 

CE substances is increasing in both the US (Advokat & Scheithauer, 2013; Emanuel et al., 

2013) and Europe (Maier, Liechti, Herzig & Schaub, 2013). However, robust and 

comparable estimates of use are difficult to obtain due to the nature in which data is 

collected. Primarily, survey questions which investigate use lack standardisation, and drugs 

are not uniformly assessed between studies. Interpreting use is also a challenge, as many 

prevalence figures do not reveal the reasons behind use (e.g. CE or recreation), which can 

be further conflated by cultural differences in what constitutes CE drugs. There is also a 

lack of racial diversity in sample characteristics making generalisability of results 

challenging, and the limited follow-up studies make it difficult to perform trend analyses.  

Limitations notwithstanding, it is clear that use of soft enhancers, particularly coffee and 

other caffeinated products, is considerably greater than PCE (Maier et al., 2013; Singh, Bard 

& Jackson, 2014; Wolff, Brand, Baumgarten, Losel, & Ziegler, 2017). Furthermore, lifetime 

use of PCE among university students in the USA varies from 5 – 55% (McCabe, West, Teter, 

& Boyd, 2014; Smith & Farah, 2011), but other factors besides CE strategies underlie these 

estimates. In Europe, prevalence studies have a similarly wide spread of results ranging 

from 5 – 46%, but interpretation remains challenging, especially given the small number of 

studies (Schelle et al., 2015). A study in Switzerland found that 14% of respondents 

reported nonmedical use of PCE substances across their lifetime, however; use in the 

previous year and month was considerably reduced (Maier et al., 2013). Also considering 

that most respondents reported that PCE use did not match expectations, it is a reasonable 

assumption that recent use was limited because CE strategies were not thought to be 

efficacious. German students exhibit comparatively lower lifetime PCE prevalence rates, 

which range from < 1 – 20% (Dietz et al., 2013), and in the UK, research has suggested that 

use is similar, at 5% or below (Holloway & Bennett, 2012; Singh, Bard, & Jackson, 2014a). 
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However, a recent study and the biggest exploration of international CE use to date, found 

that between 2015 and 2017, self-reported use of PCEs increased from 1.7% to 5.1%. 

Further still, use of modafinil in the UK was highest among the 15 countries surveyed, and 

saw a substantial increase of 3.2% in 2015 to 10% in 2017 which is consistent with previous 

claims in the media (Maier, Ferris & Winstock, 2018). Prevalence estimates are, however, 

still limited in the UK, and if media reports are to be believed, more peer reviewed research 

is necessary to establish an accurate picture of use.  

1.4 Chapter Summary 

 

In summary, cognitive enhancement drugs belong to two groups: soft enhancers and PCE. 

Substances in each group have been discussed separately, in terms of their mechanism of 

action and pharmacology, with the efficacy of each substance also being briefly touched 

upon. Experimental studies with nutraceuticals and PCE have, however, shown modest 

results, but PCE do appear to exhibit acute benefits to some aspects of executive 

functioning such as working memory and attention. Furthermore, based on prevalence 

estimates in the UK, modafinil appears to be the most popular PCE, with recent data even 

showing a considerable increase in use. As such, the efficacy of modafinil will be discussed 

further in Chapter 2 by examining clinical studies, dose dependent effects and the potential 

harms of this drug, to further understand the implications on the user. Nonetheless, 

despite reports by the media which suggest an increase in the use of CE strategies, little 

robust peer reviewed data exists which supports these claims. Problems with methodology 

and sample diversity also raises the issue of generalisability, and intentions behind off-label 

use are rarely investigated making it difficult to interpret prevalence data. As such, a gap in 

knowledge exists concerning intentions and levels of use of CE drugs in the UK, which was 

addressed with a cross-sectional national survey which forms the first study of this thesis.  
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Chapter 2: A Review of Modafinil use in Healthy and Clinical Populations 

 

2.1 Chapter Overview 

 

In the previous chapter, a comprehensive examination of substances used for CE was 

conducted. Through a combined exploration of anecdotal studies by the media and peer-

reviewed scientific research, it was established that pharmaceutical substances, termed 

PCEs, were appearing to grow in prevalence worldwide. This chapter takes a closer look at 

the drug modafinil, a PCE which appears to be most prevalent in the UK, and examines 

research which assesses acute use in healthy and clinical populations in terms of the effects 

the drug has on cognition and health.  

2.2 An Overview of Modafinil  

 

First marketed in France in the 1990’s, modafinil was identified as a wakefulness agent 

promoted for tackling excessive drowsiness (somnolence) in narcolepsy syndrome 

(Minzenberg & Carter, 2008). A recognised neurological disorder, narcolepsy is 

characterised by uncontrollable periods of sleep which can be highly disruptive to a 

person’s life, and despite being a rare condition, it affects upward of 30,000 people in the 

UK (NHS, 2019). Modafinil counteracts the symptoms of this disorder through a unique 

method of action which targets various neurotransmitter networks resulting in a prolonged 

wakeful state. By inhibiting the reuptake of dopamine and noradrenaline, modafinil 

counteracts deficits in orexin found in those diagnosed with the disorder, and prevents 

inappropriate periods of excessive sleep from occurring (d’Angelo et al., 2017). In light of 

the drug’s success, modafinil has garnered international attention and has been approved 

in the USA as a schedule IV drug and is also sanctioned to treat sleep apnoea and shift work 



23 | P a g e  
 

sleep disorder which leads to over 1,000,000 prescriptions a year (Minzenberg & Carter, 

2008). It is also prescribed for use in the US military, and is given to combat pilots and used 

by medical doctors completing long shifts (Francis, Wishart, Williamson, & Iverach, 2019; 

Ooi, Wong, & See, 2019). In the UK, modafinil can only be obtained through prescription 

and is only sanctioned for narcolepsy treatment, but recent research indicates that off-

prescription use is rising (Maier, Ferris & Winstock, 2018). As already explored, reasons 

surrounding unregulated use are numerous, but the potential health and cognitive 

consequences of use are not well understood. Consequently, the different populations who 

use modafinil off-prescription will be further discussed below, including any potential acute 

benefits or side effects to cognitive performance conferred from use.  

2.3 Modafinil effects in Healthy Non-Sleep Deprived Adults 

 

Studies assessing acute use of modafinil in healthy, non-sleep deprived people show mixed 

results. In some cognitive domains, acute modafinil use benefits cognition. For instance, 

studies examining working memory performance reveal improved capacity when compared 

with controls. Müller, Steffenhagen, Regenthal and Bublak (2004) found that on a delayed 

digit span task, 100 and 200mg doses improved working memory performance and delayed 

recall compared with a control group who did not receive modafinil. Furthermore, there 

was no difference in error rate between the groups, suggesting that modafinil improved 

working memory without a speed/accuracy trade-off. Similar findings have been reported 

on the backward digit span task, as both Randall et al. (2005) and Turner et al. (2003) found 

that 100mg and 200mg of modafinil improved working memory performance when 

compared with placebo. Furthermore, when examining IQ, Randall and Shneerson (2005)  

found that 100mg and 200mg of modafinil reduced errors on the digit span task in those 

with lower IQ scores, bringing performance in line with higher performers. These findings 
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support Müller et al. (2004), who found that on a digit span task and a numeric 

manipulation working memory task, modafinil (200mg) reduced errors in lower performers 

without a speed/accuracy trade-off. A later study by the same authors used the same dose 

of modafinil or a placebo and participants completed an IQ test and spatial working 

memory task (Müller et al., 2013). Working memory improvements were most pronounced 

in those with lower IQ, and during the higher difficulty levels of the tasks, implying that 

modafinil confers most benefits to under-performers and has modest benefits to working 

memory in already average or high performers. Nevertheless, some studies reveal limited 

to no benefits on working memory performance. For instance, 2 studies with the backward 

digit span failed to show an effect with 100mg (Pringle, Browning, Parsons, Cowen, & 

Harmer, 2013) and 300mg (Winder-Rhodes et al., 2010) doses. Moreover, on tests of verbal 

working memory, 300mg was shown to not only have no effect on performance, but 

participants self-reported overconfidence in cognitive ability (Baranski, Pigeau, Dinich, & 

Jacobs, 2004). The same was found in a 2-week follow-up study which combined 200mg 

daily administration of modafinil with cognitive training. Despite improvements to new 

language learning with English neologisms paired with visual stimuli, verbal working 

memory was not improved, suggesting that modafinil may only improve selective aspects 

of working memory in rested people (Gilleen et al., 2014).  

Studies examining attention and inhibitory control show less consistent findings. On an 

anti-saccade stop signal task, Rycroft et al. (2007) found that modafinil (200mg) improved 

response inhibition compared with placebo by reducing response latency. However, 

response errors were not reduced, suggesting that modafinil did not improve accuracy. 

Turner et al. (2003) also found reduced latency on a stop signal task and identified a dose-

dependent effect with 200mg conferring faster response times than 100mg. Conversely, 

Theunissen, de la Asuncion Elvira, van den Bergh, and Ramaekers (2009) compared 

modafinil (200mg) with MPH (20mg) and placebo on a stop signal task, and found that both 
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drugs in fact slowed response time, thus appearing to reduce inhibitory control, although 

the effect was non-significant. On tests of simple selective attention, healthy people appear 

to show limited gain from modafinil. Müller et al. (2004) reported that on a letter 

cancellation and trail making task, modafinil (200mg) did not improve attention above 

placebo. Furthermore, on the Cambridge Neuropsychological Test Automated Battery 

(CANTAB), R andall, Shneerson, Plaha, and File (2003) reported that 100mg and 200mg 

of modafinil did not improve selective attention compared with placebo, and even 

increased self-reported anxiety during the task. Additionally, a follow-up study by Randall, 

Shneerson and File (2005) confirmed these findings, but on a rapid visual information 

processing task (RVIP), both doses significantly increased sustained attention compared 

with placebo. Such improvements have also been reported by Turner et al. (2003), who 

found that modafinil (100mg and 200mg) improved performance on the RVIP and a set 

shifting task relative to placebo. Furthermore, on a visual and auditory attention shifting 

task, Marchant et al. (2009) found that modafinil (200mg) improved sustained attention, 

alertness and attentional speed compared with a placebo condition. Modafinil therefore 

appears to have some benefits for healthy people in inhibitory control, sustained attention 

and attentional speed, but not selective attention.  

Research assessing creativity and cognitive flexibility appears to show equivocal results. A 

construct which underlies creativity is problem solving capability, and modafinil does not 

appear to positively impact this function. Mohamed (2016) administered the Group 

Embedded Figures Task and the Remote Associates Task (RAT), and Modafinil (200mg) was 

found not to improve problem solving ability above a matched placebo. Moreover, 

participants in the experimental condition exhibited a marginal reduction on the 

Abbreviated Torrance Test for Adults (ATTA) relative to the placebo condition, signifying 

that modafinil reduced creativity. However, if participants were found to have low 

creativity at baseline, modafinil increased scores in-line with higher performers. 



26 | P a g e  
 

Nevertheless, on the Hayling Sentence completion test (HSCT), Mohamed and Lewis (2014) 

found that modafinil (200mg) increased response latency without increasing response 

accuracy relative to a placebo, indicating that creative thought was slowed. Moreover, 

Müller et al. (2013) showed that on the ATTA and a line drawing task, a modafinil (200mg) 

administration group exhibited decreased creativity scores compared with the placebo 

group, although differences were non-significant. Cognitive flexibility appears to decrease 

with modafinil, as Randall, Fleck, Shneerson, and File (2004) demonstrated that 200mg 

significantly increased errors on a set shifting task relative to placebo. As such, in healthy 

people, modafinil might, in fact, reduce creative thought and cognitive flexibility, which 

suggests that in order to produce benefits in certain cognitive domains, a trade-off exists in 

other aspects of performance.  

In summary, healthy people show benefits to various cognitive domains with acute 

modafinil use. Research appears to support increases to working memory performance 

often without a trade-off to speed or accuracy with moderate doses (200mg) of the drug. 

Some improvements are also reported in inhibitory control and sustained attention, 

although research is not as consistent as with studies examining working memory. 

Moreover, despite these improvements, studies assessing creativity and cognitive flexibility 

do not only seem to show null results, but moderate doses of the drug appear to decrease 

these functions. This suggests the existence of a cognitive trade-off, as certain cognitive 

domains are increased at the cost of others. Furthermore, most benefits seem to be 

recorded with 200mg doses, with 100mg and 300mg sometimes showing no benefits. This 

implies that there is an inverted ‘U’ shape effect with the drug, and that there is an 

optimum dose (200mg) where healthy people gain the most benefits.  

2.4 Modafinil effects in Healthy Sleep Deprived Adults  
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Modafinil’s effects on cognitive performance in sleep-deprived populations are promising, 

as it has been shown to reduce sleepiness. As with rested people, the drug benefits 

working memory processes, although there is less available research. For example, an early 

study by Pigeau et al. (1995) compared modafinil (300mg) with d-amphetamine (20mg) and 

placebo on 3 different occasions during 64 hours of sleeplessness in military personnel. 

Modafinil and d-ampetamine improved performance on a digit span task relative to 

placebo, although working memory was still impaired when compared with performance 

when rested. A follow-up study by the authors compared the same doses of modafinil and 

d-amphetamine to a group that was allowed intermittent naps (Friedl, 2000). Drug 

administration improved performance on a digit span task, in line with non-sleep deprived 

scores, although the duration of improvement was superior in the drug groups compared 

to performance following a nap. This indicates that modafinil may restore cognition more 

effectively than short periods of rest. Furthermore, on the n-back task, Thomas and Kwong 

(2006) found that modafinil (200mg) improved working memory performance after a single 

night of sleep deprivation. Performance was improved on the 1, 2 and 3-back compared 

with placebo, but improvements were most pronounced in the 2-back condition. Of course, 

it is unsurprising that both groups performed well on the 1-back due to the relative ease of 

the task, but differences on the 2-back suggest the existence of an inverted ‘U’ shape effect 

of the drug with sleep deprived people on working memory performance, in that most 

benefits appear on the moderate difficulty task. Similarly, Sauvet et al. (2019) found that 

modafinil (200mg), administered 3 times over 18 hours, improved performance on the 2-

back relative to a placebo after 40 hours sleep deprivation. Moreover, a compound of 

modafinil (100mg) and flecainide (9mg), TN102, which modulates the effects of modafinil 

by reducing cardiovascular activity, was shown to improve wakefulness and working 

memory performance more than modafinil alone.  
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Modafinil appears to be most beneficial to attentional processes, reaction time and 

memory recall in sleep deprivation studies. A body of research by the Institut de Medicine 

Aerspatiale in France found various benefits to sustaining performance on a large task 

battery. In the first study, male air force pilots received either 6 treatments of modafinil 

(200mg) or placebo over 60 hours of wakefulness (Lagarde & Batejat, 1995; Lagarde, 

Batejat, Van Beers, Sarafian, & Pradella, 1995). On the second study, the effectiveness of 

modafinil (200mg) and sleep versus a matched placebo and sleep was investigated on the 

same test battery (Batejat & Lagarde, 1999). Both studies found that modafinil significantly 

improved attention, reaction time, mathematical reasoning, grammatical reasoning and 

spatial processing when compared with placebo. Moreover, in the first study, statistical 

differences were most pronounced after 48 hours of sleep deprivation, which indicates that 

modafinil is most effective after a significant period of wakefulness. Wesensten et al. 

(2002) compared modafinil (100mg, 200mg and 400mg) with caffeine (600mg) during 54 

hours of wakefulness. Five groups were administered the computerised Performance 

Assessment Battery (PAB), twice hourly, with 200 and 400mg of modafinil increasing 

response time and mathematical ability significantly more than placebo and equal to 

caffeine. Findings suggest that 100mg may not be sufficient to restore cognitive 

performance in unrested people, but medium and high doses produce similar performance 

outcomes to a high dose of caffeine. Modafinil (300mg) has also been shown to improve 

reaction time, memory recall and reasoning in military recruits compared with placebo 

after 64 hours of shift work (Buguet, Montmayeur, Pigeau, & Naitoh, 1995). Moreover, 

with doctors in the emergency department, modafinil (200mg) improved sustained 

attention on the CPT and improved accuracy without a speed trade-off after an overnight 

shift (Gill, Haerich, Westcott, Godenick, & Tucker, 2006). Moreover, Hart et al. (2006)  

found that during 3 days of simulated night shifts that 200 and 400mg of modafinil 

significantly improved divided attention and immediate recall compared with a placebo 
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when participants completed a battery of tests in day and night cycles. There were no 

dose-dependent differences in performance, signifying that attention and memory both 

benefit from moderate and high doses of modafinil when sleep deprived. Interestingly, 

both doses exerted strongest effects during night-time consumption, which may indicate 

that this is the optimal time to take the drug.  

On measures of inhibitory control and cognitive flexibility, different doses of modafinil 

shows strong results, although research is limited. Wesensten, Killgore, and Balkin (2005)  

found that after 85 hours of sleeplessness, a single dose of modafinil (400mg) significantly 

improved performance and flexibility on the Wisconsin Card Sort Test (WCST) and 

inhibitory control on the Stroop comparable with caffeine (600mg) and above d-

amphetamine (20mg). Furthermore, a study with a medium dose of modafinil (200mg) 

found reduced errors on the WCST and greater cognitive flexibility and control on the 

sentence completion test, compared with a matched placebo (Walsh, Randazzo, Stone, & 

Schweitzer, 2004).  

In sum, acute use of modafinil shows promising results across various cognitive domains in 

otherwise healthy but sleep deprived people. Unrested people appear to be receptive to 

different doses of modafinil, with moderate (200mg) and high doses (300 – 400mg) 

exhibiting strong restorative effects across various cognitive functions. Similar to healthy 

people, working memory performance is also improved, although some evidence indicates 

that this effect is only apparent in tasks of moderate difficulty and performance is still 

below when rested. Attentional processes, inhibitory control, reaction time, memory recall, 

spatial processes numerical and grammatical reasoning are also restored with medium and 

high doses of the drug, but 100mg doses do not appear to be effective. Moreover, unlike 

rested people who appear to experience decrements in cognitive flexibility, a moderate 

dose of modafinil is shown to improve this function is unrested people. Finally, different 
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doses of the drug even appear to be effective in excessive sleeplessness (54 and 64 hours 

respectively), suggesting that modafinil is most effective when counteracting sleep 

deprivation.  

2.5 Modafinil effects in Adults with Clinical Conditions  

 

The effects of modafinil on cognition in clinical populations has also been studied. For 

instance, research appears to show the reversal of working memory deficits commonly 

reported in patients with chronic schizophrenia. In a double-blind, placebo matched study, 

modafinil (200mg) administered alongside antipsychotic medication significantly improved 

performance on the digit span and backward digit span tasks (Turner, Clark, Pomarol-

Clotet, et al., 2004). Delayed visual recognition memory was also improved on the CANAB 

and the modafinil group showed improved attentional set shifting on the Tower of London 

task. People with Schizophrenia have also exhibited improvements on the n-back with 

modafinil (100mg) relative to placebo, which fMRI revealed was linked to increased 

activation of the dorsal anterior cingulate cortex (Spence, Green, Wilkinson, & Hunter, 

2005). Moreover, working memory improvements have also been reported on a letter-

number sequencing task, when schizophrenic patients received a continuous, 28 day dose 

(days 1- 14 100mg, days 15 – 28 200mg) (Rosenthal & Bryant, 2004). Additionally, modafinil 

led to mood enhancement and a significant reduction in fatigue during baseline 

measurements, but no differences were reported between 100 or 200mg treatments. 

Furthermore, Minzenberg et al. (2009) found that modafinil (200mg) improved inhibitory 

control relative to placebo on a stop signal task, which was linked to greater activation of  

the PFC. Modafinil has also been found to reduce some negative symptoms of 

schizophrenia as outlined by the DSM-IV, although findings are mixed. A longitudinal study 

from 2002 to 2006 found that in people with schizophrenia and schizoaffective disorder, 8 
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weeks of once-daily modafinil (200mg) significantly reduced symptoms of sleep irregularity, 

and improved sustained attention on a degraded performance-continuous performance 

test and verbal recall on the Californian Verbal Learning Test, all deficits commonly 

reported in the disorder (Pierre, Peloian, Wirshing, Wirshing, & Marder, 2007). 

Furthermore, modafinil did not improve psychosis reported on the Scale for the 

Assessment of Negative Symptoms (SANS) or the Brief Psychiatric Rating Scale (BPRS), but 

nor did it negatively impact symptoms, suggesting that the drug has effective but limited 

treatment utility for schizophrenia, and is not reported to degrade the condition. However, 

a systematic review by Saavedra-Velez, Yusim, Anbarasan, and Lindenmayer (2009) found 

that other studies reported no reduction in negative symptoms at all with different doses 

of the drug. Although, in these studies improvements to various aspects of cognition were 

reported, including sustained attention, attention shifting and short-term memory. 

However, not all studies show benefits to cognitive processes in patients with 

schizophrenia. An fMRI study with schizophrenic patients with prominent negative 

symptoms revealed that modafinil (100mg) did not improve Cognitive control on a motor 

activity task (Hunter, Ganesan, Wilkinson, & Spence, 2006). Furthermore, an 8 week follow-

up study showed no improvements to attention or working memory with once-daily 

modafinil (200mg) compared with placebo (Sevy et al., 2005). Nevertheless, studies 

indicate that modafinil at different doses can improve cognitive performance, and some 

associated symptoms, of schizophrenia.  

In people with depressive disorders, a small number of studies reveal that modafinil has 

some effectiveness, particularly for mood enhancement. For example, modafinil (400mg) 

taken once daily for 3 days, improved subjective ratings on the Positive and Negative Affect 

Schedule and a generalised mood scale in depressed but otherwise healthy people relative 

to placebo (Taneja, Haman, Shelton, & Robertson, 2007). Although, negative affect was 

also seen to significantly increase, as participants reported greater feelings of anxiety. 
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However, with patients from an out-patient clinic experiencing major depression, Price and 

Taylor (2005) demonstrated that subjective feelings of anxiety and depression were 

reduced with one daily treatment of modafinil (50 – 450mg doses) after 2 weeks and 3 

months of treatment as reported on the Beck Depression Inventory, Zung Self-Rating Scale 

and Hamilton Depression and Anxiety Rating Scale. Similarly, in patients with bipolar 

depression, Ballenger (2009) found that daily modafinil (average dose 177mg) significantly 

improved symptoms of depression relative to a placebo on subjective responses to the 

Inventory of Depressive Symptoms. Although, modafinil did not reduce incidences of mania 

or hypermania. In addition, on cognitive performance, evidence for improvements with 

modafinil is very limited. On the Stroop, modafinil (100 - 400mg) has been shown to 

improve inhibitory control and reduce interference compared with placebo (DeBattista, 

Lembke, Solvason, Ghebremichael, & Poirier, 2004). Finally, on the CANAB, which examines 

working memory, episodic memory, sustained attention and planning, modafinil (200mg) 

significantly improved performance on working memory and episodic memory, relative to 

placebo in people with remitted depression, but not on other measures (Kaser et al., 2017). 

Modafinil, therefore, appears to have positive outcomes in alleviating low mood and 

feelings of depression and anxiety in people with clinical conditions, but more research is 

required which inspects cognitive performance.  

In people with ADHD, the drug has been shown to significantly decrease attention deficits 

associated with the disorder. In children with the condition, Rugino and Copley (2001) 

found that daily modafinil (200mg) for an average of 4.6 weeks significantly decreased 

ADHD score on the ADHD Rating Scale-IV. Furthermore, Rugino and Samsock (2003) 

showed that children receiving a lesser dose of the drug (100mg), after 6 weeks of daily 

treatment, exhibited a significant decrease in symptoms as rated on the Conners Rating 

Scale. Moreover, in children who were assessed daily at school and home, modafinil (170 – 

425mg) was found to decrease symptoms of the disorder on the ADHD Rating Scale-IV in 
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both environments, although decreased appetite, weight loss, insomnia and headaches 

were reported as side effects (Greenhill et al., 2006). In another study, modafinil (170 – 

425mg) decreased scores on the ADHD Rating Scale-IV and Conners Rating Scale and 

appeared to be particularly effective at significantly reducing inattentiveness and hyper-

active impulse in the children compared with placebo. Finally, research investigating 

cognitive performance in the lab is rare, but one study with adults with ADHD found that 

modafinil (200mg) was associated with improvements in spatial planning, visual recognition 

memory and working memory on a battery of cognitive tasks, compared with a placebo 

group (Turner, Clark, Dowson, Robbins, & Sahakian, 2004). As such, modafinil appears 

effective at reducing disruptive symptoms of ADHD in children, but studies assessing 

cognitive performance are lacking.   

To summarise, in adults with clinical conditions modafinil is shown to be effective at 

improving cognitive functions impacted by various psychiatric disorders. Many of the 

studies use daily dosing regimens, which make comparisons with healthy and sleep 

deprived populations difficult, as most research with those samples are acute 

administration studies. Nevertheless, like the other populations discussed, working 

memory performance appears to be improved in people with chronic schizophrenia with 

200mg repeat doses of modafinil, as does attention shifting and inhibitory control to some 

extent. Furthermore, alongside antipsychotic medication, modafinil appears to have some 

effectiveness at reducing the negative symptoms of schizophrenia, although 100mg doses 

appear to be ineffective. In adults with depression, modafinil is mainly effective as a mood 

enhancer and is shown to alleviate low mood and anxiety. Finally, with ADHD children and 

adults, low and high doses of the drug appear to reduce attention deficits and other 

associated symptoms of the disorder, and in adults 200mg has also been seen to improve 

working memory, visual recognition memory and spatial planning.  
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2.6 Side Effects and Potential Harms 

 

In the populations discussed above, modafinil appears to be well tolerated and facilitates 

some aspects of cognitive performance while reducing several symptoms of various clinical 

conditions. Nevertheless, in periods of acute use, certain side effects are reported. In small 

to moderate doses (100 – 200mg), studies do not describe adverse reactions; however, 

with larger doses (300mg and above) some common side effects have been observed. The 

most frequently reported side effects are headaches, nausea and sleep disturbances, which 

have been found in rested (Saletu et al., 1989; Saletu, Grünberger, Linzmayer, & Stöhr, 

1986) and sleep deprived people (Caldwell, Caldwell, Smyth, & Hall, 2000). Anxiety, 

nervousness and racing heart rate are less observed, but have been recorded in 2 studies 

(Caldwell, Smith, & Brown, 2004; Wesensten et al., 2005). In a single case, hallucinations 

have been reported with a large dose of 900mg, although they were also later reported 

with placebo (Chapotot, Pigeau, Canini, Bourdon, & Buguet, 2003), suggesting that an 

expectancy effect may have been responsible. Consequently, no severe side effects have 

been reported in research, and at the time of writing, there have been no reports of serious 

adverse reactions or death from use of the drug. Nevertheless, Provigil, the official licence 

holder of modafinil in the USA, has published several guidelines surrounding safe use (FDA, 

2007). Moreover, the US Food and Drug Administration point out that research on the 

long-term health impact of the drug (above 3 months) has not been conducted, but short-

term clinical trials show no negative impact on cardiovascular or cognitive health. Of 

course, the absence of evidence does not equate to the absence of harm, and caution 

should be taken when repeatedly using any psychoactive substance over a significant 

period. It is also worth considering that modafinil is a psychostimulant which shares 

similarities with amphetamine and other neurotoxic substances, and despite not having an 

identical method of action, drugs known to modulate dopamine and noradrenaline are 
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proven to lead to physiological and psychological distress, and can result in addiction 

(Gawin & Ellinwood, 1988). If then, the prevalence reports discussed in the previous 

chapter about the rise in nonmedical modafinil use in the UK are true, then users 

potentially find themselves at an elevated risk. Further research is therefore required to 

assess the impact of long-term use (longer than 3 months), and to evaluate whether 

modafinil is harmful.  

2.7 Chapter Summary  

 

As a cognition enhancing substance, modafinil appears to have some benefits for improving 

cognitive functions in healthy people with or without sleep deprivation, and in people with 

various clinical conditions. Evidence is perhaps most persuasive in people who are 

unrested, as modafinil appears to reverse cognitive deficits associated with sleeplessness 

to baseline levels or just below. However, in healthy people, evidence for the drug’s 

effectiveness at improving cognitive function is not conclusive. Research supports working 

memory improvements in a laboratory setting, but effects of modafinil on inhibitory 

control and attentional processes are less consistent. In addition, creativity and cognitive 

flexibility show impairments with modafinil use, suggesting that there may be a cognitive 

‘trade-off’ when healthy people use the drug. In terms of dose-dependent effects, 200mg 

appears to be the optimal dose for conferring cognitive benefits, with doses below and 

above this amount showing some null results, suggesting an inverted ‘U’ shape effect. 

Adverse side effects also appear to be rare but are reported with larger doses of the drug 

(300mg and above), suggesting that a moderate dose is also the safest. Finally, the long-

term impact of modafinil on health and cognition has not been addressed in previous 

research, despite short-term use (3 months and below) indicating that the drug is well 

tolerated. Nevertheless, if the prevalence estimates explored in the previous chapter are to 
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be believed, then there is a recent and substantial increase in modafinil use. Such a rise 

could come with hidden implications for health and long-term cognitive functioning, 

particularly if users do not follow medical guidelines for safe use. Therefore, studies 2 and 3 

of this thesis further investigate people who report long-term use of modafinil, and they 

assess cognition, physiological and neurological functioning during completion of various 

cognitive performance measures. Furthermore, the following Chapter will examine the use 

of various methods for measuring cognitive workload, an umbrella term for examining 

different aspects of cognitive performance in response to task difficulty (e.g., working 

memory, multi-tasking and problem-solving), to determine which methods are most 

appropriate for capturing potential differences that might be apparent between long-term 

modafinil users and nonusers.  
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Chapter 3: Subjective, Cognitive and Neurophysiological indicators of Cognitive 

Workload: Examining the different methodologies.  

 

3.1 Chapter Overview 

 

This chapter explores the psychophysiological and neurophysiological correlates of 

cognitive workload, including a variety of neuroimaging and physiological techniques 

designed to measure cognitive effort. Additionally, highly demanding cognitive 

performance measures which increase effort investment are discussed here, including 

research in different types of substance users, to examine whether or not these measures 

are effective at detecting differences in performance in these groups. This Chapter 

therefore scrutinises the most effective methods for use in Study 2 and 3 of the thesis for 

examining potential differences in cognitive workload with long-term modafinil users.  

3.2 Defining Cognitive Workload 

 

Cognitive workload can be understood as the level of cognitive effort invested in a task in 

an attempt to successfully complete it (Cain, 2007). The level of workload required is 

therefore set by the individual and is not preset by the task. To further clarify, a task does 

not inherently possess a prerequisite level of workload in order for it to be completed;  this 

is determined by the individual and may vary as a function of who is attempting the task 

(Vidulich & Tsang, 2012). As such, there is a point in which a person reaches peak effort 

investment, which represents their maximum cognitive workload. Anything above this level 

of effort exceeds a person’s ability to attend to and process the requirements of the task, 

and this point has been termed cognitive overload (Kirsh, 2000). Furthermore, the point in 

which cognitive overload occurs has been shown to vary with different populations, such as 
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substance users, a point which will later be returned to (Cain, 2007). In the following 

sections of this Chapter, the various methods of measuring cognitive workload are 

evaluated.  

3.3 Subjective and Behavioural Measures of Cognitive Workload 

 

A popular subjective measure of cognitive workload is the NASA Task Load Index (NASA-

TLX), which assesses perceived workload across 6 domains (Hart & Staveland, 1988). This 

measure was developed by NASA to determine workload during complex aviation trials, but 

has seen growing use in healthcare settings and cognitive research (Tubbs-Cooley, Mara, 

Carle, & Gurses, 2018). Visual analogue scales investigate self-reported mental, physical 

and temporal demand, as well as maximum effort, perceived performance and frustration 

(See Chapter 7 for full description). A review of 550 studies over 20 years found that almost 

all studies assessed measures of cognitive performance, with 31% focusing on workload 

with computer-based cognitive performance measures (Hart et al., 2006). Moreover, 6% of 

studies also assessed other measures of cognitive workload against the NASA-TLX, including 

neurophysiological measures like cardiovascular reactivity, brain activity and skin 

conductance. As such, the NASA-TLX is treated as the benchmark with which other 

cognitive workload measures are compared (Hitt, Kring, Daskarolis, Morris, & Mouloua, 

1999). However, like other self-report measures, common criticisms of the NASA-TLX 

include issues with report bias, honesty and introspective ability. Consequently, cognitive 

workload is best measured alongside other methods, such as cognitive tasks and 

neurophysiological measures of effort investment.  

Working memory tasks are another effective measure of cognitive workload (Engle, Kane, 

& Tuholski, 1999). Characterised as the ability to maintain attention and remember specific 

stimuli in the presence of distracting information, working memory performance is strongly 
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associated with cognitive workload (Baddeley, 1992). Furthermore, n-back tasks are 

especially effective at capturing effort investment and working memory load because 

conditions can be altered to systematically increase workload, which can reveal the point in 

which a person experiences cognitive overload (Jaeggi, Buschkuehl, Perrig, & Meier, 2010). 

The n-back requires constant updating of working memory to recall the position of a 

stimulus (e.g. a spatial location or letter/number in a sequence) and whether the 

information currently displayed is a match or non-match (see Figure 3.1.). A recent meta-

analysis found that the n-back is often used in conjunction with neuroimaging techniques 

to capture neurophysiological correlates of cognitive workload (Redick & Lindsey, 2013). 

Nonetheless, this test appears to be an effective working memory task at increasing 

working memory load, and has been used to demonstrate differences in cognitive workload 

with clinical populations and chronic substance users (Martin et al., 2018; Sanvicente-

Vieira, Kommers-Molina, De Nardi, Francke, & Grassi-Oliveira, 2016). The previous chapter 

also highlighted that the n-back and other tests of working memory have demonstrated 

performance differences with acute modafinil use relative to placebo. As such, the task 

may also be sufficient to identify differences in working memory load with long-term 

modafinil users.   
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Figure 3.1. – Different conditions of a computerised letter-based n-back working memory task. 

Participants are required to click each time the current stimulus matches the letter ‘n’ back in the 

sequence. As the target becomes more distant, memory interference and the presence of distracting 

information makes the task demand greater which leads to greater cognitive workload.  

 

 

Inhibitory control tasks can also be manipulated to increase cognitive workload 

(Chmielewski, Mückschel, Stock, & Beste, 2015). These tasks require a response to certain 

stimuli, while simultaneously inhibiting/withholding responses to others. A popular 

inhibition task is the Go/No-go task, which presents ‘go’ signals, which require a response, 

and ‘no-go’ signals which require withholding a response (see Chapter 4 for full 

methodology). Differences in inhibitory control are observed by variations in response time 

between ‘go’ signals and ‘no-go’ signals, and in errors in inhibition where participants 

accidentally respond during ‘no-go’ trials. Increased response latency during sustained 

inhibition could indicate mental fatigue in response to increased workload (Kato, Endo, & 

Kizuka, 2009). Impairments in the ability to inhibit responses are common characteristics in 

psychopathology and substance abuse. A combined meta-analysis and systematic review of 

Go/No-Go tasks assessed 318 studies investigating 11 different psychiatric disorders, 

including substance use disorders, and found that when compared with healthy controls, 

the task exposed significantly more errors and slower response times in psychiatric samples 
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(Wright, Lipszyc, Dupuis, Thaypararajah, & Schachar, 2014). Moreover, research specific to 

substance users shows that chronic methamphetamine users demonstrate impaired 

latency to ‘no-go’ targets (Monterosso, Aron, Cordova, Xu, & London, 2005), as do heavy 

social drinkers when compared with light drinkers (Ahmadi et al., 2013), and cocaine users 

during harder task difficulties (Kaufman, Ross, Stein, & Garavan, 2003). As such, substance 

users, particularly chronic stimulant users, demonstrate deficits to inhibitory control on the 

Go/No-go task, which could yet be seen in other substance using populations such as 

modafinil users. A frequent criticism of the Go/No-go task, however, is that it is more a 

measure of sustained attention than response inhibition (Wright, Lipszyc, Dupuis, 

Thaypararajah, & Schachar, 2014) and that errors are attributed to plateaus in attention 

processes rather than deficits in inhibitory control.   

Figure 3.2. – A variant of the Cued Go/No-go task. In this version, participants are required to 

respond only to green rectangles which appear in either horizontal or vertical orientation. Horizontal 

rectangles appear primarily green, while vertical rectangles are mostly blue. Cognitive workload is 

created by determining which rectangles to respond to and which to ignore (Fillmore, 2003).  
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Nonetheless, tests measuring sustained attention have different characteristics to those 

measuring inhibitory control. These tasks are based on the simple premise of focusing 

attention over a duration of time to identify specific stimuli, such as letter sequences or 

number pairs (Shalev, Ben-Simon, Mevorach, Cohen, & Tsal, 2011). Such tests increase 

cognitive workload by causing the participant to invest sustained effort and vigilance for a 

long period of time, which leads to mental fatigue and can result in cognitive overload 

(Szalma, 2009). A popular test of sustained attention is the CPT, which requires participants 

to attend to strings of letters or numbers and to identify specific patterns (e.g., odd and 

even numbers), while simultaneously ignoring distracting information (see Chapter 6 for 

full methodology). This test was designed to measure deficits in sustained attention in 

patients with traumatic brain injury and psychiatric populations (Rosvold, Mirsky, Sarason, 

Bransome Jr, & Beck, 1956), with the earliest example presenting letter sequences and 

requiring patients to respond when ‘X’ or ‘AX’ was displayed. CPTs have been used 

alongside neuroimaging techniques to localise regions of the brain implicated in attentional 

processes, and to measure psychophysiological indicators of cognitive workload (Adler et 

al., 2001; Thermenos et al., 2005). The CPT also shows sensitivity to attention deficits found 

in adults with ADHD (Riccio & Reynolds, 2001), although a recent meta-analysis showed 

that the task is not sensitive to differences in attentional load between genders (Hasson & 

Fine, 2012). Research with chronic substance use has also been conducted, and focuses on 

attention deficits in children who experienced prenatal substance abuse, including alcohol 

(Dolan, Stone, & Briggs, 2009), heroin and cocaine use (Ackerman et al., 2008; Bandstra, 

Morrow, Anthony, Accornero, & Fried, 2001), although only prenatal heroin and cocaine 

use demonstrate impairments to attentional load. Furthermore, the previous chapter 

showed that acute administration of modafinil improved performance on a CPT in sleep 

deprived adults, although this task has not been used to demonstrate differences in 

attentional load with long-term use.  
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Figure 3.3. – An early variant of a CPT where participants respond only when ‘A’ and ‘X’ appear 

sequentially. Workload demand is heightened by gradually increasing the frequency with which X 

follows A, resulting in a state of heightened sustained attention (Lesh et al., 2015).  

 

 

Multitasking paradigms are another effective way of increasing cognitive workload, as 

these tests require high effort investment and the use of multiple, simultaneous cognitive 

processes (Manhart, 2004). These tasks are also effective stress inducers, as participants 

often must attend to multiple highly demanding tasks at once, and errors are often 

punished by loss of incentives or decreasing scores. However, multitasking cognitive tests 

lack standardisation, and as such vary in what aspects of cognitive performance they assess 

and the ease with which they are completed. Nevertheless, the emphasis with these tasks 

is not on what aspects of cognitive function are being examined, but that the executive is 

being loaded/overloaded by a series of high demands (Wetherell & Carter, 2014). A 

substantial body of research exists which demonstrates that multitasking in different forms 

is an effective means of increasing cognitive workload by challenging a person’s ability to 
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attend to the requirements of several tasks at once (Puma, Matton, Paubel, Raufaste, & El-

Yagoubi, 2018; Sanjram, 2013; Wilson & Eggemeier, 1991; Xie & Salvendy, 2000). However, 

at the time of writing, there is a lack of review data which compares multitasking cognitive 

performance measures in effectiveness for increasing cognitive workload, although a task 

has recently emerged which has been shown to increase workload and some associated 

psychobiological markers. The Multitasking Framework (MTF) (Wetherell & Carter, 2014), is 

a versatile multitasking model, which enables the simultaneous completion of up to 4 

different cognitive performance measures (see Chapter 7 for full methodology). Difficulty 

can also be altered by changing task parameters (e.g. increasing the length of sums on a 

mental arithmetic task or increasing speed on a visual monitoring task), and altering the 

timeframe that participants must complete the tasks. A numerical score is also kept in the 

centre of the window which updates in real-time and can enter negative values if 

participants falters across any of the tasks, a method shown to increase cognitive stress 

and workload by increasing the urgency to perform well (Wetherell & Carter, 2014). As the 

MTF is relatively new, research with the task is still growing, but some evidence suggests 

that it is an effective tool for increasing perceived workload and biomarkers of stress (Kelly-

Hughes, Wetherell, & Smith, 2014; Wetherell & Carter, 2014; Wetherell, Craw, Smith, & 

Smith, 2017). Furthermore, in substance using samples, the MTF has been shown to 

increase perceived workload in ecstasy users compared with controls (Wetherell, Atherton, 

Grainger, Brosnan, & Scholey, 2012) and increase haemodynamic response, a biomarker of 

increased cognitive workload, in ecstasy polydrug users relative to a control group (see 

below for more on the MTF and haemodynamic response with fNIRS) (Roberts, Wetherell, 

Fisk, & Montgomery, 2015). As such, multitasking methods appear to be an effective means 

of increasing cognitive workload by increasing effort investment and cognitive stress and 

reveal differences in cognitive performance between substance using samples, which could 

be a useful method when examining modafinil users.  
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3.3 Neurological Indicators of Cognitive Effort 

 

Neuroimaging technologies are useful tools for elucidating neurological correlates of 

cognitive deficits and increased cognitive workload (Ranchet, Morgan, Akinwuntan, & 

Devos, 2017; Unni et al., 2015). The technology for which there is most evidence is 

electroencephalogram (EEG), which demonstrates an increase in theta band and a decrease 

in alpha band power when cognitive workload is increased (Puma et al., 2018). This method 

has proven very effective when measuring attention (Borghini, Astolfi, Vecchiato, Mattia, & 

Babiloni, 2014; Kamzanova, Kustubayeva, & Matthews, 2014; Zhao, Zhao, Liu, & Zheng, 

2012) and working memory load (Başar, Başar-Eroglu, Karakaş, & Schürmann, 2001; 

Kahana, 2001; Klimesch, 1999), and is considered the most widely researched indicator of 

cognitive workload (Ke et al., 2014). Nevertheless, novel techniques could confer additional 

benefits when investigating cognitive workload.  

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique which measures 

haemodynamic response to neuronal activation via a process termed neurovascular 

coupling (See Chapter 4 for full methodology). Moreover, studies reveal that fNIRS is 

sensitive when localising cognitive impairments in working memory and executive function 

(Ehlis, Bähne, Jacob, Herrmann, & Fallgatter, 2008; Izzetoglu, Bunce, Onaral, Pourrezaei, & 

Chance, 2004). The area of the cortex thought to govern these functions is the dorsolateral 

prefrontal cortex (DLPFC), which is deeply innerved with dopamine transporters which are 

related to cognitive performance (Collins, 2008). Therefore, there is a theoretical basis for 

use of fNIRS to measure changes in haemodynamic response, specifically oxygenated (oxy-

Hb) and deoxygenated haemoglobin (deoxy-Hb), localised to the DLPFC. Moreover, changes 

in haemodynamic activity can index increases in effort and cognitive workload and can 

provide a neuronal link of cognitive impairments. Furthermore, tasks which typically 
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require greater cognitive workload are often sensitive to the presence of cognitive deficits 

which are linked to substance use (Ranchet et al., 2017). Therefore, by exposing substance 

users to tasks of differing workload, specific cognitive impairments can be studied, and 

fNIRS can be used to measure these deficits.  

Studies using fNIRS to index cognitive deficits and workload in ecstasy and ecstasy polydrug 

users have revealed compelling results. Roberts and Montgomery (2015a) examined 

ecstasy users’ executive access on an oral variant of the Chicago World Fluency Test and 

found increased oxy-Hb change on the left DLPFC and right medial PFC in users relative to 

nonusers. No behavioural differences were apparent which suggests that users exhibited 

increased effort investment and activity in the PFC as a compensatory mechanism for 

ecstasy induced cognitive deficits. Another study by the same authors had similar findings 

on a random letter generation inhibitory control task (Roberts & Montgomery, 2015b). 

Ecstasy users showed increased oxy-Hb change on the left and right DLPFC and right medial 

PFC, despite no behavioural differences. Moreover, recency of ecstasy use significantly 

predicted increased oxy-Hb change across 2 channels on the right PFC, suggesting that 

recent substance use is most associated with the presence of cognitive deficits. 

Montgomery, Fisk, and Roberts (2017) also showed a difference in oxy and deoxy-Hb 

change on a verbal and spatial working memory updating task. Again, the left and right 

DLPFC showed increased oxy-Hb change in users, despite no differences on the behavioural 

measures. Total use and recency of use were also linked to most haemodynamic changes, 

suggesting again that recent and chronic ecstasy use was most detrimental to cognition. 

Conversely, Roberts et al. (2015) found that on an intermediate difficulty condition of the 

MTF, which used mental arithmetic, stroop, visual tracking and visual warning subtasks, 

ecstasy polydrug users exhibited decreased oxy-Hb change when compared with controls 

on the left and right DLPFC, and with non-ecstasy polydrug users on the right DLFPC. There 

were no differences in perceived workload on the NASA-TLX or in performance on the 
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subtasks of the MTF, suggesting that on an acute multitasking stressor, ecstasy users 

required less cognitive effort than the other groups to achieve equivalent results. These 

findings may diverge from other studies as cognitive multitasking is linked to bilateral 

cortical activation more so than completing single tasks (Deprez et al., 2013), and it may be 

that users need to invest less effort to access both hemispheres than nonusers, but use 

more for single cortex activation. This also supports a notion that substance users 

experience changes in patterns of neural activation which may come as a result of 

unresolved cognitive deficits. Taken as a whole, studies with ecstasy users show that 

through changes in haemodynamic response, fNIRS can detect cognitive workload 

differences in substance users across a range of cognitive performance measures and can 

even identify deficits linked to chronic and recent drug use. Therefore, despite the current 

lack of research, fNIRS appears to be an appropriate technology to study potential 

differences in workload with modafinil users. 

Although fNIRS studies have not explored modafinil use, or nonmedical prescription 

stimulant use in general, a small number have looked at populations with deficits to 

working memory and executive function, such as adolescents with ADHD. For instance, 

Moser, Cutini, Weber, and Schroeter (2009) found increased oxy-Hb change in the right 

DLPFC during a Stroop task with MPH abstinent ADHD adults compared with healthy 

controls despite a lack of performance differences on the task. Interestingly, Ehlis et al. 

(2008) observed reduced activation of the ventrolateral prefrontal cortex (VLPFC) in ADHD 

adults compared with healthy controls on a working memory n-back task, with controls 

also outperforming ADHD adults on the task. They also found the same oxy-Hb reductions 

and behavioral differences during a verbal fluency task, suggesting that deficits in executive 

function are coupled with decreased haemodynamic response in the VLPFC.  Furthermore, 

Monden et al. (2012) observed haemodynamic differences in ADHD adolescents pre and 

post MPH administration on a go/no-go task. MPH led to a general increase in oxy-Hb in 
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the right PFC which was not apparent before administration. Increased activation in the 

right PFC was also associated with improved task performance, providing strong support 

for a link between oxy-Hb change in the region and improvements in executive function. As 

such, fNIRS shows adequate sensitivity to differences in cognitive workload with ecstasy 

polydrug users and ADHD adults. Nevertheless, it remains to be seen whether fNIRS can 

capture differences in neurovascular coupling with nonmedical modafinil users.  

3.4 Physiological Indicators of Cognitive Effort 

 

Physiological measures of effort investment are also linked to changes in cognitive 

workload. These methods vary but tend to focus on the heart’s reactivity to cognitive 

performance measures. Moreover, a recent systematic review of physiological measures 

used to index cognitive workload reported that no single method stood out as the primary 

means of measuring working memory, but rather a combination of techniques was most 

effective (Charles & Nixon, 2019). Popular physiological measurements for capturing 

changes in cognitive workload are heart rate and heart rate variability (HRV), with some 

studies also assessing blood pressure (Ranchet et al., 2017). An increase in cardiovascular 

activity is associated with an increase in cognitive effort, and the use of stress-inducing 

multitasking tests show the strongest outcomes (Wetherell et al., 2017). For example, 

Wetherell and Carter (2014) administered 3 difficulty conditions of the MTF (low, medium 

and high) to 20 healthy people, and found that alongside subjective reports of increasing 

workload on the NASA-TLX, heart rate, systolic and diastolic blood pressure showed 

significant increases as the task difficulty increased. Furthermore, Wetherell et al. (2017) 

demonstrated that the added stress of performance evaluation during the MTF increased 

cardiovascular reactivity. At specific intervals during the task, participants were informed 

that they were under-performing compared to average and had to quickly improve their 
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score. This resulted in significant increases in perceived workload, heart rate and systolic 

and diastolic blood pressure when compared to the regular MTF condition. Similarly, Kelly-

Hughes et al. (2014) found that multitasking under higher difficulty caused significant 

increases in beat to beat blood pressure than low difficulty multitasking. Moreover, 

increased working memory load is an effective stressor and cause of cognitive overload, 

with high heart rate and blood pressure linked to increased working memory demand 

(Martens et al., 2019; Mehler, Reimer, & Coughlin, 2012). HRV is also affected by cognitive 

stressors, which has been demonstrated on a flight simulator, with reduced high-frequency 

HRV as the task increased in difficulty (Durantin, Gagnon, Tremblay, & Dehais, 2014), and 

on various working memory tasks, including the n-back, where harder paradigms also show 

decreased HRV (Backs & Seljos, 1994; Hansen, Johnsen, & Thayer, 2003; Mulder & Mulder, 

1981). Finally, some evidence indicates that tasks of inhibitory control, such as the Stroop, 

reduce HRV (Egner & Hirsch, 2005; Mathewson et al., 2010), although it has also been 

shown that this link may be attributed purely to attentional processes (Fairclough & 

Houston, 2004). 

Despite physiological measures of cognitive workload showing some compelling findings, at 

the time of writing, studies appear to have not looked at differences among substance user 

samples. Nevertheless, long-term use of illicit drugs are linked with cardiovascular 

reactivity and toxicity, and may result in episodes of cardiac tachycardia, dysrhythmia, 

hypertension and even myocardial infarction (Richards et al., 2016). Moreover, stimulants 

in particular activate the SNS through norepinephrine and adrenergic receptors which 

increase myocardial oxygen demand and are observed to raise heart rate and systolic blood 

pressure (Stankowski, Kloner, & Rezkalla, 2015). Studies assessing the effects of stimulant 

use on HRV in healthy adult users are rare and those that exist primarily focus on chronic 

prenatal use without assessing differences in workload, as such it is difficult to draw 

relevant conclusions from this research (Koenig, Menke, Hillecke, Thayer, and Jarczok, 
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2015). Still, as a prescription stimulant, it is feasible that long-term modafinil use may take 

a similar toll on cardiac functioning as illegal stimulants, particularly since the drug 

activates the SNS for prolonged periods (McClellan & Spencer, 1998). Research is therefore 

required to clarify the effects of modafinil on physiological processes, and to determine 

whether popular measurements of cardiovascular reactivity, heart rate, HRV and blood 

pressure are sufficiently sensitive to record drug-specific differences in cognitive workload.  

3.5 Chapter Summary  

 

In the previous chapters, CE drug use was comprehensively explored and the effects of 

acute modafinil use on cognitive functioning was evaluated. This chapter sought to build on 

the investigation into modafinil use started in the previous chapter by determining the 

most effective ways to measure cognitive performance in long-term users of the drug. By 

examining which methods effectively increase cognitive workload and which can detect 

differences between substance users and controls, it appears that a mixture of subjective, 

behavioural and neurophysiological measures is most effective. The NASA-TLX is the most 

established technique for measuring workload but is the most flawed, due to issues 

inherent to self-report measures, although findings are promising when it is used alongside 

other methods. With cognitive performance measures, tests of; working memory, 

inhibitory control, sustained attention and multitasking paradigms are also shown to 

effectively increase cognitive workload, with promising results seen with the n-back, go/no-

go task, CPT and MTF, respectively. While EEG appears to be the neuroimaging technique 

with the most evidence for recording increases in effort and workload, fNIRS is a 

significantly newer technology which has shown compelling results when examining DLPFC 

activity in substance using samples. No single physiological method stands out when 

measuring cognitive workload, but changes in HRV and blood pressure are linked to 
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increasing cognitive workload, although as of the time of writing, little research exists with 

substance users despite chronic stimulant use appearing to negatively impact these 

functions. The following chapter will link the methods evaluated here to the wider aims and 

methodology of the thesis, and the apparatus used in each empirical study will be 

discussed in detail.  
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Chapter 4: Research Aims and Methodology 

 

4.1 Chapter Overview 

 

The previous chapter evaluated the best methods for measuring cognitive performance 

and cognitive workload in substance using samples. Building on this assessment, this 

chapter describes the individual neurophysiological methods, along with their theoretical 

concepts, chosen to investigate cognitive function in long-term modafinil users and the 

usefulness of survey data for collecting reliable information of substance use behaviour. 

Furthermore, the aims of the thesis are outlined here, as are the empirical studies designed 

to address them.  

4.2 Research Aims  

 

The principal aim of this thesis is to investigate the use of cognitive enhancement drugs. To 

accomplish this, several additional aims must first be outlined which address different 

aspects of CE drug use. From the literature reviewed in this thesis, four overall research 

questions emerge, which must be addressed in order to explore CE use broadly. These four 

aims form the foundation for 3 research studies, and are as follows:  

(1) To investigate aetiology of CE use among UK university students, in terms of which 

substances are being used, the reasons for use, as well as other factors potentially 

associated with consumption. This question is explored in study 1 of the thesis, via 

a multi-site cross-sectional survey in 4 UK universities (see Chapter 5).  
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(2) To assess the effects of long-term modafinil use on executive functioning. Study 2 

of the thesis addresses this question with use of cognitive performance tests to 

measure executive function (see Chapter 6).  

 

(3) To explore the effects of long-term modafinil use on neurophysiological processes 

in the DLPFC, heart rate variability and blood pressure during cognitive testing. In 

study 3, fNIRS, ECG and a digital sphygmomanometer are used to measure these 

neurophysiological processes and address this aim (see Chapter 7).  

 

(4) To examine the relationship between changes in cognitive performance and 

neurophysiological reactivity, and to determine if cognitive performance can be 

used as a proxy for neurovascular activation. Study 3 addresses this question by 

using cognitive performance and neurophysiological measures concurrently (see 

Chapter 7).  

 

To address the aims detailed above, several hypotheses have been formulated. As CE use is 

a complex and wide-ranging topic, hypotheses have been generated to be study specific. 

Furthermore, where there is an absence of direct evidence for a hypothesis, specifically in 

the case of predictions relating to modafinil use, hypotheses have been derived from 

substances which are chemically similar, such as studies which examine illicit stimulant use. 

Chapter 1 defined different categories of CE drug and explored their levels of use in the UK 

and internationally, including factors relating to consumption. In Chapter 2, acute 

administration studies with modafinil in different populations were discussed. Although 

research indicated that acute modafinil use was not harmful with medically recommended 

doses, there was limited evidence on prolonged use. Therefore, predictions about the 

effects of long-term modafinil use on cognitive functioning were derived from those studies 
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which focused on better understood stimulants, such as cocaine and amphetamine. 

Chapter 3 discussed how cognitive performance was related to neurophysiology and 

cognitive workload. Studies investigating the effects of modafinil on cognitive performance 

and neurophysiology are limited, but stimulant users’ exhibit impairments in 

neurocognitive function and complications to the cardiovascular system which are not 

present in healthy controls. As such, similar findings were anticipated with long-term 

modafinil users on measures of fNIRS, ECG and blood pressure. All hypotheses are outlined 

in the respective empirical chapters. 

4.3 Introduction to Methods 

 

This thesis is primarily concerned with the effects of CE substances on behaviour, cognitive 

and neurophysiological performance. In the lab, it was investigated how modafinil users 

compare to non-users with respect to: cognitive performance, cortical haemodynamic 

response and cardiovascular physiology. To assess different aspects of cognitive 

performance a wide range of measures were used which are fully detailed in their 

respective chapters (see Chapter 6 and Chapter 7), each loading on different facets of 

attention and executive function. The neurophysiological methods were primarily chosen 

as a proxy for recording cognitive workload (see Chapter 3), and as an index of cognitive 

effort. For instance, fNIRS is capable of taking readings of haemodynamic changes in the 

DLPFC, and via neurovascular coupling, capturing changes in mental effort (Tachtsidis & 

Scholkmann, 2016). ECG provides a measure of heart rate and autonomic reactivity, in 

addition to heart rate variability as an index of parasympathetic control (Electrophysiology, 

1996). Furthermore, taken together, these recordings allow cognitive workload to be 

measured in a multidimensional way using neurophysiological and psychophysiological 

means.  
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4.4 Survey Method 

 

Survey methods can provide a wealth of data on subjective attitudes, intentions and 

behaviours and can provide in-depth demographic information about respondents. These 

methods are particularly useful when investigating phenomena that cannot easily be 

recorded in a lab, such as controversial topics like sexual behaviour and patterns of 

substance use. However, several limitations exist with self-report measures, which raise 

questions of validity and reliability, such as social desirability/ demand characteristics when 

subject matter is stigmatised and poor response rates. Nevertheless, this type of design 

enables research that would otherwise be difficult to conduct, and is very accessible to 

researchers (Fan et al., 2006). There are various ethical implications when research 

investigates sensitive topics or recruits vulnerable samples which makes questionnaire-

based studies a useful tool. For instance, in terms of investigating illicit substance use, it is 

not possible for the researcher to conduct lab-based studies where drug handling and 

administration are a feature, due to the legal status of many substances. Obtaining a 

license to acquire and administer a controlled substance such as modafinil is also very 

difficult, and is not often feasible as part of a time-constrained research project such as a 

PhD, due to issues that might arise in obtaining ethical clearance from university based or 

NHS ethics committees. Expense is also an issue, as drug synthesis is costly and not 

accessible as part of a PhD programme. Vulnerable and prohibited substance using samples 

are also difficult to recruit because of stigmas and issues of anonymity in the laboratory. It 

is therefore easier to use questionnaire-based methods that can be distributed online or 

via mailing lists which enable anonymous responses. Laboratory based research is also 

limited in terms of its ecological validity, as it does not represent naturalistic behaviour, 

particularly in terms of environments and situations that users would usually administer 
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substances. On the other hand, questionnaires provide an alternative for respondents to 

self-report in-depth information about patterns and frequency of drug use.  

There are numerous examples of substance use studies which use survey methods to 

identify specific user samples, such as the Global Drug Survey which is the biggest survey of 

its kind in the world (L. d'Angelo, Camilla, Savulich, & Sahakian, 2017; L. J. Maier, J. A. 

Ferris, & A. R. Winstock, 2018a; Maier, Liakoni, et al., 2015; Maier, Wunderli, et al., 2015). 

While others combine survey and experimental methods to examine user groups’ 

behavioural and cognitive performance (Montgomery, Fisk, Newcombe, & Murphy, 2005; 

Carl Roberts & Catharine Montgomery, 2015). The current research uses a similar 

methodology, first by administering a cross-sectional online survey to investigate general 

CE use patterns (see Chapter 5), and then by using a battery of questionnaires during a lab-

based study to identify user groups and to index drug use behaviour (see Chapter 6 and 7).  

4.5 Neurophysiological Apparatus  

 

4.5.1 Functional Near-Infrared Spectroscopy (fNIRS) 

 

fNIRS is a technique designed to measure changes in oxy-Hb and deoxy-Hb associated with 

neuronal firing, a process referred to as neurovascular coupling (Tachtsidis & Scholkmann, 

2016). This is measured by beaming near-infrared light (NIR) through transmitters which 

are spaced out across the scalp and forehead and make direct contact with skin. Light 

penetrates up to 6 cm from the surface of the head, and can access 3 mm of cortical tissue 

density, passing through the scalp, skull and cerebrospinal fluid (CSF), enabling a superficial 

reading of cerebral activity via a banana-shaped path from transmitter to sensory receiver 

(Firbank, Okada, & Delpy, 1998). fNIRS is therefore capable of capturing neurovascular 

activation in the upper regions of the cerebral cortex, such as the DLPFC (Scholkmann & 
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Wolf, 2012). NIR light must pass through divergent tissue matter before reaching the 

superficial brain layer, which causes light to scatter. However, due to the unique optical 

properties of NIR light, changes in oxy-Hb and deoxy-Hb levels can be calculated. Oxy and 

deoxy-Hb have unique wavelength signatures under NIR light because of their varying 

concentrations of chromophores. Thus, light absorption is altered based on changes in 

haemodynamic activity and return signals experience unique attenuation if regions under 

observation show changes in oxy-Hb and deoxy-Hb, which provides an index of 

neurovascular activation (See Figure 4.2). The optimum wavelength for measuring 

haemodynamic change is in the 650 – 950 nanometer (nm) range (Scholkmann et al., 

2014). Both oxy-Hb and deoxy-Hb share an absorption co-efficient of 800nm (the isosbestic 

point), which represents the point at which chromophores attenuate light equally (Zijlstra, 

Buursma, & van Assendelft, 2000). Therefore, oxy-Hb change is calculated in wavelengths 

below this co-efficient, and deoxy-Hb in wavelengths above. Preferred wavelengths may 

differ based on hardware and theoretical differences between researchers, although 

ranges fall in the NIR window (oxy-Hb 650 – 800; deoxy-Hb 800 – 950 nm). Wavelengths 

below the optimum range are too easily absorbed by haemoglobin, and the same is true of 

water when the range is exceeded (Scholkmann et al., 2014). Therefore, reliable 

measurements are contingent on the appropriate wavelength selection (see Figure 4.1).  
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Figure 4.1 – Wavelength frequencies of light in nanometers. The optimum NIR spectrum is 

highlighted in blue (650 – 950 nm) although the standard nominal wavelengths are 765 (oxy-Hb) and 

855 nm (deoxy-Hb).  

 

Figure 4.2 – Continuous wave NIR light path length through the head. Light travels via a banana-

shaped curve from transmitter to receiver, passing through several tissue layers of the head and 

returning information about cortical haemoglobin levels in specific areas of interest (denoted as the 

pink area) across the cortex (Hoshi & Michael, 2005).  

 

 

4.5.1.1 Modified Beer-Lambert Law 

 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjOs_PrleXbAhXIOBQKHRtXDMQQjRx6BAgBEAU&url=https://www.scienceoflight.org/infrared-light/&psig=AOvVaw27dC5O8PnHcNmGuAZrS37I&ust=1529684720422340
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The modified Beer-Lambert Law (MBLL) is a calculation used to measure changes in 

chromophore concentrations, specifically oxy-Hb and deoxy-Hb (Kocsis, Herman, & Eke, 

2006). The MBLL stipulates that changes in light density are constant with changes in 

chromophore concentrations. However, this calculation has been revised from the original 

form (The Beer-Lambert Law) to consider light scattering properties in divergent tissues, 

such as the human head, which is comprised of differing tissue layers of varying density 

(i.e., scalp, skull and CSF). This method accounts for divergent tissues by calculating the 

photon mean pathlength through scattering tissues as an estimate for actual photon 

pathlength (Baker et al., 2014). The statistical formula is as follows:  

 

In this equation, light attenuation (A) is calculated by dividing light intensity (I0 ) by 

detectable light intensity (I1). This equals the differential path length factor (αlc DPF) plus 

what is accounted for in light-scattering loss (G) (Matthews, Pearlmutter, Wards, Soraghan, 

& Markham, 2008). However, it should be considered that although differing tissue layers 

are accounted for in the equation, the MBLL is not a perfect model for determining 

absolute haemodynamic response, as changes are only compared against a baseline 

measure. As such, fNIRS is considered a relative and not absolute measure (Scholkmann et 

al., 2014).  

4.5.1.2 Current configuration  

 

Due to the importance of the DLPFC in mediating higher cognitive processes, particularly in 

aspects of executive function and working memory (Carpenter, Just, & Reichle, 2000), and 

because of the relevance that this forebrain region has to the current research, a 12 

channel fNIRS configuration was selected that was placed across the forehead (see Figure 
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4.3). The configuration used a black fNIRS cap fitted with 3 receivers and 8 transmitters (11 

optodes in total) which were fully adjustable by the researcher, allowing for optode 

placement to be readjusted to fit more comfortably with the shape of each wearer’s head 

while making sufficient contact with the scalp. Transmitters and receivers were spaced at 

2.5 cm distance on the cap which was also padded and made from sponge to cushion the 

sensor placement and reduce pain or skin imprinting as optodes were metal. To reduce 

ambient light interference, an additional black headband was applied over the optodes 

which covered the entire forehead (see Figure 4.4). The OxyMon fNIRS system by Artinis 

Medical Systems was used and data was recorded and analysed using the accompanying 

Oxysoft software package. This hardware takes topographical readings of up to 6 cm deep 

(3-4 cm recommended with fNIRS), with a data sampling rate of 500 Hz. The standard 

nominal wavelengths are outlined in diagram 4.1, though they can be adjusted (default 

wavelengths were used in this study). Optodes also transmit data using high-speed fibre 

optic cables, and the software allows for up to 50 Hz frequency readings.      
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Figure 4.3 – The 12 channel (C) configuration mapped across the PFC, relative to the positioning of 

transmitters (T) and receivers (R). One channel equals the path between one transmitter and one 

receiver. Three regions of interest (ROI) are also depicted: the right PFC (orange) medial PFC (green) 

and left PFC (purple).  
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Figure 4.4 – The fNIRS cap as it appears on the wearer’s head with transmitters (blue) and receivers 

(yellow) spaced across the PFC.  

 

 

4.5.1.3 Signal Processing Technique 

 

Raw data was processed for analysis using the OxySoft accompanying software analysis 

package. A low-pass filter of 0.1 was applied to eradicate noise stemming from 

physiological artefacts, such as heartbeat frequency and blood pressure changes, and a 

high-pass filter of 4 was also used to minimise noise from muscle and eye movement. Data 

was acquired at a 50 Hz sampling rate, and average oxy-Hb and deoxy-Hb calculations were 

taken for the baseline period and for each cognitive performance measure. OxySoft 

produced oxy-HB and deoxy-Hb averages in Microsoft Excel format and then the 

correlational based signal improvement (CBSI) method was applied to the raw data which 

reduces signal noise interference by introducing a correction to average haemodynamic 

change calculations. Without such a correction, signal quality can be contaminated by 
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motion induced noise, which can cause oxy-Hb and deoxy-Hb signals to become more 

positively correlated when they should typically be strongly negatively correlated. Thus, 

fNIRS produces 3 separate components: (a) the true signal measuring haemodynamic 

response, (b) noise (motion induced and other kinds) which mimics haemodynamic 

changes, (c) and white noise. The CBSI aims to capture (a) only, and improve the overall 

quality and reliability of the signal (see Cui, Bray, and Reiss (2010) for a full review of the 

signal processing method and statistical formula). As such, after running the formula in an 

Excel document, a single oxy-Hb change value was then produced (deoxy-Hb values were 

not required as they were inverse values of oxy-Hb counterparts) and data was exported to 

SPSS Version 25 for statistical analysis.  

4.5.1.4 Strengths and Limitations 

fNIRS is a non-invasive, continuous wave (CW) neuroimaging technology that imposes less 

physical constraint than established methods like functional magnetic resonance imaging 

(fMRI) and computerised tomography (CT) scanning as the user is not confined within 

apparatus. This can allow for data collection under realistic conditions as subjects can 

complete tasks involving robust body movements, enabling participation in a wider range 

of tasks than fMRI would allow. The DLPFC is accessible to fNIRS, allowing measurements of 

higher cognitive function to be made in more true-to-life settings (Leff et al., 2011). 

Moreover, fNIRS has superior spatial resolution when compared to EEG, allowing for a 

deeper image of neuronal activity (Anwar et al., 2016). The affordability of the technology 

also increases its accessibility for research, making fNIRS increasingly popular in 

neuroimaging studies (Yang & Chen, 2013).  

Although fNIRS is a useful neuroimaging technology, various limitations can be ascribed to 

its use. Chiefly, as previously mentioned, CW devices cannot take absolute measurements 

of haemodynamic response, even when using the MBLL to account for scattering light in 
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divergent tissues, as findings are only compared against a baseline period. Furthermore, 

recordings suffer from a poor depth resolution when compared with fMRI, as optodes can 

only measure up to 3 mm depth underlying the skull (Anwar et al., 2016). Additionally, 

temporal resolution is poor with haemodynamic measurements, particularly when 

compared with EEG (Leff et al., 2011). Signals from fNIRS are also sensitive to the 

extracerebral layers, such as the hair and scalp. Tests of cognitive function, which are 

increasingly used with fNIRS, can increase ANS activity, which can produce non-neuronal 

driven haemodynamic changes in the extracerebral layers and thus contaminate NIR signals 

which can lead to the occurrence of false positives and negatives (Fairclough, Burns, & 

Kreplin, 2018; Hoshi & Michael, 2005) (see Figure 4.5). These changes can also occur due to 

the discomfort of optode attachment against the scalp, which can create participant stress 

leading to ANS activation (Tachtsidis & Scholkmann, 2016). Hair has also been found to 

influence fNIRS signals, as certain pigmentations readily absorb NIR light more than others. 

Head movement must also be accounted for as this can create movement artefacts and 

dislodge optodes which can lead to ambient light bleeding, a cause of signal interference 

(Hoshi & Michael, 2005). 
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Figure 4.5 – The assumption and the reality of the components which comprise an fNIRS signal. 

Extracerebral and systematic activity are potential confounders in all fNIRS research but are 

particularly problematic if the ANS is stimulated. As such, fNIRS can be highly susceptible to other 

physiological influences (Scholkmann et al., 2014).  

 

 

 

4.5.2 Electrocardiogram (ECG) 

 

ECG is a technology that records electrical activation of the heart by monitoring potential 

changes on the surface of the skin. These changes are created by a process of polarisation 

and depolarisation of the heart, initiated by specialised pacemaker cells which begin this 

process. Polarisation occurs when electrolytes infuse cells, charging the cell membrane 

with an electrical current. Depolarisation is therefore the process of cell membrane 

discharge, when electrolytes leave the cell and spread through the myocardium. ECG 

detects atrial and ventricular muscle excitation, which causes heart muscle contraction. 

Throughout the process of polarisation and depolarisation, the tissues surrounding the 
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heart conduct an electrical current, causing an echo of cardiac activity which is detected at 

the skin by electrodes and captures an image of the heart in motion (Pflanzer & McMullen, 

2016). 

4.5.2.1 The ECG Trace 

 

An ECG trace captures the electrical activity of the heart, specifically the process of 

polarisation and depolarisation. A single waveform (see Figure 4.6) illustrates the P wave, 

QRS complex and T wave. The P wave is the first event recorded and signals the 

depolarisation of the atrial muscle; usually lasting 80-100 milliseconds. The P-R interval, an 

isoelectric period (the short zero voltage period) immediately following the P wave and 

before the QRS complex begins, is the time between atrial depolarisation and the time the 

impulse needs to travel to the ventricle, this lasts between 120-200 milliseconds. The QRS 

complex begins immediately afterwards and shows ventricular depolarisation, a rapid 

process between 60-100 milliseconds. The ST segment is the isoelectric period following 

the QRS, when the ventricular muscle is completely depolarised. The T wave is the final 

event in a single waveform and represents ventricular repolarisation, which lasts longer 

than depolarisation but is not normally measured. Instead it is common practice to record 

the Q-T interval, the period of depolarisation and repolarisation of the ventricle, which lasts 

between 200-400 milliseconds, but varies based on heart rate (Klabunde, 2011). A single 

waveform is a cardiac action potential, and a rhythm strip is a measurement of repeating 

waveforms which is typically how ECG is recorded. Heart rate variability can be measured 

by recording the time variations between successive R peaks on a rhythm strip, called the 

R-R interval, or sometimes the inter-beat interval (IBI), which can be used to index changes 

in heart beat and the autonomic nervous system (ANS).  
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4.5.2.2 Introduction to Heart Rate Variability  

 

HRV is a measure of variability in the time period between successive heart beats which 

can be observed with ECG, and was first proposed as a reliable measure of distress and 

premature mortality in fetal research (Horn & Lee, 1965). The decades following have since 

increased focus on HRV as an indicator of the heart’s reaction to changing circumstances 

brought about by often unpredictable stimuli (Acharya, Joseph, Kannathal, Min, & Suri, 

2007) and as an effective index of attention and mental effort (Berntson et al., 1997). HRV 

can be measured at 3 distinct frequencies: very low frequency, low frequency and high 

frequency. Very low and low frequency contributions to HRV include: thermoregulatory 

processes, vascular auto-rhythmicity, haemodynamic response delays and the renin-

angiotensin system (blood pressure control) (Berntson et al., 1997). High frequency 

measurements are indexed by respiratory sinus arrhythmia (RSA), a respiratory pattern 

which increases the sinus rate during inspiration and decreases it with expiration. RSA is 

controlled by parasympathetic activity at the sinus node (SA node) in the heart, which can 

provide information on cardiac vagal control (also termed vagal tone) (Berntson, Cacioppo, 

& Grossman, 2007). Respiratory-frequency rhythms create changes in the discharge 

frequency of the SA node, which intrinsically relates RSA to breathing patterns. Vagal 

innvervation of the SA node therefore leads to respiratory inhibition, reducing PNS control 

of cardiac functioning, which can be assessed by observing variations in R-R intervals on a 

continuous ECG trace (Berntson et al., 1997). As such, HRV is a robust psychophysiological 

method for indexing changes in parasympathetic control.  
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Figure 4.6 – A typical ECG trace, and the individual components demarcated. A cardiac action 

potential is recorded in the depolarization and repolarization of the atrial and ventricular muscles. 

An ECG trace can also be used to measure HRV by observing spatial differences between R peaks  

(Pflanzer & McMullen, 2016). 

 

 

4.5.2.3 Current Configuration  

 

As this research focused on neurovascular indicators of increases in cognitive effort, a 3-

lead Biopac ECG was used to capture changes in heartrate variability. Three electrodes 

were placed across the torso: two below each collar bone and one above the hip. Pinch 

clips were attached to the electrodes: positive (right collar bone), negative (left collar bone) 

and earth (above the hip). This configuration conforms to Einthoven’s Triangle (see Figure 

4.7) which demonstrates appropriate electrode placements to capture echoes of the heart 

(for further details on the principles of ECG consult Doyle, 2011). Furthermore, an 

additional pinch clip at the base of the 3 leads was attached to clothing to prevent the clips 

from pulling on electrodes and distorting measurements. Data was collected and analysed 
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using the accompanying Biopac Student Lab Pro software package, and all recordings were 

taken in milliseconds and at 50 Hz. 

4.5.2.4 Signal processing technique 

 

Raw data was processed using BSL Pro, a HRV data analysis software package. Both time 

and frequency domain measurements were conducted on heart rate data to triangulate 

findings and increase reliability. Time domain measurements included RMSSD and NN50, 

and a single frequency measurement was used at high frequency (HF). Noise and 

movement artefacts were identified and removed using AcqKnowledge, an accompanying 

data analysis software package of BSL Pro, and HRV averages were collated into text files 

and analysed using SPSS version 25.  
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Figure 4.7 – A diagram of Einthoven’s Triangle, demonstrating the correct electrode placement on 

the body to capture a picture of heart activity. In the current study positive (white) is attached below 

the right collar bone, negative (black) below the left collar bone and earth (red) above the left hip.  

 

4.5.2.5 Strengths and limitations 

 

ECG is non-invasive and affordable with a wide range of research applications. Despite 

superficial readings of cardio activity, ECG reveals a wealth of information about the rate 

and rhythm of the heart, which can be used to assess a range of physiological changes in 

the body (Klabunde, 2011). For instance, despite only capturing echoes of atrial and 

ventricular muscle activity at the skin and excluding interior measurements, readings of 

HRV are still possible which index heart reactivity and can provide a picture of cardiac 

health (Doyle, 2011). Moreover, the physiological signal of ECG is robust to signal 

Lead I 
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interference such as movement noise, which allows use of the apparatus during exercise 

and other tasks which require physical activity (Giles, Draper, & Research, 2018), 

particularly with newer technology which is ambulatory (Jeon, Kim, Jeon, & Lee, 2014). Due 

to signal strength, movement artefacts and noise can also be identified and easily removed 

during analysis. 

Nevertheless, ECG has several limitations of note. For instance, HRV measurements can be 

interrupted by talking during the recording process, as speech interrupts the respiratory 

cycle and can alter the IBI on an ECG trace (Hampton, 2013). Short-term recordings may 

also be insufficient for determining irregular or differential HRV, and longer measurements 

may have to be employed to identify heart rate variances. Furthermore, HRV is very 

sensitive to ectopic beats, and if data is not inspected carefully, uncorrected artefacts may 

go undetected (Electrophysiology, 1996). Finally, measurements at high exercise intensities 

can create large amounts of variation on the ECG trace, which make HRV analysis difficult 

to conduct (Giles et al., 2018). 

4.5.3 Blood Pressure Meter 

 

A blood pressure meter (also called a sphygmomanometer), is a device used to record 

systolic and diastolic blood pressure. The technology works by attaching a cuff around the 

upper arm which then inflates and collapses, asserting pressure on the artery directly 

below and constricting blood flow. The pressure applied to the cuff is then slowly released, 

and blood flow returns to the artery. Depending on the device used (manual or digital) 

systolic and diastolic blood pressures are recorded differently. In the current research, a 

digital cuff was used which assesses oscillations in the artery with an in-built pressure 

sensor. The oscillometric waveform, an algorithm calculated by the device, calculates the 

mean systolic pressure by estimating when the artery is completely constricted, and 
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diastolic pressure when it is fully released. Blood pressure is recorded in millimetres of 

mercury (mmHg), and the meter provides average systolic and diastolic estimates during 

the period of time in which the artery deflates and refills, but does not provide continuous, 

real-time measurements (Klabunde, 2011; Kukita, Mitsunami, Aritome, Kato, & Onishi, 

2016).  

4.5.3.1 Introduction to systolic and diastolic blood pressure 

 

Systolic and diastolic blood pressure indicate the total pressure in blood vessels traveling to 

and from the heart. Systolic measurements are taken as the heart beats, recording the 

resulting pressure that carries blood to the arteries from the contracting heart muscles. 

Diastolic measurements record blood pressure during the interval between beats, when 

the heart fills with blood prior to muscle contraction. Systolic blood pressure increases 

when the heart muscles pump blood around the body with greater force, and systolic 

pressure rises as resistance to that blood flow increases. Optimal blood pressure is 

displayed in Figure 4.8. An increase in blood pressure is related to an increase in stressful 

stimuli, and can be used as a physiological indicator of an increase in effort and cognitive 

workload (Herring & Paterson, 2018). 
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Figure 4.8 – Chart displaying low to high systolic and diastolic blood pressure readings (mmHg). 

Higher blood pressure occurs when cardiovascular activity increases.  

 

 

4.5.3.2 Strengths and limitations  

 

There are various limitations of blood pressure measurements.  Primarily, as previously 

stated, using a standardized arm-cuff method, the meter cannot provide continuous, real-

time readings unlike ECG and fNIRS. As such, dynamic changes in blood pressure are 

difficult to record under laboratory conditions, because readings have to be taken at fixed 

time points, which may not fully reflect blood pressure fluctuations in all experimental 

tasks. A further limitation of the meter is the sensitivity in the cuff to arm movement, 

which can distort the measurement and create false readings. Moreover, digital meters, 

like the one used in this research, are less precise than manual readers, due to an algorithm 

that takes estimations, and not exact measurements, of systolic and diastolic blood 

https://www.pinterest.com/pin/428756827005795607/
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pressure. This makes the likelihood of measurement errors higher with digital meters 

(Shahbabu, Dasgupta, Sarkar, & Sahoo, 2016). Blood pressure readings do, however, have 

various advantages, particularly concerning the accessibility of the technology. Firstly, the 

digital meter does not require clinical expertise to use, making it user-friendly to 

researchers. Additionally, this technology is affordable, and is a popular tool in physiology 

research. Finally, like ECG, the blood pressure meter can also be used alongside other 

neurophysiological measures, and as such can be integrated into complex and multi-

disciplinary research designs.  

 

4.6 Chapter Summary  

 

This chapter discussed the aims and methodology implemented in the 3 studies which 

make up this thesis. These aims were derived from peer-reviewed literature and an 

evaluation of different research methods discussed in the previous chapters. Furthermore, 

several methods emerged to examine the various research aims, including: a cross-

sectional survey; cognitive performance measures; use of fNIRS neuroimaging apparatus; 

ECG and sphygmomanometer. Close examination of fNIRS by Artinis Medical Systems and 

use of the CBSI analysis technique revealed that it is an effective neuroimaging technique 

with strong spatial resolution which can access the DLPFC, a region of the brain strongly 

associated with cognition. Furthermore, 3-lead Biopac ECG with HF measurements of HRV 

is a strong means of measuring the heart’s reactivity to stress and cognitive workload. Use 

of a digital sphygmomanometer alongside these methods is another effective tool for 

indexing physiological reactivity and taken together a neurophysiological measurement of 

cognitive effort and workload can be obtained. Consequently, what follows are 3 research 

studies designed to comprehensively examine PCE use. The first study responds to the 
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previously discussed prevalence estimates which suggest that use of CE, specifically 

modafinil, is on the rise in UK universities. As such, a cross-university survey investigating 

the patterns and factors potentially predicting use of CE is discussed in the next chapter. 

Furthermore, Study 2 and 3 take a closer look at long-term modafinil use on cognition, 

neurophysiology and psychophysiology to establish what impact the drug has on these 

functions.  
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Chapter 5: Study 1 – Investigating Levels of CE use and Predictive Factors Across four UK 

Universities. 

 

5.1 Chapter Overview 

 

In Chapter 1, CE prevalence rates across Europe and the USA were reviewed and although 

PCE use was noticeably smaller in Europe than the USA, some data indicated that use of 

these drugs is on the rise. This chapter describes a study that examined PCE user rates in 

four UK universities to test the previous claims, and examined the relationship between use 

and predictive variables, including demographic, and educational factors. The implications 

of CE use in UK universities are discussed, and these findings also inform the rationale for 

studies 2 and 3 of the thesis.  

5.2 Introduction 

 

Evidence suggests that use of prescription and illegal drugs for the purpose of improved 

performance during work and while studying is on the rise. Such reports began in the 

media, where use of PCEs to facilitate academic performance has been estimated to be as 

high as 10% in some UK universities (Lennard, 2009; The Student Room, 2016). Even so, 

further examination of these claims reveals that, due to the lack of scientific rigour and 

robust methods when investigating use, such prevalence estimates may be sensationalised 

(Partridge, Bell, Lucke, Yeates, & Hall, 2011). Nevertheless, peer-reviewed studies indicate 

that, although prevalence is not found to be as consistently high as media speculation, it 

does appear to be on the rise both in the UK and internationally (Maier, Ferris & Winstock, 

2018). Still, it is difficult to provide comparable cross-cultural prevalence estimates because 

of differences in defining CE use and due to variations in how it is measured between 
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studies (Advokat & Scheithauer, 2013; Emanuel et al., 2013; Maier et al., 2016; Maier & 

Schaub, 2015; Mazanov, Dunn, Connor, & Fielding, 2013). However, it is clear that CE user 

rates are generally higher in the USA than Europe. For instance, estimates put non-medical 

stimulant use in American universities between 5 to 55% (McCabe, West, Teter, & Boyd, 

2014; Smith & Farah, 2011), whereas use in Germany appears to be as low as < 1% (Dietz, 

2013). Furthermore, in the UK, PCE use appears to be marginally higher than Germany but 

still below the USA (≤5%) (Holloway & Bennett, 2012; Singh et al., 2014a), though there are 

relatively few largescale studies.   

Notwithstanding limitations of prevalence estimates, available research clearly indicates 

that use of soft enhancers is considerably more prevalent than that of prescription 

stimulants and illegal drugs for PCE around the world (Maier et al., 2013; Singh, Bard, & 

Jackson, 2014b; Wolff, Brand, Baumgarten, Lösel, & Ziegler, 2017). Moreover, when soft 

enhancer use is disregarded, the next most popular substances are MPH, d-amphetamine 

and modafinil. In Europe, MPH is the most popular PCE drug used non-medically among 

university students (Mache, Eickenhorst, Vitzthum, Klapp, & Groneberg, 2012; Maier & 

Schaub, 2015), and in the USA d-amphetamine is most prevalent (Varga, 2012). Student use 

of both of these substances is notably low in the UK, although modafinil is shown to be the 

most commonly used PCE (Maier, Ferris & Winstock, 2018), despite use being limited 

elsewhere (Maier et al., 2016). Furthermore, respondents who report non-medical PCE use 

are also more likely to use illegal drugs both recreationally and to enhance study (Maier et 

al., 2006; McCabe, Boyd & Teter, 2009; McCabe, West, Teter, & Boyd, 2014). For instance, 

Maier et al. (2016) found that past use of cocaine, amphetamine, cannabis and MDMA 

were all significant predictors of PCE use and made respondents 6 to 20 times more likely 

to use prescription stimulants non-medically. Furthermore, a later study by the same group 

is the most comprehensive examination of international CE use to date, with 100,000 

people surveyed across 15 major countries (Maier, Ferris & Winstock, 2018). Respondents 
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completed the Global Drug Survey (GDS) in 2015 and 2017, and both illegal drug and PCE 

use was seen to increase in all countries. In the UK alone, illegal stimulant use increased 

from 1.9% to 13.3%, and PCE use went from 1.7% to 5.1%. Additionally, modafinil use in 

the UK was the highest among the other countries, and significantly increased from 2015 

(3.2%) to 2017 (10%) to be consistent with previous reports by the media. Of course, 

samples were self-selected meaning that accurate prevalence estimates in the UK and the 

other countries are not fully known. Nevertheless, rising figures between the two dates 

indicate growth in non-medical PCE use. 

Certain demographic and personality factors have also been found to influence CE use. 

Many studies reveal gender differences in PCE use, with men most likely to take illicit drugs 

and PCE both recreationally and for study (Maier et al., 2016; Maier et al., 2018). Age has 

similarly been linked to use, as over 25s, and more specifically people aged 35 to 44, are 

found to be more likely to take PCE (Maier et al., 2016; Maier at al., 2018). Furthermore, 

simply being in higher education is not associated with use but working alongside study on 

a part-time or full-time basis is (Maier et al., 2016). Additionally, more senior students, such 

as undergraduates in their final year and those in postgraduate study, have been shown to 

be more likely to use illicit drugs and PCE than junior undergraduates (Maier et al., 2013). 

An assessment of attitudes toward PCE use has also found that moral perceptions of use, 

examined through fictional vignettes, are linked to consumption, with respondents who 

believe that use is morally acceptable more likely to be users or consider use (Maier, 

Liakoni, et al., 2015). Finally, it has been demonstrated that higher levels of academic stress 

are related to PCE use (Maier et al., 2013), but studies have failed to assess whether 

consumption is similarly related to various factors which might contribute to this stress. 

Therefore, the aim of the current study was to fully explore CE use in 4 universities across 

the UK. A survey study has yet to be conducted in the UK which investigates levels of CE 
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use and factors which predict use concurrently. Consequently, this survey examines factors 

which previous studies have shown to be related to CE use (i.e., gender, age, moral 

perceptions, employment status and year of study) and those that have yet to be explored. 

Academic stress has been linked to PCE use, but factors which might underlie such pressure 

have not. For instance, semester-time accommodation (whether a student lives with 

parents or is self-supported) and gross annual income are variables which may add to 

university stress, as either of these factors could feasibly limit time or access to study 

resources. Furthermore, academic performance, learning styles (whether a student takes a 

surface or deep learning approach) and academic self-efficacy may also successfully predict 

PCE use. Prior research has already linked low academic performance and academic self-

efficacy to substance abuse (Meier, Hill, Small, & Luthar, 2015; Smorti, 2014; Welsh, 

Shentu, & Sarvey, 2019), and while the same is not true of learning styles, it is also feasible 

that less successful study strategies (i.e., a surface learning approach) could be linked to CE 

use as a method of compensation. As such, these variables were also explored in order to 

address several hypotheses. First, it was predicted that use of soft enhancers would be 

higher than PCE regardless of user intent (H1). Second, it was predicted that modafinil 

would be the most popular PCE drug for study purposes (H2). Third, reported use of illegal 

drugs for study would be smaller than soft enhancers and PCE, but recreational use would 

be higher than PCE (H3). Finally, sociodemographic and personality factors would predict 

use. Specifically: Gender (being male), age (being older), level of study (being 

postgraduate), learning styles (being a surface learner) and moral perceptions of PCE use 

(H4). 
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5.3 Method 

 

5.3.1 Participants 

 

Data was collected from January 2016 to September 2017. An opportunity sampling 

method was used with snowball sampling and 750 university students responded to the 

survey from across four UK universities: Northwest 1 (NW1), Northwest 2 (NW2), East 

Midlands 1 (EM1) and Northeast 1 (NE1). In total, 389 respondents completed all measures 

and were included in analysis. However, response rates varied substantially between 

academic institutions (NW1: N = 256, NW2: N = 71) making cross-university statistical 

analysis unviable. As such, samples were combined into a single set. On average, 

participants were 22 years old (SD = 4), and more females completed all sections of the 

survey than males (females = 70.31%). Age was also similar between CE user groups 

(nonusers = mean: 21, SD: 5; soft enhancer users = mean: 22, SD: 4; illicit drug users = 

mean: 23, SD: 6 PCE users = mean: 22, SD: 3), and groups were predominantly female 

(female users = nonusers: 80%, soft enhancers: 77%, illicit drugs 81%), except in the case of 

PCE users (male users = PCE: 57%).  

5.3.2 Design 

 

The current study was an exploratory between-groups cross-sectional survey with a mixed 

design used to measure respondent data. The first between-groups factor was CE user 

group which had 4 levels (nonusers; soft enhancer users; soft enhancer and illicit drug 

users; and soft enhancer, illicit drug and PCE users, hereafter entitled: nonusers, soft 

enhancer users, illicit drug users and PCE users). The second between-groups factor was 

type of use with 2 levels (recreational vs. study). Furthermore, there were 2 dependent 
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variables for analysis concerning levels of CE use (lifetime use and previous year use). 

Finally, several additional variables examined sociodemographic and educational status to 

assess their impact on CE use, including: age, gender, term-time accommodation, level of 

study, employment statuses, semester time address, mode of study, annual income, UCAS 

points, moral perception, academic self-efficacy and learning style (see Data Analysis 

Strategy for further details).   

5.3.3 Materials 

 

Participants completed the Cognitive Enhancement Use Survey along with the Academic 

Self-Efficacy Scale, the R-SPQ-2F and the CE-MJT. The survey was hosted on Qualtrics 

Software by Qualtrics Software Company (Seattle, Washington), an online survey platform. 

Participants completed the anonymous survey via a link which was compatible with their 

personal computer or mobile and tablet devices. Data was then downloaded in Microsoft 

Word document format and transferred to an SPSS spreadsheet for analysis.  

5.3.3.1 Cognitive Enhancement Use Survey 

 

To investigate patterns of CE use at UK universities, a comprehensive survey was created 

which examines use of a wide inventory of CE related drugs. The questionnaire was divided 

into sections which appeared in randomised order to reduce order effects and examined 

sample demographics and patterns of CE use.  

i) Demographics. 

Respondents were asked about their: age, gender (A. Male, B. Female, C. Transgender), 

maximum level of academic achievement (A. Foundation degree, B. First year 

undergraduate, C. Second year undergraduate, D. Third year undergraduate, E. Master’s 
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degree, PGCERT, PGDIP, F. PhD or professional doctorate), study status (A. Full-time 

student, B. Part-time student), employment status (A. Unemployed, B. Part-time employed, 

C. Full-time employed) and term time accommodation (A. Student accommodation, B. 

Privately rent, C. Live with parents/guardian, D. Other). Participants were also asked for 

estimates of gross annual income and UCAS points upon entry to university.  

ii) Levels of CE Use. 

Use of different psychoactive substances is also investigated, including: alcohol and illegal 

drugs (amphetamine, cocaine and cannabis); PCEs (d-amphetamine, MPH, modafinil and 

piracetam); caffeine based soft enhancers (coffee, caffeine pills, energy drinks and 

guarana); and herbal-based (nutraceutical) soft enhancers (ginseng, gingko biloba, 

citicoline, galantamine and bacopa monniera). Use is recorded for: lifetime (study aid or 

recreationally), previous year (study aid or recreationally), and number of occasions used in 

a month (typical month and month prior to an exam). Circumstances of use are also 

assessed, including: route of administration (A. swallowed, B. Smoked, C. Snorted, D. 

Injected); acquisition (A. Internet, B. Drug Dealer, C. Friend, D. Family member, E. Retailer, 

F. Prescription), and difficulty of acquisition (presented on a 5-point Likert scale: 1 = very 

easy, 5 = very difficult). 

5.3.3.2 The Academic Self-Efficacy Scale  

 

The Academic Self-Efficacy Scale is a 10-item scale investigating academic self-efficacy, 

which is characterised as a person’s belief in their academic performance (McIlroy, Poole, 

Ursavas & Moriarty, 2015). Each item is scored on a 7-point Likert scale (1 = very strongly 

disagree, 7 = very strongly agree). Questions 5, 6 and 9 are reverse scored and a total score 

is calculated by adding the sum of all answered questions together (range from 7 to 70) and 

higher scores indicate greater academic self-efficacy. Questions include items such as ‘If I 
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don’t understand an academic problem, I persevere until I do’ and ‘No matter how hard I 

try, I can’t seem to come to terms with many of the issues in my academic curriculum’ 

(reverse scored). Reliability analysis with data from this study shows strong internal 

consistency (α = .733).  

5.3.3.3 The Revised Study Process Questionnaire (R-SPQ-2F) 

 

The R-SPQ-2F is a 20-item questionnaire which assesses learning styles. Questions are 

presented on a 5-point Likert scale (A = always true of me, E = never true of me). Items are 

presented as statements, such as; ‘I find that at times studying gives me a feeling of deep 

personal satisfaction’ and (reverse scored) ‘My aim is to pass the course while doing as 

little work as possible’. Respondents are categorised across 4 dimensions (A. Deep motive, 

B. deep strategy, C. surface motive D. surface strategy). Five items are dedicated to each 

dimension and the questionnaire is scored by converting responses into numbers (A = 5, E = 

1 and inverted for reverse items), which provides an individual score for each dimension. 

Higher scores on the deep motive and deep strategy dimensions indicate a deep approach 

to learning, whereas similar scores on the surface motive and surface strategy dimensions 

signify a surface learning style. A score of 25 across any of the 4 facets suggests the highest 

possible preference toward that learning approach (Biggs, Kember & Leung, 2001).  

5.3.3.4 Cognitive Enhancement Moral Judgment Test (CE-MJT) 

 

The CE-MJT is a 22-item PCE moral judgement scale based on the Moral Judgement Test 

(MJT), which assesses moral judgement competence (Lind, 2013). This scale focuses on PCE 

use specifically and is similar in structure to the MJT. The CE-MJT is divided into three 

sections, examining moral attitudes towards: MPH, modafinil and d-amphetamine use. 

Each section opens with a short story detailing a moral conundrum which concerns the use 
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of a PCE drug at university. There are 7 items in each section presented on a 7-point Likert 

scale (1 = strongly disagree, 7 = strongly agree). Each section is tallied individually and total 

scores range from 7 to 49, though certain items are reverse scored (Sally: 3, 4, 7; Simon: 1, 

2, 4, 5, 7; John: 2, 4, 6, 7). A higher score indicates greater moral acceptability toward each 

PCE drug, and a composite score can be obtained by adding the scores from the 3 vignettes 

together. Questions are presented as statements, such as standard questions; ‘It doesn’t 

matter what techniques Sally uses to study only that she gets good grades’ and ‘Simon is 

wrong to have used Adderall for so long during his studies’ (reverse scored). A final 

question at the end of the test also asks participants ‘How difficult was it to answer these 

questions?’ Moreover, reliability tests with the data revealed that each subscale of the CE-

MJT was internally consistent (d-amphetamine vignette: α = .833, modafinil vignette: .844, 

α = MPH vignette: α = .897) (See Appendix for full test). 

5.3.4 Procedure 

 

The study was approved by Liverpool John Moores University Research Ethics Committee in 

January 2016 and received gatekeeper approval from the other three participating 

institutions.  Gatekeepers at each university promoted the study to their student cohort. 

Participants were contacted through institutional email lists and were sent a recruitment 

email detailing the aims and participant information for the study. A digital copy of the 

participant information sheet (PIS) was also included and the recruitment email had a URL 

to the online survey which was hosted on a secure Qualtrics server. After providing 

consent, participants began the cognitive enhancement use survey, a questionnaire 

comprised of 4 sections assessing: patterns of CE use, learning styles, academic self-

efficacy, and moral judgement. The presentation of each section of the survey was 

randomized, to reduce order effects and response bias. At the end of the survey, 
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participants were given the opportunity to provide an email address to be entered into a 

prize draw for a £50 retail voucher.  

5.3.6 Data Analysis Strategy 

 

Data was downloaded from the Qualtrics server and cleaned using IBM’s Statistical Package 

for the Social Sciences (SPSS) Version 25. A single period of use or more of drugs belonging 

to any of the user group categories (nonuser, soft enhancer user, illicit drug user and PCE 

user) was enough to be assigned to that CE group. Unfortunately, due to limitations 

imposed by total responses to the survey, it was not possible to create groups of 

respondents who exclusively used only one category of drug (e.g., only PCE and no other 

substances), as such, some respondents used substances from multiple categories. In 

addition to descriptive statistics used to investigate sample characteristics, Chi square 

analysis was used to examine differences in levels of use between user groups and 

between recreational and study use with the individual drugs belonging to each category 

(e.g., PCE: modafinil, MPH, d-amphetamine and piracetam). Furthermore, mixed ANOVA 

assessed user group differences in response to the moral vignettes (i.e., modafinil vignette, 

MPH vignette and d-amphetamine vignette), while between-groups ANOVA examined 

differences in users on the Academic Self-Efficacy Scale. Multivariate analysis of variance 

(MANOVA) was also used to analyse differences between user group categories on learning 

styles reported on the R-SPQ-2F (i.e, deep motive, surface motive, deep strategy and 

surface strategy learning styles). Finally, a multinomial logistic regression was conducted to 

identify predictors of CE use. Various categories for predictor variables were combined to 

strengthen regression analysis, including year of study (undergraduate or postgraduate), 

employment status (employed or unemployed) and term-time accommodation (living with 

or away from parents). Variables were entered or excluded from the model based on 
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whether they showed significance in several ANOVA with the different user groups as the 

IV. Previous research in the area did not indicate a consistent order of importance to CE use 

so a forced entry method was used. Furthermore, Mode of study, annual income, and 

UCAS points were excluded from regression analysis because of inadequate response rates 

to those questions in some CE user groups.   

5.4 Results 

 

5.4.1 Sample Demographics 

 

Demographic and educational information for each group is presented in Table 5.1. 

Multiple 2 x 4 chi-square cross-tabulations were used to compare user groups on the 

various demographic variables. Unfortunately, due to insufficient responses in the illicit 

drug users’ group (n = 0), gross annual income could not be assessed, but all other 

demographic variables were included in analysis. Overall, there were more females (X2 (2, N 

= 389) = 32.74, p < .001) in the non-user, soft enhancer, and illicit drug groups. However, 

there were more male PCE users than female (male users = PCE: 57%). There was no 

significant differences between full-time or part-time study (X2 (1, N = 389) = 3.03, p > .05), 

current year of study (X2 (1, N = 389) = 21.15, p > .05) employment status (X2 (1, N = 389) = 

3.85, p > .05) or semester-time accommodation (X2 (1, N = 389) = 7.47, p > .05) on lifetime 

CE use. A between-groups analysis showed that age (F(3, 376) = .62, p > .05, ƞp
2 = .013) and 

UCAS points on entry to university (F(3, 219) = 1.55, p > .05, ƞp
2 = .011), did not significantly 

differ between the user groups.  

 

 



87 | P a g e  
 

Table 5.1 –Demographic and educational information in respondents who completed all sections of 

the survey.  

     

 Nonusers 

 

Soft 

Enhancers 

Illicit Drugs PCE Total 

 N  

 

N  

 

N  

 

N  

 

N  

 

 Mean (SD) 

Age 21.73 

(2.08) 

120 22.04 

(4.73) 

215 23.44 

(6.12) 

18 22.27 

(3.18) 

26 22.02 

(4.81) 

379 

UCAS 324.99 

(89.97) 

72 315.80 

(96.64) 

122 251.63 

(80.89) 

10 315.47 

(55.00) 

17 316.46 

(91.82) 

219 

Gender %  

Female 80.00% 100 77.47% 172 81.25% 13 40.00% 10 76.03% 295 

Male 20.00% 25 22.52% 50 18.75% 3 60.00% 15 23.96% 93 

Study Year % 

Undergraduate 80.08% 101 76.57% 170 87.05% 14 69.23% 18 77.89% 303 

Postgraduate 19.02% 24 23.42% 52 12.05% 2 30.76% 8 22.10% 86 

Study Status % 

Full-time 96.74% 119 97.74% 217 100% 16 92.30% 24 97.15% 376 

Part-time 3.25% 4 2.25% 5 0% 0 7.69% 2 2.84% 11 

Employment 

Status 

% 

Unemployed 59.19% 74 55.40% 123 43.75% 7 69.23% 18 57.06% 222 

Employed 40.08% 51 44.59% 99 56.25% 9 30.76% 8 42.93% 167 

Semester 

Residence 

% 

Student/Private 

Residence 

77.41% 96 80.18% 178 81.25% 13 80.79% 21 79.38% 308 

Parental/Guardian 

Residence 

22.58 28 19.81% 44 18.75% 3 19.23% 5 20.61% 80 
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5.4.2 Patterns of Use 

 

Lifetime and previous year use of CE substances for study and recreation are presented in 

Table 5.2. Regardless of intent, use of soft enhancers was highest across lifetime, followed 

by illicit drugs then PCE. Additionally, use was greater recreationally than for study 

purposes with soft enhancer and illicit drugs, but not for PCEs which saw marginally higher 

use as a study aid. Levels of use fell in the previous year, but maintained a similar trend, 

except for recreational use of illicit drugs and PCE’s which were markedly smaller than 

general lifetime use.  

 

Table 5.2 – Lifetime and previous year use of soft enhancers, illicit drugs and PCE for recreational 

and study purposes.  Expected values for one-sample chi-square are recorded here.  

 N (%) 

Institution Study 

Soft 

Recreational 

Soft 

Study 

Illicit 

Recreational 

Illicit 

Study 

PCE 

Recreational 

PCE 

Lifetime 

Total 

261  

(67.09%) 

341  

(87.66%) 

24  

(6.16%) 

161  

(41.38%) 

26  

(6.68%) 

22 

 (5.65%) 

Expected 

Value (E) 

80.21 31.13 32.26 

Previous 

Year Total 

239 

(61.43%) 

333 

(85.60%) 

18 

(4.62%) 

110 

(28.27%) 

22 

(5.65%) 

11 

(2.82%) 

Note: Abbreviations: Soft, soft enhancer; Recreational, recreational use. 

One-sample chi-square analysis showed that significantly more respondents had used soft 

enhancers recreationally than for study in their lifetime (X2 (1, N = 389) = 73.92, p < .05) 

(See Table 5.3). Caffeinated products were those used most widely for study, while alcohol 

was the most popular drug recreationally. However, noticeably fewer people reported 

using alcohol as a study aid, although this was still more than reported levels of the 
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nutraceutical substances. Nonetheless, more people reported using nutraceuticals 

recreationally, but this was still comparatively lower than caffeinated products and alcohol. 

Moreover, levels of use in the previous year were marginally smaller but similar for most 

soft enhancers, except for nutraceuticals which were noticeably smaller both for study and 

recreational use, suggesting extremely limited use of these substances within the sample.  

Table 5.3 – Lifetime and previous year use of drugs categorised as soft enhancers for recreational 

or study purposes. 

 Lifetime 

N (%) 

Previous Year 

N (%) 

 Study Recreation Study Recreation 

Alcohol 31 

(7.96%) 

320 

(82.26%) 

22 

(5.65%) 

310 

(79.69%) 

Bacopa 

Monniera 

6 

(1.54%) 

13 

(3.34%) 

2 

(0.51%) 

5 

(1.28%) 

Caffeine Pills 70 

(17.99%) 

64 

(16.45%) 

47 

(12.08%) 

37 

(9.51%) 

Citicoline 5 

(1.28%) 

11 

(2.82%) 

3 

(0.77%) 

6 

(1.54%) 

Coffee 194 

(49.87%) 

218 

(56.04%) 

186 

(47.81%) 

213 

(54.75%) 

Energy Drinks 167 

(42.93%) 

189 

(48.58%) 

132 

(33.93%) 

166 

(42.67%) 

Ginseng 26 

(6.68%) 

42 

(10.79%) 

11 

(2.82%) 

23 

(5.91%) 

Ginkgo Biloba 14 

(3.59%) 

19 

(4.88%) 

6 

(1.54%) 

5 

(1.28%) 

Guarana 12 

(3.08%) 

27 

(6.94%) 

6 

(1.54%) 

12 

(3.08%) 

Tobacca 43 

(11.05%) 

150 

(38.56%) 

36 

(9.25%) 

118 

(30.33%) 
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Lifetime and previous year illicit drug use is presented in Table 5.4. One-sample chi-square 

analysis revealed that significantly more respondents used illicit drugs for recreational 

purposes than for study (X2 (1, N = 389) = 36.22, p < .001). Cannabis was the most used 

drug across the lifetime and in the last year, and this was predominantly for recreation. The 

same was true for cocaine and amphetamine, although reports of use were lower 

compared with the other drugs.  

Table 5.4 – Lifetime use of drugs categorised as illicit substances for recreational or study purposes.  

 Lifetime 

N (%) 

Previous Year 

N (%) 

 Study Recreation Study Recreation 

Amphetamine 7 

(1.79%) 

30 

(7.71%) 

3 

(0.77%) 

13 

(3.34%) 

Cannabis 18 

(4.62%) 

158 

(40.61%) 

11 

(2.82%) 

104 

(26.73) 

Cocaine 8 

(2.05%) 

65 

(16.70%) 

6 

(1.54%) 

42 

(10.79%) 

 

Lifetime and previous year use of PCE drugs is presented in Table 5.5. A one-sample chi-

square test revealed that lifetime PCE use was also significantly more likely to be for 

recreational than for study purposes (X2 (1, N = 389) = 56.20, p < .001). However, patterns 

of use were not as consistent as with the other categories. Lifetime estimates revealed 

that, recreationally, d-amphetamine was the most used substance, but for study, modafinil 

was most popular. Methylphenidate had similar levels of use for recreation and study, and 

piracetam was the most uncommonly used drug in both categories. In the previous year, d-

amphetamine and modafinil were the most used recreational substances, and their use 

was only marginally smaller for study. Modafinil remained the most popular study drug, 

despite being markedly less common for recreational use, and piracetam was again the 
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most unpopular across categories. As such, PCE use was generally rare when compared 

with soft enhancers and illicit drugs, and patterns of use were less consistent.  

Table 5.5 – Lifetime and previous year use of PCE drugs for recreational or study purposes.  

 Lifetime 

N (%) 

Previous Year 

N (%) 

 Study Recreation Study Recreation 

D-Amphetamine 8 

(1.28%) 

12 

(3.08%) 

6 

(1.54%) 

7 

(1.79%) 

MPH 10 

(2.57%) 

11 

(2.82%) 

6 

(1.54%) 

7 

(1.79%) 

Modafinil 19 

(4.88%) 

9 

(2.31%) 

15 

(3.85%) 

4 

(2.31%) 

Piracetam 3 

(0.77%) 

7 

(1.79%) 

1 

(0.25%) 

3 

(0.77%) 

 

 

5.3 CE User Group Comparisons  

 

Data on moral judgements, learning strategies and academic self-efficacy are presented in 

Table 5.6. Mixed ANOVA was conducted on user group responses to the 3 moral judgement 

vignettes (within group analysis: d-amphetamine vignette, MPH vignette, modafinil 

vignette). The assumption of sphericity was not met (p < .05), and therefore homogeneity 

could not be assumed. As such, the Greenhouse-Geisser correction was used to report 

effects. There was a highly significant main effect of vignette on moral judgement, (F(1.89, 

379) = 62.43, p < .001,  ƞp
2 = .933). Contrasts revealed a linear trend, in that respondents 

believed John’s MPH use was less morally acceptable than Sally’s modafinil use, and her 

use less acceptable than Simon’s use of d-amphetamine, (F(1, 379) = 27.13 p < .05, ƞp
2 = 
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.719). However, the interaction between vignettes and user groups was non-significant 

(F(5.69, 379) = 1.11, p > .05, ƞp
2 = .027). Nevertheless, follow-up one-way ANOVA did reveal 

that there were significant differences between user groups on the MPH vignette (F(3, 385) 

= 8.53, p < .001, ƞp
2 = .636), d-amphetamine vignette (F(3, 384) = 8.54, p < .001, ƞp

2 = .670) 

and modafinil vignette (F(3, 384) = 10.64, p < .001, ƞp
2 = .601). Further post-hoc Bonferroni 

analysis showed that PCE users found the use of all 3 substances significantly more morally 

justifiable than the other groups. Moreover, between groups analysis showed that there 

was no significant difference between user groups and how morally challenging 

participants found the questions (F(3, 388) = 1.29, p > .05, ƞp
2 = .081). 

Multivariate analysis of variance was conducted to assess user group differences in learning 

strategies. Findings indicated that there were no significant user group differences across 

the four learning styles (F(3, 348) = .653, p > .05, ƞp
2 = .004) suggesting that that regardless 

of CE use, respondents had similar approaches to learning. Between-groups ANOVA was 

also used to compare the groups on academic self-efficacy and perceptions of risks and 

benefits of CE use. This showed that CE user groups did not significantly differ on either 

academic self-efficacy (F(3, 361) = 1.43, p > .05, ƞp
2 = .011) or risk perceptions (F( 3, 361) = 

.675, p > .05 ƞp
2 = .001). 
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 Table 5.6 – Showing CE user group scores across the behavioural measures:  academic self-efficacy, 

learning styles and moral judgements.  

 Nonusers S. 

Enhancers 

Illicit Drugs PCE Total 

Mean (SD) 

N =  

Academic 

Self-Efficacy 

30.57 

(7.75) 

108 30.03 

(7.75) 

215 31.80 

(10.54) 

16 33.25 

(8.86) 

24  30.48 

(7.68) 

362 

Deep Motive 

Learning 

16.15 

(3.68) 

101 16.18 

(4.00) 

211 15.76 

(3.96) 

13 16.16 

(4.32) 

24 16.15 

(3.91) 

349 

Deep Strategy 

Learning 

15.76 

(3.56) 

101 15.82 

(3.93) 

211 15.07 

(4.07) 

13 15.54 

(3.48) 

24 15.76 

(3.79) 

349 

Surface 

Motive 

Learning 

19.10 

(3.94) 

101 19.03 

(4.08) 

211 17.76 

(3.46) 

13 17.20 

(4.10) 

24 18.88 

(4.04) 

349 

Surface 

Strategy 

Learning 

15.98 

(3.01) 

101 16.00 

(3.12) 

211 15.69 

(3.94) 

13 15.87 

(2.21) 

25 15.97 

(3.06) 

349 

MPH 

Vignette 

22.60 

(8.42) 

123 23.42 

(8.48) 

218 29.50 

(8.27) 

16 30.26 

(5.84) 

26 23.87 

(8.55) 

383 

D-

Amphetamine 

Vignette 

28.41 

(9.80) 

123 29.69 

(9.39) 

218 35.06 

(9.69) 

16 38.88 

(7.20) 

26 30.13 

(9.75) 

383 

Modafinil 

Vignette 

24.47 

(8.12) 

123 26.31 

(8.77) 

218 31.56 

(9.20) 

16 35.65 

(8.32) 

26 26.57 

(8.99) 

383 

Note: Abbreviations S. Enhancers, soft enhancers; SD, standard deviation.  

 

5.4.4 Multinomial Logistic Regression  

 

Univariate ANOVA and chi-square cross tabulations were used as screening analysis to 

assess the suitability of the different factors for predicting soft enhancer, illicit drug and 
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PCE use in the logistic model. With ANOVA, significant main effects were found for age (F(3, 

359) = 3.250, p < .05, ƞp
2 = .127) the modafinil moral vignette (F(3, 387) = 14.245, p < .001, 

ƞp
2 = .610), d-amphetamine moral vignette (F(3, 385) = 8.543, p < .001, ƞp

2 = .263) and MPH 

moral vignette (F(3, 384) = 10.649, p < .001, ƞp
2 = .277). No significant main effects were 

observed for academic self-efficacy (F(3, 361) = 1.437, p > .05, ƞp
2 = .012), or any of the 

learning styles (surface strategy: F(3, 361) = .025, p > .05, ƞp
2 = .000; deep strategy: F(3, 

360) = .038, p > .05, ƞp
2 = .002; surface motive: F(3, 363) = 1.810, p > .05, ƞp

2 = .015; deep 

motive: F(3, 362) = .009, p > .05, ƞp
2 = .000). For chi-square analysis, there was a significant 

association of gender (X2(3) = 19.384, p < .001), but all other cross tabulations were non-

significant (study level: X2(3) = 2.827, p > .05; employment status: X2(3) = 3.211, p > .05; 

semester time residence: X2(3) = .443, p > .05). Consequently, the H4 could not be fully 

supported as not all variables posited significantly differed across user groups. As such, all 

remaining predictor variables with significant main effects were run in the regression 

model.  

Multinomial logistic regression was used to investigate the possible predictor variables 

associated with the different CE user groups. Each CE group (soft enhancer, illicit and PCE 

user) was compared against nonusers throughout analysis. The model was highly 

statistically significant (X2(15) = 63.745, p < .001). Beta values, odds ratios and upper and 

lower confidence intervals for the different CE user groups are presented in Table 5.7. Age 

significantly predicted soft enhancer use (b = .186, Wald X2(1) = 4.128, p < .05) in that being 

older was associated with greater use. Responses to the modafinil moral vignette also 

significantly predicted soft enhancer use (b = .061, Wald X2(1) = 4.605, p < .05.). 

Furthermore, odds ratios indicate that respondents were more likely to use soft enhancers 

for study the more they believed modafinil use to be morally justifiable. However, gender 

(b = -.162, Wald X2(1) = .265, p > .05.), perceptions of d-amphetamine (b = -.004, Wald X2(1) 

= .021, p > .05.) and MPH (b = -.016, Wald X2(1) = .623, p > .05.) use were not significant 
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predictors of soft enhancer use. With illicit drugs for study, age was found to be the only 

significant predictor variable (b = .186, Wald X2(1) = 4.433, p < .05), although responses to 

the modafinil moral judgement vignette showed a statistical trend (b = .2.987, Wald X2(1) = 

3.226, p = .090). Gender (b = .627, Wald X2(1) = .695, p > .05), perceptions of d-

amphetamine (b = .068, Wald X2(1) = 2.123, p > .05) and MPH (b = .015, Wald X2(1) = .076, p 

> .05) use did not significantly predict illicit substance use.  For PCE use, age was also a 

significant predictor (b = .152, Wald X2(1) = 3.622, p < .05.) again being associated with 

older users.  Gender was also a significant predictor, (b = -1.199, Wald X2(1) = 5.210, p < .05, 

with males more likely to use PCE than females. Responses to the modafinil moral vignette 

also significantly predicted PCE use (b = .099, Wald X2(1) = 4.610, p < .05.) with confidence 

intervals revealing that respondents were more likely to use PCE for study if they believed 

modafinil use was more morally justifiable.  Both perceptions of d-amphetamine (b = .023, 

Wald X2(1) = .355, p > .05.) and MPH (b = .045, Wald X2(1) = .866, p > .05.) did not 

significantly predict PCE use. 
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Table 5.7 – Beta values, odds ratios and confidence intervals of predictor variables as they relate to soft enhancer, illicit drug and PCE use.  

 B(SE) Lower Odds Ratio Upper N 

 Soft Enhancer Illicit Drugs PCE Soft 
Enhancers 

Illicit 
Drugs 

PCE Soft 
Enhance

rs 

Illicit 
Drugs 

PCE Soft 
Enhancers 

Illicit 
Drugs 

PCE  

Age .096(.047)* .186(.088)* .152(.080)* 1.003 1.013 .995 1.101 1.205 1.164 1.207 1.432 1.36
2 

360 

Gender -.162(.314) .627(.752)  -1.199(.525)* .460 .429 .108 .851 1.871 .301 1.574 8.170 .844 388 
(male: 93) 

Moral Vignette: 
modafinil 

.047(.025)* .083(.054) .099(.046)* .999 .978 1.00
9 

1.049 1.087 1.104 1.100 1.207 1.20
9 

388 

Moral Vignette: 
d-amphetamine 

-.004(.021) .068(.047) .023(.038) .957 .977 .949 .996 1.070 1.023 1.037 1.173 1.10
3 

386 

Moral Vignette: 
methylphenidate  

-.016(.021) .015(.053) .045(.048) .944 .915 .952 .984 1.015 1.046 1.025 1.125 1.15
0 

385 

N 222 16 26           
Note: R2 = .165 (Cox & Snell), .191 (Nagelkerke). Model X2 (15) = 63.745, significant at .05* 
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5.5 Discussion 

 

Findings from this survey support most hypotheses outlined for study 1. As expected, soft 

enhancers were used more than PCE and illegal drugs regardless of user intent. Soft 

enhancers were also the most frequently reported class of drugs used as a study aid, 

followed by PCE and illegal drugs. Additionally, modafinil was the most popular PCE drug 

for study purposes, with levels of use in the sample similar to those reported in previous 

research. Moreover, recreational past year PCE use was much lower than soft enhancers 

and illicit drugs, but for study, rates were similar to illicit drugs. Furthermore, the statistical 

model significantly predicted CE use, as did several individual predictor variables. 

Respondents were more likely to use all categories of CE if they were older. Greater belief 

in modafinil use being morally acceptable also significantly predicted soft enhancer and 

PCE use, and being male was associated with PCE use. Finally, all other factors failed to 

predict CE use individually. As a result, the H1, H2, H3 were accepted, but as not all 

sociodemographic factors predicted use, the H4 was not.  

Levels of CE use among the sample were similar to what has previously been reported in 

Europe and the UK. The proportion of respondents who used soft enhancers recreationally 

and for study was substantially higher than what is reported with PCE and illegal drugs, 

perhaps owing to the popularity and general availability of these substances over 

prohibited and more novel drugs. Moreover, as discussed in Chapter 1 and in the 

introduction to this chapter, levels of PCE use in the UK are generally low anyway, with 

many estimates of use equal to or below 5% (Holloway & Bennett, 2012; Singh et al., 

2014a). However, despite data being collected during the same time period, this is 

markedly lower than figures presented by Maier, Ferrins and Winstock (2018) which 

suggested that recent use, particularly for modafinil, was closer to media reports (Lennard, 

2009; The Student Room, 2016). Of course, as already observed, Maier and colleagues’ 
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sample was self-selected, and as a consequence it cannot be used as a true representation 

of prevalence. Furthermore, other studies have yet to report similar levels of PCE use in the 

UK, which suggests that level of use may be low.  

One of the most important findings to emerge from this survey was the popularity of 

modafinil above other PCE. Furthermore, moral perceptions of modafinil use significantly 

predicted soft enhancer and PCE use. Not only does this support evidence that modafinil is 

the most popular PCE in the UK as it was viewed as the most morally acceptable, but it 

raises the question of whether or not a pro-moral stance toward the drug leads to use. As 

such, future research should expand on the relationship between moral perceptions and 

modafinil use, possibly via moderation analysis. Furthermore, studies should also focus on 

factors which may predict use more specifically and give greater emphasis to personality 

measures which research has already linked to PCE use (Maier et al., 2015).  

5.6. Chapter Summary  
 

This chapter set out to investigate a sparsely researched area in the UK. Only a handful of 

studies have examined CE use in British universities, and this survey was the first UK-only 

study to investigate factors which could predict use. As expected, soft enhancers, 

particularly those containing caffeine, were by far the most reported for the purpose of 

study, with illegal drugs and PCE used considerably less for all purposes. Nonetheless, as 

anticipated, modafinil emerged as the most popular PCE substance among respondents, 

which is consistent with recent findings in previous research. Moreover, the statistical 

model successfully predicted CE use, as being older, male and having a favourable opinion 

of modafinil use were all significant predictors. Consequently, despite PCE use still being 

limited in the UK and elsewhere, there is sufficient evidence from this survey and previous 

studies to suggest that modafinil use is on the rise in UK universities, and as such, the drug 

warrants further investigation. Furthermore, little is understood about persistent use of 
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this substance in terms of its potential to adversely affect cognition and neurophysiology. 

As such, Chapters 6 and 7 explore cognitive, psychophysiological and neurophysiological 

functioning with long-term nonmedical use.  
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Chapter 6: Study 2 – Differences in Cognitive Performance between Modafinil Users and 

Non-using Controls.  

 

6.1 Chapter Overview 

 

The previous chapter looked broadly at levels of CE use and associated factors in UK 

universities, and identified the novel stimulant modafinil as the most popular PCE. 

Following on from this discovery, this chapter describes a study which examines executive 

functioning in long-term modafinil users and non-using controls, with the aim to assess 

whether or not continued use of this drug adversely effects various cognitive functions. 

Additionally, Chapter 2 demonstrated that response inhibition, working memory and 

sustained attention were improved with acute modafinil, as such a Go/No-go test, 2-back 

working memory task and continuous performance task were used to assess the impact of 

long-term use.  

6.2 Introduction 

 

Previous chapters have demonstrated that modafinil appears to be the most popular PCE 

among students in the UK, and Study 1 further supported these findings. Furthermore, 

modafinil has been shown to benefit cognitive processes in healthy and clinical populations 

(Minzenberg & Carter, 2008). Acute administration studies have highlighted the drug’s 

potential to improve functions in several cognitive domains, including working memory, 

attention and other processes associated with the prefrontal cortex (Battleday & Brem, 

2016). Furthermore, studies assessing dose-dependent effects have found that similar 

benefits can be conferred from low (100mg) and high doses (600mg), with the greatest 

advantages being given to healthy but sleep deprived adults (Minzenberg & Carter, 2008). 
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Additionally, in terms of cognitive benefits, research shows that even small doses are 

comparable to 600mg of caffeine and 20mg of d-amphetamine, suggesting that in clinically 

recommended quantities the drug is an effective stimulant (Wesensten et al., 2005). 

Moreover, modafinil has even been found to reverse working memory deficits and other 

cognitive functions in psychiatric and ADHD populations, bringing performance in-line with 

healthy controls (Turner et al., 2004). Nonetheless, studies examining modafinil use in 

healthy, non-sleep deprived adults have shown equivocal findings, although benefits have 

been found in various domains, including; attentional and working memory processes 

without a speed/accuracy trade-off (Müller et al., 2004; Müller et al., 2013), inhibitory 

control (Rycroft et al., 2007; Turner et al., 2003) and alertness and sustained attention 

(Baranski et al., 2004; Randall & Shneerson, 2005; Randall et al., 2005) (see Chapter 2 for 

full review).  

Despite these studies showing some benefits to cognition, research does not appear to 

have investigated the impact of the drug on cognitive performance with prolonged use (3 

months and above). Furthermore, at the time of writing, studies have not assessed 

whether using modafinil against medical guidelines (i.e., not for prescribed purposes) for 

this period of time could cause adverse effects in the brain and to cognitive function, even 

if previous studies show the drug is well tolerated with short-term use (see Chapter 2). 

While studies indicate that in healthy people, working memory, response inhibition and 

sustained attention are the executive functions most facilitated by use, it is unclear for how 

long these benefits are sustained, and if after the psychoactive effects of the drug expire 

cognitive deficits are apparent. It is feasible that, like illegal stimulants, continued 

nonmedical use of modafinil is neurotoxic (Gawin & Ellinwood, 1988), given the 

neurochemical similarities the drug has as a dopamine reuptake inhibitor to cocaine 

(Zolkowska et al., 2009). Therefore, like cocaine, this could lead to persistent cognitive 

deficits in certain domains, particularly those which show improvement during acute use. 
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As such, this study sought to investigate cognitive performance in long-term modafinil 

users who have been abstinent for at least 48 hours, a period of time sufficient to fully 

deplete the psychoactive effects of the drug based on an elimination half-life of 9 to 14 

hours (McClellan & Spencer, 1998). Participants completed a 2-back working memory task, 

a go/no-go task (response inhibition) and the continuous performance task (sustained 

attention) to ascertain whether or not long-term modafinil use leads to deficits in these 

areas, and to address various hypotheses. Modafinil users would perform significantly 

worse on cognitive performance measures than nonusers (H5). More frequent modafinil 

use would also predict poorer performance on the cognitive performance measures, as 

would greater poly-drug use and recent use of illicit stimulants and cannabis (H6). Lastly, it 

was also anticipated that modafinil use would be significantly correlated with greater levels 

of poly-drug use reported by participants in the modified Background Drug Use 

Questionnaire (H7). 

6.3 Method 

 

6.3.1 Participants 

 

Data collection occurred between January 2017 and February 2018. Fifteen modafinil users 

(mean age = 24.80, SD = 3.48, males = 83.33%) and 18 non-using controls (mean age = 

25.72, SD = 3.93 males = 47.77%) participated in the study, with opportunity and snowball 

sampling methods used for recruitment. Furthermore, participants were contacted through 

university mailing lists and on speciality online PCE user forums. To be considered a 

modafinil user, participants had to report using the drug for at least 12 months and on 

average at least once a month, while nonusers had to have no history of modafinil use, 

although ‘other’ drug use was permitted.  
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6.3.2 Design 

 

A mixed design was implemented to examine behavioural data. The between-groups factor 

was user group which had 2 levels (modafinil user vs. nonuser). There were various 

dependent variables of interest, including response inhibition (go/no-go: total errors, go 

errors, no-go errors, horizontal errors, vertical errors, total response rate, vertical response 

rate and horizontal response rate), sustained attention (continuous performance: hits, 

misses and response time) and working memory score (2-back: hits, misses, correct 

rejections, false alarms and no response).  

6.3.3 Materials 

 

Participants completed a total of 3 cognitive performance measures: the 2-back working 

memory task, a visual cued version of the Go/No-go task and the continuous performance 

task. They also filled in the Hospital Anxiety and Depression Scale (HADS) and a modified 

version of the Background Drug Use Questionnaire to investigate their substance use 

history. Each measure is fully described below: 

 

6.3.3.1 Hospital Anxiety and Depression Scale (HADS) 

 

The HADS is a clinical measure of state anxiety and depression (Zigmond & Snaith, 1983). 

Seven items assess anxiety and 7 assess depression. Questions are presented as statements 

on a 4-point Likert scale (e.g., 0 = Not at all, 3 = Most of the time) such as; ‘I feel tense or 

‘would up’ (anxiety) and ‘I can laugh and see the funny side of things’ (depression). Anxiety 

and depression score are tallied separately and reported at the bottom of the paper (0 – 7 
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= Normal, 8 – 10 = Borderline abnormal, 11 – 21 = Abnormal). Reliability analysis with data 

from this study revealed strong internal consistency for anxiety (α = .812) and depression 

scores (α = .898).  

6.3.3.2 Modified Background Drug Use Questionnaire 

 

The modified Background Drug Use Questionnaire is a measure of substance use patterns 

derived from the Background Drug Use Questionnaire (see Montgomery et al., 2005 for 

original survey). This version emphasises modafinil use but also investigates an inventory of 

other drugs and other background variables. 

i) Substance Use.  

At the onset of the survey participants are asked if they have ever used modafinil (yes/no) 

and if so for how long (months/years). Use of a comprehensive list of other psychoactive 

drugs is then assessed, including: alcohol, amphetamine, cannabis, cocaine, crack, DMT, 

GHB, herbal E, heroin, ketamine, LSD, LCB, mushrooms, poppers, Prozac, salvia divindrum, 

tranquillisers, tobacco, Viagra, steroids, mephedrone and naphyrone. Past use is explored 

including when respondents first began using (month and year) and when they last used 

(hours, days, weeks, months or years previous). Frequency of use in the previous 12 

months is also investigated (e.g., tablets/grams/mg taken in one session and over the 

course of a week/month/year).  

ii) Other Variables.  

Respondents are asked about their: age, gender, qualifications (CSE, GCE, GCSE, A-level, 

NVG, Government employment training scheme, craft/trade, HND, degree, ‘other’ and 

none), previous convictions (drug related or not), living circumstances (live alone, with 

parents, with partner, marriage partner, single parent family, live with friends, no fixed 
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abode or ‘other’) their current employment status (full-time, part-time, unemployed, self-

employed, student or ‘other’). and units of alcohol normally consumed (daily, weekly, 

fortnightly, monthly or ‘other’). They are also asked general health related questions for 

participant screening, including; whether they have been hospitalised with a specific 

condition (neurological, heart or respiratory) whether they have a diagnosis of a clinical 

disorder (diabetes, anxiety, depression, flashbacks, panic attacks, paranoia, phobias or 

schizophrenia), and whether they consider themselves in good health (very good, good, 

average, poor or very poor) . 

 

6.3.3.3 2-Back Working Memory Task 

 

The n-back task presents participants with a sequence of letters/numbers that appear one 

at a time on a computer screen (Owen, McMillan, Laird, & Bullmore, 2005). Depending on 

the difficulty of the condition used, participants have to identify whether the letter 

currently presented on screen matches a letter presented ‘X’ number of items previously. 

The higher the value of n, the greater the working memory demand. This study used a 2-

back paradigm, requiring participants to identify letter matches two stimuli apart. In both 

conditions, black letters appeared one at a time in bold Times New Roman font overlaid 

against a white screen. Items were presented for 1500 ms and responses were recorded in 

a further 500 ms window following the presentation of the letter. For the 2-back, the task 

was presented in a single block with a total duration of 5 minutes. Participants were 

required to press ‘5’ on the number pad when they recognised a hit, and ‘1’ for non-hit. In 

both conditions, participants completed a short practice trial before the experiment and 

received a percentage of accuracy based on total hits. At the conclusion of the test 

participants received a breakdown of their total hits, misses, correct rejections and no 



106 | P a g e  
 

responses. This version of the 2-back was created using E-Prime software by Psychology 

Software Tools (Kirchner, 1958). 

6.3.3.4 Cued Go/No-Go Task 

 

A test of response inhibition, participants are exposed to a transparent rectangle that 

appears in the centre of a white computer screen in either a vertical or horizontal 

configuration (Nosek & Banaji, 2001). After a small delay, the rectangle is changed to either 

blue or green and presented for 500 ms. Participants are instructed to press the space bar 

as fast as possible on a keyboard provided if the rectangle turns green, but not if it turns 

blue. Responses are recorded within the 500 ms timeframe. The task is presented in three 

blocks and has a total duration of ten minutes. This version of the Go/No-Go Task was 

downloaded and run using Inquisit.  

6.3.3.5 Continuous Performance Task 

 

A task assessing prolonged attention which has previously been used to investigate the 

cognitive effects of stimulant medications (Riccio, Waldrop, Reynolds, Lowe, & 

neurosciences, 2001; Verbaten et al., 1994). Participants are presented with a random 

sequence of numbers which appear on a computer screen one at a time and range from 0 – 

9. They are instructed to identify even numbers and press the space bar when they are 

encountered, but they must ignore odd numbers (zero is considered non-even). The task is 

presented in a single block of 10 minutes, and scores are stored as a text file after 

completion. This task was also downloaded and run using Inquisit.  
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6.3.4 Procedure 

 

The current study was approved by Liverpool John Moores University Research Ethics 

Committee in October 2016. Participants were contacted and recruited from the local 

student cohort through mailing lists and a student research participation scheme, and via 

advertisements on speciality PCE user forums. In all emails and advertisements, recipients 

were provided with a digital copy of the PIS which outlined the study aims and exclusion 

criteria and what would be expected of them at the lab. Potential participants were 

excluded if they had a recent history of cardiac or clinical psychiatric conditions. On arrival, 

participants were also provided with a paper copy of the PIS and a consent form. After 

giving consent, they completed the modified Background Drug Use Questionnaire to 

provide information on modafinil use, other drug use patterns and demographic 

information, and they completed the Hospital Anxiety and Depression Scale. Following this, 

participants sat at a computer and completed the 3 computerised tasks. Order of task 

presentation was randomised.  Participants completed: the 2-back working memory task, 

the continuous performance task and the go/no-go task, each of which lasted 

approximately 10 minutes. After completing the tasks, participants received a paper 

debrief which explained the aims of the research and were provided with contact details 

for counselling and drug use information services.  

6.3.5 Data Analysis Strategy 

 

Data analysis was carried out using SPSS version 25, and ANOVA was used to analyse 

between-groups differences on all behavioural measures. Descriptive analysis was 

conducted on health screening questions to identify those participants who were ineligible 

to continue with the study although none were reported (i.e., had a neurological condition 
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or history of a clinical disorder). On the continuous performance task, data was first 

extrapolated using E-Data Aid from E-Prime software, and average hits, misses and 

response times were calculated and then transferred into an SPSS datasheet and analysed 

using univariate ANOVA. Additionally, where repeated ANOVA were run on the same data 

set (i.e., on a single cognitive performance measure), Bonferroni adjustments were made 

to alpha levels to minimise the occurrence of type-1 errors. Furthermore, to assess other 

factors which might influence performance on the tasks (i.e., use of other substances) 

hierarchical multiple regression was used. Regression analysis was conducted across 2 

stages. In total, 6 regression models were carried out which assessed: 2-back hits, 2-back 

misses, Go/No-go total response rate, CPT hits, CPT misses and CPT response rate as 

dependent variables. Certain variables were excluded from analysis due to near 

indistinguishable performance between participants, such as hits and misses on the Go/No-

go task. Additionally, average monthly modafinil use, total number of substances used in 

the previous 3 months, use of illegal stimulants, (i.e., cocaine and amphetamine use), 

cannabis and alcohol in the previous year were predictor variables. At stage 1 of the 

regression, average monthly modafinil use was the only predictor, and at stage 2 drug use 

variables found to at least approach significance with behavioural variables in bivariate 

correlations were included. This order was chosen because investigating long-term 

modafinil use is central to the aims of this study, and because, as previously discussed, the 

drug is shown to affect cognitive processes which are implicated in the cognitive tasks. A 

correlation matrix was also created between predictor variables to assess collinear 

relationships and investigate patterns of polydrug use in the sample.  

6.4 Results 
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6.4.1 Demographics  

 

Analysis of drug use demographics revealed recent use of multiple substances throughout 

the sample. For instance, the modafinil user group reported a mean average use of 5.74 

(SD = 4.43) tablets a month over the past year, with average tablet intake ranging from 2 to 

16 in the sample. Moreover, in the previous 3 months participants reported use of multiple 

substances listed in the modified Background Drug use Questionnaire (mean = 3.03, SD = 

2.49). However, when prevalence was investigated between the user groups, a t-test 

revealed that the modafinil group used significantly more substances than nonusers (t(33) 

= 4.160, p < .05, d = .32) (users: Mean = 4.67, SD = 2.84; nonusers: Mean = 1.47, SD = 1.04). 

Alcohol, illegal stimulant and cannabis use was also assessed, but due to low response rates 

across the sample on these measures, frequency of use could not be investigated and 

instead analysis focused on whether or not these substances had been used in the past 

year. For alcohol, 74% reported use and there were no apparent differences between user 

groups (t(33) = .303, p > .05, d = .00). With illegal stimulants, use was markedly lower at 

44%, and again there were no statistically significant differences between groups (t(33) = 

1.677, p > .05, d = .11). Finally, cannabis use was higher than stimulant use, with 55% 

reported prevalence, but like the other substances, groups did not significantly differ in use 

(t(33) = .809, p > .05, d = .10). 

Furthermore, 79% (N = 27) of the sample recorded some degree of educational attainment. 

All respondents indicated that they had achieved level 2 (GCSE or equivalent) and level 3 

(A-level, NVQ or equivalent) qualifications prior, which was unsurprising as many were 

students currently study at university. Additionally, all participants reported that they were 

in the process of completing a higher education qualification (degree/diploma equivalent 

or higher), but few stated having level 6 qualifications or higher (users: N = 1; nonusers: N = 
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3). Consequently, meaningful analysis between groups could not be conducted as they 

appeared to be matched.  

6.4.2 Behavioural Measures 

Anxiety and depression score on the HADS are recorded in Table 6.1. Univariate ANOVA 

found no significant between-groups differences in self-reported anxiety or depression 

between modafinil users and nonusers.  

Table 6.1 – Average modafinil user and nonuser scores on the HADS.  

HADS Long-term 

Modafinil Users 

Nonusers ANOVA 

 Mean (SD) Mean (SD) F(1,33) Sig 

Anxiety 5.67 

(3.39) 

5.29 

(3.73) 

.074, p >.05, ƞp
2 = .003 

Depression 3.83 

(2.98) 

2.93 

(2.92) 

.443, p >.05, ƞp
2 = .025 

 

Results from the 2-back are displayed in Table 6.2. Despite users on average appearing to 

have marginally more hits and fewer misses than nonusers, findings from univariate 

ANOVA were not statistically significant. Furthermore, the groups did not significantly differ 

on total correct rejections, false alarms or in failed responses, suggesting that working 

memory performance overall was not impacted by modafinil user status.  

Table 6.2 – Performance on the 2-back working memory task between modafinil users and 

nonusers.  

2-back Long-term 

Modafinil Users 

Nonusers ANOVA 

 Mean (SD) F(1,33) Sig Effect 

Hits 22.87 

(4.67) 

20.16 

(6.65) 

1.786 >.05 ƞp
2 = .051 

Misses 5.33 

(4.35) 

7.26 

(4.25) 

.203 >.05 ƞp
2 = .050 
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Correct 

Rejections 

50.87 

(15.65) 

47.58 

(16.78) 

.563  >.05 ƞp
2 = .011 

False Alarms 1.40 

(2.37) 

1.84 

(3.28) 

1.039 >.05 ƞp
2 = .031 

No Response 9.53 

(20.14) 

12.21 

(22.51) 

.130 >.05 ƞp
2 = .004 

 

Performance scores on the Go/No-go task are displayed in Table 6.3. Regardless of user 

group, errors were minimal. Moreover, univariate ANOVA revealed no between-groups 

differences in total errors, ‘go’ target errors and ‘no-go’ target errors. Interestingly, ANOVA 

revealed a significant difference in response time between user groups, and inspection of 

descriptive statistics revealed that modafinil users had quicker response times overall, and 

when cues were presented both vertically and horizontally. This finding suggests that while 

user status might not impact response, it may influence attentional speed without a trade-

off in accuracy.  

Table 6.3 – Performance scores for total errors and response rates in milliseconds to the different 

stimuli on the Go/No-go task.  

Go/No-go Long-term 

Modafinil Users 

Nonusers ANOVA 

 Mean (SD) F(1,33) Sig Effect 

Total Errors .004 

(.006) 

.003 

(.004) 

.135 >.05 ƞp
2 = .004 

Go Target 

Errors 

.001 

(.003) 

.000 

(.000) 

1.740 >.05 ƞp
2 = .052 

No-go Target 

Errors 

.007 

(.011) 

.006 

(.006) 

.042  >.05 ƞp
2 = .001 

Response Rate 

Total  

322 

(37.40) 

357 

(48.71) 

*5.130 <.05 ƞp
2 = .158 

*Significant at .05 

Results from the CPT are displayed in Table 6.5. Although users appeared to have 

marginally more hits than nonusers, univariate ANOVA revealed that there were no 
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significant between-groups differences in total hits or misses. Moreover, the response time 

advantage seen in the Go/No-go task was not evident in the CPT.    

Table 6.4 – Performance scores for total hits, misses and response rate in milliseconds to number 

pairs on the CPT.  

CPT Long-term 

Modafinil Users 

Nonusers ANOVA 

 Mean (SD) F(1,33) Sig Effect 

Hits 759.27 

(37.33) 

725.63 

(177.48) 

.517 >.05 ƞp
2 = .016 

Misses 80.73 

(37.33) 

70.16 

(30.19) 

.835 >.05 ƞp
2 = .025 

Response Rate 456.52 

(37.99) 

442.07 

(111.87) 

.228  >.05 ƞp
2 = .007 

Response time recorded in milliseconds. 

 

6.4.3 Hierarchical Regression  

 

Standardised beta coefficients, and significance values for substance use variables and their 

impact on task performance are presented in Table 6.6. Prior to carrying out multiple 

regression analysis, the required assumptions were tested and met. To examine 

multicollinearity, a Pearson’s r correlation matix was run and is presented in Table 6.5. 

Furthermore, analysis was conducted in 2 stages, first assessing the impact of average 

monthly modafinil use over the past year, then by including the use of other substances in 

a second model. The second stage of the model was determined by examining bivariate  

correlations between substance use variables and the respective task performance 

variables. This was done instead of entering all variables into the model because the 

sample size lacked the appropriate statistical power for a more ambitious design. As such, 

those substance use variables which approached significance were included in stage 2. In 

total, 6 analyses were conducted, revealing mixed fingings.  
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Table 6.5 –Pearson’s r coefficients for drug use variables derived from self-reported use on the 

Background Drug Use Questionnaire.  

 

Pearson’s r Correlations Total No. of 

Substances 

Used: 3 

months 

Total 

Stimulant 

Use: Previous 

year 

Total Cannabis 

Use: Previous 

year 

Total Alcohol 

Use: Previous 

year 

Average Monthly 

Modafinil Use 

*.322 .253 .329 .096 

Total No. of Substances 

Used: 3 months 

 *.375 .302 .165 

Total Stimulant Use: 

Previous year 

  *.382 .184 

Total Cannabis Use: 

Previous year 

   *.378 

Total Alcohol Use: 

Previous year 

    

N:34 (15 modafinil users). *Significant at .05 

 

Pearson’s correlational analysis found several moderate significant relationships between 

drug use variables. Predictably, total number of substances used in the previous 3 months 

was significantly correlated with the number of participants who reported illegal stimulant 

use in the last year (r = .375, p < .05). Moreover, stimulant use was also moderately 

correlated with cannabis use (r = .382, p < .05), and cannabis use was in turn correlated 

with previous year alcohol use (r = .378, p < .05). This implies that people who used one 

illegal drug were more likely to use another, suggesting that polydrug use was prevalent in 

the sample. Nonetheless, average monthly modafinil use over the past year was not 

significantly correlated with any other substance use variable, suggesting that modafinil 

users tended not to have recent experiences of polydrug use. Furthermore, despite some 
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moderate correlations, coefficients were of acceptable collinearity (Field, 2013), meaning 

that multiple regression could be conducted 

 

When drug use variables were correlated against the respective behavioural measures, 

findings were mixed. As the study was primarily concerned with investigating modafinil 

use, average monthly modafinil use was included based on theoretical assumptions rather 

than assessing the strength of bivariate correlations first. Nevertheless, for total number of 

substances used in the previous 3 months, Go/No-go response rate was moderately 

significantly correlated (r = -.314, p < .05), and CPT misses approached significance (r = .251, 

p =  .07). Previous year stimulant use was significantly negatively associated with CPT hits (r 

= -.296, p < .05) but no other variable, and previous year cannabis use was only negatively 

associated with CPT response rate (r =  -.335, p < .05). Finally, previous year alcohol use was 

moderately negatively correlated with 2-back hits (r = -.301, p < .05) and highly positively 

correlated with 2-back misses (r = .479, p < .01). All other associations between drug use 

and behavioural variables were non-significant and thus not included in the second stages 

of the regression analyses
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Table 6.6 – Standardised Beta coefficients for substance use variables and performance on different 

aspects of the behavioural measures. Substance use variables were subject to bivariate correlation 

analysis prior to performing multiple regression to predict model strength and to screen for which 

factors were unsuitable in the analyses.  

 

Hierarchical 

Regression 

2-back: 

Hits 

2-back: 

Misses 

 

G/NG R. 

Rate: 

Total 

CPT: Hits 

 

CPT: 

Misses 

 

CPT: R. 

Rate 

 

Stage 1 Standardised Beta Coefficients 

Average Monthly 

Modafinil Use 

.258 -.160 *-.423 .066 .208 -.013 

Stage 2  

Average Monthly 

Modafinil Use 

.284 -.204 **-.450 .137 .191 .088 

Total No. of 

Substances Used: 3 

months 

- - .084 - .055 - 

Total Stimulant Use: 

Previous year 

- - - -.282 - - 

Total Cannabis Use: 

Previous year 

- - - - - -.308 

Total Alcohol Use: 

Previous year 

-.275 *.459 - - - - 

N: 33 (15 modafinil users). t-test df = 32. *Significant at .05. **Significant at .01. Abbreviation: G/NG, 

Go/No-go. R. Rate, Response Rate. 
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Hierarchical regression revealed that 2-back hits was not predicted at stage 1 (F(1,32) = 

.005, p > .05; F change: F(1,32) = 2.275, p > .05) or 2 (F(1,32) = 1.436, p > .05) of the 

analysis. For 2-back misses, findings diverged, as stage 1 was non-significant (F(1,32) = .842, 

p > .05; F change: F(1,32) = .336, p < .05) but stage 2 was successful (F(1,32) = 4.746, p < 

.05). At stage one, R2 only explained 2.6% of variation in misses, but at stage 2 this 

increased to 23.4%. This is no doubt because use of alcohol in the previous year was a 

significant predictive factor, with alcohol users demonstrating more misses than nonusers. 

On Go/no-go total response rate, stage 1 (F(1,33) = 6.976, p < .05; F change: F(1,32) = 

6.976, p < .05) of analysis was statistically significant, and so was stage 2 (F(1,33) = 3.527, p 

< .05). At stage 1, R2 explained 17.9% of variance in response rate, which rose to 20.1% at 

stage 2. However, only average monthly modafinil use was a notable predictor at both 

stages of analysis, proving significant at stage 1 and highly significant at stage 2. As such, 

findings indicate that increased frequency of modafinil use alone predicted faster response 

times on the Go/No-Go task. Finally, regression showed null findings on the CPT, as the 

model was non-significant at accounting for variance in hits at stage 1 (F(1,33) = .138, p > 

.05; F change: F(1,32) = .138, p > .05) and 2 (F(1,33) = 1.325, p > .05), misses at stage 1 

(F(1,33) = 1.452, p > .05; F change: F(1,32) = 1.452, p > .05) and 2 (F(5,33) = .749, p > .05) 

and response time at stage 1 (F(1,33) = .005, p > .05; F change: F(1,32) = .005, p > .05) and 2 

(F(5,33) = 1.436, p > .05). As such, recent use of modafinil and other substances did not 

appear to predict variability in prolonged attention on the CPT.  

 

6.5 Discussion 

 

The findings from this study did not support most hypotheses outlined earlier in the 

Chapter. In fact, in some incidences, results suggest the opposite of what was predicted. 



117 | P a g e  
 

For instance, examination of studies with illegal stimulants suggested that, given the similar 

mechanism of action in the dopamine system with modafinil, users would exhibit deficits in 

cognitive performance, which would be expressed by poorer performance on the cognitive 

tasks. This was not found to be the case. In fact, modafinil users demonstrated decreased 

response time compared with controls on the Cued Go/No-go task and a similiar amount of 

hits and misses, inferring that they had increased attentional speed without a trade-off to 

accuracy. Furthermore, greater frequency of modafinil use did not predict performance on 

the cognitive measures. However, more frequent use was a significant predictor of a 

quicker response rate on the Go/No-go, and taken together with total number of substance 

used in the previous 3 months, both stages of the model significantly predicted response 

time. Together with greater alcohol use in the previous year, reduced frequency of 

modafinl use also predicted 2-back misses but not hits. For CPT hits, misses and response 

rate, all substance use variables were non-significant. Finally, there was a significant 

moderate positive correlation between modafinil use and polydrug use over the previous 3 

months. Therefore, as modafinil users showed no behavioural differences in some tasks 

and improved performance in attentional speed, the H5 and H6 could not be accepted. 

However, modafinil users did use more substances than nonusers, and as such the H7 was 

accepted.  

 

Despite research with illegal stimulants showing cognitive deficits in long-term stimulant 

users, the current study revealed that modafinil users perform better in some measures of 

cognitive performance. This suggests that, contrary to expectations and despite the 

neurochemical similarities with illegal stimulants, that long-term modafinil use may not 

lead to the same deficits. In fact, findings show similarity to Müller and colleagues’ acute 

administration research which demonstrated increased attentional speed without an 

accuracy trade-off, and research by Marchant et al. (2009) which showed a general 
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increase in speed of attention. Of course, in the current study, users had been abstinent 

from modafinil for at least 48 hours, a period of time shown earlier in this Chapter to fully 

deplete the psychoactive effect of the drug, suggesting that benefits conferred from this 

substance may continue to exist after the acute effects have expired. Given that there were 

no improvements in the CPT or 2-back hits, it is possible that either this is an artefact in the 

data, or that attentional speed may only be improved under specific circumstances. It is 

also possible that the lack of pronounced differences in working memory performance may 

be attributable to the fact that the 2-back was too easy, and an increase in difficulty may 

demonstrate behavioural differences between user groups. However, in spite of this 

apparent limitation, no other study has yet demonstrated benefits to cognitive 

performance in long-term modafinil users. As such, future research should aim to further 

investigate modafinil use and cognition, and focus on harder working memory paradigms 

and tasks that assess response inhibition.  

 

6.6 Chapter Summary 

 

This chapter explored cognitive performance on various behavioural measures in long-term 

modafinil users vs. nonusing controls. Findings indicated that, while users showed no 

advantages over nonusers on working memory performance or sustained attention, they 

did perform significantly faster on a response inhibition task without sacrificing accuracy, 

which is consistent with previous acute administration studies. As a result, findings did not 

support most hypotheses previously outlined, suggesting that although modafinil may have 

a similar mechanism of action to illict stimulants like cocaine, the drug’s effects on the 

brain and cognition appear such that it might improve performance in certain cognitive 

domains even after acute psychoactive effects have expired. As such, the results appear to 

contradict expectations, implying that modafinil acts in a unique capacity on the brain to 
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illegal stimulants. In order to further explore these unexpected findings, the final study of 

this thesis uses the neuroimaging technology fNIRS to explore prefrontal brain activation in 

modafinil users when they complete cognitive performance measures which induce greater 

cognitive workload, including a harder 3-back working memory test and different difficulty 

conditions of the MTF. Moreover, measures of HRV and blood pressure are also included to 

make a wider assessment of long-term modafinil use on cardiovascular functioning, to see 

whether the drug also has a physiological impact.  
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Chapter 7: Study 3 – Long-Term Modafinil use, Psychophysiological and 

Neurophysiological Indicators of Effort: Findings from functional near-infrared 

spectroscopy and electrocardiogram.  

 

7.1 Chapter Overview 

 

In the previous chapter, cognitive performance was assessed across several cognitive 

performance measures, comparing modafinil users and nonusers. However, various 

findings which defied expectations led to the need for further inquiry. This chapter 

describes a study which examines the neurophysiological correlates of cognitive effort, 

using fNIRS, ECG and blood pressure measurements to investigate haemodynamic response 

and autonomic activity between user groups during completion of a more challenging 3-

back working memory task and a multitasking paradigm.  

7.2 Introduction 

 

Cognitive deficits from chronic illegal stimulant use are well documented (Gouzoulis-

Mayfrank & Daumann, 2009). These deficits are thought to stem from dopaminergic 

deregulation and destruction of dopamine transporters, with long-term use shown to lead 

to adverse psychological and physical health outcomes (McCann & Ricaurte, 2004; Pereira, 

Andrade, & Valentão, 2015). Moreover, studies have highlighted persistent deficits in 

working memory and executive function in chronic stimulant users (Reske, Eidt, Delis, & 

Paulus, 2010; Vonmoos et al., 2014), as well as higher than average blood pressure and 

irregular HRV (Koenig, Menke, Hillecke, Thayer, & Jarczok, 2015). However, despite some 

similarities in method of action with illegal stimulants, little is known about the long-term 

impact of PCEs on cognitive, neurological and cardiovascular functioning. 
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Neuroimaging technologies are robust instruments for capturing neuronal activity, and a 

wealth of research has already shown that they can provide neurological correlates of 

cognitive deficits (Ranchet et al., 2017; Unni et al., 2015). Additionally, the emergence of 

fNIRS has provided a means of observing haemodynamic response to neuronal activation, 

which studies reveal is sensitive when localising cognitive impairments in working memory 

and executive function (Ehlis et al., 2008; Izzetoglu et al., 2004). The DLPFC is particularly 

accessible with fNIRS, which several recent studies have illustrated with ecstasy polydrug 

users. For instance, in one study, increased activation in the left DLPFC but a lack of 

behavioural differences on the Chicago World Fluency Test showed that ecstasy users 

experienced increased cognitive workload relative to controls, suggesting underlying 

cognitive deficits (Roberts & Montgomery, 2015a). Furthermore, on a letter generation 

inhibitory control task, the same authors found that ecstasy users experienced increased 

oxy-Hb change in the left and right DLPFC again with no differences in behavioural output 

(Roberts & Montgomery, 2015b). Additionally, with working memory performance, ecstasy 

users demonstrate increased activation in the left and right DLPFC without performance 

differences on a verbal and spatial updating task, with recent use and greater levels of use 

both linked to working memory deficits (Montgomery et al., 2017). Still, a study by the 

same group showed that on the MTF, ecstasy users exhibited decreased oxy-Hb change 

relative to nonusers despite similar performance on all subtasks, suggesting that while 

some cognitive domains may be negatively impacted by use, others may improve (Roberts 

et al., 2015). Research using fNIRS in prescription stimulant users is extremely limited and 

focuses on adolescent with ADHD. For example, it has been demonstrated that adolescents 

prescribed MPH show greater right DLPFC activation relative to controls without 

behavioural differences in response inhibition (Moser et al., 2009). Furthermore, on an n-

back task, adolescents with ADHD showed reduced oxy-Hb change compared with controls 

in the VLPFC and a significantly worse working memory performance, suggesting that 
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cognitive deficits may also be linked to reductions in VLPFC activity (Ehlis et al., 2008). 

Finally, on a go/no-go task, ADHD adolescents exhibited increased right PFC activation and 

better task performance after MPH administration than before it, implying that greater 

activity in the region is associated with improved response inhibition (Monden et al., 2012). 

Therefore, fNIRS appears to be a suitable tool for capturing the neurological link between 

cognitive deficits and increases in cognitive workload. 

Studies with the cardiovascular system have also assessed stimulant use. For instance, 

long-term use of cocaine and amphetamine is associated with cardiovascular toxicity and in 

extreme cases can lead to myocardial infarction and even death (Richards et al., 2016). 

Such drugs stimulate the SNS via various neurotransmitter networks, which in turn 

increases oxygen demand on the heart and heightens blood pressure (Stankowski et al., 

2015). However, there is little research assessing adult stimulant use and the impact on 

HRV.  A recent systematic review found that in studies with adult users of cocaine, high-

frequency HRV was reduced in resting state (Koenig et al., 2015), although no studies have 

been identified which investigate the effects of long-term PCE use on HRV, despite recent 

evidence that shows acute use of both MPH and modafinil increase heart rate and SBP (Li 

et al., 2017; Taneja et al., 2005).  

As such, despite some compelling findings using neurophysiological methods to investigate 

substance use during completion of cognitive performance measures, studies have failed to 

investigate long-term nonmedical modafinil use, despite the pharmacological similarities 

shared with illegal stimulants. The current research aims to assess changes in prefrontal 

haemodynamic response, blood pressure and HRV in response to a working memory and a 

multitasking stressor in modafinil users and non-using controls. Following on from the 

previous study which focused solely on behavioural performance, oxy-Hb change, high 

frequency HRV and systolic and diastolic blood pressure are also recorded to address 
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psychophysiological and neurophysiological indicators of effort and to address several 

hypotheses. It was anticipated that long-term modafinil users would exhibit differences in 

haemodynamic response which would occur bilaterally in the left and right DLPFC 

indicating increased cognitive effort when compared with controls during the cognitive 

performance measures (H8). Differences were also expected to be observed in heart rate 

variability and blood pressure, with users anticipated to show atypical heart rate variability 

and elevated blood pressure (H9). All participants would exhibit increased haemodynamic 

activity and blood pressure as well as a significant reduction in R-R interval relative to 

baseline during the cognitive tasks. This was expected to be more pronounced in the hard 

condition than the easy condition (H10). Long-term modafinil users would report a 

significantly greater mental effort on the NASA-TLX than nonusers, and this would escalate 

with increasing task difficulty. Furthermore, they would also perform significantly worse on 

the cognitive performance measures (H11). 

7.3 Method 

 

7.3.1 Participants 

 

Data was collected from February 2018 to December 2018. Thirteen modafinil users (mean 

age = 24.72, SD = 4.37, males = 100%) and 21 non-using controls (mean age = 26.62, SD = 

3.65, males = 62%) were recruited with an opportunity sampling and snowball sampling 

method via university mailing lists and online CE user forums. However, as the modafinil 

user sample was entirely male, females were excluded from the control group so that the 

groups were gender-matched, bringing the final number for analysis to 13 modafinil users 

and 10 nonusers (mean age = 26.25, SD = 2.43). To be considered a modafinil user, 

participants had to have used modafinil for a minimum of 12 months and at least once a 
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month, and nonusers had to have no history of modafinil use, although a history with use 

of other substances was permitted. Furthermore, participants were only eligible if they 

abstained from psychoactive substances other than caffeine for 48 hours before the study.  

7.3.2 Design 

 

A mixed design was used to analyse neurophysiological and behavioural data. The 

between-groups variable was user group which had 2 levels (modafinil users vs. nonusers). 

There were several within-groups factors across all measures. On the MTF difficulty 

conditions (low and high), within-group comparisons were made across each subtask and 

score totals. Differences in perceived workload recorded on the NASA-TLX were also 

analysed between MTF difficulty conditions and the 3-back. For neurophysiological data, 

differences in oxy-Hb change, blood pressure and HRV were made between the tasks. 

There were several dependent variables of interest, including: task scores, haemodynamic 

response, HRV and blood pressure. 

7.3.3 Materials 

 

Participants completed the 3-back and low and high difficulty variants of the MTF while 

fastened into the fNIRS cap and wearing ECG electrodes and a blood pressure monitor (All 

neurophysiological apparatus is fully described in Chapter 4). All questionnaire and 

cognitive performance measures are detailed below: 

7.3.3.1 Hospital Anxiety and Depression Scale (HADS) 

 

The HADS is a clinical measure of state anxiety and depression and is fully described in 

Chapter 6 (Zigmond & Snaith, 1983). Reliability analysis with data from this study 
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demonstrated good internal consistency for anxiety (α = .755) and depression scores (α = 

.796).  

7.3.3.2 Modified Background Drug Use Questionnaire 

 

The modified Background Drug Use Questionnaire is a measure of substance use patterns 

derived from the Background Drug Use Questionnaire which emphasises modafinil use (see 

Montgomery et al., 2005 for original survey). This version is fully described in Chapter 6.  

 

7.3.3.3 NASA Task Load Index (NASA-TLX) 

 

The NASA-TLX is a measure of subjective workload completed at the conclusion of a task 

(Hart & Staveland, 1988). There are 6 subscales (mental demand, physical demand, 

temporal demand, personal performance estimation, total effort and frustration) each 

presented on a 100mm visual analogue scale. Participants are required to mark somewhere 

across each line in pencil to indicate their perceived workload. Responses toward the right 

side indicate high workload, and those toward the left suggest low. Subscales are 

calculated using a ruler and scores can be obtained for each individual type of workload or 

averaged together into a singular measure of perceived workload.   

7.3.3.4 3-Back 

 

The n-back task presents participants with a sequence of letters/numbers that appear one 

at a time on a computer screen (Owen et al., 2005). Depending on the difficulty of the 

condition used, participants have to identify whether the letter currently presented on 

screen matches a letter presented ‘X’ number of items previously. The higher the value of 
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n, the greater the working memory demand. This study used a 3-back paradigm, requiring 

participants to identify letter matches 3 stimuli apart. In both conditions, black letters 

appeared one at a time in bold Times New Roman font overlaid against a white screen. 

Items were presented for 1500 ms and responses were recorded in a further 500 ms 

window following the presentation of the letter. For the 3-back, the task was presented in 

3 blocks for a total duration of 10 minutes. Participants were required to press ‘5’ on the 

number pad when they recognised a hit, and ‘1’ for non-hit. In both conditions, participants 

completed a short practice trial before the experiment and received a percentage of 

accuracy based on total hits. At the conclusion of the test participants received a 

breakdown of their total hits, misses, correct rejections and no responses. This version of 

the 3-back was created using E-Prime software by Psychology Software Tools (Kirchner, 

1958). 

7.3.3.5 The Multitasking Framework 

 

The Multitasking Framework (created by Purple Research Solutions UK) is a paradigm for 

assessing cognitive demand using a montage of performance-driven tasks that can be 

completed alone or simultaneously to examine different aspects of executive function 

(Wetherell, Sidgreaves, & Stress, 2005). The more tasks participants are required to 

complete, the greater the cognitive load. Difficulty can also be manipulated by altering the 

speed or workload of the different tasks. There is a total of eight tasks which can be 

selected, each examining different cognitive functions. Participants can complete up to four 

tasks at once which appear in an onscreen window divided into quadrants. A numerical 

score is presented at the centre of the window which increases in value as participants 

succeed in the tasks but decreases if they respond incorrectly or fail to adequately split 

their attention between quadrants. This test has previously been used in similar studies 
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which measure stress and cognitive demand in long-term substance users (Parrott et al., 

2014; Roberts et al., 2015; Wetherell, Atherton, Grainger, Brosnan, Scholey, et al., 2012). In 

this study, this framework was divided into two difficulty conditions: low and high. In both 

conditions, participants were exposed to four tasks: visual monitoring, psychomotor, 

mental arithmetic and a Stroop test.  

Visual monitoring task. A task examining attention monitoring, participants encounter a 

dot in the centre of a series of concentric circles which steadily moves toward the outer 

ring. A higher score is awarded if the dot is reset when it is closer to the outermost circle. 

However, if the dot passes the final circle then a score penalty is applied for each second 

that it is not reset. 

Visual warning task. A test examining psychomotor functions, six stunted red bars appear 

alongside each other and build to different heights continuously throughout the test. Once 

the bars have reached maximum height a flashing red warming message appears. Each bar 

is assigned a number from 1 – 6 with the tallest being assigned 6 and the smallest 1. 

Participants are required to select each bar from tallest to smallest and turn the display 

from red to green so that the bars can reset and be reduced to equal size. If the bars are 

reset immediately after the warning then points are awarded, but if they are selected in 

the wrong order or after a delay then a penalty is incurred. 

Mental arithmetic. A test of working memory, participants complete a series of sums 

consisting of two or three digits depending on difficulty, and are required to add, subtract 

or divide. Correct answers award points, but incorrect answers or response delays incur a 

penalty.  

Stroop test. A test of inhibitory control, participants are exposed to the following group of 

four colour names which appear one at a time on the screen: ‘Red’, ‘Blue’, ‘Yellow’ and 

‘Green’. However, each name is presented in a different colour font to what the name 
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suggests (i.e., ‘Blue’ is presented in red font), and participants are required to identify the 

colour of the word and not what it reads. Four colour pallets are presented alongside the 

word and participants must select the right colour. The right selection awards points, but 

incorrect inputs incur penalties.  

Figure 7.1 – The Multitasking Framework in progress. Tasks are divided into 4 quadrants and a 

numeral score is displayed at the centre of the window.  

 

7.3.4 Procedure 

 

This study was approved by Liverpool John Moores University Research Ethics Committee 

in December 2017. Participants were recruited from the university and the surrounding 

area through LJMU email lists and online PCE discussion groups. A digital copy of the 

participant information sheet was provided in all correspondences which detailed the aims 

of the study and what would happen to participants in the lab. On arrival, participants also 

received a paper copy of the PIS and a consent form. After giving consent, participants 

completed the Modified Background Drug Use Questionnaire, to collect demographic 

information and assess modafinil and other substance use history, and the Hospital Anxiety 

and Depression Scale. Functional near-infrared spectroscopy and ECG electrodes were then 

fastened to the participant and their left arm was placed in a blood pressure cuff. A 3-
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minute montage of relaxing images and music was then played on a computer while 

baseline recordings from fNIRS, ECG and the blood pressure cuff were taken. Following 

baseline measures, participants were randomly allocated to complete either the easy or 

hard condition of the Multitasking framework (MTF) which lasted approximately 10 

minutes. After a short break, they were administered the 3-back which lasted another 10 

minutes. Finally, participants completed the remaining difficulty condition of the MTF and 

after completion were provided with a paper debrief. During all cognitive tasks, recordings 

from fNIRS, ECG and blood pressure were taken, and at the conclusion of each task 

participants filled out the NASA-TLX to assess perceived workload.  

7.3.5 Data analysis strategy 

 

Neurophysiological data was cleaned using various software packages. For fNIRS, the 

OxyMon integrated software Oxysoft by Artinis Medical Systems was used to clean signal 

noise and remove movement artefacts. This was achieved by applying low and high pass 

filtering to eradicate interference caused by ambient light sources and the cardiovascular 

system, and by eyeballing the data graph for sharp spikes (movement artefacts) and 

manually removing them. Raw data was also subject to CBSI analysis, which removes 

positive correlations between oxy and deoxy-Hb, thus improving signal quality and only 

requiring analysis of oxy-Hb data (see Chapter 4 for full details). AcqKnowledge, the 

accompanying analysis package of BSL PRO, was used on ECG raw signal data. Data analysis 

was conducted with SPSS version 25. For the behavioural data, several mixed MANOVA 

compared user groups and general differences in performance between the MTF difficulty 

conditions and the subtasks as well as differences on the 6 subscales of the NASA-TLX. 

Moreover, between-groups one-way ANOVA compared user groups on 3-back hits and 

misses. For neurophysiological data, a series of mixed MANOVAs compared user groups 
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across tasks on haemodynamic changes between the right, medial and left prefrontal 

cortices and also looked at regional differences on the left and right DLPFC. Partial 

correlations were also run on each fNIRS channel while controlling for the remaining 

channels to compare regional connectivity during the tasks between the groups. User 

groups were also compared on high frequency HRV and SBP and DBP scores, and general 

differences between tasks were also assessed.  

 7.4 Results 

 

7.4.1 Educational Attainment  
 

All participants indicated some kind of prior educational attainment (N = 23). As in the 

previous study, every respondent recorded a level 2 (GCSE or equivalent) and level 3 (A-

level, NVQ or equivalent) qualification. Furthermore, most participants were currently 

enrolled in higher education (N = 21), except for two nonusers who failed to provide a 

response. Therefore, educational attainment appeared to be matched between user 

groups.   

7.4.2 Behavioural Measures 
 

Anxiety and depression scores on the HADS are presented in Table 7.1. Between-groups 

ANOVA found that there were no significant differences between user groups on anxiety or 

depression score (see Table 7.1). 
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Table 7.1 – Average modafinil user and nonuser scores on the HADS.  

 

HADS Long-term 

Modafinil Users 

Nonusers ANOVA 

 Mean (SD) Mean (SD) F(1,19) Sig Effect 

Anxiety 5.38 

(3.59) 

7.13 

(6.01) 

.699  p >.05 ƞp
2 = .035 

Depression 3.00 

(2.27) 

4.75 

(4.95) 

1.234  p >.05 ƞp
2 = .022 

 

Average performance on the MTF and 3-back are presented in Table 7.2 and Table 7.3. A 

mixed MANOVA analysing differences on the MTF difficulty conditions found a non-

significant within-groups effect on overall score (F(1,21) = 1.868, p > .05, ƞp
2 = .099) with 

participants unexpectedly exhibiting a similar performance on the MTF easy condition and 

the hard condition. There was also a non-significant between-groups effect of users vs. 

nonusers (F(1,21) = .072, p > 05, ƞp
2 = .009), however a follow-up ANOVA revealed that 

users did significantly better on the MTF high difficulty condition than nonusers (F(1,21) = 

3.570, p < .05, ƞp
2 = .198). Moreover, MANOVA on the subtasks of the MTF revealed several 

mixed findings. There was a significant within-groups difference between the MTF difficulty 

conditions (F(1,21) = 28.629, p < .001, ƞp
2 = .799) but a non-significant between-groups 

effect of user group (F(1,21) = 2,300, p > .05, ƞp
2 = .088). Moreover, post hoc t-tests 

revealed that, on average, participants scored higher on the low difficulty mental 

arithmetic task than the high difficulty, but unexpectedly did better on the high difficulty 

versions of the visual warning and tracking tasks while there was no significant difference 

on the Stroop (see Table 7.2). Furthermore, there was a significant condition x group 

interaction (F(1,21) = 3.684, p < .05, ƞp
2 = .130), suggesting that users differed in 

performance to nonusers on the MTF difficult conditions. Follow-up post hoc t-tests 

revealed that on the high difficulty Stroop test, modafinil users scored significantly higher 
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than nonusers (t(20) = 2.723, p < .05, d = .11 ), but did not score differently on any other 

subtask. Finally, a one-way ANOVA found that on the 3-back, there were no significant 

between-groups differences between long-term users and nonusers on total hits and 

misses. 

Table 7.2 – Average scores on the low and high difficulty conditions of the MTF.  

 

MTF Long-term Modafinil 

Users 

Nonusers t-test 

 Mean (SD) t(1,20) = 

 Low 

Difficulty 

High 

Difficulty 

Low 

Difficulty 

High 

Difficulty 

Within-groups results 

MTF Score 2675.38 

(1244.03) 

2832.31 

(1503.00) 

2480.50 

(1615.89) 

1503 

(1432.49) 

*2.127, <.05, d = .18 

Arithmetic 193.85 

(199.10) 

42.31 

(169.56) 

185.00 

(221.68) 

41.25 

(65.77) 

***4.211, <.001, d = .54 

Stroop 2157.69 

(1215.01) 

2165.38 

(986.26) 

1966.25 

(1519.99) 

790.13 

(1327.43) 

1.509, >.05, d = .08 

Tracking 102.31 

(37.57) 

300.77 

(205.04) 

93.00 

(39.06) 

308.00 

(293.44) 

***-4.105, <.001, d = .52 

Warning 223.08 

(25.29) 

352.50 

(53.65) 

226.25 

(10.60)  

352.50 

(53.65) 

***-8.133, <.001, d = .77 

                     Note:* Significant at .05, **significant at .01, ***significant at .001 

                      Abbreviation: MTF, multitasking framework.  
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Table 7.3 – Mean scores on the 3-back task between modafinil users and nonusers.   

 

3-back Long-term 

Modafinil Users 

Nonusers ANOVA 

 Mean (SD) F(1,21) Sig Effect 

Hits 11.69 

(4.42) 

9.25 

(6.86) 

.995 >.05 ƞp
2 = .023 

Misses 29.23 

(9.94) 

27.88 

(9.74) 

.093 >.05 ƞp
2 = .002 

 

Results on the NASA-TLX are displayed in Table 7.4. Mixed MANOVA revealed a highly 

significant within-groups effect of task on self-reported workload (F(2,21) = 17.925, p < 

.001, ƞp
2 = .666). Additionally, a significant condition x subscale interaction was apparent 

(F(5,21) = 38.554, p < .05, ƞp
2 = .975) suggesting that task-load across individual scales 

differed in relation to cognitive task.  Moreover, repeated measures ANOVA on each 

subscale supported this finding as each was highly significant (see Table 7.4), and contrasts 

revealed a linear increase in self-reported task-load with the MTF easy condition requiring 

the least demand, followed by the MTF hard condition and then the 3-back on all subscales 

of the NASA-TLX.  However, MANOVA revealed that there were no significant between-

group differences observed among user groups (F(1,21) = .635, p > .05, ƞp
2 = .032) and no 

significant condition x user group interactions (F(1,21) = 1.920, p > .05, ƞp
2 = .176), 

indicating that long-term users did not differ to controls in any of the cognitive tests on 

self-reported task-load.
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Table 7.4 – Mean scores on the subscales of the NASA-TLX for the cognitive tasks. Bonferroni adjustments were also made to alpha levels for the within-group ANOVA.  

   

NASA-TLX Modafinil Users Nonusers ANOVA 

 Mean (SD) F(2,21) = 

MTF 

Conditions 

Low 

Difficulty 

High 

Difficulty 

3-Back Low 

Difficulty  

High 

Difficulty 

3-Back Within-groups results 

Mental 48.46 

(23.20)  

72.77 

(17.48) 

73.38 

(14.06) 

51.63 

(18.60)  

79.00 

(23.58) 

83.63 

(16.65) 

**28.337, p<.01, ƞp
2 = .795 

Physical 12.31 

(11.63) 

31.23 

(27.26) 

19.69 

(20.15) 

 19.75 

(15.13) 

43.00 

(38.78) 

25.50 

(23.43) 

*6.126, p<.05, ƞp
2 = .404 

Temporal 51.31 

(22.34)  

70.77 

(20.19) 

65.85 

(25.73) 

 51.63 

(23.60) 

78.38 

(21.51) 

70.13 

(25.73) 

**12.114, p<.01, ƞp
2 = .539 

Effort 57.23 

(15.80)  

74.08 

(16.33) 

75.38 

(14.32) 

 49.50 

(20.07) 

75.00 

(26.81) 

79.38 

(9.30) 

**22.059, p<.01, ƞp
2 = .726 

Performance 64.23 

(18.82)  

48.08 

(20.34) 

26.15 

(19.94) 

 62.38 

(32.96) 

50.63 

(30.11) 

31.00 

(33.43) 

**22.094, p<.01, ƞp
2 = 719 

Frustration 47.23 

(25.60) 

62.15 

(18.37) 

58.15 

(28.30) 

33.50 

(29.60) 

61.38 

(23.57) 

76.25 

(17.86) 

**9.849, p<.01, ƞp
2 = .635 

Note: * Significant at .05, **significant at .01. Abbreviation: MTF, multitasking framework.
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7.4.3 fNIRS Analysis 
 

Averages for oxy-Hb change from baseline among modafinil users and nonusers for the 

MTF low and high difficulty are shown in Table 7.5, and averages on the 3-back are 

presented in Table 7.6. Optodes were divided into regions of the PFC based on their 

position on the forehead (see Table 7.5 and table 7.6 for further details). Furthermore, the 

right PFC, medial PFC and left PFC were tested in separate MANOVA. Before multivariate 

analysis, bivariate correlations were carried out with optodes comprising each ROI. 

Optodes 8, 10 and 12 correlated significant with other channels in their respective regions 

and across multiple conditions, thus they were excluded from MANOVA due to 

multicollinearity.  
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Table 7.5 – Mean average oxy-Hb change on the MTF easy and hard conditions across the 12 

optodes. The right PFC (optodes 1, 2, 7 and 8), medial PFC (optodes 3, 4, 9 and 10) and left PFC 

(optodes 5, 6, 11 and 12) are presented in different blocks.   

 Modafinil users Nonusers MANOVA 

 MTF Easy MTF Hard MTF Easy MTF Hard Results 

Mean (SD) Oxy-Hb 

Right PFC  

Op 1 .12 

(5.25) 

-.33 

(3.35) 

-.01 

(7.38) 

-1.85 

(4.63) 

Group: F(1,21) = 1.443, 

p > .05, ƞp
2 = .071 

Op 2 -.94 

(3.62) 

-.47 

(2.78) 

3.20 

(9.14) 

2.98 

(8.84) 

Condition: F(1,21) = 

1.923, p > .05, ƞp
2 = .092 

Op 7 2.67 

(7.33) 

.85 

(6.10) 

3.27 

(3.79) 

3.88 

(4.48) 

Region: F(3,21) = 1.931, 

p > .05, ƞp
2 = .092 

Op 8 -.85 

(4.08) 

.26 

(5.56) 

.81 

(10.68) 

.71 

(10.80) 

Group x condition = 

F(1,21) = .026, p > .05, 

ƞp
2 = .001 

Medial PFC 

Op 3 -1.89 

(5.26)  

-.29 

(2.51) 

-3.10 

(6.04) 

-1.55 

(6.39) 

Group: F(1,21) = 2.555, 

p > .05, ƞp
2 =.142 

Op 4 1.67 

(3.25) 

2.63 

(7.51) 

-2.32 

(6.27) 

-2.06 

(6.13) 

Condition: F(1,21) = 

4.006, p = .06, ƞp
2 = .174 

Op 9 -1.65 

(1.62) 

-1.57 

(1.47) 

-4.03 

(2.37) 

-2.60 

(1.92) 

Region: F(3,21) = 2.008, 

p = .07, ƞp
2 = .182 

Op 10 .52 

(5.40) 

1.44 

(8.50) 

-2.80 

(8.43) 

-2.81 

(7.30) 

Group x condition = 

F(1,21) = .042, p > .05, 

ƞp
2 = .002 

Left PFC 

Op 5 3.52 

(6.20) 

2.26 

(8.04) 

2.75 

(8.38) 

-1.87 

(3.43) 

Group: F(1,21) = 2.165, 

p > .05, ƞp
2 = .100 

Op 6 .59 

(1.20) 

.49 

(1.87) 

-.49 

(3.38) 

-.49 

(3.38) 

Condition: F(1,21) = 

.058, p > .05, ƞp
2 = .003 

Op 11   3.94 

(6.67) 

5.13 

(6.67) 

-.33 

(10.46) 

.95 

(10.11) 

Region: F(3,32) = 1.744, 

p > .05, ƞp
2 = .084 

Op 12 -.32 

(5.07) 

-.53 

(5.61) 

-2.19 

(10.41) 

-.82 

(10.59) 

Group x condition = 

F(1,21) = .011, p > .05, 

ƞp
2 = .001 
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Note: Abbreviations: MTF, multitasking framework; oxy, oxygenated; deoxy, deoxygenated; op, 

optode.  

Various mixed MANOVA analyzing potential differences in haemodynamic response across 

the right PFC, medial PFC and left PFC revealed null results. On the right PFC, there were no 

significant within-group differences with the low and high difficulty conditions of the MTF 

for oxy-Hb change.  Furthermore, no differences were observed among the optodes in the 

right PFC, suggesting that oxy-Hb levels in the region remained similar across the difficulty 

conditions. On the medial PFC, there was no effect of the MTF difficulty conditions on oxy-

Hb change, but a statistical trend was apparent between the regional optodes, which 

contrasts show is because optode 3, located on the top-right side of the region, showed 

greater oxy-Hb decreases than the other channels. Moreover, there were no significant 

within-groups effects for oxy-Hb change in the left PFC on the MTF difficulty conditions or 

the optodes in the region. For between-groups analysis, there were no significant 

differences apparent in the right PFC, medial PFC or left PFC in oxy-Hb change (see Table 

7.4 for MANOVA results), suggesting that modafinil users and nonusers experienced the 

same amount of cognitive workload on the MTF. Finally, there were no significant within or 

between-group interactions observable across any of the three PFC regions.  

On the 3-back, several mixed MANOVA revealed varied results. There were no significant 

within-group differences for optodes covering the right PFC, medial PFC or left PFC. 

However, between-groups analysis revealed mixed findings, as there were no significant 

differences apparent between user groups and oxy-Hb change in the right and medial PFC. 

Nonetheless, there was a significant effect of user group on oxy-Hb change in the left PFC, 

which contrasts revealed was because users generally experienced an increase in oxy-Hb 

while nonusers had a decrease, a finding which suggests that users exerted more cognitive 

effort than nonusers. Lastly, there were no significant interactions apparent across the PFC 

regions (see Table 7.6 for MANOVA results).  



138 | P a g e  
 

Table 7.6 – Mean oxy-Hb change on the 3-back across the 12 optodes. Optodes are divided into the 

right PFC, medial PFC and right PFC as described in the previous table. 

 Modafinil users Nonusers MANOVA 

3-Back Oxy-Hb  

Mean (SD)  

Right PFC Results 

Op 1 .08 

(3.48) 

-1.01 

(5.01) 

Group: F(1,21) = 3.246 p 

= .06, ƞp
2 = .176 

Op 2 -1.01 

(5.01) 

4.23 

(10.62) 

 

Op 7 .43 

(4.57) 

4.97 

(3.54) 

 Region: F(3,21) = 3.073, 

p > .05, ƞp
2 = .166 

Op 8 .22 

(4.20) 

2.52 

(11.90) 

 

Medial PFC  

Op 3 -.49 

(4.87) 

-2.50 

(6.71) 

Group: F(1,21) = 2.701, p 

> .05, ƞp
2 = .124 

Op 4 1.97 

(6.50) 

-2.87 

(6.13) 

 

Op 9 -1.96 

(1.53) 

-2.81 

(2.38) 

Region: F(3,21) = .944, p 

< .05), ƞp
2 = .095 

Op 10 1.73 

(7.88) 

-3.98 

(7.93) 

 

Left PFC  

Op 5 2.33 

(6.09) 

-1.28 

(3.63) 

*Group: F(1,21) = 7.268, 

p < .05, ƞp
2 = .277 

Op 6 .12 

(1.27) 

-1.45 

(4.30) 

 

Op 11 4.78 

(6.99) 

.04 

(8.70) 

Region: F(3,21) = .284, p 

> .05, ƞp
2 = .031 

Op 12 -.98 

(5.27) 

-3.39 

(9.58) 

 

           Note:  * Significant at .05, **significant at .01, ***significant at .001. Abbreviations: MTF, 

multitasking framework; oxy, oxygenated; op, optode. 
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7.4.4 Blood Pressure and HRV Analysis 
 

Table 7.7 shows average SBP, DBP and high and low frequency HRV for long-term modafinil 

users and nonusers across the cognitive tasks. For blood pressure analysis, mixed MANOVA 

revealed that there was a highly significant within-groups effect of MTF difficulty condition 

on SBP (see table 7.7 for within-groups results). Moreover, contrasts showed that both 

tasks significantly raised SBP when compared with baseline, and that the MTF hard 

condition significantly raised SBP higher than the MTF easy condition. Furthermore, there 

was a significant between-groups effect (F(1,21) = 4.356, p < .05, ƞp
2 = .295) which contrasts 

revealed was apparent during completion of the MTF low and high conditions, as nonusers 

had significantly higher blood pressure than users. Findings for DBP were similar, within-

groups analysis revealed a significant effect of the cognitive tasks, although contrast 

analysis showed that while the MTF easy and hard conditions had significant increases from 

baseline, they did not differ from each other. However, unlike SBP, there was no significant 

between-groups effect (F(1,21) = 1.367, p > .05, ƞp
2 = .098) or condition x user group 

interaction (F(1,21) = .943, p > .05, ƞp
2 = .057), suggesting that DBP was not influenced by 

user status. On the 3-back, MANOVA also revealed a highly significant within-groups effect 

of the task on SBP, with contrasts showing that SBP was higher during the 3-back than 

baseline. Again, there was no between-groups effect (F(1,21) = 1.319, p > .05, ƞp
2 = .101) or 

interaction (F(1,21) = .522, p > .05, ƞp
2 = .016) suggesting that user status did not impact 

SBP. Finally, there was no significant within-groups effect on DBP, nor was there a 

between-groups effect of user group (F(1,21) = .229, p > .05, ƞp
2 = .016) or a significant 

interaction (F(1,21) = .803, p > .05, ƞp
2 = .024). 
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Table 7.7 – Average SBP, DBP and high frequency HRV for long-term users and nonusers at baseline 

and during the cognitive tasks. 

 Modafinil Users Nonusers MANOVA 

F 

Systolic blood 

pressure 

Mean (SD) Within-Groups 

Results 

Systolic Blood Pressure 

Baseline 110.69 

(9.35) 

116.50 

(10.26) 

 

MTF Low 114.69 

(10.29) 

122.88 

(10.97) 

***MTF = F(2,21) = 

10.495, p < .001, ƞp
2 = .295 

MTF High 118.77 

(7.46) 

130.00 

(14.57) 

 

3-back 116.08 

(9.47) 

120.63 

(15.79) 

**3-back = F(1,21) = 

5.413, p < .01, ƞp
2 = .191 

Diastolic Blood Pressure 

Baseline 71.00 

(9.60) 

73.63 

(11.52) 

 

MTF Low 75.77 

(5.93) 

79.00 

(12.15) 

*MTF = F(2,21) = 3.541, p 

< .05, ƞp
2 = .097 

MTF High 73.77 

(8.23) 

80.25 

(8.94) 

 

3-back 73.23 

(9.61) 

75.63 

(11.46) 

3-back = (F(1,21) = .1.480, 

p > .05) , ƞp
2 = .015 

High Frequency Heart Rate Variability 

Baseline .155 

(.19) 

.30 

(.37) 

 

MTF Low 3.99 

(7.59) 

1.61 

(3.17) 

MTF = F(2,21) = 2.962, p > 

.05, ƞp
2 = .044 

MTF High 2.83 

(9.34) 

5.80 

(15.48) 

 

3-back 15.99 

(33.13) 

16.98 

(28.30) 

*3-back = (F(1,21) = 5.314, 

p < .05) , ƞp
2 = .170 
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Note:  * Significant at .05, **significant at .01, ***significant at .001. Abbreviations: MTF; 

Multitasking framework; low, low difficulty; high, high difficulty. 

 

Heart rate variability analysis was conducted with high frequency data, which increased 

sensitivity to detect parasympathetic changes. A mixed MANOVA comparing HRV across 

MTF difficulty conditions found no significant within-groups effect. Contrasts revealed that 

participants had greater HRV on the MTF difficulty conditions than baseline, but, 

unexpectedly, there were no differences between the difficulty conditions themselves. 

Furthermore, there was no between-groups effect between users and nonusers apparent 

(F(1,21) = .015, p > .05, ƞp
2 = .007), nor was there a significant condition x user group 

interaction (F(1,21) = .949, p > .05, ƞp
2 = .058), indicating that HRV was not impacted by 

long-term modafinil use. Lastly, MANOVA comparing HRV on the 3-back from baseline 

found a significant effect, and contrasts showed that HRV was greater during the task than 

at baseline. Again, there was no significant between-groups effect of user group on HRV 

(F(1,21) = .007) = p > .05, ƞp
2 = .002) and no apparent interaction (F(1,21) = 1.049) = p > .05, 

ƞp
2 = .032), indicating that the 3-back task was the only variable which influenced HRV.  

7.4.5 fNIRS Connectivity Analysis 
 

Partial correlations comparing each channel on the MTF low difficulty condition between 

user groups are presented in Table 7.8, while partial correlations on the MTF high difficulty 

are shown in Table 7.9, and partial correlations on the 3-back are presented in Table 7.10. 

Correlation coefficients represent the relationship between two channels while controlling 

for any potential second order effects of the 10 other channels. Heat maps illustrate the 

connectivity between channels, with coefficients in red shades showing positive 

relationships and those in blue showing negative.
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Table 7.8 – Partial correlation matrices depicting connectivity across the 12 channels in users and nonusers on the MTF low difficulty condition. Coefficients are presented 

in a heat map for greater visual illustration. 
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Channel connectivity between users and nonusers on the MTF low difficulty condition was 

similar, though some differences were apparent (See Table 7.8). In general, with both 

groups, positive correlations were highest in adjacent channels, or channels located in the 

same region (i.e., channels within the medial PFC), while negative correlations tended to be 

strongest in optodes further apart and in different regions (i.e., between the left and right 

PFC), although there were some exceptions. In both groups, there was visible connectivity 

in the right PFC, with channels 1 and 2 and channels 1 and 7 being moderately positively 

correlated. Interestingly, there were group differences visible with left PFC connectivity, as 

nonusers exhibited moderate positively correlated connectivity in channels 11 and 12, 

while users showed a minor negative correlation. Nonetheless, with both groups, channels 

11 and 5, located in the left PFC, were moderately positively correlated. However, the 

biggest group difference was apparent between channels 7 and 12 which are in the right 

and left PFC, respectively. While users showed no connectivity between the channels, 

nonusers exhibited a strong negative correlation, which suggests that there was a 

significant difference in how the left and right PFC interacted during the task between user 

groups.
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Table 7.9 – Partial correlation matrices depicting connectivity across the 12 channels in users and nonusers on the MTF high difficulty condition. Coefficients are presented 

in a heat map for greater visual illustration. 
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On the MTF high difficulty condition, channel connectivity appeared to diverge between 

user groups (see Table 7.9). Overall, users experienced moderate and high positively 

correlated connectivity between optodes, whereas nonusers showed greater negatively 

correlated activity. In nonusers this suggests a haemodynamic trade-off, in that as oxy-Hb 

increased in some regions it was met by a decrease in others. With users, greater oxy-Hb 

increases across channels suggests greater cognitive workload during the task. However, 

groups were similar in some regards, particularly with adjacent channels, where several 

notable positive correlations were apparent (e.g., channels 2 and 3, channels 4 and 5 and 

channels 10 and 11). Optodes in specific regions also showed less connectivity in general. In 

the left PFC, channels 11 and 12 were uncorrelated in nonusers and negatively correlated 

in users; however, channels 5 and 6 in the same region were moderately negatively 

correlated in nonusers and appeared to lack correlation in users. Most notable was the 

medial PFC, where channels 9 and 10 were moderately negatively correlated in nonusers 

and strongly negatively correlated in users. There was also cross regional connectivity 

apparent in users, where channels 8 and 10, located in the right PFC and left PFC 

respectively, had a strong positive correlation. 



146 | P a g e  
 

Table 7.10. – Partial correlation matrices depicting connectivity across the 12 channels in users and nonusers on the 3-back. Coefficients are presented in a heat map for 

greater visual illustration. 

 

 

 



147 | P a g e  
 

 

On the 3-back, connectivity also seemed to diverge between user groups (see Table 7.10). 

Channels tended to be more negatively correlated within nonusers, though to a lesser 

extent than seen on the MTF high difficulty condition. In nonusers, channels 9 and 3, both 

located in the medial PFC, were negatively correlated with more channels than users, 

although in both groups, channels 9 and 10 were highly negatively correlated, suggesting 

decreased activation of the medial PFC during the task. The left PFC showed greater 

activation in users than nonusers, as channels 11 and 5 were highly correlated among users 

but not with nonusers. Cross regional connectivity was also visible between the left and 

medial PFC in nonusers, as channels 9 and 10 were moderately correlated with channel 1. 

In users these channels showed weak and moderately negative correlations, suggesting 

that increases to right PFC activation was met with a trade-off in decreased medial PFC 

activity. Overall, users appeared to exhibit greater activation during the task than nonusers, 

particularly in the left PFC.  

 

7.5. Discussion 

 

Findings from this study do not support the hypotheses outlined earlier in the Chapter. 

Contrary to expectations, modafinil users did not exhibit differences in bilateral activation 

to the left and right DLPFC during any of the MTF difficulty conditions. However, 

connectivity analysis did show that during the MTF high difficulty condition, users 

experienced a general increase in oxy-Hb across multiple regions of the prefrontal cortex 

which was not apparent in nonusers. Furthermore, on the 3-back, users showed increased 

activation of the left PFC compared with nonusers, but this finding was not specific to the 

DLPFC as predicted. Connectivity analysis also revealed that users experienced strong 

connectivity between channels 11 and 5 which are situated in the left PFC, which supports 
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findings from the main fNIRS analysis. There were also no observable group differences in 

high-frequency HRV or DBP, although, unexpectedly, nonusers had significantly higher SBP 

pressure during the tasks than users. Moreover, regardless of user group, fNIRS failed to 

detect general oxy-Hb change between participants in the MTF difficulty conditions. 

Furthermore, high-frequency HRV showed that R-R interval significantly increased from 

baseline on the cognitive tasks, but there were no differences during the MTF difficulty 

conditions. The same was found with DBP, which showed a modest increase from baseline 

and no task differences. Nonetheless, SBP revealed a linear increase, as all cognitive tasks 

significantly raised blood pressure from baseline with the MTF high difficulty raising it more 

than the low difficulty. Additionally, while it was predicted that modafinil users would 

perform worse on the cognitive tasks than nonusers, on the MTF high difficulty the 

opposite was found to be true, as users outperformed nonusers, which analysis showed 

was due to a better performance on the Stroop task. Finally, against expectations, user 

groups did not differ in response to the subscales of the NASA-TLX, suggesting that there 

were no self-reported differences in perceived workload. As such, none of the hypotheses 

in this study could be accepted.  

Despite findings opposing predictions, differences in haemodynamic response between 

user groups reveal some neurophysiological differences which are in line with previously 

discussed research. Similar to findings from Montgomery et al. (2017) with ecstasy poly-

drug users, modafinil users showed greater oxy-Hb change during the 3-back despite 

showing a similar performance to nonusers. While, ostensibly, it may appear that a 

comparable performance on the 3-back suggests that modafinil users did not exhibit 

cognitive deficits in working memory, increased oxy-Hb in the left PFC, a region previously 

shown to govern working memory functions, suggests that users invested greater cognitive 

effort to achieve similar behavioural output to nonusers. This finding does appear to 

support the notion that, like illicit stimulants, long-term modafinil use may result in working 
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memory deficits. However, the same was not found during the MTF, as haemodynamic 

response was similar across the PFC between user groups, yet modafinil users exhibited 

improved performance compared with nonusers on the high difficulty Stroop. This is like 

findings from Study 2 which revealed quicker response rates on the cued go/no-go task for 

modafinil users which further suggests that they show improved response inhibition when 

compared with non-using controls.  It may then be that while the drug might be 

detrimental to certain cognitive functions, improvements to inhibitory control and reaction 

time suggest that it might ameliorate others. It should be noted, of course, that users did 

not perform better on the visual warning task, itself a test of attention and reaction time. 

As such, this finding could instead indicate that modafinil users make use of their cognitive 

resources more effectively, by focusing on tasks they find more manageable to meet the 

demands of the test. This may also explain why SBP was significantly lower in users than 

nonusers, particularly since blood pressure differences were most apparent during the MTF 

high difficulty condition. As modafinil users appeared to make better use of their resources, 

it stands to reason that they became less stressed than nonusers which reduced SBP.  

7.6 Chapter Summary 

 

In this chapter, haemodynamic response, HRV and blood pressure changes during 

completion of the 3-back working memory task and a multitasking stressor have been 

explored in modafinil users vs. healthy controls. Furthermore, this study is the first to 

address long-term modafinil use by examining the potential neurophysiological and 

psychophysiological impact of use. Use of fNIRS revealed potential working memory 

deficits in modafinil users who completed the 3-back, and blood pressure measurements 

showed users had lower SPB on all tasks. Furthermore, users also outperformed nonusers 

on the high difficulty Stroop, showing that, as was also demonstrated in Study 2, users 
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appear to have better inhibitory control. As such, this study revealed that while modafinil 

users appeared to demonstrate better performance in some areas, deficits may be 

apparent in others. Taken together with the previous study, modafinil appears to impact 

cognitive performance in ways which were not anticipated. Overall, CE strategies have 

been comprehensively explored, and long-term use of the most popular PCE drug, 

modafinil, has been found to have some effect on cognitive performance and 

haemodynamic response. The final chapter attempts to fully extrapolate the implications of 

the 3 studies which make up this thesis and places them in context with pre-existing 

literature.  
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Chapter 8: General Discussion. 

 

8.1 Thesis Summary 

The principal aim of this thesis was to investigate the use of cognitive enhancement drugs. 

It also aimed to: (1) investigate the aetiology of CE use in select UK universities, (2) assess 

the effects of long-term modafinil use on executive functioning, (3) explore the effects of 

long-term modafinil use on neurophysiological processes, and (4) examine the relationship 

between changes in cognitive performance and neurophysiological reactivity, to determine 

if neurovascular activation could be used as a proxy for cognitive workload. The first 

Chapter examined which substances are purported to enhance cognitive functioning, and 

these were defined as either ‘soft enhancers’ or ‘PCE’ based on product type and 

pharmacology. An examination of prevalence estimates found that the stimulant modafinil 

appeared to be the most popular PCE for study at university. Consequently, Chapter 2 

explored modafinil use in healthy and clinical populations, to determine what impact the 

substance has on cognitive performance, if it is an effective PCE, and its side effects and 

potential harms. It was concluded that although short-term use (< 3 months) was deemed 

to be relatively safe when administered as part of clinical studies, there was no available 

data on the safety and cognitive impact of non-clinical and longer periods of use (> 3 

months). Chapter 3 examined the most appropriate methods of detecting changes in 

cognitive workload, an umbrella term for measuring different aspects of cognitive 

performance in response to task difficulty, in long-term users of modafinil. This review 

showed that the most appropriate way was a mixture of subjective, cognitive and 

neurophysiological methods. Chapter 4 described the methods chosen in the later 

empirical studies, and outlined the theoretical frameworks which underpinned them, 

including why a survey methodology is best for collecting demographic and drug use data 

with substance using populations, and how fNIRS, ECG and blood pressure measurements 



152 | P a g e  
 

can be used as indicators of neurophysiological changes associated with increased cognitive 

workload.  

The three empirical studies which followed used various methods to explore CE use in the 

UK. Study 1 (Chapter 5) described a survey of CE use in university students, including the 

substances used, and the predictors of use. Use of substances for CE was predicted by age 

(being older), gender (being male), and believing use of modafinil for CE to be more morally 

acceptable predicted soft enhancer and PCE use. In keeping with previous research, 

modafinil was the most popular PCE drug among respondents, and so subsequent studies 

examined this drug. Study 2 (Chapter 6) examined cognitive performance across a range of 

executive functions which have been shown to improve with acute modafinil (as reviewed 

in Chapter 2), including working memory, sustained attention and inhibitory control. Due to 

the neurochemical similarities between modafinil and other psychostimulants like cocaine, 

it was hypothesised that long-term users would show poorer performance in these 

cognitive functions compared with non-using controls. This hypothesis was not supported, 

and modafinil users showed faster response times to all cues on the cued go/no-go task 

without demonstrating an accuracy trade-off, and there were no other performance 

differences between groups on the remaining tasks. Therefore, Study 3 (Chapter 7) built on 

these findings by adding neurophysiological measures to examine underlying mechanisms, 

and to see if long-term modafinil use, like other psychostimulants such as cocaine, was also 

associated with negative neurological and physiological effects during high-demand 

cognitive performance. The tests undertaken by participants were more cognitively 

challenging than the previous study and working memory and multitasking capacity was 

assessed. Like Study 2, modafinil users demonstrated better inhibitory control which was 

expressed on the high difficulty Stroop when compared with non-users, but they showed 

greater oxy-Hb change on the 3-back, despite no differences in performance on the task. 
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Heart rate variability was not statistically different between groups across the tasks, but 

SBP was consistently lower in modafinil users.  

8.2 Discussion of Findings 

 

Study 1 made numerous predictions regarding patterns of CE use, including: (H1) use of soft 

enhancers would generally be higher than PCE, (H2) modafinil would be the most popular 

PCE drug for study purposes, (H3) reported use of illegal drugs for study would be smaller 

than soft enhancers and PCE, but recreational use would be higher than PCE, and (H4) 

sociodemographic and personality factors would predict use, specifically: Gender (being 

male), age (being older) level of study (being a postgraduate), learning style (being a 

surface learner) and moral perceptions of PCE use (H4). Consequently, all hypotheses, 

beside the H4, were supported by the data, and observed levels of CE use generally 

supported previous research (Maier et al., 2013; Singh, Bard, & Jackson, 2014a; Wolff, 

Brand, Baumgarten, Lösel, & Ziegler, 2017). Perhaps the most unsurprising finding was the 

general popularity of soft enhancers containing caffeine. Coffee and energy drinks had the 

highest levels of lifetime use regardless of user intent, followed by caffeine pills. The 

greater popularity of soft enhancers over PCE seems to be due to these caffeinated 

products. Nutraceutical use was modest, and use of bacopa, ginkgo and guarana for study 

was lower than PCEs, especially modafinil use. In this study, Modafinil use was comparable 

to levels previously reported in the UK (Holloway & Bennett, 2012; Singh et al., 2014a), 

excluding the recent study by Maier and colleagues which suggested a recent and 

significant rise in use of the drug in the UK from 2015 to 2017 (Maier, Ferris & Winstock, 

2018). The popularity of modafinil was important for several reasons. As discussed in 

Chapter 2, the pharmacological similarity of modafinil with other psychostimulants 

highlights a public health concern if UK students are using stimulants as a study aid. 

Furthermore, without robust data on long-term effects of use of modafinil, public health 
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education cannot be provided. The popularity of modafinil is also important for universities 

to consider, as the use of substances to cope with study demands may reflect poor student 

support or issues with student working practices or workload. It may be that this finding 

highlights a need for universities to address PCE use as part of university policy, to make it 

clear that alternative coping methods are available and provide balanced health education 

on these substances. Nevertheless, level of modafinil use was still below what was 

previously suggested in the media (Lennard, 2009; The Student Room 2016) and in Maier 

and colleagues’ (2018) recent study. One reason might be that region of the country played 

a role in the results, as the study described in this thesis looked at use in four Northern 

universities only, and did not take account of user rates in the South of England or other 

parts of the UK as other studies did. Use might also be higher at specific universities, 

particularly those “elite” universities which form the Golden Triangle. This would explain 

reports by Varsity, a University of Cambridge newspaper which reported that 10% of 

students were using modafinil. It is possible that demands on students are higher at these 

institutions because of academic expectations, and students might be more likely to use 

techniques like PCE to aid them in study to achieve a good grade. Of course, the opposite 

could also be true and students at these universities might be more academically capable 

and could rely less on external aids such as PCE for study. However, it should be noted that 

study 1 included a Russell Group university, where there could arguably be a similar 

demand on students. Nonetheless, differences in use seen between studies may come as a 

combination of these factors.  

Previous research has also suggested that a number of variables were associated with 

greater CE use, including; being male and over 25 (Maier et al., 2016; Maier et al., 2018), 

working alongside study (Maier et al., 2016), being a final year undergraduate or in 

postgraduate study (Maier et al., 2013) and perceiving CE use to be more morally 

acceptable (Maier, Liakoni, et al., 2015). As a consequence, it was hypothesised that several 
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factors could form a predictive model, although screening analyses examining correlational 

relationships excluded some of the variables described from further exploration to avoid 

impairing the predictive ability of the final regression solution. This is contrary to previous 

studies, which clearly indicated that many of these factors were linked to CE use. The lack 

of predictive capability might therefore come as a result of the study being exploratory, as 

some variables were thought suitable for analysis without direct evidence of their impact 

on CE use. This was because it was determined that they could add to student stress, such 

as semester-time accommodation, or whether a student has a deep or surface approach to 

learning (see Chapter 5). Perhaps these exploratory variables are not perceived to 

contribute to student stress as much as anticipated, or perhaps stress is not a driving factor 

in use of these substances in the first place. Nevertheless, the variables remaining in the 

logistic model successfully predicted CE use. The most powerful predictor of PCE use was 

gender, as being male made use significantly more likely. This is also a common finding in 

prior research across Europe (Maier et al., 2016; Maier et al., 2018), so it is unsurprising 

that the same was found here. Being older also predicted greater use of all CE categories, 

perhaps due to the increased academic rigour/workload older people can expect as they 

progress through study. It was also unsurprising that moral perception of modafinil use 

predicted PCE and soft enhancer use. This might also reflect the popularity of modafinil in 

the UK, with users of the drug likely to have a more positive attitude to its use and a better 

attitude to the use of other strategies like soft enhancers. Nevertheless, it is interesting 

that moral perceptions of d-amphetamine and MPH did not predict use, although this is 

likely because, so few respondents reported using these substances in general. A higher 

response rate to the survey might have revealed a link between moral perception of these 

substances and CE use, as was demonstrated by Maier et al. (2015) in Swiss university 

students’ attitudes towards PCE use.  
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Several predictions were made for Study 2: including (H5) that modafinil users would 

perform worse on cognitive performance measures than nonusers, (H6) more frequent 

modafinil use would also predict poorer performance on the cognitive performance 

measures, as would greater poly-drug use and recent use of illicit stimulants and cannabis, 

and (H7) modafinil use would be significantly correlated with greater levels of poly-drug use 

reported by participants in the modified Background Drug Use Questionnaire. However, 

findings indicate that long-term modafinil use does not appear to have the same impact on 

cognitive performance, which was predicted due to its similar neurochemical properties to 

illegal stimulants. In fact, decreased response time to all cues on the cued go/no-go task 

implies that the drug may have extended benefits beyond initial periods of use, as it 

suggests that users were able to process stimuli and respond quicker. Chapter 2 already 

highlighted the cognitive benefits conferred from acute modafinil use, and studies indicate 

that in healthy people inhibitory control performance is enhanced (Marchant et al., 2009; 

Rycroft et al., 2007; Turner et al., 2003). However, the question remains as to why such 

improvements are observable after at least 48 hours of abstinence from the drug. This 

could be explained by methodological issues pertaining to the use of a cross-sectional 

survey. For instance, due to the scarcity of modafinil users in Study 2 and 3, drug use 

frequency and average dose could not be accurately assessed. It is possible that use was 

too infrequent for a true behavioural impact of long-term use of the drug to be recorded. 

Therefore, it might be that findings are less attributable to modafinil use and more aligned 

with personality type or another factor which can be linked to long-term users. 

Additionally, as statistical modelling in Study 1 successfully identified factors associated 

with PCE use, it appears intuitive to think along these lines. It has been reported that PCEs 

are commonly used to gain a competitive edge (Maier et al., 2015), as such, users of this 

drug might simply be more competitive than nonusers, and they could be more 

accustomed to competitive tasks like cognitive performance measures. Nevertheless, 
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performance was not significantly different in working memory or sustained attention, 

which discredits the notion that they are better across all performance measures. It is also 

possible that continued modafinil use leads to long-term changes in neurology and 

cognitive function in a similar way to how SSRIs alter certain forebrain structures over time 

(Haddjeri, Blier, & de Montigny, 1998). Even after cessation, antidepressants show some 

positive outcomes to behaviour and cognition (Amado-Boccara et al., 1995). The same 

could be true with modafinil, although a lack of robust data showing consistent use of the 

drug with the sample makes this a strenuous comparison, particularly since SSRI’s are often 

taken daily.  

In Study 3, modafinil use was examined using fNIRS to assess neurovascular coupling in the 

prefrontal cortex as a proxy of cognitive workload. It was predicted that: (H8), modafinil 

users would exhibit differences in haemodynamic response which would occur bilaterally in 

the left and right DLPFC indicating increased cognitive effort compared with controls during 

the cognitive performance measures, (H9) differences would also be observed in HRV and 

BP with users showing reduced HRV and elevated BP compared to nonusers, (H10) all 

participants would exhibit increased oxy-Hb change and blood pressure as well as a 

significant reduction in HRV relative to baseline during the cognitive tasks, (H11) and 

modafinil users would perform significantly worse on the cognitive performance measures 

than nonusers and also report greater mental workload on the NASA-TLX. In this study, 

findings were less consistent than Study 2, and although inhibitory control was better in 

users on the high difficulty Stroop, increased oxy-Hb change in users on the 3-back despite 

no behavioural differences implies an underlying deficit in working memory. 

Haemodynamic findings therefore contradict the notion that modafinil provides only long-

term improvements to cognitive functioning, and it may be that while inhibitory control is 

better, it comes at a cognitive trade-off to working memory performance. Moreover, 

working memory deficits are typical with repeat cocaine administration (Jovanovski, Erb, & 
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Zakzanis, 2005), as such the previous comparisons made between modafinil and other 

psychostimulants are pertinent. Furthermore, Study 3 also took account of blood pressure 

and HRV measurements, and although HRV was not significantly different between user 

groups, modafinil users generally had lower SPB than nonusers during all cognitive 

performance measures, suggesting that, physiologically, they coped better with the 

demands of the tasks. This could relate to the earlier suggestion that users are more 

accustomed to acting competitively than nonusers, and as a consequence they become less 

physiologically stressed during the cognitive performance measures. Furthermore, another 

interesting finding is that although users performed better on the high difficulty Stroop, 

when results are scrutinised it appears that users simply sustained strong performance 

between the low and high difficulty conditions, whereas nonusers demonstrated a 

significant decline at the harder difficulty. This may suggest that users are better at 

sustaining cognitive performance under challenging tasks than nonusers in general, and not 

simply in inhibitory control. Furthermore, there were no within-group differences between 

the different MTF difficulty conditions, which is surprising as previous research using the 

same task configuration has shown difficulty related performance differences (Wetherell & 

Carter, 2014). However, on closer inspection of performance on the visual warning and 

visual tracking tasks, users and nonusers improved their scores on the harder difficulty 

variants. One explanation could be that because in both instances the time required to 

respond to each task was far shorter during the harder difficulty, participants attended 

more closely to these tasks, which improved their scores. This could also explain why 

nonusers scored significantly lower on the high difficulty Stroop, as they were less effective 

at distributing their cognitive resources than modafinil users. Finally, it should be noted 

that there were no group differences on responses to the NASA-TLX, and despite the 

behavioural and neurophysiological differences, users did not differ to nonusers in 

perceived workload. This suggests that although some performance differences were 
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visible, participants did not indicate this during self-reporting. As such, this reflects that 

users did not acknowledge the increase in cognitive effort displayed on the 3-back which 

was visible due to the observed oxy-Hb increase, which indicates a lack of awareness.   

8.3 Methodological Strengths and Limitations 

 

The research described in this thesis makes several unique contributions. First, Study 1 

explored level of CE use and also looked at associated factors of use, including 

sociodemographic and educational variables. At the time of writing, this is the first study to 

attempt to form a predictive model of use which successfully highlighted gender, age and 

moral perception as variables significantly correlated with soft enhancer and PCE use, and 

also illustrated those factors which appear to be unrelated to use. Both Study 2 and 3 were 

also unique in that long-term modafinil users have not been cognitively tested previously. 

Chapter 2 demonstrated that prior research had explored acute modafinil use in different 

populations quite comprehensively, but until now no data existed with use exceeding 3 

months. Consequently, cognitive performance measures and use of multiple 

neurophysiological measures made a comprehensive psychophysiological assessment of 

modafinil use which had not been done previously. The strengths of this research 

programme are therefore linked to the novelty of the studies conducted.  

 

Throughout this thesis, several methodological decisions were made which have inherent 

limitations. Primarily, in Study 1, it should be highlighted that national university 

prevalence could not be estimated because the sample was self-selected and thus cannot 

be taken as true representation of PCE use at UK universities. Furthermore, estimates were 

not necessarily fully representative of the participating universities, particularly since 

response rates for two institutions were quite limited (EM1: N = 18, NE1: N = 44), making it 
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possible that users, or indeed nonusers, were disproportionately represented. Due to 

potential sampling biases, the study could over-represent CE users, as these respondents 

may have felt more compelled to participate in a survey investigating substance use 

behaviour at university than nonusers. Indeed, the opposite could also be true, and due to 

the novel nature of using PCE for study, and because of possible stigmas associated with 

use, respondents may also have been dishonest about use. However, to reduce false 

responses, participants were explicitly informed that responses were fully anonymous. 

Moreover, participants could have completed the survey more than once, particularly to 

increase chances of winning in the prize draw. Nonetheless, data was checked for response 

duplicates and matching IP addresses to minimise the chances of this occurring before 

analysis was conducted. Lastly, memory biases must be considered with an extensive self-

report measure like this one, as the survey requested quite specific information about past 

substance use, which may have been difficult to recall leading to inaccuracies in 

responding.  

Studies 2 and 3 also share a number of limitations because of a similar methodology with 

sampling and investigating drug use behaviour. First of all, substance use was self-reported 

with the modified Drug Use Questionnaire as researchers did not have access to a clinical 

sample of people prescribed modafinil daily, which could have assured consistent use of 

the drug. As such, like in Study 1, the research was vulnerable to participants inaccurately 

reporting, or deliberately misrepresenting, their drug use behaviour. This could be a result 

of memory problems, as the questionnaire relied on quite specific drug taking information, 

including exact time periods and quanities, which may have been difficult to recall. 

Furthermore, the threshold for inclusion in the long-term modafinil user group was limited 

to only once per month use for at least a year. This is mainly due to the overall novelty of 

the substance, and that modafinil is less popular than other stimulants such as caffeine (as 

shown in Study 1), making people who use more frequently difficult to obtain as 
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participants. For instance, in Study 2, the average user reported using 5.74 pills a month, 

which is considerably less than a daily dosing schedule. It could therefore be the case that 

use was not frequent enough in the sample to observe any further cognitive deficits, 

changes to HRV and blood pressure which are typically found with chronic stimulant use, or 

indeed potential benefits. In Study 2, modafinil users also reported using significantly more 

of other types of substances over the previous 3 months than nonusers, although there 

were no significant correlations between modafinil use in the previous year and other 

substance use variables. Therefore, it must be acknowledged that modafinil users were 

more likely to be general polydrug users, making it difficult to determine how the current 

findings were attributed just to modafinil use and not polysubstance use more generally. 

Despite this, correlational analysis did also reveal that modafinil users did not report 

greater use of alcohol, illegal stimulants or cannabis use than controls, suggesting that 

these drugs did not impact performance on the behavioural measures. In Study 3, due to 

the relatively limited availability of modafinil users during the time of data collection, the 

sample was not robust enough to perform regression analysis and look at the impact that 

frequency of use, and other potentially important factors such as poly-drug use, might have 

on neurophysiology. Limitations withstanding, this study is the first of its kind to assess the 

long-term impact of modafinil use on psychophysiology and neurophysiology. Furthermore, 

despite some drawbacks with the sample, this research is the first to demonstrate 

increased cognitive effort in modafinil users as a compensatory mechanism for what 

appears to be a working memory deficit.  

8.4 Future Research Implications 

 

The studies presented here include findings which could be further examined in future 

research. The survey study did show that, as predicted, modafinil was the most popular 

PCE drug, but it did not confirm Maier and colleagues (2018) recent findings of 10% user 
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rates in the sample. Of course, both studies used self-selected sampling which does not 

represent true user prevalence, it is therefore necessary to establish which figures more 

accurately represent use, and this could be achieved with a largescale survey study which 

takes account of prevalence in universities across different regions of the UK. Instead of 

relying on a self-selection, future studies should obtain a representative sample of UK 

students, which is randomly selected and takes account of different sociodemographics 

(i.e., age, ethnicity). Furthermore, future research should continue to establish a predictive 

model of use, looking at factors which are already known to be associated with use, such as 

gender and morality, and which also investigate unexplored variables. As educational and 

sociodemographic variables in Study 1 which were thought to contribute to stress did not 

predict CE use, perhaps personality measures might have greater predictive capability. 

Personality traits have been intricately linked to substance use behaviour. Perhaps one of 

the most highly regarded measures of personality traits is the Five-Factor Model (McCrae & 

John, 1992), which describes five personality dimensions: openness to experience, 

conscientiousness, extraversion, agreeableness and neuroticism. Furthermore, extraversion 

and openness have strong links to alcoholism (Martsh & Miller, 1997) and substance 

misuse (Terracciano, Löckenhoff, Crum, Bienvenu, & Costa, 2008), but neither of these 

scales have yet to be used to examine CE use. A model examining these factors might 

successfully predict CE use, and thus identify characteristics which could make students 

more inclined toward CE strategies.  

Future lab-based research with modafinil users should also make some considerations. As 

average monthly frequency of modafinil use varied within the cohort of users for both 

Study 2 and 3, there was no doubt a certain degree of unexplained variance attributed to 

this. As such, access to a clinical sample could minimise this variance and might provide a 

more accurate picture of the drug’s impact on behavioural and neurophysiological 

functioning by implementing a longitudinal design which follows participants across a 
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course of treatment. In Study 2, modafinil use was also found to be associated with poly-

drug use. It is unknown what impact the use of other substances had on cognitive 

performance, therefore any future study should try to recruit a sample with no recent 

history of other substance use, so that any potential effects can be more confidently 

attributed to modafinil use. Challenges may come as a result of recruiting such a specific 

sample of users, although a research programme which does not suffer the same time and 

resource constraints as a PhD may find this more attainable. Furthermore, research should 

attempt to replicate some of the findings from the studies described here, including the 

demonstrated improvements in inhibitory control without a speed/accuracy trade off, and 

the apparent underlying deficits to working memory processes. A different multitasking 

set-up might also improve on findings, as the inclusion of the visual warming and visual 

tracking tasks, and how participants attended more closely to these windows in the higher 

difficulty conditions, made differences in over-all scores between conditions non-

significant. The MTF allows for a change in the tasks which occupy the 4 windows, as such it 

could be useful to replace the current set-up with more tasks assessing working memory 

and inhibitory control. Finally, future research should attempt to find a gender balance in 

the sample, as it was a challenge in these studies to find an equal proportion of female 

modafinil users. It is unclear how much of an impact gender had on the results of Study 2, 

but a more equally distributed sample might reveal gender differences as a factor effecting 

performance.  

8.4.1 Implications for Policy and Practice  

 

Beyond academic research, the persistent nonmedical use of PCE substances, particularly 

among students at university, leaves several considerations for policy and practice. 

Principally, university and government bodies must first work together to consider a 

collective strategy when tackling PCE use, taking into consideration not just potential for 
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harm and abuse, but also prospective neuroethical implications. Several countries already 

prohibit possession of pharmaceutical substances without prescription (including the UK 

and USA), with possession often punishable under the law (Petersen & Petersen, 2019). 

Nevertheless, little is done to consider, or indeed understand, possession of these 

substances as study drugs. The findings from the studies described in this thesis outline the 

intricacies of this topic. Regardless of legality, the findings from Study 1, and literature 

discussed in Chapter 1, reveal that although use is not widespread, it is still prevalent. If 

legal status is therefore not sufficient to deter use, then a new approach must be sought. 

Study 3 indicated an underlying working memory deficit among modafinil users, although 

further research is required to fully establish this effect. Thus, if later findings corroborate 

this and other potential drawbacks, then policy and practice must respond accordingly. 

Increased access to health information regarding such drugs should be a primary objective, 

no less since PCE’s are poorly understood even among academics. As such, a drug 

information campaign targeting universities is essential if students are to make informed 

decisions about PCE use. Of course, difficulties arise when attempting to monitor use as 

universities are not sufficiently equipped to police students in this way, nor should this be 

the sought approach. Instead, institutions should set their gaze on what is driving students 

to these substances and should take steps to accommodate personal study needs. Chapter 

1, and the introductory section of Chapter 5, outlined that stress and perceived workload 

are common reasons provided by students for their PCE use. Consequently, effort should 

be taken to address these concerns at an administrative level, perhaps by increasing 

student outreach and making university-based counselling services widely available.  

From an ethical point of view, study benefits, and indeed grades, conferred by PCE raises 

issues of deservingness. Arguably, academic achievements born of these methods are less 

deserving of recognition than those without. If growing evidence suggests that PCE use 

continues to increase, then universities must thoroughly explore the accompanying ethical 



165 | P a g e  
 

implications, particularly if academic performance differences (i.e., better grades) become 

noticeable between users and nonusers. It is beyond the remit of this thesis to make moral 

claims regarding PCE use, thus no attempt has been made to do so. Nevertheless, 

universities should be prepared to ask these questions, to fully explore whether these 

methods are compatible with an academic ethos, and whether integrity is lost due to PCE 

use.  

8.5 Conclusions 

 

This thesis aimed to explore PCE use in UK university students and made several 

unexpected but important findings. Results indicate that long-term modafinil use is similar 

to effects seen with illegal stimulants in some ways, but markedly dissimilar in others. 

Furthermore, this study programme has taken a novel approach to PCE research, and 

findings with modafinil users reveal complexities which must be examined with future 

research to be better understood. It also appears that it is too reductionist to simply 

predict that modafinil exerts a similar long-term impact to other pharmaceutical or illegal 

stimulants without considering the drug’s unique neurochemical properties. Furthermore, 

in terms of how these findings translate to a real-world context, this thesis has revealed 

that although PCE use was shown to be modest, it does exist within UK universities. Thus, 

questions are raised for institutions on how to tackle the use of pharmaceuticals and 

whether to make additional provisions for students so that these techniques do not rise in 

prevalence and become a study norm. Furthermore, long-term nonmedical modafinil use 

must also be closely monitored, both in and outside university. Findings reveal mixed 

effects on cognitive performance and haemodynamic change, and this thesis shows that 

research with long-term use of this substance is still too premature to fully determine if 

modafinil is harmful or safe. Therefore, a lack of knowledge does not equate to the absence 

of harm, and the mixed findings from these studies show that public health information 
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should be provided to stem growing use until it is better understood. Consequently, 

findings from this thesis are encouraging, and reveal that there is still more to understand 

about the broad topic of PCE use if student use is to be properly addressed.  
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Appendix 

Moral judgement:  

Sally 

Sally’s exams are quickly approaching, and she is struggling to find the time to study. Sally 

has a part-time job to help pay her rent and works four evenings a week. This only leaves 

her with three available study days, but by Sally’s own admission, she is often too tired to 

revise on these days off. Sally’s friend, Sarah, understands that she is short of study time 

and suggests that Sally try modafinil, a prescription drug that will help her to stay awake 

and focused long enough to study. Sarah recommends the drug because she has used it in 

the past to help her revise for her own exams, and she says it has even helped her to 

achieve top marks. Sarah has some modafinil left over, and even offers to give it to Sally.    

 

1. Sally should use the modafinil offered to her by Sarah.       

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

2. It is right for Sarah to offer Sally modafinil as a study aid.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

3. Taking modafinil will give Sally an unfair academic advantage.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

4. Sally is cheating if she takes modafinil to help her study.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

5. It doesn’t matter what techniques Sally uses to study only that she gets good 

grades.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 
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6. The ends justify the means.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

7. It doesn’t matter how beneficial they are as a study aid, taking drugs is wrong.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

Simon  

Simon is in the final year of his undergraduate studies. Throughout his time at university, 

he has consistently used the drug Adderall, a substance that increases focus and alertness, 

to help him complete his assignments and study for exams. Simon kept his Adderall use a 

secret, as he feared that it would be viewed as cheating by his peers and by the university. 

But, when his classmate Claire recently asked for his advice on how to achieve higher 

grades, he told her all about his Ritalin use, and recommended it to her as a study aid. 

Unexpectedly, however, Claire was unhappy with Simon, and called him a cheater, and 

even reported him to the faculty for academic misconduct.  

1. Simon is wrong to have used Adderall for so long during his studies.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

2. Claire did the right thing to report Simon for academic misconduct.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

3. Simon should have continued to keep his Adderall use a secret.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

4. Claire is right, Simon is a cheater.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

5. It’s right that Simon is charged with academic misconduct.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 
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6. Simon should be allowed to use Adderall as a study aid if he wants.   

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

7. It is immoral to use Adderall or any other substances as a study aid.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

John 

John doesn’t believe in using brain enhancing drugs to get ahead a university and has 

repeatedly told his peers that he thinks it is cheating. He has never struggled with his 

studies, despite having multiple commitments, such as a part time job and a family. 

However, his son has recently been diagnosed with ADHD, which has proved to be a 

difficult time for John and his family. As a result, John’s studies have begun to get on top of 

him, and he has found it more and more difficult to keep up with the academic rigour. 

Tomorrow is a deadline for an important assignment, and John has barely even looked at 

the course material. If he doesn’t submit something, he will surely fail the module, and this 

could jeopardise his entire degree. However, if he takes his son’s ADHD medication, Ritalin, 

on just this one occasion, then he will have the focus to complete the assignment.  

 

1. John should bend the rules this once and take Ritalin to help him complete his 

assignment.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

2. John is betraying his own values if he takes Ritalin.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

3. There’s nothing wrong with using Ritalin as a study aid just once.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

4. John should maintain his values even if he failures his assignment 
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Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

5. John’s difficult family situation justifies the use of drugs as a study aid.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

6. John is cheating if he takes Ritalin.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

7. Taking Ritalin is a hypocritical thing for John to do.  

Strongly 
disagree 

Disagree Moderately 
disagree 

Agree nor 
disagree 

Moderately 
agree 

Agree Strongly 
agree 

 

 

How difficult was it to answer these questions? 

Very easy Easy Moderately 
easy 

Neither 
easy nor 
difficult 

Moderately 
difficult 

difficult Very 
difficult 

 


