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Abstract 
 

 

Structural and functional adaptations of the left ventricle (LV) in response to chronic 

exercise training termed the “athlete’s heart” (AH) are central to a road cyclist’s (RC) 

performance capacity. As a result, RC athletes complete very high training hours, which 

generate a stimulus for cardiac remodelling. In some cases, the profound adaptation 

observed in these athletes can mimic pathological processes, presenting a risk of false-

positive identification of cardiomyopathy at pre-participation screening or during 

follow-up. Furthermore, emerging data suggest acute transient post-strenuous exercise 

reductions in LV systolic and diastolic function termed “exercise induced cardiac 

fatigue” (EICF) may be extended to short-term periods such as overload training where 

very high training hours and limited recovery exist (i.e. training camps and/or stage 

races). The magnitude and possible mechanism(s) responsible for persistent EICF in 

overload training, and implications for pre-participation screening/follow-up of RC are 

not fully understood. 

Based on this, the aims of this thesis were: 1) establish the impact of moderate and very 

high chronic training hours on structural, functional and mechanical remodelling of the 

road cyclist’s LV, 2) determine how the LV responds to variations in training hours 

across a competitive road cycling season, 3) assess the impact of short-term overload 

endurance training on LV structure-function-mechanical relationships of the road 

cyclist’s LV, and 4) evaluate the relationship between LV function and road cycling 

performance following short-term overload endurance training. 

Study 1 (Chapter 4) highlighted that LV eccentric hypertrophy is commonly presented 

by elite cyclists (EC) (35%), but not sub-elite cyclists (SEC) (3%). Increases in LV 

mass between non-athletes (NA) and SEC (133 ± 24 vs 163 ± 26 g, P<0.001) were 
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predominantly driven by chamber expansion, whereas increased chamber concentricity 

between SEC and EC (5.85 ± 0.98 vs 7.11 ± 1.08 g/ml2/3, P<0.001) drove further LV 

mass development (133 ± 24 vs 210 ± 31 g, P<0.001).  Marked structural remodelling 

in EC was also associated with a high prevalence of reduced (<52%) LV ejection 

fraction (LV EF) (12 %) and mildly reduced diastolic function. 

Study 2 (Chapter 5) established a progressive increase in LV mass between off-season 

and end-season in parallel with an accumulation of training hours in RC (143 ± 17 vs 

162 ± 31, P<0.05), which was eccentric in nature. Although RC presented mildly 

decreased early diastolic function during the most rapid increase in training hours, both 

resting and in-exercise mechanics remained unchanged across all timepoints.  

In study 3 (chapter 6), 3-weeks of overload (OL) training elicited acute fatigue in RC, 

which was associated with dilatation of the LV (50.8 ± 2.9 vs 51.8 ± 3.2 mm, P<0.05), 

a decreased ability to augment LV EF (67 ± 5 vs 63 ± 3, P=0.056), and an increased 

atrial contribution to diastolic filling in-exercise (9 ± 3 vs 12 ± 2 cm/s, P<0.05). 

Decreased LV twist (17.7 ± 4.5 vs 15.3 ± 3.3, P<0.05) and global longitudinal strain 

(GL ɛ) (-20.2 ± 1.0 vs 19.2 ± 1.3, P= 0.063) are indicative of intrinsic contractile 

dysfunction and suggest similar mechanisms are involved in both acute and persistent 

EICF. 

The application of conventional and novel echocardiographic techniques have provided 

further understanding of normal physiological adaptation of the LV in response to 

short-, medium- and long-term high training hours in RC. These insights may lead to 

improvements in pre-participation screening and influence the training practices of this 

athlete group. 
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1.1 Introduction 

 

Road cycling (RC) is an endurance sport, whereby performance is largely determined 

by an athlete’s maximal aerobic capacity (VO2 max), economy, and ability to sustain a 

high percentage of VO2 max for long periods of time (Faria et al., 2005). The role of 

cardiac adaptation in developing appropriate physiological capacities is therefore 

inherent and can be described by a modified Fick equation (VO2 max = stroke volume 

maximum [SV max] x heart rate maximum [HR max] x (maximum arterio-venous oxygen 

difference [a-vO2 diff max]) (Levine et al., 2008).  

Figure 1. Trainable parameters of the modified Fick Equation, adapted from Lundby, Montero and 

Joyner (2017) 

 

As HR max is not a trainable parameter, athletes utilise training regimes which seek to 

optimise SV max and a-vO2 diffmax (Levine et al., 2008) (see figure 1). Red blood cell 

volume, intra-muscular capillarity and mitochondrial density/function all enhance 

delivery and utilisation of oxygen to the working musculature, and increase/decrease 

VO2 max = SVmax x HRmax x (a - vO2 diffmax) 
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(to a meaningful extent) within 2-6 weeks of (de-)training (Mujika et al., 2019; Jensen 

et al., 2004; Granata et al., 2018). However, factors affecting oxygen utilisation depend 

on the central parameter of SV. Aerobic training is known to elicit increases in chamber 

volume (and thus SV), however, the time frame of meaningful change in an athletic 

context, remains relatively unknown. Furthermore, only recently have advances in 

echocardiographic technology and technique facilitated comprehensive assessment of 

chamber mechanics and compliance (essential to SV generation) (Marwick et al., 

2006). 

 

As physiological adaptations favourable to cycling performance are primarily driven 

by quantity of training, it is unsurprising that elite RC complete very high training hours 

(Metcalfe et al., 2017). However, training hours are not distributed equally across a 

training season, as load and recovery demands of multi-stage races and training camps 

generate considerable peaks and troughs (Metcalfe et al., 2017). Significant challenges 

to recovery often result in states of transient over-reaching or acute-fatigue, whereby 

performance is decreased or fails to super-compensate in response to a training stimulus 

(Aubry et al., 2015). 

 

The phenotype of the elite RC is known to present challenges in the clinical 

differentiation between physiology and pathology, due to the extent of remodelling 

(Abergel et al., 2004). Furthermore, the impact of an acute bout of strenuous exercise 

acts as an additional confounding factor to differential diagnosis, resulting in a transient 

bi-ventricular dysfunction similar in appearance to arrythmogenic right ventricular 

cardiomyopathy (ARVC) and dilated cardiomyopathy (DCM) (Lord et al., 2018; 

Oxborough et al., 2010). However, the “normal response” to repeated bouts of 
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strenuous exercise with insufficient recovery (i.e. multi-stage races or training camps) 

remains unknown. Characterisation of cardiac structure, function and mechanics in this 

context is required to aid distinction between physiological and pathological processes. 

 

Speckle tracking echocardiography (STE) represents a novel echocardiographic 

technique, which has improved understanding of normal mechanical function of the AH 

phenotype. In the case of RC, STE has the potential to clarify structure-function 

relationships of the LV and generate new knowledge regarding training induced 

remodelling. Additionally, in-exercise assessment will provide insight into 

development of the functional reserve that characterises the endurance AH phenotype, 

and how this responds to short- and long-term training quantity alterations. Specifically, 

this information is likely to be useful for clinicians, whereby pre-participation screening 

of elite RC is mandated by the Union Cycliste Internationale (UCI), whereas the 

specific time point of screening within a competitive season is not standardised.  

 

1.2 Overarching Aims 

 

The overarching aim of this thesis is to provide a comprehensive assessment of the RC’s 

LV in response to different short-, medium- and chronic- periods of high training hours, 

using conventional echocardiography and STE at rest and in-exercise.  

 

Elite RC are known to present with profound LV remodelling, in part due to the high 

dynamic, high static nature of the sport, and in part due to the extreme quantity of 

training undertaken by these athletes (Abergel et al., 2004; Metcalfe et al., 2017). 
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Although physiological cut-off values for structural remodelling of the LV to exclude 

pathology in this group are defined (Whyte et al., 2004; Makan et al., 2005), 

quantification of “normal” physiological function is less clear. Previous assessment of 

the elite RC heart was carried out in the late 1990’s, and (by the authors’ admission), 

were likely impacted by widespread use of illicit performance enhancing drugs 

(Abergel et al., 2004). It is now known that that blood doping, exogenous erythropoietin 

(EPO) and anabolic steroid abuse were particularly prevalent during this period.  

 

Blood doping and EPO administration increase red blood cell content, resulting in 

enhanced oxygen carrying capacity (and associated VO2 max improvement). These 

practices also have significant effects on total blood volume (increasing and reducing, 

respectively), and are therefore highly likely to impact pre-load dependant measures of 

LV function previously highlighted as characteristics of the elite RC heart (Kumar et 

al., 2004; Lord et al., 2018a). Administration of exogenous anabolic steroids increase 

an athlete’s capacity to recover between repeated bouts of strenuous endurance exercise 

(such as a multi-stage race), where excessive energy expenditure may result in 

suppression of HPA-axis function (Lucía et al., 2001). Abuse of exogenous anabolic 

steroids is also known to drive myocyte hypertrophy, resulting in concentric-type 

remodelling of the LV and the potential for mildly depressed early diastolic function 

(due to decreased myocardial elastance) (Angell et al., 2012). 

 

Although blood doping, exogenous EPO and anabolic steroid abuse are likely still 

present in RC, introduction of the “Athlete Biological Passport” in 2008 has (at the very 

least) decreased the manipulation of bloods to near-physiological levels (Pottgiesser et 
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al., 2011). Advances in liquid chromatography and mass spectrometry methodologies 

have also enabled identification of exogenous anabolic steroids, previously 

undetectable when the elite RC heart was characterised (Botrè, 2008). 

 

This thesis therefore sought to comprehensively assess the LV in elite RC, who carry 

out very high chronic training hours (Metcalfe et al., 2017). Comparison to sub-elite 

RC who complete moderate chronic training hours, and non-athletes would provide 

reference for the magnitude of adaptation, and insight into the adaptive process. 

 

Medium-term, seasonal variations in training hours have been shown to impact 

echocardiographic parameters of the LV in soccer and swimming (D’Ascenzi et al., 

2015; Csajagi et al., 2015), but remain unknown in RC. The highly variable and 

seasonal nature of training hours in competitive road cyclists appears to increase the 

potential for medium-term alterations in LV structure, function and mechanics. 

Clarification of how these (de-)training responses manifest are likely to provide value 

in a pre-participation screening setting. 

 

The negative impacts of acute strenuous bouts of exercise on LV function and 

mechanics are well established (Lord et al., 2018). The nature and magnitude of these 

alterations present a significant challenge to differential diagnosis of the AH phenotype. 

Although recent work has indicated short-term overload training may result in similar 

dysfunction (Le Meur et al., 2014), echocardiographic evidence is required to confirm 
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this. STE assessment of LV mechanics may also provide additional insight into 

mechanisms of fatigue-induced LV dysfunction.  

 

These overarching aims generate several specific aims for this thesis: 

1. To establish the impact of moderate and very high chronic training hours on 

structural, functional and mechanical remodelling of the road cyclist’s LV. 

2. To determine how the LV responds to variations in training hours across a 

competitive road cycling season. 

3. To assess the impact of short-term overload endurance training on LV 

structure-function-mechanical relationships of the road cyclist’s LV. 

4. To evaluate the relationship between LV function and road cycling 

performance following short-term overload endurance training. 
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2.1 Introduction 

 

It is well established that the athlete’s heart (AH) undergoes physiological adaptation 

in response to chronic exercise training, however much of the early literature focused 

on the left ventricle (LV) with little acknowledgement of right ventricular (RV), atrial, 

or functional adaptation. Interest in “whole” cardiac adaptation has significantly 

increased in the last 10 years, and original theories of load induced, dichotomous 

adaptations have been questioned (Spence et al., 2013). The impact of other factors on 

cardiac phenotype have also been raised, including sporting discipline, training load, 

ethnicity, body size, sex and age, on the magnitude and nature of adaptation (see figure 

2) (Basavarajaiah et al., 2008; Weiner et al., 2010; Utomi et al., 2013; Kaku et al., 2014; 

Riding et al., 2014).  

 

The reasons behind this growth of interest appear to have been driven by developments 

in imaging technology and high-profile cardiac events which continue to occur in the 

seemingly healthiest of the population. Although contradictory schools of thought exist 

regarding the efficacy of pre-participation screening (Harmon et al., 2014), there is a 

growing demand for sports physicians to undertake screening in order to exclude 

inherited cardiac diseases, which account for the majority of sudden cardiac death 

(SCD) cases in individuals under 35 years of age (Chandra et al., 2013). A 

comprehensive understanding of cardiac structure and function in a heterogeneous 

athletic population is therefore fundamental to facilitate identification of normal and 

abnormal features on the athlete’s electrocardiogram (ECG) and echocardiogram. This 

review aims to provide a balanced perspective on current understanding of the  
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Figure 2. The multi-factorial nature of the athlete's heart phenotype 
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athlete’s heart, with a focus on the impact of sporting discipline, training load, ethnicity, 

body size, sex and age. It was hypothesised that an individualised approach to 

diagnostic testing is required to differentiate between physiological and pathological 

cardiac adaptation in athletic  

2.2 The Impact of Training Modality on Athletic Cardiac Development 

 

Although it is known that exercise training elicits physiological adaptation of the heart, 

understanding of how specific training stimuli are related to this adaptation is less clear. 

The seminal work of Morganroth et al. (1975) suggested endurance and strength-based 

training elicit eccentric hypertrophy (primarily through volume overload) and 

concentric remodelling (primarily through pressure overload) of the LV, respectively. 

More recent work has challenged this (Spence et al., 2011; Utomi et al., 2013), 

highlighting the need for a more comprehensive study of the AH phenotype, and greater 

clarity in the classification of sporting disciplines. 

 

The 12-Lead Electrocardiogram 

 

Knowledge of training-induced ECG changes is predominantly based upon large cohort 

studies, where little consideration has been given to sport specific cardiovascular 

demands. In view of this, Brosnan et al. (2014) analysed the resting ECG of endurance 

athletes and non-endurance athletes using the 2010 European Society of Cardiology 

(ESC) guidelines (See table 1), which specify group 1 (common training related) and 

group 2 (abnormal non-training related) criteria. A higher prevalence of both group 1 

and group 2 changes were observed in endurance athletes compared to non-endurance 

athletes. The false positive rate of almost 30%, suggests the specificity of these criteria 
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are relatively poor. In view of this, refined criteria have been developed which better-

reflect normal “training-related” changes in the ECG (Brosnan et al., 2014; Sheikh et 

al., 2014). Brosnan et al. (2014) reported a significant decrease in the false-positive rate 

through application of the Seattle criteria.  

 

Table 1. Classification of ECG characteristics based on the 2010 ESC recommendations 

ESC Classification of ECG Abnormalities in athletes 

Group 1 (training-related) Group 2 (training-unrelated) 

Sinus Bradycardia T-wave inversions 

First degree AV Block ST-segment depression 

Incomplete RBBB Pathological Q-waves 

Early Repolarisation Left Atrial Enlargement 

Isolated QRS voltage criteria for LVH Left axis deviation / left anterior hemiblock 

 Right axis deviation / left posterior 

hemiblock 

 Right Ventricular Hypertrophy 

 Ventricular pre-excitation 

 Complete LBBB or RBBB 

 Long QT or short QT interval 

 Brugada-like early repolarisation 

 

The Left Ventricle 

 

Many studies have attempted to quantify the magnitude of cardiac adaptation and to 

understand any relationship to the type of exercise stimulus. Recent work (Utomi et al., 

2013; Utomi et al., 2014) has challenged the traditional theory of dichotomous 

adaptations induced by endurance and resistance training. Whilst LV cavity dilatation 

was observed in endurance athletes, neither concentric remodelling nor concentric 

hypertrophy were discerned in resistance trained athletes (Spence et al., 2011; Utomi et 
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al., 2013). A more recent study has provided further support for this, describing a 

predominance of normal LV geometry in both endurance and resistance trained athletes 

(Utomi et al., 2014). It is unclear whether the differences between findings in these 

studies can be accounted for by improvements in imaging quality, or changes in 

athletes’ training methods over the last 40 years. The inclusion of more aerobic 

conditioning in resistance trained athletes’ programmes, and more strength training in 

endurance athletes’ programmes may provide some explanation for the similar LV 

geometry between groups.  

 

Longitudinal studies have demonstrated endurance training is associated with 

progressive increases in LV cavity dimension and wall thickness, in a close relationship 

with development of fat-free mass (FFM) (Baggish et al., 2008; Spence et al., 2011; 

D’Ascenzi et al., 2012). Spence et al. (2011) described no structural changes to the LV, 

whereas Baggish et al. (2008) observed concentric hypertrophy following 3-6 months 

of resistance training. These disparate findings may be explained by differences in study 

specific training loads, training status of the participants, or imaging methodologies 

(Spence et al., 2013). Further longitudinal studies are required to assess the impact of 

training load on structural adaptation in both endurance and resistance training settings. 

 

Previous research has highlighted decreased resting systolic function in endurance 

athletes, with up to 12% of this group presenting with an “abnormally” low ejection 

fraction (EF) (Abergel et al., 2004). This decrease in EF appears to be a consequence 

of an increased LV end-diastolic volume (EDV) (see table 2), resulting in the need for 

a lower contraction force to generate the necessary stroke volume. Previous large-scale 

studies have observed no differences in regional or global peak longitudinal strain (ε) 
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between endurance and resistance trained athletes (Utomi et al., 2014). Furthermore, no 

differences in peak longitudinal, circumferential, and rotational ε values have been 

reported between endurance athletes and sedentary controls (Utomi et al., 2014). 

However, superior ability to augment systolic function during exercise has previously 

been demonstrated in athletes (La Gerche et al., 2012a). Therefore, in-exercise 

assessment of LV systolic function provides a useful screening tool in athletes who 

present with decreased contractility, regardless of sporting discipline. 

 

Assessment of diastolic function is complex, as conventional Doppler parameters are 

not directly related to overall volume, and are dependent upon atrial and LV pressures. 

It is therefore unsurprising that many studies observe no differences in peak E velocity 

between endurance trained, resistance trained, and sedentary individuals (Utomi et al., 

2013). That aside, the atrial component, and E/A ratio are often significantly different 

in endurance athletes, indicative of enhanced early diastolic filling. This is supported 

by the increased early myocardial mitral tissue velocities (E’) displayed by endurance 

athletes (George et al., 2010). It is thought untwisting of the LV plays an important role 

in lowering LV pressure, and enhancing early diastolic filling during exercise (Weiner 

et al., 2010). The reduction in peak LA longitudinal ε observed in high-dynamic athletes 

provides complimentary evidence for enhanced early diastolic filling, and a decreased 

atrial component (D’Ascenzi et al., 2012). 

 

Neither endurance nor resistance training appear to elicit changes in global diastolic 

function during training periods up to 6 months (Baggish et al., 2008; Spence et al., 

2011).  
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The Right Ventricle 

 

As approximately 4-23% of all sudden cardiac death cases in athletes are due to 

arrythmogenic RV cardiomyopathy (ARVC), understanding the nature and magnitude 

of physiological training-induced RV remodelling is vital (Chandra et al., 2013). 

Increased RV cavity, inflow and outflow dimensions are observed in endurance 

athletes, compared to resistance athletes, who have similar chamber dimensions to 

sedentary individuals (D'Andrea et al., 2013). In addition to this, a large proportion of 

endurance athletes exceed “normal” values for RV inflow and outflow dimensions 

(57% and 40% respectively) (Oxborough et al., 2012). The prevalence of abnormal 

RV/LV ratios within this population (66%) also provide evidence for disproportionate 

loading on the RV during endurance exercise (Oxborough et al., 2012).  

 

The work of Spence et al. (2011) provides further support for this phenomenon, as 

increased RV cavity dimensions were observed in participants who completed 6 months 

of endurance training, but not in those who completed resistance training. A study of 

longer duration (12 months) has also demonstrated a progressive increase in RV:LV 

ratio in response to high dynamic training, providing further support for 

disproportionate loading on the RV acting as a stimulus for more marked remodelling 

compared to the LV (Arbab-Zadeh et al., 2014).  

 

RV enlargement and an increased prevalence of T-wave inversion in endurance 

athletes, presents a challenge in the differential diagnosis from ARVC. It is therefore 

important to note that global function is maintained when assessed by tricuspid plane 

systolic excursion (TAPSE), RV fractional area change (RV FAC), RV myocardial 
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tissue velocities, and peak RV global longitudinal ε (Oxborough et al., 2012; D'Andrea 

et al., 2013). Decreased myocardial function at the base of the lateral RV wall has also 

been reported in some endurance athletes (La Gerche et al., 2012a). This appears to 

occur in combination with concomitant RV dilatation, generating ambiguity in the pre-

participation screening setting (La Gerche et al., 2012a). Importantly, ε values are only 

impacted at a regional level and do not fall as low as those seen in the ARVC patients 

(La Gerche et al., 2012a).  Furthermore, a normal physiological response to exercise is 

maintained, highlighting the potential diagnostic role of exercise echocardiography in 

ambiguous cases (La Gerche et al., 2012a). 

 

The Atria 

 

Left atrial dilatation is commonly observed in patients with hypertrophic 

cardiomyopathy (HCM) (McClean et al., 2015), highlighting the importance of defining 

normal, training-induced adaptation. Bi-atrial dilatation and increased functional 

volume is observed in athletes from high-dynamic sporting disciplines (McClean et al., 

2015). In contrast, there are no structural differences between sedentary individuals and 

athletes from low-dynamic sporting disciplines (McClean et al., 2015). Although cross-

sectional studies suggest there are no differences in atrial longitudinal ε between high-

dynamic, low-dynamic or sedentary groups (McClean et al., 2015), an 8 month 

assessment of athletes completing high dynamic training has demonstrated a 

progressive decrease in LA ε (D’Ascenzi et al., 2015). It is suggested that, in the 

presence of normal LV/RV diastolic function, atrial dilatation represents a normal 

physiological manifestation of the AH.  
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2.3 The Impact of Training Load on Athletic Cardiac Development 

 

Although the role of training modality in development of the AH phenotype is relatively 

well established, understanding of this relationship is predominantly based on cross-

sectional analysis of subjects with a high/low chronic training load (i.e. training 

quantity x intensity). Longitudinal data relating cardiac adaptation to training load are 

limited, due to the logistical challenge of data collection and methodological challenge 

of “load” calculation (Sanders et al., 2017). Despite this, emerging research has 

highlighted the importance of acute (2-38 hour) and medium-term (1-3 month) 

alterations in training load on structural and functional characteristics of AH (Weiner 

et al., 2010; Lord et al., 2018b).  

 

The landmark work of Weiner et al. (2015) has provided insight into the non-linear 

process of physiological structural adaptation in response to increased training hours, 

and the mechanical alterations that facilitate normal cardiac function during this period. 

Considerable attention has also been afforded to “exercise induced cardiac fatigue” 

(EICF), whereby the training load generated by an acute exercise bout is sufficient to 

alter mechanics and decrease cardiac function through sub-clinical levels of 

cardiomyocyte damage, beta-adrenergic desensitisation and/or altered ventricular 

interaction (Lord et al., 2018b). 

 

Furthermore, recent work has developed a more holistic understanding of how central 

factors (i.e. hypothalamic-pituatry-adreno axis) may negatively influence cardiac 

function (and thus performance) during medium-term periods of elevated training load 

(Le Meur et al., 2014). 
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12-Lead Electrocardiogram 

 

Although relatively rare in the athletic population (6.6%), the prevalence of training 

unrelated ECG changes are associated with high chronic training load (Dores et al., 

2016). It is noteworthy however, that high training intensity (defined as having at least 

one high dynamic or static component) acts an independent predictor of ECG 

abnormality, whereas training hours do not (Dores et al., 2016). Left atrial enlargement, 

left axis deviation, and T-wave inversion form the most common abnormal ECG 

patterns observed within this population (Dores et al., 2016). A large cohort study (n= 

52,755) of cross-country skiers provides further support for a causal link between high 

dynamic training and electrocardiographic abnormalities, as authors were able to 

develop a dose-response curve for correlates of physical fitness and cumulative risk of 

AF (Andersen et al., 2013). Athletes who completed a 90km cross-country skiing race 

within 60% of the winner’s time had 1.3-fold greater risk of AF compared to those who 

took more than twice the winner’s time (Andersen et al., 2013).  

 

Medium-term increases in training hours appear to be associated with increased 

prevalence of training-related ECG changes. Most notably, early repolarisation pattern, 

whereby incidence has been shown to increase from 40 % to 63 % in response to 3 

months of increased training hours (of a high dynamic, high static nature) (Noseworthy 

et al., 2011). Transient lateral T-wave inversion has also been reported in response to 

rapidly increased quantity of training (320% habitual training hours per week) in the 

case-study of a professional boxer (Oxborough et al., 2014a). It should be noted 

however, that T-waves had normalised after 2 weeks of training, and remained normal 
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(despite maintenance of training hours) for the following 10 weeks (Oxborough et al., 

2014a).  

 

Acute bouts of strenuous exercise are associated with increased presentation of training-

related and training-unrelated ECG changes (Lord et al., 2015; Kaleta et al., 2018). 

Significant increases in the prevalence of left and right atrial enlargement have been 

observed in recreational athletes (38 % and 43 % respectively) upon completion of a 

marathon (Kaleta et al., 2018). By comparison, the increased demands of an ultra-

marathon appear to result in more (and more severe) ECG changes (Lord et al., 2015). 

Most notably, Long QTc, which has been observed in 6 % of subjects upon completion 

of a 100-mile ultra-marathon (Lord et al., 2015).  

 

The Left Ventricle 

 

Contrary to previous assumptions (based on cross-sectional assessments), structural 

remodelling of the LV in response to elevated high dynamic training hours appears to 

be phasic in nature, rather than concurrent (D’Ascenzi et al., 2015; Weiner et al., 2015). 

Chamber expansion takes place in a medium time-span (< 3 months), whereas wall 

thickness development forms a longer-term process (9 months – 3 years) (D’Ascenzi et 

al., 2015; Weiner et al., 2015). It is proposed the timespans of these adaptations can be 

accounted for by the differing rates of exercise-induced plasma volume expansion and 

adaptive myocyte hypertrophy (Weiner et al., 2015).  

 

During the initial adaptive phase, athletes can be expected to present with increased 

pre-load sensitive functional/mechanical parameters, including E, E/A ratio, apical 
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rotation and LV Twist (D’Ascenzi et al., 2015; Weiner et al., 2015). It is suggested that 

these “supranormal” measures of diastolic function are maintained during ventricular 

hypertrophy, observed during the secondary (chronic) adaptive phase (Weiner et al., 

2015).  

 

EICF, in contrast, is characterised by a significant decrease in systolic and diastolic 

function (Lord et al., 2018b). Although these decreases are partially mediated by post-

exercise alterations in loading conditions, the failure of pre-load augmentation to 

normalise ventricular contractile/relaxation is indicative of intrinsic dysfunction (Hart 

et al., 2007). STE assessment provides additional evidence for intrinsic dysfunction, as 

global longitudinal ε and systolic SR are also reduced following strenuous exercise 

(Lord et al., 2018b).  

 

Many studies have explored the association between EICF and blood biomarkers of 

cardiomyocyte damage (Shave et al., 2008). Cardiac troponin T (cTnT) and I (cTnI) are 

regulatory proteins unique to the myocardium, which control the calcium mediated 

actin and myosin interaction (Sharma, Jackson and Makan, 2004). Increased serum 

concentrations of these troponins (such as in myocardial infarction) are therefore 

indicative of damage intrinsic to the myocardium. Significant correlations between LV 

function and cardiac troponins have been observed following extended exposure of the 

myocardial wall to increased volume/pressure load (Rifai et al., 1999; Neilan et al., 

2006), suggesting cardiomyocyte damage may be responsible for decreased chamber 

contractility/compliance. It is noteworthy, however, that there is little evidence 

supporting a temporal relationship between EICF and blood biomarker expression 

(Shave et al., 2010). It is therefore likely that localised cardiomyocyte damage does not 
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contribute to EICF in the LV, and represents a benign response to acute strenuous 

exercise. In contrast, an exercise-duration mediated blunting of the inotropic response 

provides support for β-adrenoreceptor desensitisation as a causative mechanism of 

EICF (Eysmann et al., 1996; Douglas, O'toole and Katz, 1998; Welsh et al., 2005). It is 

unclear, however, how β-adrenoreceptor desensitisation directly impacts diastolic 

function, if at all (Lord et al., 2018b). 

 

Structural, functional and mechanical aspects of EICF subside within 48 hours of 

exercise cessation (Lord et al., 2018b). Despite this clear timeframe, the impact of 

subsequent bouts of strenuous exercise completed with <48 hour recovery (such as 

endurance stage races, or training camps) on EICF is unclear. Recent work utilising 

impedance cardiography found a decreased cardiac output at maximal exercise 

intensities in triathletes following completion of 3-weeks structured overload training 

(Le Meur et al., 2014). Although a significant reduction in exercise-adrenaline response 

was proposed as the driver of decreased cardiac output in this study, further work 

utilising echocardiography is required to determine whether a medium-term increase in 

training-load results in EICF-like dysfunction. 

 

The Right Ventricle 

 

Intense high-dynamic exercise presents a significant haemodynamic challenge to the 

RV, as the pulmonary vascular bed is only capable of reducing its resistance by 30-

50%, compared to >75% in the systemic vasculature (Heidbüchel and La Gerche, 

2012). The resulting increase in wall stress during exercise is far greater in the RV 

(170%) compared to the LV (25%) (Heidbüchel and La Gerche, 2012).  
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As a result, athletes with chronically high training load (of a high dynamic nature) 

present with proportionally greater RV structural remodelling compared to that of the 

LV (Oxborough et al., 2012). Reflecting the extent of this adaptation, athletes with 

chronically high training load can also be expected to present with lower resting RV 

free-wall ε and RV EF compared to non-athletes (La Gerche et al., 2012a). These 

functional and mechanical characteristics represent an increased reserve volume, as 

exercise echocardiography reveals superior augmentation (La Gerche et al., 2012a). 

 

To the authors’ knowledge, the only human study assessing medium-term RV 

adaptation in response to differing training loads is that of D'Ascenzi et al. (2016). 

Completion of 4 months elevated moderate-high dynamic training load was found to 

increase RV cavity dimension and chamber area (D'Ascenzi et al., 2016). End-diastolic 

RV/LV diameter ratio also increased during this period, highlighting more pronounced 

remodelling of the RV (compared to LV) in response to elevated training load 

(D'Ascenzi et al., 2016). Upon completion of a further 4 months moderate-high 

dynamic training, End-diastolic RV/LV ratio normalised (despite maintenance of RV 

cavity dimension and area), suggesting medium-term LV remodelling may be similar 

in magnitude, but require a longer time span (D'Ascenzi et al., 2016). Despite 

significant structural remodelling, D'Ascenzi et al. (2016) observed no changes in 

functional or mechanical parameters throughout the study period.  

 

Acute strenuous bouts of high dynamic exercise lasting 3-11 hours have also been 

shown to disproportionately affect the RV, resulting in significant chamber dilatation, 

decreased RV EF and RV free wall ε which normalise within 6 h – 11 days (La Gerche 
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et al., 2012b). In contrast to the LV, reductions in RV function (EF) are significantly 

correlated with biomarkers of cardiomyocyte damage (La Gerche et al., 2012b). The 

considerable wall stress placed upon the relatively thin myocardium of the RV is 

proposed to result in cardiomyocyte damage, which in-turn forms the primary causative 

factor for EICF in this ventricle (Heidbüchel and La Gerche, 2012). Furthermore, 

diminished systolic function of the RV has clear “downstream” implications for LV 

diastolic function, clearly demonstrating serial ventricular interaction plays a key role 

in EICF (Lord et al., 2018b).  

 

The damage and dysfunction generated by acute strenuous exercise has raised concerns 

regarding the potential for longer term pathological adaptation of the RV, particularly 

in the case of repeated bouts of strenuous exercise with insufficient recovery (i.e. 

endurance stage races and/or training camps) (Heidbüchel and La Gerche, 2012). 

Although “exercise-induced ARVC” have been observed (exclusively) in athletes 

completing high dynamic, high static exercise, no studies (to the authors’ knowledge) 

have manipulated/training high training load in-line with RV assessment. 

 

The Atria  

 

Little is known regarding the impact of training hours on atrial adaptation. Although 

cross-sectional assessments of the atria have demonstrated an association between 

chronically high training loads (of a high dynamic, high static nature) and development 

of AF, this process has not been captured within a longitudinal study design (Andersen 

et al., 2013).  
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Completion of a strenuous bout of high dynamic exercise appears to have little impact 

on RA structure, as no change in RA area are observed upon completion of an ultra-

marathon (Lord et al., 2018b). Dilatation of the RV appears to elicit a protective effect 

on the RA in this situation, preventing the RA (and venous system) from relative 

increases in afterload mediated by downstream elevation in PA pressure (McClean et 

al., 2015). 

 

In contrast to the RA, LA structure and function are significantly altered upon 

completion of strenuous exercise (Oxborough et al., 2010a). Intrinsic impairment of LV 

relaxation/compliance and reduced LA reservoir volume (mediated by reduced 

upstream RV systolic function) observed in cases of EICF are associated with a shift 

towards late diastolic filling of the LV (Lord et al., 2018b). In conjunction with 

decreased early diastolic filling, athletes with EICF can be expected to present with 

decreased atrial SRe, and peak ε (Oxborough et al., 2010a).  

 

2.4 The Impact of Ethnicity on Athletic Cardiac Development 

 

The 12-Lead Electrocardiogram 

 

Knowledge of the athlete’s ECG is primarily based on studies in Caucasian athletes 

(Brosnan et al., 2014). Recent studies have attempted to document the impact of some 

ethnicities. In a large study of elite athletes, Sheikh et al. (2014), reported African/Afro-

Caribbean athletes were more likely to present an abnormal ECG compared to their 

Caucasian counterparts (11.5% vs 5.3%). An earlier study found that T-wave inversion 

was present in 23% of African/Afro-Caribbean athletes (primarily in contiguous 
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anterior leads), compared to only 3.7% of Caucasian athletes (Papadakis et al., 2012). 

This T-wave inversion expression is in stark contrast to African/Afro-Caribbean HCM 

patients, who generally exhibit T wave inversions in the lateral leads (76.9%). T wave 

inversion extending into lateral leads therefore warrants investigation for the exclusion 

of pathology in all cases, irrespective of ethnicity (Papadakis et al., 2012). 

African/Afro-Caribbean athletes also exhibit a higher prevalence of ST-segment 

elevation. Furthermore, T-wave inversion and convex profile ST-segment elevation 

were commonly found together in contiguous anterior leads and are likely to represent 

a physiological, training-induced characteristic of the African/Afro-Caribbean AH (see 

table 3). In addition, a higher prevalence of early repolarisation (ERP), RV hypertrophy, 

LA enlargement and RA enlargement were evident in African/Afro-Caribbean athletes. 

 

The prevalence of training-related ECG changes appears to be lower in Arabic/Middle 

Eastern athletes compared to their Caucasian counterparts, whilst non-training related 

changes were similar between groups (Riding et al., 2014). Based on this, it is 

recommended that current guidelines are relevant and appropriate in the pre-

participation screening of these athletes (Riding et al., 2014). It should also be noted 

however, that a small number of Arabic/Middle Eastern athletes can be expected to 

present T-wave inversion in contiguous leads, in combination with a convex profile ST-

segment elevation (as previously highlighted in African/Afro-Caribbean athletes).  

 

There is a lack of ECG data pertaining to South/East Asian athletes, although it is 

possible to draw some information from a large cohort study (n= 18,497) characterising 

ECG findings in young Singaporean army recruits (Ng et al., 2012). Seven percent of 

subjects exhibited an ECG abnormality. For those who received further assessment, the 
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most common abnormality was increased R/S voltage, followed by right and left axis 

deviation, right bundle branch block and pathological Q wave expression. Accordingly, 

East/South Asian athletes are likely to present a similar prevalence of ECG changes to 

Caucasian and Arabic/Middle Eastern athletes. 

 

The Left Ventricle 

 

Similar to understanding of ECG adaptation, at present, knowledge of the athlete’s LV 

is predominantly based on studies of Caucasian athletes (Whyte et al., 2004). These 

data have been used to discern “normal” limits for LV wall thickness in males and 

females. In a comparison between highly trained African/Afro-Caribbean and 

Caucasian male athletes, a higher proportion of African/Afro-Caribbean athletes 

presented LV wall thickness values >12 mm (Basavarajaiah et al., 2008).  In addition, 

profound LV hypertrophy (≥15 mm) was demonstrated in a small number (3%) of 

African/Afro-Caribbean athletes, but not in any Caucasian athletes. Similarly, a higher 

prevalence of LV hypertrophy has been observed in female African/Afro-Caribbean 

athletes compared to Caucasian counterparts (Papadakis et al., 2012). Interestingly, no 

differences have been observed in the LV wall thicknesses of African/Afro-Caribbean 

and Caucasian sedentary individuals, suggesting African/Afro-Caribbean individuals 

exhibit a more pronounced training response, rather than a pre-disposition to greater 

wall thicknesses (Basavarajaiah et al., 2008).  

 

Athletic training is associated with increased LV trabeculation, which may mimic LV 

non-compaction cardiomyopathy (LVNC). Increased trabeculation is more prevalent in 

African/Afro-Caribbean athletes, compared with Caucasian counterparts (Gati et al., 
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2013). Gati et al. (2013) also found more African/Afro-Caribbean athletes met two 

criteria for LVNC, than Caucasian athletes. Of these athletes, a higher proportion of 

African/Afro-Caribbean individuals also presented deep T-wave inversion and reduced 

LV EF (3.4% vs 0.5%) (Gati et al., 2013). It should be noted however, that T wave 

inversion is generally expressed in anteroseptal leads in athletes fulfilling LVNC 

criteria, in stark contrast to LVNC patients where a greater prevalence of inferolateral 

T wave inversion is observed (Gati et al., 2013). Although increased trabeculation 

appears to be a physiological process in both African/Afro-Caribbean and Caucasian 

ethnic groups, differentiation between physiological adaptation and LVNC appears to 

be more challenging in the African/Afro-Caribbean athletic population, with more 

athletes falling into the diagnostic “grey zone” (Gati et al., 2013). 

 

Structural remodelling in Arabic/Middle Eastern athletes appears similar in nature to 

that of Caucasian athletes. Although the magnitude of adaptation appears to be smaller 

in Arabic/Middle Eastern athletes, differences in LV mass can be negated via scaling 

to BSA, suggesting this finding may simply express differences in body-size (Riding et 

al., 2014). Furthermore, a similar prevalence of LV hypertrophy was presented by 

Arabic/Middle Eastern, African/Afro-Caribbean and Caucasian athletes (Riding et al., 

2014). Global measures of LV function appear to be consistent across Arabic/Middle 

Eastern, African/Afro-Caribbean and Caucasian athletes, with all groups presenting 

normal systolic function and diastolic filling. 

 

Although data regarding LV adaptation in South/East Asian athletes is sparse, both 

male and female Chinese athletes appear to display a similar magnitude and prevalence 

of LV cavity dilation and hypertrophy to Caucasian counterparts (Ma et al., 2007). 
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Structural morphology has also been studied in a group of Japanese ultramarathon 

runners. Extreme LV dilatation (LVIDd ≥70 mm) was reported in 11.3% of their cohort, 

combined with LV wall thickness values up to 19 mm (Nagashima et al., 2003). Due to 

the lack of data available for comparison, it is impossible to confirm whether these 

findings reflect an ethnically mediated physiological adaptation to ultra-endurance 

training, a unique training load, pathologic expression, or simply weak measurement 

methodology, although the latter is most likely as these findings have not been 

reproduced in similar studies. 

 

Global systolic and diastolic measures of function can be expected to fall within normal 

ranges for African/Afro-Caribbean, Arabic/Middle-Eastern, South/East Asian and 

Caucasian athletes (Ma et al., 2007; Basavarajaiah et al., 2008; Riding et al., 2014).  

Currently, there are no data pertaining to ethnically mediated adaptation in LV 

mechanics. Further study is this area is warranted.  

 

The Right Ventricle 

 

To the best of the author’s knowledge, there is only one study which has assessed RV 

structure in African/Afro-Caribbean athletes, highlighting similar RV structural 

adaptation to Caucasian athletes (Zaidi et al., 2013). Importantly, in the context of pre-

participation screening, the combination of ECG and structural criteria for ARVC is 

more commonly met by African/Afro-Caribbean athletes compared to Caucasian 

athletes, creating a greater diagnostic challenge in this group. The lack of data for other 

ethnicities highlights the need for further work to establish the impact of ethnicity on 

RV structure and function.  
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The Atria 

 

While there is no data pertaining to RA adaptation in African/Afro-Caribbean athletes, 

larger LA dimensions have been discerned in this group of athletes compared to 

Caucasian athletes (Papadakis et al., 2012). The clinical/physiological consequences of 

this finding remain unclear. There are no data pertaining to other ethnic groups and 

therefore until further work is undertaken to establish ethnic variance, existing normal 

ranges should be applied to all athletes. 

2.5 The Impact of Body Size on Athletic Cardiac Development 

 

Although athletic training is known to increase cardiac dimensions, inter-population 

comparison is challenging due to anthropometric differences. Indexing of cardiac 

dimensions aims to provide body-size and/or body-composition independent values, 

providing a better platform for comparison (George et al., 2001). The many methods of 

indexing come with their own merits and flaws which may impact on interpretation. 

Simple ratio-metric scaling is the most common approach to scaling, whereby a cardiac 

measurement is indexed to a body size parameter (i.e. y/x). This method has been 

criticised as relationships between cardiac dimensions and body-size are rarely linear 

(George et al., 2001). In contrast, allometric scaling methods produce a curvi-linear 

“line of best fit”, and come close to generating body-size independent values (George 

et al., 2001). In order to scale allometrically, the size parameter should be indexed to 

the scaling factor raised to the power of the defined exponent (y = axb). Once 

determined, the resultant scaled index will not correlate with the original body size 
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factor. The value of indexing is also reliant upon the body size variable selected (body 

mass, body surface area, height or fat free mass (FFM)). 

 

The Left Ventricle 

 

Height, body mass, and body surface area (BSA) represent the most common indexing 

parameters due to their ease of access. A number of large scale studies have sought to 

generate an appropriate b exponent to facilitate between-study comparison of LV mass 

(George et al., 2001). Using height as an example, b exponent values generated by this 

work range from 1.97-3, reflecting differences in cohort age, sex, and physical fitness 

(George et al., 2001). A similar range of b exponents have been described for indexing 

to body mass, highlighting the challenge of producing a “one size fits all” value. More 

recently, the efficacy of FFM as an indexing variable has become clear (Whalley et al., 

2004; Spence et al., 2011; D’Ascenzi et al., 2015). In order to determine FFM (fat mass 

subtracted from total body mass), firstly an individual’s body composition must be 

measured. This measurement may be carried out using skinfold callipers, dual energy 

x-ray absorptiometry (DEXA), or magnetic resistance imaging (MRI). DEXA, which 

uses two different x-ray intensities to differentiate between lean and fat body mass, is 

commonly used in the literature because of its greater accuracy compared to skinfold 

calliper measurements, and relative inexpensiveness compared to MRI.  

 

Whalley et al. (2004) found ratiometric scaling of LV mass and LVIDd to FFM 

provided a stronger correlation than BSA or height2.7. This method appears to overcome 

many of the limitations of extreme body anthropometry observed in athletes, as LV 

mass and FFM develop concurrently (D’Ascenzi et al., 2015). It should be noted 
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however, that even in athletes displaying extreme anthropometry, physiological 

adaptation of the LV appears to be proportional to body size and remain within 

“normal” limits (Riding et al., 2012). Scaling of LV structures to FFM therefore appears 

to be optimal, although use of BSA with a population specific b exponent will also 

generate acceptable, body-size independent values (see table 4).  

  

The Right Ventricle 

Data pertaining to scaling of RV structural parameters is limited, likely representing the 

difficulty of imaging the RV, and its challenging geometry (George et al., 2001). 

Although a linear relationship between RVIDd and BSA has previously been described, 

this may have been fortuitous, as George et al. (2001) found no significant linear 

relationships between RVIDd measurements and body mass, height or BSA. Body size 

independent measurements of RVOT, RVI and RV length are feasible however, using 

allometric scaling with population specific b exponents (Oxborough et al., 2012). Use 

of these indexing methods may provide greater sensitivity in the identification of 

ARVC, when compared to conventional guidelines, which are commonly exceeded by 

athletes. Furthermore, Oxborough et al. (2012) observed body-size independence in 

functional assessment of the RV (using absolute ε values). 

The Atria 

Relatively little research has been carried out regarding scaling of the LA, and no data 

pertaining to indexing of the RA are available. Like the LV, the LA appears to confirm 

to conventional geometrical similarity (George et al., 2001). George et al. (2001) 

observed a significant linear relationship between height and LAD using ratiometric 

scaling, suggesting this simple approach may be appropriate for body-size independent 
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measurement. More recent work has questioned this, and found indexing of LAD to 

BSA with a population specific b exponent provided more valid, body-size independent 

values (Giraldeau et al., 2015). The efficacy of scaling LA volume to FFM has also 

been described, with a cohort specific b exponent of 0.7 being optimal for both male and 

female collegiate-level athletes (Giraldeau et al., 2015).    

 

The Aorta 

 

Although this literature review is focused on athletic development of cardiac chambers, 

it is also important to acknowledge the impact of body size on adaptation of the aorta 

in the athlete’s heart. Particularly as a small number of SCD cases in athletes can be 

attributed to aortic dissection. Although correlations between aortic root dimension (at 

the sinus of Valsalva) and both BSA and height have previously been identified (Riding 

et al., 2012; Oxborough et al., 2014b; Boraita et al., 2016), investigation to exclude 

Marfan syndrome is warranted in males presenting dimensions >40 mm (or >34 mm in 

females), irrespective of extreme anthropometry (Riding et al., 2012; Engel, Schwartz 

and Homma, 2016). 

2.6 The Impact of Sex on Athletic Cardiac Development 

 

The relative scarcity of data defining “normal” athletic adaptation of all four cardiac 

chambers in female athletes presents a challenge to clinicians. Inter-sex differences in 

body-size, body composition and hormonal profile therefore present challenges in pre-

participation screening (Rowland and Roti, 2010). While early research has consistently 

demonstrated smaller cardiac dimensions in female athletes (compared to males), recent 
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work has sought to eliminate inter-sex differences in body-size and composition to 

isolate the influence of athletic training on the female AH (Giraldeau et al., 2015). 

 

The 12-Lead Electrocardiogram 

 

In a comparison between elite female and male rowers, a similar prevalence of 

abnormal ECG findings were observed between sexes (3% and 4% respectively), but 

with profound differences in the prevalence of specific training-related changes (Wasfy 

et al., 2015a). A higher prevalence of early repolarisation pattern (ERP) was reported 

for male athletes compared to their female counterparts (76% vs 23%) (Wasfy et al., 

2015a). Interestingly the increased overall prevalence of ERP in male athletes appears 

to be driven by a higher prevalence of anterior lead ERP, as the prevalence of lateral 

and/or inferior lead ERP was similar between males and females. Females are also far 

less likely to display isolated QRS voltage criteria for LV hypertrophy compared to 

their male counterparts (8% vs 51%) (Wasfy et al., 2015a). 

 

The Left Ventricle 

 

Male athletes consistently display larger LV cavity dimensions and wall thicknesses 

compared to their female counterparts (Giraldeau et al., 2015). LV hypertrophy in 

female athletes (wall thickness >11mm) is extremely rare, compared to male athletes 

where a minority of athletes (2.5-5% prevalence in males) can be expected to present 

thicknesses >12mm (Whyte et al., 2004). Whether these differences can be accounted 

for by body-size, or whether a sex-specific difference in physiological remodelling 

exists is a contentious issue (Giraldeau et al., 2015). Rowland and Roti (2010) reported 
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larger LV dimensions in male athletes compared to their female counterparts despite 

indexing for BSA, BSA0.5, and FFM-1 (derived from skin-fold measurements). These 

findings may represent weak scaling methodology as opposed to physiological 

differences however, as scaling of LV structural parameters to FFM (derived using dual 

energy x-ray absorptiometry) eliminates any meaningful inter-sex differences (see table 

5) (Giraldeau et al., 2015). Remodelling of the LV in females appears to follow a similar 

pattern, time-scale and relative magnitude to that observed in male athletes (Giraldeau 

et al., 2015).  

 

Global systolic function is similar between male and female athletes, with differences 

in absolute LV SV being eliminated by scaling to FFM (Giraldeau et al., 2015). 

Although Giraldeau et al. (2015) reported a slightly higher LV EF and global 

longitudinal ε in females compared to males (66% vs 63% and -22% vs -20.6% 

respectively), this did not translate into meaningful differences in LV SV index, or 

systolic longitudinal SR. Furthermore, Giraldeau et al. (2015) observed a higher early 

diastolic longitudinal SR in female athletes compared to their male counterparts (1.81 

%/s vs 1.56 %/s). Further examination in a large heterogeneous cohort is required to 

confirm these findings. 

 

One potential confounding factor in the pre-participation screening of female athletes 

is the menstrual cycle, and possible influence of contraceptive methods. Fluctuations in 

oestrogen throughout the menstrual cycle are known to impact both central and 

peripheral cardiovascular factors, including blood volume and total peripheral 

resistance, yet disagreement exists as to whether these factors impact LV function 

(Green et al., 2016). (Fuenmayor, Ramı́rez and Fuenmayor, 2000) observed a 
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significant difference in mitral valve E/A ratio between follicular and luteal phases, 

whereas George et al. (2000) reported no meaningful differences in functional 

parameters between these time-points. Further examination into the impact of the 

menstrual cycle on LV function, including STE indices, will provide important insight 

for pre-participation screening.  

 

The Right Ventricle 

 

Much like the LV, larger RV structural dimensions are observed in male athletes 

compared to their female counterparts (Giraldeau et al., 2015). Giraldeau et al. (2015) 

observed that inter-sex differences in chamber dimensions can be eliminated by 

indexing to FFM, suggesting differences in structural parameters can be accounted for 

by body-size (Giraldeau et al., 2015). 

 

Giraldeau et al. (2015) observed a higher early diastolic longitudinal SR in the RV free 

wall in females compared to males, suggestive of slightly enhanced diastolic function 

at rest in female athletes. No other inter-sex differences were observed in STE derived 

functional indices. To the best of the author’s knowledge, no research has been carried 

out to examine the impact of the menstrual cycle on RV function. This may represent 

an excellent research opportunity, as any effect of the menstrual cycle on LV function 

is likely to be magnified in the RV, due to disproportionate haemodynamic loading.  
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The Atria 

 

Training-induced bi-atrial dilatation is observed in male and female athletes, with 

smaller absolute dimensions being displayed by female athletes (Baggish et al., 2008; 

Giraldeau et al., 2015). The relative magnitude of physiological adaptation in LA 

dimensions appears to be similar between male and female athletes (Giraldeau et al., 

2015). There are insufficient data to comment on the inter-sex difference in RA 

adaptation. Like ventricular structures, inter-sex differences in LA and RA volume are 

eliminated when indexed to FFM, indicating a close relationship to body size 

(Giraldeau et al., 2015). 

2.7 The Impact of Age on Athletic Cardiac Development  

 

In a large study (n= 1210) of SCD in the US general athletic population, Harmon et al. 

(2014) found the mean age of cases to be only 17 years.  This finding is supported by 

Italian, Israeli, Danish and Swedish groups, who described similar prevalence of SCD 

in young athletes (Harmon et al., 2014). The efficacy of cardiovascular screening in 

school-age athletes has previously been demonstrated by a reduction in sudden death 

rates from 1:28,000 to 1:250,000 following implementation of a screening programme 

(Harmon et al., 2014), yet there is no consensus on how age should impact classification 

of normal/abnormal findings in athletic individuals. The growth of participation in 

competitive sport at masters and veteran levels has also increased the need for 

understanding of the impact of ageing upon cardiac adaptation. 
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The 12-Lead Electrocardiogram 

 

Youth athletes (aged 10-15 years) can be expected to present fewer abnormal (10% vs 

40%) and mildly abnormal (3-8% vs 19-36%) ECG traces compared to their senior 

counterparts (Koch et al., 2014). This is likely a result of fewer cumulative training 

hours and may also be influenced by the higher levels of body fat and lower levels of 

sex hormones observed in this group (Koch et al., 2014). Within the abnormal patterns 

presented by youths, there is a strikingly high prevalence of anterior T-wave inversion, 

raising concerns over ARVC (Attisani et al., 2011). However, T-wave inversion 

appears to be a feature of immaturity rather than pathology in this group, and a 

progressive decline in precordial T-wave prevalence is observed during adolescence 

(32.2% in 6-8 year olds compared to 3.3% in 16-18 year olds) (Attisani et al., 2011) 

(see table 6). Development of refined criteria, which factor in the chronological age and 

anthropomorphic characteristics of young athletes may be appropriate to minimise the 

rate of false positive ARVC diagnoses (Attisani et al., 2011). The prevalence of LV 

hypertrophy (using isolated Sokolow criteria) is considerably lower in junior male 

athletes (15%) compared to senior male athletes (51%) (Bessem, De Bruijn and 

Nieuwland, 2015). The lack of data pertaining to training and non-training related ECG 

changes in veteran athletes, warrants further exploration.  

 

The Left Ventricle   

 

Development of an increased LV cavity size is generally observed in non-athletic males 

and females between birth and 30 years of age, followed by a progressive decline as 

age increases (Kaku et al., 2014). LV cavity enlargement and wall thickness are 
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increased in junior athletes compared to age matched non-athletic controls, but are less 

pronounced compared to their senior counterparts due to a lack of physical maturity 

and fewer cumulative training hours (Sharma et al., 2002; Makan et al., 2005; Sheikh 

et al., 2013). Despite this, an LV cavity dimension >60 mm in the presence of 

diminished systolic or diastolic function represents an appropriate indicator for the 

investigation of dilated cardiomyopathy (DCM) in both adolescent and senior athletes 

(Makan et al., 2005). Similarly, conventional guidelines which warrant investigation to 

exclude HCM (LV wall thickness >12 mm in males or >11 mm in females) are also 

applicable to the athletic adolescent population (Sharma et al., 2002).  

 

It is clear that a relationship between lifelong exercise “dose” and LV cavity size exists. 

Carrick-Ranson et al. (2014) observed significantly higher LV EDV index values in 

master athletes, compared with those of age-matched sedentary individuals and casual 

exercisers. Furthermore, some structural adaptation initiated by athletic training may 

remain present more than ten years after cessation of participation (Carrick-Ranson et 

al., 2014). It should be noted however, that sporting discipline appears to be a factor in 

the longevity of structural adaptation, as preservation of the AH phenotype has been 

discerned in retired wrestlers, but not in retired marathon runners (in an age-matched 

cohort).  

 

Ageing does not appear to be associated with changes in global measures of systolic 

function in healthy non-athletic individuals (Carrick-Ranson et al., 2014). Furthermore, 

no differences in EF are observed between sedentary young individuals, junior athletes, 

sedentary older individuals, and master athletes (Sharma et al., 2002; Makan et al., 

2005). A progressive decrease in peak longitudinal ε is observed throughout the lifespan 
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of healthy, non-athletic individuals (Kaku et al., 2014). Whilst some evidence suggests 

exercise may have a protective effect on this decrease in LV longitudinal deformation 

(Kaku et al., 2014), further clarification is needed. Although there does not appear to 

be an age-related change in peak rotational, circumferential or radial ε, a shift in the 

base-apex deformation gradient has been identified within these planes (Kaku et al., 

2014). It therefore appears that systolic function is maintained with progressing age 

through increased action of the apical region of the LV, which compensates for 

decreased deformation at basal level (Kaku et al., 2014).  

 

Global diastolic function is comparable between junior athletes and age matched non-

athletic individuals (Sharma et al., 2002; Makan et al., 2005). Following maturation, a 

gradual decrease in the trans-mitral E/A ratio is observed, as a greater reliance is placed 

upon the atrial component of LV filling (Kaku et al., 2014). Although master athletes 

and sedentary age-matched individuals display similar contractile function, master 

endurance athletes display significantly greater ventricular compliance and decreased 

wall stress, resulting in LV pressure-volume relationships similar to those of young 

healthy individuals (Arbab-Zadeh et al., 2004). Future research should seek to clarify 

the impact of age on temporal diastolic deformation characteristics, in rotational, 

circumferential, and radial planes. 

 

The Right Ventricle 

 

As in the LV, development of RV cavity size is observed throughout adolescence in 

young athletes (George et al., 2001), likely reflecting an accumulation of training hours 

and physical maturation. At the other end of the spectrum, decreasing RV chamber area 
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is observed in non-athletic, ageing individuals (Henein et al., 2014). Whether life-long 

training has a protective effect on these decreases is unknown, and represents an 

opportunity for future research. 

 

To the authors’ knowledge, there are no data available pertaining to global function of 

the adolescent athlete’s heart. Systolic function in ageing individuals is characterised 

by decreases in RV S’, and RV peak ε (Chia et al., 2015). In addition, RV systolic 

reserve appears to decrease with advancing age, resulting in a reduced ability to 

augment RV deformation (Chia et al., 2015). Diastolic function of the RV diminishes 

with advancing age in sedentary individuals. A decrease in trans-tricuspid E/A ratio is 

observed, along with decreased ability to augment diastolic function during exercise 

stress (Chia et al., 2015).  

 

The Atria 

 

Data regarding the impact of ageing on the athlete’s atrial structure and function are 

limited. It is clear however, that LA cavity size increases throughout adolescence in 

junior athletes, most likely as a function of cumulative training hours and physical 

maturation (George et al., 2001). Life-long endurance athletes can also be expected to 

present significantly larger atria compared to sedentary age matched controls (Wilhelm 

et al., 2012). To the best of the author’s knowledge, there are no data available regarding 

the impact of age on the RA. Future research which develops understanding of 

structural and functional adaptation of the atria with advancing age will therefore be 

highly valuable to practitioners. 
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2.8 Technical Development of Pre-Participation Screening Methods 

 

12-Lead Electrocardiogram 

 

The first recorded application of the “ECG” was carried out in the mid-19th century to 

detect electrical activity in frogs (Matteuci, 1842), and subsequently, in humans 

(Waller, 1887). This technology developed into the 3-lead ECG (Einthoven, 1901), and 

with the addition of precordial (Wolferth and Wood, 1932) and unipolar leads 

(Goldberger, 1942), into the 12-Lead Electrocardiogram device now commonly used. 

 

Although a standardised protocol and interpretation of the 12-lead ECG was established 

in 1954 (Wilson et al., 1954), soon after, it was recognised that electrophysiological 

adaptations associated with athletic training could lead to false-positive identification 

of pathology in athletes (Gott, Roselle and Crampton, 1968). Much later, the first 

criteria for interpretation of the 12-lead electrocardiogram in athletes were defined 

(Corrado et al., 2005). Large-scale studies of athletes have facilitated refinement of 

these criteria, resulting in greater specificity of ECG detectable pathology while 

maintaining sensitivity (Corrado et al., 2010; Drezner et al., 2013; Sheikh et al., 2014). 

As a result, the false-positive rate has fallen from 21.5 % using the 2010 ESC 

Guidelines, to 6.6 % using the 2014 “refined criteria” (Sheikh et al., 2014). 

 

Conventional 2D Echocardiography 

 

Study of the AH phenotype has developed in tandem with echocardiographic 

technology over the last 60 years. M-mode echocardiography, in which the reflection 
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of a single-beam of ultrasound from the cardiac wall is recorded, was carried out as 

early as 1953 (Fraser, 2001). Real-time 2D echocardiographic imaging, whereby depth 

and brightness were established for multiple ultrasound beams, represented the next 

major development (Bom et al., 1973; Griffith and Henry, 1974). This method would 

become the backbone of echocardiographic examination, and was used as early as 1979 

to visualise LV mass in athletes (Morganroth et al., 1975). A systematic approach for 

assessment of the LV using M-mode and 2D echocardiography would be proposed 

shortly afterwards (Henry, Gardin and Ware, 1980).  

 

Pulsed-wave Doppler emerged in tandem with 2D Echocardiography imaging (Gowda 

et al., 2004). Utilising the observations of (Doppler, 1842) and ultrasonic developments, 

Baker, Rubenstein and Lorch (1977) established principles for the use of Pulsed-wave 

Doppler to determine the direction and velocity of blood flow (via positive/negative 

Doppler shift). The utility of Pulsed-wave Doppler to assess valvular defects was 

quickly realised (Hatle, Angelsen and Tromsdal, 1980), and a framework for the 

assessment of LV diastolic filling patters was subsequently proposed (Kitabatake et al., 

1982). Additionally, colour-flow Doppler became commercially available in the late 

1980’s (Omoto and Kasai, 1987). The added ability to visualise blood flow, providing 

particular value in the study of atrial and ventricular defects, as well as mitral and 

tricuspid valvular regurgitation. 

 

Tissue Doppler Imaging 

 

Isaaz et al. (1989) used pulsed-wave Doppler to target the posterior wall of the LV, as 

opposed to red blood cells, and in doing so introduced Tissue Doppler Imaging. 
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Quantification of myocardial velocities in systole and diastole provided insight into 

mechanical aspects of structure-function relationships within the heart for the first time. 

Furthermore, this technique facilitated regional assessment of the LV, allowing wall 

motion abnormalities common to hypertrophic cardiomyopathy (HCM) (Nagueh et al., 

2001; Cardim et al., 2002; Ho et al., 2002). This is of particular relevance to the AH 

phenotype, where profound structural adaptation and reduced global function at rest 

commonly present a challenging differentiation between physiology and pathology. 

 

Speckle Tracking Echocardiography 

 

Speckle tracking echocardiography (STE) was introduced in 1994 (O'Donnell et al., 

1994). Using images acquired from conventional 2D-echocardiography, this offline 

method tracks the motion of characteristic speckle patterns generated by ultrasound 

reflection from the myocardial wall (Mor-Avi et al., 2011). In doing so, it is possible to 

quantify deformation of the myocardium in relation to its original size (strain), and the 

rate at which this takes place (strain rate) (Mor-Avi et al., 2011). In contrast to TDI 

assessment, which is a highly angle-dependant method of measuring linear deformation 

(via Doppler shift), STE is partly angle-independent, and can be used to assess 

displacement in longitudinal, circumferential, radial, and rotational planes (Mor-Avi et 

al., 2011). Like TDI, STE facilitates regional assessment of myocardial deformation. 

However, unlike TDI, it is possible to segment myocardial regions and carry out 

simultaneous strain and strain rate measurements from a single image (Forsythe, 

George and Oxborough, 2018). High prognostic value in the diagnosis of HCM and 

DCM has been demonstrated for longitudinal strain in particular (Forsythe, George and 

Oxborough, 2018).  As a result, application of longitudinal strain is recommended in 
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the most recent European guidelines, with a value of less than -15 % suggested to be 

indicative of pathology (Pelliccia et al., 2018).  

 

Exercise-stress Echocardiography 

 

Profound structural ventricular remodelling presented by athletes is often accompanied 

by reduced resting measures of function and mechanics, making differentiation 

diagnosis of the AH phenotype and cardiomyopathy challenging (George et al., 2012). 

Technological development of 2D echocardiography have increased temporal 

resolution and increased the quality of images (Forsythe, George and Oxborough, 

2018). As a result, more accurate assessment of structure, function and mechanics are 

feasible during exercise (Forsythe, George and Oxborough, 2018). Furthermore, 

development of ergometers whereby exercise is completed in the left-lateral decubis 

position has overcome logistical challenges to in-exercise assessment. 

 

Exercise circumferential strain, radial strain and twist have been found to provide 

distinction between physiological adaptation and HCM, in the case of ambiguous 

resting function/mechanics (Soullier et al., 2012). Soullier et al. (2012) observed 

significantly lower rest-exercise augmentation in circumferential (5 %), radial (4 %) 

and twist (1 %) for HCM patients compared to healthy controls (35 %, 18 %, and 63 % 

respectively). Additionally, temporal mechanical analysis revealed altered systolic-

diastolic coupling in HCM patients, which was not present in control subjects (Soullier 

et al., 2012). Similarly, exercise augmentation of RV free wall strain rates have been 

presented as an effective method to differentiate endurance AH and ARVC phenotypes, 

which both present with reduced function at rest (La Gerche et al., 2012a).  
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3.1 Ethical Approval 

Ethical approval was granted for each study from the local ethics committee at 

Liverpool John Moores University. All participants were provided with a participant 

information sheet, and written informed consent was gained prior to enrolment. 

 

3.2 Preliminary Procedures 

All participants were free of known cardiovascular disease and abstained from alcohol 

and caffeine consumption for at least 24 hours prior to each data collection. Participants 

also refrained from training activities for at least 6 hours prior to each data collection. 

Subjects completed a health questionnaire to exclude cardiovascular symptoms, family 

history of sudden cardiac death (SCD) and other cardiovascular history and/or 

abnormalities. 

 

3.3 Anthropometric Assessment 

Body mass (Seca 217, Germany) and height (Seca Supra 719, Germany) were recorded. 

Body surface area (BSA) was calculated as previously described (Mosteller, 1987). 

Systolic and diastolic blood pressures were recorded using an automated 

sphygmomanometer (Dinamap 300, GE, USA) after at 5 minutes of seated rest. 

 

3.4 12-Lead Electrocardiogram 

A standard, resting 12-lead electrocardiogram (CardioExpress SL6, Spacelabs, USA) 

was undertaken in accordance with AHA guidelines (Mason, Hancock and Gettes, 

2007). Results were reviewed against current international criteria (Drezner et al., 2017) 

by a sports cardiologist to exclude pathology. 
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3.5 Conventional 2D Echocardiography 

A standard resting echocardiogram was undertaken by a single experienced 

sonographer, using a commercially available ultrasound system (Vivid Q, GE, Norway 

and Vivid E95, GE, Norway) and a 1.5-4 MHz phased array transducer. All images 

were acquired in accordance with the American Society of Echocardiography (ASE) 

guidelines (Lang et al., 2015). Images were analysed offline (Echopac v202, GE, 

Norway) by a single experienced researcher. A minimum of three cardiac cycles were 

averaged for all acquisitions. 

 

LV linear dimensions (LVIDd and LVIDs) were measured at the level of or 

immediately below the mitral valve tips in a parasternal long axis orientation. LVIDd 

was measured at the point when the cavity was its largest (see figure 3), and LVIDs at 

the point when the cavity was smallest (see figure 4).  

Figure 3. Parasternal long axis orientation, demonstrating LVIDd 
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To provide a comprehensive assessment of LV wall thickness, eight measurements 

were made from a parasternal short axis orientation at basal (see figure 5) and mid-

levels (see figure 6) from the antero-septum, infero-septum, posterior wall and lateral 

wall (Wigle et al., 1985).  

 

A 

D 

C 

B 

Figure 4. Parasternal long axis orientation, demonstrating LVIDd 

Figure 5. Short axis orientation demonstrating basal level wall thickness. (A) antero-

septum, (B) infero-septum, (C) posterior wall, (D) lateral wall. 
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Mean wall thickness (MWT) was calculated as an average of all eight segments. 

Conventional relative wall thickness (RWT) was calculated using the formula 

[(IVSWTd + PWTd)/LVd] (where IVSWTd denotes mean diastolic basal infero-septal 

and anterior-septal wall thicknesses and PWTd denotes diastolic basal posterior wall 

thickness). LV linear dimensions and wall thicknesses facilitated calculation of LV 

mass using the ASE corrected equation (LV Mass (g) = 0.8 + 0.6). LV end-diastolic 

volume (LV EDV) and LV end-systolic volume (LV ESV) were calculated using the 

Simpsons biplane method from measurements made in a modified apical 4-chamber 

orientation and apical 2-chamber orientation (see figure 7).  

 

 

 

 

 

Figure 6. Short axis orientation demonstrating mid-level LV wall thickness. (A) antero-

septum, (B) infero-septum, (C) posterior wall, (D) lateral wall. 
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LV concentricity was calculated as [LV mass/LV EDV2/3] (Trachsel et al., 2018). LV 

geometry was assessed using a four-tier method, whereby geometry was defined as 1) 

normal (LV mass <116 g/m2, concentricity <9.1 g/ml(2/3))), 2) concentric remodelling 

(LV mass <116 g/m2, concentricity ≥9.1 ml(2/3))), 3) concentric non-dilated LVH (LV 

mass ≥116 g/m2, concentricity ≥9.1 g/ml(2/3) and LV EDV/BSA <76 ml/m2), 4) 

concentric dilated LVH (LV mass ≥116 g/m2, concentricity ≥9.1 g/ml(2/3) and LV 

EDV/BSA ≥76 ml/m2), 5) eccentric non-dilated LVH (LV mass ≥116 g/m2, 

concentricity <9.1 g/ml(2/3) and LV EDV/BSA <76 ml/m2) and 6) eccentric dilated LVH 

(LV mass ≥116 g/m2, concentricity <9.1 g/ml(2/3) and LV EDV/BSA ≥76 ml/m2)  as 

previously described by Trachsel et al. (2018) (see Figure 8).  

Figure 7. Biplane Calculation of LV EDV and LV ESV using (A) apical 4-chamber orientation at end-

diastole, (B) 4-chamber orientation at end-systole, (C) apical 2-chamber orientation at end-diastole, 

and (D) apical 2-chamber at end-systole. 
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Stroke volume (SV), and EF were calculated from LVEDV and LVESV respectively. 

Doppler imaging was used to assess blood flow velocity across the mitral valve during 

early diastolic (E) and late diastolic (A) phases (see figure 9). 

A 

E 

Figure 8. Four-tier classification of LV geometry 

Figure 9. Doppler assessment of mitral valve blood flow, demonstrating E and A 
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Pulsed-wave Tissue Doppler Imaging (TDI) was used to assess peak longitudinal 

motion velocity of the infero-septum and lateral wall in systolic (S’), early diastolic (E’) 

and late diastolic (A’) phases (see figure 10). The pulsed-wave sample volume was 

placed in the basal tissue just above the annulus of the mitral valve on both the infero-

septum and lateral walls. 

 

Figure 10. Pulsed-wave TDI demonstrating S’, E’, and A’ of the (A) infero-septum and 

(B) lateral wall 
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All structural indices are presented as absolute values as well as being scaled 

allometrically to BSA based on the principle of geometric similarity (Batterham and 

George, 1998; Dewey et al., 2008). Linear dimensions were scaled to BSA0.5, areas 

directly to BSA, and volumes to BSA1.5. 

3.6 Myocardial Speckle Tracking 

All images were acquired at frame rates between 40 and 90 frames per second, and 

settings were adjusted to provide optimal endocardial delineation. During offline 

analysis (Echopac v202, GE, Norway), the endocardial border was manually traced, 

and the region of interest was adjusted to encompass the full myocardium. 

 

 Longitudinal Mechanics 

GL ε and longitudinal SR were assessed using apical four-chamber, two-chamber and 

three-chamber orientations (see figure 11). The focal point was position at the level of 

the mitral valve, and aortic valve closure (AVC) time was set using the aortic 

continuous wave Doppler trace.  In the apical four-chamber orientation, the range of 

interest (ROI) was traced around the myocardium from infero-septum to basal lateral 

wall. In the three-chamber orientation, the ROI was traced from basal posterior wall to 

basal antero-septum. In the two-chamber orientation, the ROI was traced from the basal 

inferior wall to the basal anterior wall.  

 

Each apical orientation provided 6 segments, which facilitated global ε and SR to be 

calculated as an average of 18 segments. GL ε was determined as the greatest value (see 

figure 12), and systolic strain rate (SRS), early diastolic strain rate (SRE) and late 

diastolic strain rate (SRA) were identified (see figure 13). 
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A 

B 

C 

Figure 11. (A) Apical 4-chamber orientation segments, (B) Apical 2-

chamber orientation segments and (C) Apical 3-chamber orientation 

segments 
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Figure 12. GL ε trace in apical (A) 4-chamber orientation, (B) 2-

chamber orientation, and (C) 3-chamber orientation 
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Figure 13. Longitudinal SR trace in (A) 4-chamber orientation, (B) 2-

chamber orientation, and (C) 3-chamber orientation 
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Circumferential and Rotational Mechanics 

The parasternal short-axis orientation facilitated assessment of circumferential ε at 

basal (mitral-valve) and mid- (papillary muscle) levels, and rotation at basal and apical 

(the point immediately above the point of systolic cavity obliteration) levels. In all 

cases, the focal point was position close to the centre of the cavity, and AVC was set 

using the aortic continuous wave Doppler trace. GC ε and SR values were calculated as 

an average of antero-septum, infero-septum, inferior, posterior, lateral, and anterior 

regional segments at basal and mid- cavity levels (see figures 14-16). LV twist was 

calculated as the net difference between apical and basal rotation (see figure 17). 

 

 

 

 

Figure 14. Basal- and mid-cavity level segments from a short axis orientation 
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Figure 15. GC ε at (A) basal-level, and (B) mid-level 
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Figure 16. GC SR at (A) basal-level, and (B) mid-level 
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Figure 17. (A) Rotation at apical level and (B) Apical rotation, basal rotation, and net twist traces 

A 

B 
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Previous data collected in the Liverpool John Moores University laboratory has 

demonstrated very good agreement for peak GL ε (CoV 6%, ICC 0.807 ) and LV Twist 

(CoV 10%, ICC 0.954), and good agreement for GC ε (CoV 7%, ICC 0.781) 

(Oxborough, George and Birch, 2012). 

3.7 Stress Echocardiography 

A stress echocardiogram was undertaken using an electromagnetically braked cycle 

ergometer (Lode Angio, NL) in the left lateral decubis position. Exercise intensity was 

controlled by adjusting resistance in the hyperbolic mode to elicit 50% HR max using 

the previously described age-predicted method (Fox 3rd and Haskell, 1968). Images 

were recorded in a short axis-orientation at basal-, mid- and apical-level, to determine 

GC ε, GC SR and LV twist as previously described (Figures 14-17). LV EF was 

measured from apical four-chamber and two-chamber and images, using the Simpsons 

Biplane method as previously described (Figure 7). Doppler imaging was used to 

measure blood flow velocity across the mitral valve (Figure 9), and TDI was used to 

determine S’, E’ and A’ at the infero-septal and lateral walls (Figure 10). Apical four-

chamber, two-chamber and three-chamber images facilitated assessment of GL ε and 

SR as previously described (Figures 11-13). All images were acquired in accordance 

with ASE guidelines (Lang et al., 2015). 
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4.1 Introduction 

 

Structural adaptation of the athlete’s heart (AH) has been relatively well characterised, 

with the greatest dimensions observed in athletes who carry out high quantities of 

training with high dynamic and high static components, as is the case in sports such as 

cycling, triathlon and rowing (Levine et al., 2015). The most notable of these 

adaptations are proportional increases in left ventricular (LV) chamber volume and wall 

thickness (Abergel et al., 2004; Utomi et al., 2013; Wasfy et al., 2015b) with 

concomitant changes in LV mass. Exposure to extended periods of elevated preload 

(eliciting ventricular volume overload) and elevated wall stress appear to be the primary 

drivers of training-induced structural adaptation in the athlete’s heart (La Gerche, 

Taylor and Prior, 2009; Brown et al., 2017). A training-related increase in chamber 

compliance and size enables the athletes to generate very high cardiac outputs that are 

required to sustain high dynamic exercise (Levine, 2008). Although strong correlations 

between LV end diastolic volumes (EDV) and aerobic capacity (La Gerche et al., 

2012c) have been reported, the association between functional/mechanical adaptation 

and athletic performance level is not understood (Spence et al., 2011; Weiner et al., 

2015).  

 

Whilst there is some consistency in the extant literature regarding the LV structural 

phenotype in athletes who engage in high training hours, this has been based on absolute 

chamber sizes and a basic linear derivation of LV geometry (George et al., 2001). In 

addition, contradictory findings exist regarding the nature and magnitude of 

physiological adaptation in LV function (Arbab-Zadeh et al., 2004; Weiner et al., 2015). 

This is particularly relevant to the assessment of road cyclists, whereby application of 

conventional measures of function suggest 7% present with reduced ejection fraction 
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(EF) (Abergel et al., 2004). The application of novel indices of LV mechanics utilising 

myocardial speckle tracking echocardiography (STE) may be insightful by facilitating 

the assessment in LV longitudinal, circumferential and rotational planes of motion 

(Santoro et al., 2014; Utomi et al., 2014). Additionally, STE offers far greater sensitivity 

than conventional measures of function, with less load-dependence and angle-

dependence compared to Doppler and Tissue Doppler respectively (Marwick, 2006; 

Forsythe, George and Oxborough, 2018). 

 

Although positive associations between LV Mass Index (LVMi), LV End Diastolic 

Volume (EDV) and STE derived peak global longitudinal ε (GL ε) exist (i.e. increased 

LVMi results in decreased GL ε), athletes with the most pronounced structural 

adaptation can still be expected to present similar peak GL ε values to non-athletes 

(NA) (Beaumont et al., 2017; Forsythe et al., 2018). In contrast, endurance training 

appears to elicit no change, or mild increases in global circumferential ε (GC ε) and a 

reduction in LV twist (Baggish et al., 2008; Santoro et al., 2014; Utomi et al., 2014). It 

is unclear whether alterations in GC ε and LV twist are an acute response to training 

(Baggish et al., 2008), or a chronic adaptation required to maintain systolic function in 

the presence of marked LV structural remodelling (Santoro et al., 2014).  

 

It has been suggested chronic high training hours are associated with development of 

supra-normal diastolic function, and that enhanced ventricular relaxation is an 

important contributor to LV filling, which in turn facilitates stroke volume generation 

(Caso et al., 2000; Weiner et al., 2010). That said, large cohort examinations of athletes 

have described similar diastolic filling (as determined by Doppler imaging) at rest 

between athletes and non-athletes (Pluim et al., 2000; Finocchiaro et al., 2018). 
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Furthermore, recent work has clearly demonstrated larger LV cavity size is associated 

with a lower E’ velocity (Caselli et al., 2015; Finocchiaro et al., 2018). 

 

It is noteworthy that previous investigations of the athletes’ LV mechanics have focused 

on athlete vs non-athlete comparisons, with little consideration for differences due to 

athletic performance level. The only cross-sectional comparison between mechanics of 

elite and sub-elite athletes (to the authors’ knowledge) described significant differences 

in systolic tissue velocities and diastolic filling (Baggish et al., 2010), highlighting the 

importance of characterising the mechanical phenotypes within these two distinct 

groups.  

 

Consequently, this study aimed to quantify differences in LV structural remodelling 

between SEC and EC, and to determine the impact of sub-elite and elite level training 

on LV function. In view of this, it was hypothesised that: (1) greater LV structural 

remodelling will be observed in EC compared to SEC, and (2) conventional and 

mechanical measures of systolic and diastolic LV function will be lower in EC 

compared to SEC. 

4.2 Methods 

 

Study Population and Design 

 

Male elite-level road cyclists (EC, n=69) actively competing in UCI World Tour and 

UCI Pro Continental level events, male sub-elite road cyclists (SEC, n=30) actively 

racing under a 1st, 2nd or 3rd category British Cycling license, and healthy, non-smoking 
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male non-athlete university students/staff (NA, n=46) engaging in fewer than 3 hours 

recreational activity per week were recruited into this cross-sectional study.  

 

A very high proportion of subjects were Caucasian (97%). Of the n= 4 non-caucasian 

subjects, n= 2 EC athletes were Latin American, and n= 2 NA were mixed 

Caucasian/Black Caribbean. All subjects were free of known cardiovascular disease 

and abstained from alcohol and caffeine consumption for at least 24 hours prior to data 

collection. Subjects also refrained from training activities for at least 6 hours prior to 

data collection. Ethics approval was granted for this study by the Ethics Committee of 

Liverpool John Moores University and the National Research Ethics Service, Essex 

Research Ethics Committee in the United Kingdom. 

 

Procedures 

 

Subjects completed a health questionnaire to exclude cardiovascular symptoms, family 

history of sudden cardiac death (SCD) and other cardiovascular history and/or 

abnormalities. Body mass (Seca 217, Germany) and height (Seca Supra 719, Germany) 

were recorded. Body surface area (BSA) was calculated as previously described in 

chapter 3. A standard, resting 12-lead electrocardiogram was undertaken and reviewed 

as described in chapter 3. 

 

All resting echocardiographic acquisition and analysis of the LV was undertaken as 

described in chapter 3. 
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Statistical Analysis 

 

Study data were collected and managed using REDCAP electronic data capture tools 

hosted at Liverpool John Moores University (Harriss and Atkinson, 2013). All 

echocardiographic data were presented as mean ± SD (range). Statistical analyses were 

performed using the commercially available software package SPSS (SPSS, version 

23.0 for Windows, USA). A one-way analysis of variance (ANOVA) with an alpha 

value set to P = 0.05 was used to examine differences between groups. 

4.3 Results 

 

Age and height was similar between EC (27±5 years and 1.80±0.06 m), SEC (25±5 

years and 1.80±0.07 m), and NA (22±3 years and 1.78±0.07 m) respectively. Body 

mass was significantly lower in EC and SEC, compared to NA (P< 0.001 and P< 0.05 

respectively) (71.0±5.9 and 73.2±8.4 vs 78.1±9.8 kg) resulting in BSA being 

significantly lower in EC compared to NA (P< 0.05) (1.88±0.10 and 1.96±0.14 m2). 

Resting HR was also significantly lower in EC and SEC compared to NA (both P< 

0.001) (51±8, 53±7 and 69±10 beats.min-1 respectively). No non-training related ECG 

changes were observed in any subjects. 

 

Left Ventricular Structure 

 

Conventional LV structural parameters are presented in table 2. Absolute LVd, MWT, 

LV mass, LV EDV and LV ESV were significantly greater in EC compared to SEC 

(P<0.05, P<0.001, P<0.001, P<0.05, and P<0.001 respectively) and NA (all P<0.001). 

Absolute parameters were also significantly greater in SEC compared to NA (P<0.05, 
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P<0.05, P<0.001, P<0.001 and P<0.001 respectively). LV structural indices remained 

significantly greater in EC compared to SEC (P<0.05, P<0.001, P<0.001, P<0.05 and 

P<0.001 respectively) following allometric scaling to BSA (LVD index, MWT index, 

LV mass index, LV EVD index, LV ESV index). All scaled parameters were also 

greater in SEC compared to NA (all P< 0.001). 

Table 2. Left ventricular structural parameters 

* P<0.05 vs Sub-Elite, ** P<0.001 vs Sub-Elite, † P<0.05 vs Non-Athletes, ‡ P<0.001 vs Non-Athletes 

 

Concentricity and RWT were significantly greater in EC compared to SEC (both P< 

0.001) and NA (both P< 0.001), however no differences were observed between SEC 

and NA. The distribution of LV geometry across all groups is presented in Figure 19. 

A predominance of normal LV geometry was observed across EC, SEC and NA (60.9 

%, 96.7 % and 100% respectively). Eccentric dilated LV hypertrophy was more 

common than eccentric non-dilated LV hypertrophy in EC (33.3 % compared to 1.4 %) 

 Elite Cyclists Sub-Elite Cyclists Non-Athletes 

LVd (mm) 
54.8 ± 3.8*‡ 
[41.0 : 62.0] 

52.6 ± 3.7† 
[44.0 : 62.0] 

49.5 ± 3.7 
[40.0 : 56.0] 

LVD Index (mm/(m2)0.5) 
40 ± 3.1*‡ 

[27.9 : 45.8] 
38.1 ± 2.5‡ 
[34.2 : 44.4] 

35.4 ± 2.8 
[29.5 : 40.0] 

LV EDV (ml) 
162 ± 18*‡ 
[113 : 201] 

149 ± 19‡ 
[107 : 182] 

104 ± 21 
[55 : 148] 

LV EDV Index (ml/(m2)1.5) 
63 ± 8*‡ 
[45 : 79] 

57 ± 8‡ 
[39 : 71] 

38 ± 8 
[22 : 51] 

LV ESV (ml) 
70 ± 11*‡ 
[42 : 94] 

61 ± 13‡ 
[33 : 89] 

43 ± 9 
[24 : 59] 

LV ESV Index ( ml/(m2)1.5) 
27 ± 5*‡ 
[17 : 40] 

23 ± 6‡ 
[13 : 34] 

16 ± 3 
[9 : 23] 

MWT (mm) 
9.6 ± 0.7**‡ 
[8.0 : 12.0] 

8.3 ± 0.5† 
[7.5 : 9.5] 

7.6 ± 0.6 
[6.3 : 9.1] 

MWT Index (mm/(m2)0.5) 
6.9 ± 0.5**‡ 

[5.9 : 8.1] 
6.0 ± 0.4‡ 
[5.5 : 6.8] 

5.5 ± 0.4 
[4.5 : 6.5] 

RWT 
0.36 ± 0.04**‡ 

[0.27 : 0.51] 
0.33 ± 0.03 
[0.26 : 0.41] 

0.32 ± 0.04 
[0.25 : 0.41] 

LV Mass (g) 
210 ± 31**‡ 
[141 : 313] 

163 ± 26‡ 
[119 : 224] 

133 ± 24 
[81 : 187] 

LV Mass Index (g/(m2) 
112 ± 17**‡ 

[65 : 149] 
85 ± 12‡ 
[64 : 117] 

68 ± 12 
[42 : 86] 

LV Concentricity (g/(ml)2/3) 
7.11 ± 1.08**‡ 

[4.42 : 9.82] 
5.85 ± 0.98 
[4.20 : 7.84] 

6.02 ± 0.83 
[3.91 : 7.98] 
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and eccentric dilated LV hypertrophy was much rarer in SEC (3.3%). There were no 

cases of eccentric non-dilated LVH in SEC. Concentric non-dilated LV hypertrophy 

and concentric dilated LV hypertrophy remained rare in EC (1.4 % and 2.9 % 

respectively) and no cases of this geometry were observed in SEC.  

 

 

 

Left Ventricular Function 

  

Conventional indices of LV function are presented in Table 3. LV EF was lower in EC 

compared to NA only (P< 0.05). Reduced LV EF occurred in 11.6 % of EC and 6.8 % 

of SEC.  Septal S’ was lower in EC compared to NA only (P< 0.05). 

Figure 18. Four-tier LV geometry classification distribution for EC (     ), SEC (     ), and NA (     ) 



70 

 

Table 3. Left ventricular conventional resting functional parameters 

 Elite Cyclists Sub-Elite Cyclists Non-Athletes 

LV EF (%) 
57 ± 5† 

[45 : 70] 

59 ± 7 

[48 : 74] 

59 ± 4 

[54 : 68] 

E (cm/s) 
0.72 ± 0.14**† 

[0.42 : 1.04] 

0.88 ± 0.12 

[0.63 : 1.14] 

0.82 ± 0.15 

[0.49 : 1.19] 

A (cm/s) 
0.37 ± 0.08*‡ 

[0.23 : 0.67] 

0.44 ± 0.07 

[0.28 : 0.61] 

0.49 ± 0.10 

[0.31 : 0.81] 

E/A 
1.98 ± 0.50† 

[1.17 : 3.56] 

2.05 ± 0.40† 

[1.36 : 3.17] 

1.80 ± 0.48 

[0.78 : 2.91] 

Septal S’ (cm/s) 
9 ± 1† 

[6 : 13] 

9 ± 1 

[7 : 11] 

10 ± 2 

[7 : 13] 

Septal E’ (cm/s) 
12 ± 2**† 

[8 : 17] 

15 ± 2† 

[11 : 20] 

13 ± 3 

[9 : 21] 

Septal A’ (cm/s) 
7 ± 2† 

[4 : 10] 

8 ± 2 

[4 : 13] 

8 ± 2 

[5 : 12] 

Lateral S’ (cm/s) 
12 ± 2 

[8 : 18] 

12 ± 3 

[7 : 17] 

13 ± 3 

[7 : 19] 

Lateral E’ (cm/s) 
18 ± 4*† 

[6 : 25] 

20 ± 4 

[12 : 29] 

19 ± 4 

[8 : 28] 

Lateral A’ (cm/s) 
7 ± 2 

[4 : 18] 

7 ± 2 

[5 : 12] 

8 ± 2 

[3 : 16] 

* P<0.05 vs Sub-Elite, ** P<0.001 vs Sub-Elite, † P<0.05 vs Non-Athletes, ‡ P<0.001 vs Non-Athletes 

 

GC and GL ɛ, and twist data are presented in Table 4. No differences existed between 

groups in peak GL ɛ. Peak GC ɛ was greater in EC and SEC compared to NA (P<0.05 

and P< 0.001 respectively). No differences existed between groups in peak LV twist or 

basal rotation, however peak apical rotation was lower in EC compared to SEC (P< 

0.05).  

 

Transmitral E and A were both lower in EC compared to SEC (P< 0.001 and P< 0.05) 

and NA P< 0.05 and P< 0.001). E/A ratio was significantly higher in EC and SEC 

compared to NA (both P< 0.05). Septal E’ and A’ were lower in EC compared to NA 

(both P< 0.05). In addition, septal E’ was lower in EC compared to SEC (P< 0.001), 

and greater in SEC compared to NA (P< 0.05) whilst lateral E’ was lower in EC, 

compared to SEC (P< 0.05) and NA (P< 0.05). 
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Table 4. Speckle Tracking Echocardiographic parameters 

 Elite Cyclists Sub-Elite Cyclists Non-Athletes 

Global longitudinal    

Peak ε (%) 
-18.3 ± 2.0 

[-13.7 : -23.6] 

-19.3 ± 1.7 

[-16.4 : -23.3] 

-18.2 ± 2.3 

[-13.2 : -23.6] 

Global Circumferential    

Peak ε (%) 
-18.4 ± 2.4† 

[-14.0 : -24.1] 

-19.8 ± 2.7‡ 

[-14.1 : -26.9] 

-17.2 ± 2.6 

[-12.0 : -22.3] 

LV Rotation    

Peak Twist (⁰) 
15.2 ± 5.4 

[4.1 : 33.4] 

17.7 ± 5.3 

[9.3 : 28.0] 

16.3 ± 5.3 

[4.7 : 29.2] 

Peak Basal Rotation (⁰) 
-5.7 ± 2.3 

[-0.8 : -11.3] 

-5.0 ± 1.9 

[-1.5 : -9.0] 

-5.5 ± 3.0 

[-0.3 : -13.5] 

Peak Apical Rotation (⁰) 
9.9 ± 5.0* 

[1.9 : 30.1] 

13.3 ± 4.7 

[3.6 : 21.4] 

11.7 ± 4.1 

[3.3 : 21.3] 

* P<0.05 vs Sub-Elite, ** P<0.001 vs Sub-Elite, † P<0.05 vs Non-Athletes, ‡ P<0.001 vs Non-Athletes 

 

4.4 Discussion 

 

The main findings of this study are 1) Marked structural remodelling was observed in 

EC, who presented with significantly greater LV chamber volume and wall thickness 

compared to SEC. Over one-third of EC presented with eccentric hypertrophy, 

compared to just 3.3% in SEC. 2) Reduced LV EF was observed in a greater proportion 

of EC compared to SEC, despite similar conventional and STE measures of systolic 

function. Conventional measures of diastolic function were lower in EC compared to 

SEC. 

 

Left Ventricular Structure 

 

In keeping with previous findings, significantly greater LV chamber size was observed 

in EC and SEC compared to NA (Abergel et al., 2004; Utomi et al., 2014)., providing 

further support for sustained periods of elevated preload and haemodynamic volume 

overload acting as a primary stimulus for structural adaptation of the LV in endurance 

athletes. Although increased MWT was observed in EC, none of the cohort presented 
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thicknesses greater than 12 mm. This is in stark contrast to the work of Abergel et al. 

(2004), who found 8.7 % of elite cyclists presented a MWT exceeding 13 mm. It is 

difficult to speculate as to the reason for this disparity however the authors themselves 

report the potential confounding impact of performance enhancing drugs used by 

cyclists during the 1990’s and early 2000’s, many of which are known to elicit 

concentric LVH (Angell et al., 2014). Better endocardial border differentiation from a 

combination of improvement in echocardiography technology and experience in 

defining true endocardium from LV trabeculation may potentially have also contributed 

to previously erroneous measurements. 

 

Although like Utomi et al. (2013), the majority of our EC cohort presented with normal 

LV geometry, a greater proportion of the cohort presented with eccentric hypertrophy 

(34% compared to 30%). These differences may be due to the sporting disciplines 

represented by the endurance trained cohort of Utomi et al. (2013), as the influence of 

static (% maximal voluntary contraction) demands of highly dynamic sports on 

adaptation of LV geometry has previously been highlighted (Wasfy et al., 2015b; 

Finocchiaro et al., 2017). As previously demonstrated in other sporting disciplines, 

concentric hypertrophy was rare in EC (4%) (Forsythe et al., 2018). 

 

The changes observed in LV geometry highlight the contribution of LV dilatation to 

the increase in LV mass between NA and SEC whilst the development of a concomitant 

increase in wall thickness (i.e. concentricity) drives the further increase in LV mass 

observed in EC. This appears to be in contrast with previous studies of the endurance 

training process, which have either described concurrent development of LV mass and 

chamber volume over a period of 3-6 months (Baggish et al., 2008; Spence et al., 2011) 
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or increases in LV mass preceding those of chamber volume over a period of 12 months 

(Arbab-Zadeh et al., 2014). These findings appear to have captured a longer-term 

adaptation in LV geometry, very similar to that observed by Weiner et al. (2015) in 

their 3-year longitudinal examination of competitive rowers, albeit in a cross-sectional 

design with a different cohort. 

 

Left Ventricular Function 

 

Previous research has highlighted decreased resting systolic function in endurance 

cyclists, which, in addition to the profound cavity dilation presented by this population, 

increases the potential for a false-positive diagnosis of dilated cardiomyopathy 

(Abergel et al., 2004; Sharma, Merghani and Mont, 2015). The finding that 11.6 % of 

EC and 6.7 % of SEC present with reduced EF emphasises the challenge of 

differentiating physiological and pathological adaptation in this group. Claessen et al. 

(2018) have previously demonstrated that a low EF in this population is simply a 

function of increased cavity volume, which requires a lower contractile force to produce 

the necessary stroke volume. 

 

Previous studies have identified GL peak ɛ as a potential tool to aid differentiation 

between physiological and pathological adaptation, as healthy athletes and non-athletes 

present similar GL ɛ values and significant decreases are observed in several 

pathological conditions (Beaumont et al., 2017; Pelliccia, 2019). The present findings 

provide further support for the clinical application of GL peak ɛ, as similar values were 

observed across all groups. 
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The work of MacIver (2012) identified GC peak ɛ as having a far greater influence on 

EF than that of GL peak ɛ at rest (67 % and 33 % respectively). It therefore seems the 

increased GC peak ɛ observed in EC and SEC, represents a compensatory mechanism 

which facilitates normal function at rest, despite vastly increased chamber volume. 

 

In contrast to the recent meta-analysis of Beaumont et al. (2017), which found 

significantly decreased LV twist in endurance athletes, no differences between EC, SEC 

or NA groups were observed in the present study. However; a lower apical contribution 

to LV twist was observed in EC, compared to SEC. Although parallels can be drawn 

between this adaptation and a previous cross-sectional examination (Santoro et al., 

2014), these results are in contrast to the longitudinal training-study of Weiner et al. 

(2010). The disparity in findings between cross-sectional assessments and acute 

training studies may be explained by the phasic nature of training-induced adaptations 

in LV twist (Weiner et al., 2015). It can therefore be proposed, that the differential acute 

and chronic adaptations apparent in competitive rowers (Weiner et al., 2015) could 

extend to sub-elite and elite cyclists, as both processes are characterised by the 

accumulation of training hours over time (Seiler, 2010), and phasic structural adaptation 

of the LV (Beaumont et al., 2017). 

 

Although increased transmitral E/A was observed in both EC and SEC, in agreement 

with previous descriptions of the endurance athlete’s heart (George et al., 2010), 

Doppler and TDI analysis shows a clear divergence in the nature of this finding between 

EC and SEC. SEC presented with a similar E velocity, and increased septal E’ compared 

to NA, suggestive of enhanced chamber relaxation assisting early diastolic filling 

(George et al., 2010). In contrast, E velocity and E’ velocity were both lower in EC 
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(compared to NA), which indicate lower diastolic function. The most likely explanation 

for these lower values may be a significantly greater reserve volume and lower resting 

HR in comparison to both SEC and NA, resulting in a decreased need for enhanced 

relaxation/suction at rest (Claessen et al., 2018).  

 

Limitations 

 

Due to the cross-sectional nature of this study, it is not possible to directly assess any 

cause-effect relationships between exercise and physiological cardiac remodelling. 

Although the performance levels of subjects are well defined, detailed data pertaining 

to the quantity and intensity of training completed by EC and SEC were not available, 

and as such, characterisation of training within this group was based on previous reports 

using athletes of a similar performance level (Metcalfe et al., 2017). Radial ɛ was not 

reported in this study, due to poor reproducibility of this parameter (CoV 19%, ICC 

0.714) (Oxborough, George and Birch, 2012). It should also be noted that findings of 

this study are specific to males aged 20-30 years, and as such, should not be 

extrapolated to female, junior or veteran athletic populations. All subjects denied use 

of illicit performance enhancing drugs, however it is impossible to quantify this claim 

as no specific anti-doping controls were carried out as part of this study. As such, this 

should be considered a limitation of the study. 

 

Conclusions 

 

A significantly greater LV mass was observed in EC compared to SEC, who presented 

with greater LV mass compared to NA. Differences in LV mass between EC and SEC 
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are primarily driven by increased wall thickness (and therefore concentricity), whereas 

chamber dilatation differentiates SEC and NA. Increased GC ɛ in EC and SEC may 

represent a compensatory mechanism to maintain stroke volume at rest in the presence 

of increased chamber volume, unchanged GL ɛ and unchanged LV twist. Decreased E 

and E’ velocities in EC are a novel finding, and may be indicative of a considerable 

functional reserve. Future research is required to elucidate this complex relationship 

between structural adaptation and function in elite endurance athletes. 

 

Perspectives 

 

In this study, a considerable difference in the magnitude of structural remodelling 

presented by elite and sub-elite cyclists was evident. It was also shown that marked 

structural adaptation is often accompanied by functional and mechanical alterations, 

which could appear atypical in a pre-participation screening setting. The potential 

application of STE for differential diagnosis in these situations should be noted, 

particularly in the case of localised adaptations (i.e. apical rotation). This investigation 

prompts further research into identification and quantification of the functional reserve 

observed in elite endurance athletes. In chapter 5, the variability of structure-function 

relationships of the LV in response to medium-term alterations in training hours will be 

examined. The application of stress-echocardiography will provide new insight into 

training induced progression/regression of functional reserve capacity. 
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5.1 Introduction 

 

In chapter 4, a relationship between chronic training hours and the magnitude of 

structural, functional and mechanical LV adaptation was established. In the context of 

a competitive road cycling season, RC carry out carefully planned training programmes 

to induce physiological adaptations in anaerobic threshold and VO2 max, which 

contribute to performance (Joyner and Coyle, 2008). The time taken to induce these 

adaptations, and different rates of dissipation, make variability in training hours (i.e. 

(periodization) a key concept for coaches to utilise (Mujika et al., 2018). Specific time 

points over the competitive season where physiological adaptations are optimised and 

fatigue is minimised (termed “peaking”), can then be targeted (Mujika et al., 2018). 

 

Anaerobic threshold power has previously been identified as the primary contributor to 

performance in cycling (Støren et al., 2013). Quantity of training has been proposed to 

hold greater efficacy than training intensity in improving this parameter (Seiler, 2010). 

This likely explains the considerable variation in training hours, but not intensity 

completed by elite RC (Metcalfe et al., 2017).  

 

The relationship between chronic training hours and LV structural adaptation is well 

defined (Brown et al., 2017), as is the intrinsic link between LV structure and aerobic 

capacity (La Gerche et al., 2012c). Recent work has sought to define how more acute 

periods (3-12 months) of increased training hours drives structural adaptations of the 

LV (Weiner et al., 2010; Spence et al., 2011; Arbab-Zadeh et al., 2014; Zilinski et al., 

2015; Oxborough et al., 2019). Disparities exist in the literature as to whether short-

term (3-6 month) increases in training hours promotes increases in cavity volume 

(Weiner et al., 2010; D’Ascenzi et al., 2015), cavity volume and wall thickness (Arbab-
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Zadeh et al., 2014; Zilinski et al., 2015), or wall thickness only (Spence et al., 2011; 

Oxborough et al., 2019).  

 

Accounting for different baseline training status’ of cohorts, and proposed phasic 

adaptation of the LV, whereby short-term (3 months) eccentric remodelling (i.e. 

chamber expansion with no change in wall thickness) and subsequent long-term (3 

years) eccentric hypertrophy (i.e. balanced increases in chamber volume and wall 

thickness) are observed in experienced high dynamic, high static (HDHS) athletes, may 

explain disparities in the literature (Weiner et al., 2015). 

 

Within-season (12 months) adaptive remodelling induced by intensified training in elite 

soccer appears to support this, as significant increases in cavity volume, but not wall 

thickness are observed (D’Ascenzi et al., 2015). A within-season assessment of 

competitive swimmers has challenged this finding, reporting thickening of the septal 

and posterior LV walls in response to intensified training (Csajági et al., 2015). 

However, due to the adolescent cohort used in this study, it is impossible to separate 

the relative contributions of training hours and maturation (Makan et al., 2005). 

Furthermore, as these observations were made in athletes completing a low-medium 

static component sports, it is unclear whether these findings can be extrapolated to 

HDHS athletes, who generally present with more marked chronic adaptation (Brown et 

al., 2017).  

 

Chronically trained endurance athletes present with similar or slightly reduced systolic 

function and mechanics compared to non-athletes (Brown et al., 2017). Reduced 

function appears to represent development of a functional reserve volume (i.e. lower 
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contractile force required to generate appropriate SV) in this group, as augmentation 

occurs under exercise stress (La Gerche et al., 2012a).  

 

Short-term structural adaptation of the LV does not appear to impact on global systolic 

function, but is associated with increases in S’, GL ε and LV twist, which act to preserve 

SV during initial stages of chamber volume expansion (Weiner et al., 2015). Increased 

LV twist also results in increased LV untwisting rate, which holds an important role in 

maintaining diastolic function in this remodelling stage (Weiner et al., 2015). Initial 

untwisting rate acts to increase early diastolic filling (E), through generation of a greater 

atrioventricular pressure gradient (Weiner and Baggish, 2011). A return of S’, GL ε and 

LV twist to baseline (or mildly reduced) levels in response to chronically elevated 

training hours, is therefore indicative of functional reserve development. 

 

To the author’s knowledge, no within-season assessment of LV mechanics, which act 

as an intermediary for structural and functional characteristics of the developing HDHS 

athlete’s heart, has previously been carried out. This study therefore aimed to 

characterise the impact of seasonal variations in road cycling training hours on LV 

structure, function and mechanics at rest and in-exercise. It was hypothesised that: 1) 

Increases in LV mass (driven by chamber expansion) would be observed in-line with 

training hours, 2) Global systolic and diastolic function would remain similar at all 

time-points, and 3) increases in LV twist would occur in concurrence with chamber 

expansion. 
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5.2 Methods 

 

Study Population and Design 

Competitive road cyclists (RC) (male n= 5, female n= 2) actively racing under a 1st, 

2nd or 3rd category British Cycling licence, and healthy non-athletes (male n= 4, female 

n= 5) engaging in fewer than 3 hours of recreational activity per week were recruited 

for the purpose of this study.  

 

All participants were free of known cardiovascular disease and abstained from alcohol 

and caffeine consumption for at least 24 hours prior to each data collection. Participants 

also refrained from training activities for at least 6 hours prior to each data collection. 

Ethical approval was granted for this study by the ethics committee of Liverpool John 

Moores University. 

 

Procedures 

Measurements were performed at the beginning of the study, after 3 months, after 7 

months, and after 10 months, representing off-, early-, mid-, and end-season time-points 

of the British road-cycling season. 

 

At the first visit, participants completed a health questionnaire to exclude 

cardiovascular symptoms, family history of sudden cardiac death (SCD) and other 

cardiovascular history and/or abnormalities. A standard resting electrocardiogram 

(ECG) was also carried out to exclude potential underlying pathologies.  
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In the 2 weeks prior to each laboratory visit, training hours were recorded for RC using 

commercially available software (TrainingPeaks, USA). During each of the four visits, 

body mass (Seca 217, Germany) and height (Seca Supra 719, Germany) were recorded, 

facilitating calculation of body surface area (BSA) as described in chapter 3. All 

echocardiographic acquisition and analysis of the LV was undertaken as described in 

chapter 3. 

 

Lactate threshold (LT), peak oxygen consumption (VO2 peak), maximal aerobic power 

(W max) and maximum heart rate (HR max) were determined during an incremental cycle 

test performed on an electromagnetically braked cycle ergometer (Lode Excalibur, NL). 

The test commenced at 125 W for male participants or 75 W for female participants, 

and increased in 25 W increments every 3 minutes until volitional exhaustion. Blood 

lactate measurements were obtained in the final 30 seconds of each stage using a Lactate 

Plus unit (Nova Biomedical, USA). Fixed blood lactate concentrations of 2 mmol/L and 

4 mmol/L were used to determine aerobic and anaerobic thresholds from a third order 

polynomial regression curve. Breath-by-breath measurements were obtained 

throughout the cycle test using an Oxycon Pro (Jaeger, USA) online gas analysis 

system, and VO2 peak was defined by the following end-point criteria, 1) heart rate 

within 10 beats.min-1 of age-predicted maximum, 2) respiratory exchange ratio >1.1, 

and 3) plateau of oxygen consumption despite increased workload.  Heart rate was also 

recorded throughout the cycle test using a Polar H7 (Polar, Finland). 

 

Statistical Analysis 

Study data were collected and managed using REDCAP electronic data capture tools 

hosted at Liverpool John Moores University (Harriss and Atkinson, 2013). All 
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echocardiographic data were presented as mean ± SD (range). Statistical analyses were 

performed using the commercially available software package SPSS (SPSS, version 

23.0 for Windows, USA). A paired T-test with an alpha value set to P = 0.05 was used 

to examine differences between groups at off-season, pre-season, mid-season and end-

season time-points. Within-group comparisons were carried out using a one-way 

analysis of variance, with statistical significance set at P<0.05. 

5.3 Results 

 

Subject characteristics are summarised in Table 5. No significant differences existed 

between RC and NA for age (26.6 ± 4.1 vs 26.1 ± 2.7 years), height (1.75 ± 0.10 vs 

1.70 ± 0.08 cm), weight (72.9 ± 9.5 vs 65.2 ± 6.2 kg) or resting heart rate (53 ± 6 vs 

64 ± 16 bpm) at the off-season time-point. No meaningful within-group changes were 

observed for these parameters throughout the duration of this study. 

 

Table 5. Subject characteristics 

Variable Group Off-Season Pre-Season Mid-Season End-Season 

Age (y) 
Cyclists 

26.6 ± 4.1 

 

- 

 

- 

 

- 

 

Non-Athletes 
26.1 ± 2.7 

 

- 

 

- 

 

- 

 

Height (cm) 
Cyclists 1.75 ± 0.10  -  -  -  

Non-Athletes 1.70 ± 0.08  -  -  -  

Weight (kg) 
Cyclists 72.9 ± 9.5  72.8 ± 9.8  70.9 ± 8.2  71.0 ± 8.2  

Non-Athletes 65.2 ± 6.2  67.3 ± 6.1  66.5 ± 5.4  66.5 ± 5.4  

BSA (m2) 
Cyclists 1.88 ± 0.17  1.88 ± 0.17  1.86 ± 0.16  1.86 ± 0.16  

Non-Athletes 1.74 ± 0.10  1.78 ± 0.10  1.77 ± 0.10  1.77 ± 0.10  

Resting HR 

(bpm) 

Cyclists 53 ± 6  54 ± 6  55 ± 7  54 ± 8  

Non-Athletes 64 ± 16  63 ± 15  64 ± 11  58 ± 13  

* P<0.05 vs Non-Athletes, † P<0.05 vs Off-season. ‡ P<0.05 vs Pre-season, Ø P<0.05 vs Mid-season 
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Performance and Physiological Variables 

 

Performance data are summarized in Table 6. Training hours were greater at PS (08:12 

± 03:01 h), MS (09:10 ± 03:41 h) and ES (06:56 ± 02:00 h) time-points compared to 

OS (04:32 ± 01:29 h) for RC. A decrease in RC training hours was observed between 

MS and ES. 

 

Higher power at 2 mmol/L (2.99 ± 0.58 vs 1.83 ± 0.40 W/kg), power at 4 mmol/L (3.63 

± 0.47 vs 2.49 ± 0.49 W/kg), Wmax (5.28 ± 0.57 vs 4.03 ± 0.54 W/kg), and VO2 peak (58.9 

± 6.3 vs 45.5 ± 7.7 ml/kg/min) were observed in RC compared to NA at OS. Differences 

in these parameters remained significant for PS, MS and ES time-points. 

 

Power at 2 mmol/L was higher at ES compared to PS in RC (3.12 ± 0.55 vs 2.88 ± 0.56 

W/kg). Wmax was decreased at PS compared to OS (5.02 ± 0.63 vs 5.28 ± 0.57 W/kg), 

and at ES compared to MS (5.04 ± 0.50 vs 5.35 ± 0.38 W/kg) in RC. No significant 

differences in HR max or La max existed between groups at any point in the study. La max 

was decreased at PS compared to OS (9.3 ± 1.8 vs 10.2 ± 2.0 mmol/L) for NA only. 

 

 

Structural Parameters  

 

Structural data are summarised in Table 7, and sex-specific data are summarised in 

Table 18. RC presented with greater LVd (52.9 ± 2.3 vs 48.1 ± 3.0 mm), MWT (7.6 ± 

0.6 vs 6.6 ± 0.6 mm) and LV mass (143 ± 17 vs 108 ± 20 g) compared to NA at OS. 

Differences in these parameters remained significant at all time-points. LV EDV was 

higher in RC compared to NA at PS (154 ± 23 vs 123 ± 23 ml) and ES (157 ± 19 vs 
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123 ± 23 ml). LV concentricity was higher in RC at PS (5.38 ± 0.57 vs 3.93 g/(ml)2/3), 

and remained significantly higher at MS and ES. 

 

Table 6. Training and physiological characteristics 

Variable Group Off-Season Pre-Season Mid-Season End-Season 

Training Hours 

(hh:mm) 

Cyclists 
04:32 ± 01:29 

 

08:12 ± 03:01 

↑† 

09:10 ± 03:41 

↑† 

06:56 ± 02:00 

↑†, ↓Ø 

Non-Athletes 
<03:00 

 

<03:00 

 

<03:00 

 

<03:00 

 

Power at 2 mmol/L 

(W/kg) 

Cyclists 
2.99 ± 0.58* 

 

2.88 ± 0.56* 

 

3.02 ± 0.37* 

 

3.12 ± 0.55* 

↑‡ 

Non-Athletes 
1.83 ± 0.40 

 

1.67 ± 0.29 

 

1.79 ± 0.57 

 

1.75 ± 0.31 

 

Power at 4 mmol/L 

(W/kg) 

Cyclists 
3.63 ± 0.47* 

 

3.59 ± 0.55* 

 

3.59 ± 0.31* 

 

3.57 ± 0.46* 

 

Non-Athletes 
2.49 ± 0.49 

 

2.44 ± 0.40 

 

2.26 ± 0.58 

 

2.29 ± 0.43 

 

Wmax (W/kg) 

Cyclists 
5.28 ± 0.57* 

 

5.02 ± 0.63* 

↓† 

5.35 ± 0.38* 

 

5.04 ± 0.50* 

↓Ø 

Non-Athletes 
4.03 ± 0.54 

 

3.75 ± 0.37 

 

3.87 ± 0.50 

 

3.95 ± 0.41 

↑Ø 

HRmax (beats/min) 

Cyclists 
195 ± 7 

 

192 ± 4 

 

193 ± 7 

 

192 ± 5 

 

Non-Athletes 
187 ± 13 

 

185 ± 14 

 

186 ± 13 

 

185 ± 13 

 

Lamax (mmol/L) 

Cyclists 
11.0 ± 1.5 

 

9.6 ± 1.8 

 

10.7 ± 1.8 

 

10.8 ± 2.0 

 

Non-Athletes 
10.2 ± 2.0 

 

9.3 ± 1.8 

↓† 

9.4 ± 2.6 

 

9.0 ± 2.6 

 

VO2 peak (ml/kg/min) 

Cyclists 
58.9 ± 6.3* 

 

55.7 ± 5.8* 

 

57.2 ± 5.2* 

 

58.9 ± 3.3* 

 

Non-Athletes 
45.5 ± 7.7 

 

43.7 ± 6.1 

 

43.5 ± 8.1 

 

45.5 ± 6.5 

 

* P<0.05 vs Non-Athletes, † P<0.05 vs Off-season. ‡ P<0.05 vs Pre-season, Ø P<0.05 vs Mid-season 

 

 RC presented with a greater LV EDV at PS and ES, compared to OS (154 ± 23 and 

157 ± 19 vs 144 ± 17 ml). LV concentricity was lower at MS compared to OS (3.80 ± 

0.70 vs 4.54 ± 0.55 g/(ml)2/3). RC presented with greater LV mass at MS and ES (163 

± 26 and 162 ± 31 g) compared to OS (143 ± 17 g). LVd was greater at ES compared 

to PS time-point in NA (48.9 ± 3.0 vs 46.1 ± 3.3 mm). LV mass was lower at MS 

compared to PS (93 ± 19 vs 108 ± 20 g), and greater at ES (102 ± 21 g) compared to 

MS in NA. 
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Table 7. Left ventricular structural parameters 

* P<0.05 vs Non-Athletes, † P<0.05 vs Off-season. ‡ P<0.05 vs Pre-season, Ø P<0.05 vs Mid-season 

 

Function and Mechanics 

 

Conventional measures of resting LV function are summarised in Table 8, and sex-

specific data are summarised in Table 19. No significant differences were observed 

between groups in conventional measures of LV function.  

 

MV E was decreased at PS compared to OS (0.83 ± 0.07 vs 0.92 ± 0.07 cm/s). In 

addition, MV E:A was lower at PS and MS (1.92 ± 0.24 and 2.06 ± 0.30) compared to 

OS (2.28 ± 0.29) in RC. Subsequently, RC presented with greater MV E:A at ES (2.22 

± 0.39) compared to MS. NA presented with a lower MV A at ES compared to OS (0.45 

± 0.09 vs 0.49 ± 0.09 cm/s).  

 

Resting STE measures are presented in Table 9, and sex-specific data are summarised 

in Table 20. No significant differences were observed between groups for resting STE 

Variable Group Off-Season Pre-Season Mid-Season End-Season 

LVd (mm) 

Cyclists 52.9 ± 2.3*  
52.1 ± 3.3* 

 

53.7 ± 2.6* 

 

53.1 ± 2.5* 

 

Non-Athletes 
48.1 ± 3.0 

 

46.1 ± 3.3 

 

47.3 ± 4.2 

 

48.9 ± 3.0 

↑‡ 

LV EDV (ml) 

Cyclists 
144 ± 17 

 

154 ± 23* 

↑† 

148 ± 18 

 

157 ± 19* 

↑† 

Non-Athletes 
129 ± 29 

 

123 ± 23 

 

123 ± 24 

 

123 ± 23 

 

MWT (mm) 

Cyclists 
7.6 ± 0.6* 

 

8.1 ± 0.8* 

 

8.4 ± 0.9* 

 

8.0 ± 0.9* 

 

Non-Athletes 
6.6 ± 0.6 

 

6.8 ± 0.5 

 

6.6 ± 0.7 

 

6.6 ± 0.8 

 

LV Concentricity 

(g/(ml)2/3) 

Cyclists 
5.21 ± 0.55 

 

5.38 ± 0.57* 

 

6.08 ± 1.0* 

 

5.53 ± 0.79* 

 

Non-Athletes 
4.54 ± 0.96 

 

3.93 ± 0.61 

 

3.80 ± 0.70 

↓† 

4.18 ± 0.87 

 

LV Mass (g) 

Cyclists 
143 ± 17* 

 

155 ± 25* 

 

163 ± 26* 

↑† 

162 ± 31* 

↑† 

Non-Athletes 
108 ± 20 

 

96 ± 15 

 

93 ± 19 

↓† 

102 ± 21 

↑Ø 
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parameters. An increase in LV basal rotation was observed between PS and MS (-4.7 ± 

1.3 vs -6.4 ± 2.0 ⁰) in RC. 

 

50 % HR max STE measures are summarised in Table 10, and sex-specific data are 

summarised in Table 21. No significant differences were observed between groups for 

exercise STE parameters.  

 

Table 8. Left ventricular conventional resting functional parameters 

* P<0.05 vs Non-Athletes, † P<0.05 vs Off-season. ‡ P<0.05 vs Pre-season, Ø P<0.05 vs Mid-season 

 

  

Variable Group Off-Season Pre-Season Mid-Season End-Season 

LV EF (%) 
Cyclists 58 ± 6  56 ± 5  59 ± 4  58 ± 2  

Non-Athletes 58 ± 5  56 ± 5  56 ± 3  57 ± 4  

MV E (cm/s) 
Cyclists 0.92 ± 0.07  

0.83 ± 0.07 

↓† 
0.88 ± 0.12  0.91 ± 0.05  

Non-Athletes 0.95 ± 0.14  0.97 ± 0.11  0.93 ± 0.16  0.94 ± 0.14  

MV A (cm/s) 

Cyclists 0.41 ± 0.05  0.44 ± 0.06  0.43 ± 0.03  0.42 ± 0.08  

Non-Athletes 0.49 ± 0.09  0.51 ± 0.11  0.49 ± 0.18  
0.45 ± 0.09 

↓† 

MV E:A 
Cyclists 2.28 ± 0.29  

1.92 ± 0.24 

↓† 

2.06 ± 0.30 

↓† 

2.22 ± 0.39 

↑‡ 

Non-Athletes 2.03 ± 0.58  1.96 ± 0.31  2.06 ± 0.55  2.15 ± 0.49  

Medial S' (cm/s) 
Cyclists 9 ± 1  9 ± 1  9 ± 1  9 ± 1  

Non-Athletes 9 ± 1  10 ± 1  9 ± 2  9 ± 2  

Medial E' (cm/s) 
Cyclists 16 ± 3  15 ± 2  16 ± 2  16 ± 2  

Non-Athletes 14 ± 2  16 ± 3  15 ± 3  15 ± 2  

Medial A' (cm/s) 
Cyclists 7 ± 1  7 ± 1  7 ± 1  7 ± 1  

Non-Athletes 8 ± 2  9 ± 2  8 ± 1  7 ± 1  

Lateral S' (cm/s) 
Cyclists 11 ± 2  11 ± 2  10 ± 1  11 ± 2  

Non-Athletes 11 ± 2  11 ± 3  11 ± 2  11 ± 3  

Lateral E' (cm/s) 
Cyclists 19 ± 4  20 ± 3  20 ± 4  20 ± 4  

Non-Athletes 21 ± 4  20 ± 4  20 ± 2  20 ± 3  

Lateral A' 

(cm/s) 

Cyclists 6 ± 1  7 ± 1  7 ± 1  6 ± 0  

Non-Athletes 8 ± 2  8 ± 2  8 ± 1  7 ± 2  
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Table 9. Resting Speckle Tracking Echocardiography (STE) parameters 

* P<0.05 vs Non-Athletes, † P<0.05 vs Off-season. ‡ P<0.05 vs Pre-season, Ø P<0.05 vs Mid-season 

 

 

 

 

 

 

Table 10. 50% HR max Speckle Tracking Echocardiography (STE) parameters 

* P<0.05 vs Non-Athletes, † P<0.05 vs Off-season. ‡ P<0.05 vs Pre-season, Ø P<0.05 vs Mid-season 

 

 

 
 

 

 

 

 

Variable Group Off-Season Pre-Season Mid-Season End-Season 

Global Longitudinal Strain 
(%) 

Cyclists 
-21.1 ± 2.5 

 

-20.0 ± 2.5 
 

-20.7 ± 3.2 
 

-20.7 ± 1.6 
 

Non-Athletes 
-22.4 ± 2.3 

 
-22.1 ± 1.9 

 

-20.5 ± 1.9 
 

-22.3 ± 2.0 
 

Peak Global 
Circumferential Strain (%) 

Cyclists 
-20.6 ± 1.7 

 

-21.4 ± 0.9 
 

-21.3 ± 0.8 
 

-21.4 ± 0.9 
 

Non-Athletes 
-22.4 ± 2.1 

 

-21.8 ± 2.1 
 

-20.0 ± 3.7 
 

-20.6 ± 2.2 
 

Peak LV Twist (⁰) 
Cyclists 

19.4 ± 4.2 
 

20.8 ± 4.9 
 

17.5 ± 5.9 
 

18.6 ± 6.8 
 

Non-Athletes 
23.3 ± 8.6 

 

25.0 ± 6.9 
 

23.9 ± 6.2 
 

27.2 ± 5.9 
 

Variable Group Off-Season Pre-Season Mid-Season End-Season 

Global Longitudinal Strain 
(%) 

Cyclists 
-19.0 ± 2.2 

 

-19.3 ± 1.9 
 

-19.1 ± 1.8 
 

-19.1 ± 1.5 
 

Non-Athletes 
-20.1 ± 2.1 

 

-20.1 ± 2.1 
 

-19.4 ± 1.7 
 

-20.6 ± 1.9 
 

Peak Global 
Circumferential Strain (%) 

Cyclists 
-19.6 ± 1.1 

 

-19.0 ± 1.3 
 

-18.8 ± 0.6 
 

-18.9 ± 2.0 
 

Non-Athletes 
-20.3 ± 2.5 

 

-19.4 ± 1.5 
 

-18.7 ± 1.8 
 

-20.1 ± 1.3 
 

Peak LV Twist (⁰) 
Cyclists 

16.6 ± 5.0 
 

14.9 ± 5.3 
 

13.9 ± 2.4 
 

15.2 ± 6.4 
 

Non-Athletes 
20.2 ± 4.1 

 

15.6 ± 4.0 
 

20.3 ± 7.7 
 

17.4 ± 5.5 
 

Peak Basal Rotation (⁰) 
Cyclists 

-6.5 ± 2.0 
 

-4.7 ± 1.3 
 

-6.4 ± 2.0 
↑‡ 

-5.7 ± 1.5 
 

Non-Athletes 
-8.6 ± 3.8 

 

-7.9 ± 2.8 
 

-7.2 ± 2.8 
 

-6.8 ± 2.4 
 

Peak Apical Rotation (⁰) 
Cyclists 

11.5 ± 4.7 
 

11.2 ± 6.2 
 

8.5 ± 3.5 
 

11.0 ± 6.9 
 

Non-Athletes 
11.6 ± 3.1 

 

9.5 ± 3.5 
 

14.2 ± 6.4 
 

10.7 ± 3.8 
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5.4 Discussion 

 

This is the first study to determine seasonal, training quantity induced changes in LV 

structure, function and mechanics for RC. The main findings of this work were; 1) 

Development of LV mass was primarily driven by increased chamber volume, and 

occurred in parallel with accumulation of training hours, 2) A transient increase in the 

contribution of basal rotation to LV twist during the period of highest training hours, 

and 3) A temporary shift towards late diastolic filling following the period of greatest 

increase in  training hours. 

 

LV Structure 

 

Although data assessing LV structural adaptation in relation to the variable training 

stimuli experienced in competitive sport (particularly in HDHS sports) are sparse 

(Csajági et al., 2015; D’Ascenzi et al., 2015), short-term endurance training 

interventions have highlighted non-parallel development of chamber dilatation and wall 

thickening (Weiner et al., 2010; Spence et al., 2011; Zilinski et al., 2015; Oxborough et 

al., 2019).  

 

A significant increase in LV mass between OS and ES was observed, driven primarily 

by changes in LV EDV in the presence of unchanged MWT and concentricity. These 

findings are in agreement with previous descriptions of eccentric type remodelling in-

line with increased high dynamic training hours (D’Ascenzi et al., 2015; Weiner et al., 

2015). These data also provide additional insight into the phasic structural adaptation 

process proposed by Weiner et al. (2015). As the proposed hypertrophic response was 
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not observed within this 10-month study period, it is reasonable to suggest this chronic 

adaptation may occur in the period between 10-39 months (Weiner et al., 2015; Brown 

et al., 2017).  

 

The only long-term (3-year) investigation of LV structure carried out in road cyclists 

described significant chamber dilatation, and thinning of the posterior and septal walls 

(Abergel et al., 2004). The authors of this investigation acknowledged the likelihood of 

drug abuse impacting these findings however, making comparisons to the present study 

inappropriate (Abergel et al., 2004).  

 

LV Function 

 

In agreement with previous research in high dynamic component athletes (D’Ascenzi 

et al., 2015), no change in LV EF was observed during the road cycling season. This is 

also in keeping with the findings of short-term intervention studies, suggesting 

increases in training quantity are not associated with changes in resting global systolic 

function (Weiner et al., 2010; Spence et al., 2011).  

 

The finding that GLε and LV twist remain unchanged despite a significant increase in 

training hours are in stark contrast to previous literature, whereby both parameters 

increased in response (Weiner et al., 2010; Weiner et al., 2015). Unchanged twist may 

be accounted for by: 1) differences in the quantity and/or intensity of training completed 

by subjects, 2) different stages of maturation in cohorts, as age is an independent 

predictor of LV twist (Zhang et al., 2010), or 3) The higher initial LV twist observed in 

this cohort may have resulted in a decreased adaptive “ceiling” in this parameter. 
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Although LV twist remained unchanged throughout the season, an increased 

contribution of basal rotation to twist was observed at MS. Again, this is in contrast to 

the findings of Weiner et al. (2015), who described an increased apical contribution to 

twist with preserved basal rotation. This observation, however, aligns closely with a 

recent short-term intervention study, whereby untrained subjects (of a similar age to the 

present study) completed 6 months of endurance training (Oxborough et al., 2019). The 

role of age, training mode, and training intensity require further investigation to 

understand the nature and time-course of this adaptive response which serves as a key 

mechanistic link between systolic and diastolic function (Weiner and Baggish, 2011; 

Beaumont et al., 2017; Badano and Muraru, 2019).  

 

Similar augmentation of GLε, GCε and LV twist between RC and NA in response to 

exercise stress at all time-points (despite considerable differences in LV structure) 

provides further evidence supporting utilisation of this method when resting 

echocardiographic parameters are ambiguous (La Gerche et al., 2012a). 

 

Chronic, endurance training-induced adaptation of the LV is generally accepted to have 

minimal impact on conventional measures of diastolic function (Brown et al., 2017). In 

contrast, acute bouts of endurance exercise (>120 min) have been shown to elicit mildly 

altered MV E and A (Lord et al., 2018b). This alteration represents a shift towards later 

diastolic filling, which is not a feature of the athlete’s heart phenotype. Emerging 

evidence suggests this transient shift in diastolic function may also be extended from 

acute bouts to periods of overload training (Chapter 6). 
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The finding of decreased MV E and increased MV A (P= 0.088) (resulting in decreased 

MV E:A) at the PS time-point, where training is 180% greater than OS, may represent 

this overload response. Particularly as performance (Wmax) was also decreased in the 

corresponding physiological assessment. The return of both MV E and A to baseline 

levels at MS (where training hours are more stable) provides support for this. It should 

also be noted, that MV E, A, and MV E:A remained similar between RC and NA at all 

time-points. 

 

Limitations 

 

Measurement of RC training was limited to quantity only in this study. It is therefore 

impossible to quantify the contributions of training load (as a function of 

quantity*intensity), or intensity to the LV adaptations observed.  

 

The use of both male and female subjects is a strength of this study. However, the timing 

of laboratory visits will have caused data collection to occur at different points within 

female subjects’ menstrual cycles. Previous work has determined athletic performance 

and conventional measures (except resting MV E:A) are not affected by the menstrual 

cycle  (Fuenmayor, Ramı́rez and Fuenmayor, 2000; Kishali et al., 2006) , though the 

impact on mechanical measures are unknown. 

 

 

Conclusions 
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Seasonal variations in training quantity were associated with significant alterations in 

the LV structure, function and mechanics of competitive road cyclists. Accumulation 

of training hours during the season drove an eccentric type remodelling of the LV, 

whereby cavity volume increased with no change in MWT or concentricity. A rapid, 

significant increase in training hours between OS and PS was associated with minor, 

transient alterations in diastolic function, similar in nature to those observed in EICF. 

Peak strain and twist parameters remained unchanged throughout the study period, 

although an increased contribution of basal rotation to twist was observed during the 

period of greatest training hours. 

 

These findings provide new insight into training-induced variability of LV structure, 

function and mechanics. The stability of LV systolic function and global mechanics, 

despite significant changes in LV structure are also highlighted. The mild, transient 

alterations in diastolic function observed require further investigation. Chapter 6 will 

seek to understand whether depressed diastolic function observed in EICF can be 

extended to periods of OL, and thus be considered a normal aspect of the physiological 

adaptation process in HDHS athletes.  

  



94 

 

 

 

 

 

 

 

 

 

 

 The Impact of Short-Term 

Overload Training on Cardiac Mechanics 
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6.1 Introduction 

 

In chapter 5, a progressive increase in LV mass was observed throughout the 

competitive cycling season in parallel with accumulation of training quantity. Although 

functional and mechanical parameters remained similar at off-, mid- and end-season 

timepoints, minor transient alterations in diastolic function consistent (in nature) with 

EICF were observed during the period of greatest increase in training hours (pre-

season). 

 

Progressive overload of physiological systems is essential to promote adaptation and 

performance improvement in endurance athletes (Seiler, 2010). Strategic planning of 

training camps and competitions are often used to achieve this, and can cause a 

disproportionate imbalance between training stress and opportunity for 

recovery/adaptation (Aubry et al., 2015). This common practice can elicit an acute 

fatigue response (whereby significant mood alterations but no negative performance 

consequences are observed), or functional over-reaching (where significant mood 

alterations and negative performance consequences are observed) (Aubry et al., 2015). 

In both cases, a “super-compensation” effect is targeted through subsequent tapering of 

training load, when fatigue diminishes at a faster rate than favourable physiological 

adaptations (Aubry et al., 2015). 

 

Although the performance impact of rapid overload training (OL) is well characterised, 

the causative physiological parameters are less clear (Le Meur et al., 2014). Much of 

the existing literature has focused on the roles of mood state, disordered sleep, blood 

markers of muscle necrosis and systemic inflammation, hormonal expression, and 
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autonomic nervous system balance in relation to the over-reached athlete (Kindermann 

and Urhausen, 2002).  

 

Despite the intrinsic link between cardiac function and endurance performance (La 

Gerche et al., 2012c), the impact of OL on cardiac function remained unstudied until 

relatively recently. The eloquent study design employed by Le Meur et al. (2014) 

elicited functional over-reaching in competitive triathletes following 3 weeks of rapid 

overload training (129% habitual training hours). Using impedance cardiography and 

blood catecholamine assessment, the authors described a significant decrease in LV 

stroke volume (SV) and cardiac output during exercise in over-reached subjects (Le 

Meur et al., 2014). Decreased plasma adrenaline availability was proposed as the 

causative mechanism for reduced SV, through decreased beta-adrenergic stimulation of 

cardiomyocytes (Le Meur et al., 2014). 

 

Although the accuracy of impedance cardiography is questionable (particularly during 

exercise) (Warburton et al., 1999), the similarity between these findings and resting 

echocardiographic assessment of athletes with acute exercise-induced cardiac fatigue 

(EICF) are striking. A recent meta-analysis described decreased LV SV in athletes who 

had completed >120 min of endurance exercise (Lord et al., 2018b).  

 

In addition to measures of global function, speckle tracking echocardiography (STE) 

enables assessment of the LV at the myocardial level (Forsythe, George and 

Oxborough, 2018). Decreases in Longitudinal strain and LV twist, which directly 

impact on the LV’s ability to generate SV in systole, have been observed in athletes 

with EICF (Nottin et al., 2009). This is in direct opposition to the short-term 
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physiological adaptive response previously described for athletes completing 3 months 

of structured (i.e. not rapid OL) high dynamic, high static (HDHS) component training 

(Levine et al., 2015), whereby LV twist and longitudinal strain increased (Weiner et al., 

2010). These findings also contradict chronic adaptations of the athlete heart phenotype, 

as LV twist and longitudinal strain are expected to be similar or slightly greater than 

non-athletes (Beaumont et al., 2017).  

 

Furthermore, echocardiographic assessment of the LV facilitates investigation of 

diastolic function and mechanics, which is not possible using impedance cardiography 

(Nagueh et al., 2016). Decreased early diastolic filling velocity and a compensatory 

increase in atrial contribution to filling represent load-dependant EICF alterations in 

LV function, which may precede systolic dysfunction (Hart et al., 2007).  

 

EICF alterations in LV structure, function and mechanics appear to be transient in 

nature, and generally return to pre-exercise levels within 4 weeks (Neilan et al., 2006). 

It is unknown, however, how repeated bouts of HDHS training with limited recovery 

will influence athletic (mal-)adaptation of the LV.  

 

The present study therefore aimed to characterise the impact of 3-weeks HDHS OL 

training, and subsequent 2-week tapered training, on LV structure, function and 

mechanics at rest and in-exercise. It was hypothesised that: 1) Mild non-clinical 

reductions in LV systolic and diastolic function would be observed in-exercise 

following 3-week OL, 2) In-exercise LV twist and global longitudinal strain would be 

reduced following 3-week OL, and 3) Any changes in global function or mechanics 

observed at OL would normalise to baseline levels following a 2-week taper period. 
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6.2 Methods 

 

Study Population and Design 

Competitive road cyclists (RC) (male n= 4, female n= 4) actively racing under a 1st, 

2nd or 3rd category British Cycling licence were recruited for the purpose of this study.  

 

All participants were free of known cardiovascular disease and abstained from alcohol 

and caffeine consumption for at least 24 hours prior to each data collection session. 

Participants also refrained from training activities for at least 6 hours prior to each data 

collection. Ethical approval was granted for this study by the ethics committee of 

Liverpool John Moores University. 

 

Procedures 

The prescribed training protocol was separated into four phases; Phase 1, 3 weeks of 

self-directed habitual training, from which individual target training hours for 

subsequent phases would be calculated. Phase 2, (PRE) 1 week at 70% of HT hours. 

Phase 3, 3 weeks overload (OL) at 140% habitual training hours. Phase 4, 2 week taper 

(TA) at 70% habitual training hours.  

 

Prior to initiation of the training protocol, subjects visited the laboratory on three 

occasions; at the first visit, subjects completed a health questionnaire to exclude 

cardiovascular symptoms, family history of sudden cardiac death (SCD) and other 

cardiovascular history and/or abnormalities. Body mass (Seca 217, Germany), height 
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(Seca Supra 719, Germany), a standard resting electrocardiogram (ECG) to exclude 

potential underlying pathologies, and a VO2 max test to determine maximal oxygen 

uptake were then completed. On the second visit, subjects undertook familiarisation of 

the Wingate anaerobic test (WAnT). On the third visit, participants completed 

familiarisation of the simulated 16.1 km time trial (16.1 km TT).  

 

Height, weight, mood state (RESTQ-76), cardiac echocardiogram, WAnT, and 16.1 km 

TT were measured at subsequent Pre, OL and TA time-points. The time of day was 

standardised for all tests at each time-point. 

 

Monitoring of Training 

Training hours were self-reported by subjects, and monitored using commercially 

available software (Training Peaks, USA).  

 

Maximal Oxygen Uptake (VO2 peak) 

Subjects completed an incremental cycle test performed on an electromagnetically 

braked cycle ergometer (Lode Excalibur, NL). The test commenced at 150 W for male 

participants or 125 W for female participants and increased in 25 W increments every 

2 minutes until volitional exhaustion. Breath-by-breath measurements were obtained 

throughout the test using an Oxycon Pro (Jaeger, USA) online gas analysis system, and 

VO2 peak was defined by the following end-point criteria, 1) heart rate within 10 

beats.min-1 of age-predicted maximum, 2) respiratory exchange ratio >1.1, and 3) 

plateau of oxygen consumption despite increased workload.  Heart rate was also 
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recorded throughout the cycle test using a Polar H7 (Polar, Finland), and used to 

determine each subject’s HR max. 

 

Cycling Performance 

WAnT and 16.1 km TT tests were completed out on the same day (separated by >7 

hours) in the final week of HT, OL, and TA time-points. Testing was carried out on an 

air-braked cycle ergometer (Wattbike Pro, UK) using commercially available software 

(Wattbike Performance Computer Model B, Wattbike, UK). Subject’s position on the 

ergometer, and laboratory environmental conditions (19-20 C, 45-50 % RH) were 

standardised between testing sessions. 

Subjects completed a standardised warm-up consisting of 2 minutes at 2.5 W/kg, 2 

minutes at 3 W/kg, 2 minutes at 3.5 W/kg, followed by 60 seconds of passive rest and 

2x3 second all-out sprints separated by 20 seconds of passive rest. The warm up 

finished with 5 minutes at 2.5 W/kg.  

 

Wingate Anaerobic Test (WAnT) 

Upon completion of the warm-up, subjects were instructed to set themselves in a start 

position. A 5 second countdown was given before subjects completed the 30 second 

all-out effort. Air-braked resistance level was self-selected (between settings 3-5) by 

subjects at “Pre” and maintained between time-points. Verbal encouragement was 

provided by researchers throughout the 30 second all-out effort. One-second peak 

power output (PPO), mean power output (MPO), heart rate maximum (HR max) and 

Blood lactate maximum (La max) were recorded.  
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16.1 km TT 

Each subject completed the standardised warm-up (excluding 2x3 second all-out 

sprints). Air-braked resistance level was self-selected by subjects at “Pre” and kept 

consistent between time-points. Researchers provided a 5 second countdown prior to 

the trial, during which, only time elapsed, simulated speed (km/h) were available as 

feedback. MPO, mean HR (HR mean), and time to complete the simulated 16.1 km TT 

were recorded. 

 

Mood State 

Subjects were asked to complete the RESTQ-76 questionnaire in isolation prior to 

cycling performance tests at each time-point. Questionnaire responses were analysed as 

previously described to determine stress score, recovery score, and stress-recovery 

balance (Coutts and Reaburn, 2008). 

 

All echocardiographic acquisition and analysis of the LV was undertaken as described 

in chapter 3. 

 

Statistical Analysis 

Study data were collected and managed using REDCAP electronic data capture tools 

hosted at Liverpool John Moores University (Harriss and Atkinson, 2013). All 

echocardiographic data were presented as mean ± SD. Statistical analyses were 

performed using the commercially available software package SPSS (SPSS, version 

23.0 for Windows, USA). Data were compared using a one-way analysis of variance, 

with statistical significance set at P<0.05. 
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6.3 Results 

Subject Characteristics 

Subjects characteristics are summarised in table 11. No significant differences existed 

between Pre, OL or TA timepoints for weight, BSA or resting HR. 

Table 11. Subject characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* P<0.05 vs Normal Training, ** P<0.001 vs Normal Training 

† P<0.05 vs Overload, †† P<0.001 vs Overload 

 

Cycling Training and Performance Variables 

Training and performance data are summarised in Table 12. Training hours were greater 

in the OL period (12.66 ± 1.62 h) compared to PRE (9.13 ± 1.67 h) (P<0.001)  Weekly 

training hours were decreased during TA (6.47 ± 2.04) compared to OL (P<0.001) and 

PRE (P<0.05).  

 

No changes in WAnT PPO or MPO were observed between PRE and OL training 

periods. The WAnT HR max achieved by subjects increased at TA compared to OL (189 

± 6 vs 185 ± 5 beats/min, P<0.05). WAnT PPO increased between OL and TA periods 

(15.64 ± 2.97 and 16.69 ± 3.05 W/kg, P<0.05). No changes in WAnT La max were 

observed. Time taken to complete the 16.1 km TT was lower at TA compared to OL 

(23:50 ± 01:35 and 23:57 ± 02:05, P<0.05). 

Variable Pre Overload Taper 

Age (years) 
23.9 ± 3.1 

 
- - 

VO2 max (mL/kg-1/min-1) 
56.7 ± 7.6 

 
- - 

Height (m) 
1.76 ± 0.10 

 
- - 

Weight (kg) 
68.0 ± 9.7 

 
67.3 ± 9.3 

 
67.4 ± 9.3 

 

BSA (m2) 
1.84 ± 0.17 

 
1.83 ± 0.16 

 
1.83 ± 0.16 

 

Resting HR (beats/min) 
52 ± 9 

 
52 ± 9 

 
51 ± 9 
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Table 12. Training and performance outcomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* 

P<0.05 vs Normal Training, ** P<0.001 vs Normal Training 

† P<0.05 vs Overload, †† P<0.001 vs Overload 

 

RESTQ-76 stress score was higher at OL (24.8 ± 5.2) compared to PRE (14.8 ± 7.1, 

P<0.001) and TA (15.9 ± 7.1, P<0.05). RESTQ-76 recovery score was decreased at OL 

compared to PRE (23.5 ± 5.6 vs 28.5 ± 6.3, P<0.05). RESTQ-75 Stress-Recovery 

Balance was decreased at OL (-1.3 ± 8.9) compared to PRE (13.6 ± 8.9, P<0.001) and 

TA (11.1 ± 11.8, P<0.05). 

 

Left Ventricular Structure 

Left Ventricular Structural data are summarised in Table 13. LVd was greater at OL 

compared to PRE (51.8 ± 3.2 vs 50.8 ± 2.9 mm, P<0.05). MWT at OL was significantly 

lower at TA compared to OL (7.7 ± 0.7 vs 7.5 ± 0.7 mm, P<0.05). LV concentricity 

decreased from OL to TA (5.56 ± 0.83 vs 5.06 ± 0.59, P<0.05).  

Variable Pre Overload Taper 

Mean Weekly Training Hours (h) 
9.13 ± 1.67 

 

12.66 ± 1.62 

↑** 

6.47 ± 2.04 

↓*, ↓†† 

RESTQ-76 Stress Score (A.U.) 
14.8 ± 7.1 

 

24.8 ± 5.2 

↑** 

15.9 ± 7.1 

↓† 

RESTQ-76 Recovery Score (A.U.) 
28.5 ± 6.3 

 

23.5 ± 5.6 

↓* 

27.1 ± 7.1 

 

RESTQ-76 Stress-Recovery Balance 

Score (A.U.) 

13.6 ± 8.9 

 

-1.3 ± 8.9 

↓** 

11.1 ±11.8 

↑† 

30 s Wingate Peak Power Output 

(W/kg) 

16.00 ± 3.10 

 

15.64 ± 2.97 

 

16.69 ± 3.05 

↑† 

30 s Wingate Mean Power Output 

(W/kg) 

9.75 ± 1.85 

 

9.72 ± 2.03 

 

9.95 ± 2.00 

 

30 s Wingate HRmax (beats/min) 
190 ± 7 

 

185 ± 5 

 

189 ± 6 

↑† 

30 s Wingate La max (mmol/L) 
12.7 ± 1.4 

 

11.7 ± 1.6 

 

12.0 ± 1.8 

 

16.1 km TT Time (mm:ss) 
24:16 ± 2:12 

 

23:57 ± 2:05 

 

23:50 ± 1:35 

↓† 

16.1 km TT Mean Power Output 

(W/kg) 

3.73 ± 0.77 

 

3.86 ± 0.77 

 

3.93 ± 0.66 

 

16.1 km TT HRmean (beats/min) 
180 ± 6 

 

176 ± 7 

 

180 ± 9 
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Table 13. Left ventricular structural parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* P<0.05 vs Normal Training, ** P<0.001 vs Normal Training 

† P<0.05 vs Overload, †† P<0.001 vs Overload 

 

Left Ventricular Function and Mechanics 

Left ventricular functional data are summarised in Table 14, and mechanical data are 

summarised in Table 15. No changes in conventional measures of LV function were 

observed between PRE, OL and TA time-points. LV Twist was decreased at OL 

compared to PRE (15.3 ± 3.3 vs 17.7 ± 4.5 °, P<0.05).  

 

Left Ventricular Exercise Function and Mechanics 

Exercise LV function data are summarised in Table 16, and exercise mechanical data 

are summarised in Table 17. Medial A’ was increased at OL (12 ± 2 cm/s) compared to 

both PRE and TA (9 ± 3 and 10 ± 2 cm/s, both P<0.05). Exercise augmentation of LV 

Twist was greater at OL compared to PRE (9.2 ± 7.8 vs 2.2 ± 6.5 °, P<0.05). 

Longitudinal SRS was decreased at OL compared to PRE (-1.16 ± 0.08 vs -1.26 ± 0.12 

S-1, P<0.05). In contrast, Circumferential SRE was increased at OL compared to PRE 

(-2.33 ± 0.40 vs -1.89 ± 0.19 S-1, P<0.05).  

 

Variable Pre Overload Taper 

LVIDd (mm) 
50.8 ± 2.9 

 

51.8 ± 3.2 

↑* 

50.1 ± 2.8 

 

LV EDV (mm) 
133 ± 27 

 

138 ± 25 

 

141 ± 23 

 

MWT (mm) 
7.2 ± 0.7 

 

7.7 ± 0.7 

 

7.5 ± 0.7 

↓† 

LV Concentricity (g/(ml)2/3) 
5.08 ± 0.92 

 

5.56 ± 0.83 

 

5.06 ± 0.59 

↓† 

RWT 
0.30 ± 0.04 

 

0.32 ± 0.03 

 

0.32 ± 0.03 

 

LV Mass (g) 
133 ± 33 

 

148 ± 32 

 

137 ± 24 
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Table 14. Left ventricular conventional resting functional parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* P<0.05 vs Normal Training, ** P<0.001 vs Normal Training 

† P<0.05 vs Overload, †† P<0.001 vs Overload 

 

Table 15. Resting Speckle Tracking Echocardiographic parameters 

 

 

 

 

 

 

 

 

 

 
 

 

 

* P<0.05 vs Normal Training, ** P<0.001 vs Normal Training 

† P<0.05 vs Overload, †† P<0.001 vs Overload 

 

Variable Pre Overload Taper 

LV EF (%) 
60 ± 6 

 
60 ± 5 

 
60 ± 5 

 

LV SV (ml) 
80 ± 16 

 
82 ± 14 

 
84 ± 11 

 

MV E (cm/s) 
0.90 ± 0.19 

 
0.92 ± 0.14 

 
0.94 ± 0.13 

 

MV A (cm/s) 
0.44 ± 0.11 

 
0.44 ± 0.09 

 
0.40 ± 0.10 

 

MV E:A 
2.13 ± 0.56 

 
2.19 ± 0.40 

 
2.48 ± 0.54 

 

Medial S’ (cm/s) 
10 ± 1 

 
9 ± 1 

 
9 ± 1 

 

Medial E’ (cm/s) 
17 ± 1 

 
17 ± 1 

 
17 ± 2 

 

Medial A’ (cm/s) 
7 ± 2 

 
7 ± 2 

 
7 ± 2 

 

Lateral S’ (cm/s) 
12 ± 2 

 
11 ± 2 

 
12 ± 3 

 

Lateral E’ (cm/s) 
20 ± 2 

 
21 ± 3 

 
20 ± 2 

 

Lateral A’ (cm/s) 
6 ± 2 

 
7 ± 1 

 
6 ± 1 

 

Variable Normal Training Overload Taper 

Global Longitudinal Strain (%) 
-20.2 ± 1.0 

 
-19.2 ± 1.3 

 
-19.6 ± 0.8 

 

Peak Longitudinal SRS (S-1) 
-0.95 ± 0.09 

 
-0.89± 0.08 

 
-0.91 ± 0.07 

 

Peak Longitudinal SRE (S-1) 
1.87 ± 0.12 

 
1.88 ± 0.10 

 
1.90 ± 0.16 

 

Peak Longitudinal SRA (S-1) 
0.50 ± 0.09 

 
0.53 ± 0.13 

 
0.53 ± 0.10 

 

Peak Global Circumferential 
Strain (%) 

-21.1 ± 2.2 
 

-21.2 ± 1.8 
 

-21.1 ± 1.9 
 

Peak Circumferential SRS (S-1) 
-1.06 ± 0.20 

 
-1.01 ± 0.13 

 
-1.01 ± 0.09 

 

Peak Circumferential SRE (S-1) 
1.87 ± 0.42 

 
1.87 ± 0.15 

 
1.82 ± 0.29 

 

Peak Circumferential SRA (S-1) 
0.36 ± 0.09 

 
0.38 ± 0.08 

 
0.40 ± 0.10 

 

Peak LV Twist (⁰) 
17.7 ± 4.5 

 
15.3 ± 3.3 

↓* 
17.7 ± 4.3 
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 Table 16. Conventional functional parameters (50% HR max) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* P<0.05 vs Normal Training, ** P<0.001 vs Normal Training 

† P<0.05 vs Overload, †† P<0.001 vs Overload 

 
 

 

Table 17. 50% HR max Speckle Tracking Echocardiographic Parameters 

* P<0.05 vs Normal Training, ** P<0.001 vs Normal Training 

† P<0.05 vs Overload, †† P<0.001 vs Overload 

 

Variable Pre Overload Taper 

LV EF (%) 
67 ± 5 

 
63 ± 3 

 
64 ± 6 

 

LV SV (ml) 
84 ± 14 

 
86 ± 15 

 
85 ± 20 

 

MV E (cm/s) 
1.17 ± 0.20 

 
1.12 ± 0.18 

 
1.21 ± 0.20 

 

MV A (cm/s) 
0.64 ± 0.20 

 
0.81 ± 0.16 

 
0.79 ± 0.14 

 

MV E:A 
2.00 ± 0.64 

 
1.51 ± 0.29 

 
1.54 ± 0.26 

 

Medial S’ (cm/s) 
11 ± 2 

 

11 ± 1 
 

12 ± 1 
 

Medial E’ (cm/s) 
19 ± 4 

 
19 ± 2 

 
19 ± 2 

 

Medial A’ (cm/s) 
9 ± 3 

 
12 ± 2 

↑* 
10 ± 2 

↓† 

Lateral S’ (cm/s) 
14 ± 2 

 
15 ± 3 

 
13 ± 3 

 

Lateral E’ (cm/s) 
21 ± 2 

 
21 ± 3 

 
20 ± 3 

 

Lateral A’ (cm/s) 
11 ± 3 

 
12 ± 3 

 
12 ± 3 

 

Variable Pre Overload Taper 

Global Longitudinal Strain (%) 
-21.8 ± 1.7 

 
-20.8 ± 1.1 

 
-21.4 ± 1.4 

 

Peak Longitudinal SRS (S-1) 
-1.26 ± 0.12 

 
-1.16 ± 0.08 

↓* 
-1.19 ± 0.09 

 

Peak Longitudinal SRE (S-1) 
-2.30 ± 0.32 

 
-2.21 ± 0.21 

 
-2.26 ± 0.25 

 

Peak Longitudinal SRA (S-1) 
-1.03 ± 0.18 

 
-0.86 ± 0.26 

 
-0.99 ± 0.21 

 

Peak Global Circumferential Strain 
(%) 

-20.8 ± 1.9 
 

-21.7 ± 1.5 
 

-21.0 ± 1.4 
 

Peak Circumferential SRS (S-1) 
-1.22 ± 0.17 

 
-1.19 ± 0.10 

 
-1.22 ± 0.12 

 

Peak Circumferential SRE (S-1) 
-1.89 ± 0.19 

 
-2.33 ± 0.40 

↑* 
-2.17 ± 0.34 

 

Peak Circumferential SRA (S-1) 
-0.77 ± 0.32 

 
-0.79 ± 0.37 

 
-0.82 ± 0.29 

 

Peak LV Twist (⁰) 
17.4 ± 5.4 

 
22.3 ± 7.0 

 
20.1 ± 5.9 
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6.4 Discussion 

 

This is the first study to determine the impact of short-term overload endurance training 

on LV structure, function and mechanics at rest, and under exercise-stress using 

speckle-tracking echocardiography. Subjects presented with an acute fatigue and 

subsequent supercompensation response to training, whereby performance was 

maintained at OL (despite high perceived fatigue), and subsequently improved at TA. 

The main findings of the present study were; 1) a trend towards reduced systolic 

function and a shift towards late diastolic filling in-exercise following OL, 2) a trend 

towards increased LV twist, and decreased GL SRS in-exercise following OL, and 3) a 

return of all functional and mechanical parameters to baseline following the TA period. 

 

LV Structure 

 

Literature regarding short-term structural adaptation of the endurance athlete’s heart is 

sparse. Although it is generally accepted that high dynamic, high static component 

sports (such as cycling) result in eccentric hypertrophy of the LV (Brown et al., 2017), 

the process of ventricular remodelling is less clear. Assumptions that chamber dilatation 

and wall thickness development take place concurrently are largely based on cross-

sectional examinations. 

 

The landmark work of Weiner et al. (2015) described LV remodelling (in response to a 

HDHS stimulus) to be a phasic process, whereby chamber dilatation precedes 

development of wall thickness. Subsequently, this short-term adaptive response has 

been observed in elite soccer athletes, where one month of pre-season (when training 

hours increase) resulted in an eccentric-type remodelling of the LV (D’Ascenzi et al., 
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2015). In contrast, dilatation of the LV chamber with no change in volume or wall 

thickness was observed in response to OL. It is unclear whether this process of 

structural remodelling can be attributed to the shorter timescale of the present study 

(and thus a normal physiological response), or if chamber dilatation represents an 

adaptation or potential mal-adaptation specific to the OL training stimulus. More 

detailed information regarding training hours, and rate of progressive overload in 

particular, are needed to provide context for this disparity in findings.   

 

LV Function 

 

Previous characterisations of resting LV systolic function in response to structured 

endurance training have described increased systolic tissue velocities (Baggish et al., 

2008; Weiner et al., 2015), and increased (Weiner et al., 2010) or unchanged (Weiner 

et al., 2015; Oxborough et al., 2019) GLS. Particular attention has been paid to 

endurance training induced alterations in LV twist (Weiner et al., 2010; Aksakal et al., 

2013; Weiner et al., 2015), with longitudinal assessments observing significant short-

term (3 months) increases in this parameter, followed by a return to baseline levels in 

the longer-term (3-year) (Weiner et al., 2015). As training-induced increases in blood 

volume and chamber expansion are proposed as primary mechanisms to facilitate 

increases in LV twist (through elevated pre-load) (Weiner et al., 2015), it is pertinent 

to understand why this cohort presented with significant decreases in LV twist 

following short-term OL. Furthermore, the chamber dilatation observed in this cohort 

(with no change in wall thickness) would appear to pre-dispose the LV to greater levels 

of peak twist, as obliquely orientated myocardial fibres are arranged around a larger 

cavity (at basal level) (van Dalen et al., 2010). 
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The finding of decreased LV twist, and a trend towards decreased GLS (P=0.063) could 

therefore be explained in two ways: 1) development of a functional reserve capacity, 

meaning the LV does not need to contract as forcefully at rest to generate an appropriate 

SV, or 2) as a mild form of the systolic dysfunction observed in cases of acute EICF 

(Nottin et al., 2009; Lord et al., 2018b). 

 

As SV remained similar to PRE despite a trend towards greater in-exercise 

augmentation of LV twist (P=0.056), it appears more likely this mechanical alteration 

represents a compensatory effect for mild (non-significant) systolic dysfunction in 

longitudinal and/or radial planes, rather than development of a function reserve 

capacity. The OL-induced decrease in exercise longitudinal SRS bears close 

resemblance to acute post-marathon (Oxborough et al., 2010b) and ultra-marathon 

(Oxborough et al., 2011; La Gerche et al., 2012b) assessments of the LV, providing 

further support for LV twist acting as a compensatory mechanism.  

 

The trend observed towards a lower exercise LV EF following OL (P=0.056) is in stark 

contrast to previous descriptions of the athlete’s heart phenotype, and does not appear 

to represent a normal physiological response to training (Millar et al., 2017; Claessen 

et al., 2018). This mild presentation of reduced LV EF bears closer resemblance to the 

description of acute cardiac fatigue at rest (Lord et al., 2018b).  

 

Application of exercise stress also revealed specific diastolic alterations which appear 

at odds with conventional physiological adaptation of the LV. In contrast to the training-

induced increases in resting E’, and a trend towards increased MV E:A (P=0.06) 
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reported by (Weiner et al., 2010), an increase in Medial A’ and a trend towards 

increased MV A was observed in the present study. These findings are indicative of a 

shift towards late diastolic filling, an atypical physiological adaptation for the AH 

phenotype (Brown et al., 2017). In the case of acute exercise-induced cardiac fatigue, a 

shift from early- to late-diastolic filling can be accounted for by altered loading 

conditions or changes in chamber compliance, forcing the atrial component to 

compensate (Neilan et al., 2006).  

 

As subjects abstained from exercise in the 24 hours prior to echocardiographic 

assessment, it is unlikely the large changes in loading conditions responsible for 

diastolic impairment in acute exercise induced cardiac fatigue are relevant to this study. 

TDI is less load dependent than Doppler (George et al., 2005), and as such, changes are 

more likely to represent impaired chamber compliance/relaxation. 

 

The compromised exercise augmentation of LV function at 50% HR max observed 

following short term OL, is likely to be more significant at higher intensities, where 

diastolic filling time is reduced and a greater ejection fraction is required. The potential 

negative consequences of OL induced LV dysfunction for endurance performance are 

therefore clear for road cyclists, who regularly sustain >80 % HR max for extended 

periods in both training and racing contexts (van Erp, Sanders and de Koning, 2019). 

Future research should seek to develop an over-reaching (rather than acute fatigue) 

response to OL, to confirm this. 
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Limitations 

 

The small sample size utilised in this study means interpretations of outcomes are 

limited to healthy competitive male and female road cyclists aged 20-26 years. Whether 

similar outcomes would be achieved with subjects of a different age or training 

modality requires further study. 

 

In-exercise echocardiographic assessment restricted to 50% HR max to retain image 

quality in this study. Although data in this study provides new insight into OL-induced 

mechanical and functional alterations of the LV, the methodological challenge of 

echocardiographic assessment at intensities >50% HR max mean proposed alterations at 

maximal exercise intensities remain speculative. 

 

Measurement (and manipulation) of overload in this study was restricted to training 

hours only, rather than training load as a function of training quantity x intensity. The 

contribution of training load generated by exercise intensity during overload and taper 

periods were not controlled in this study, and may have impacted on specific 

adaptations occuring during these periods (Seiler, 2010). 

 

The use of both male and female subjects is a strength of this study. However, the 9-

week protocol employed will have caused laboratory data collection to have occurred 

at different points within female subjects’ menstrual cycles. Although athletic 

performance and conventional measures (except resting MV E:A) are not affected by 

the menstrual cycle (Fuenmayor, Ramı́rez and Fuenmayor, 2000; Kishali et al., 2006) 

the impact on mechanical measures of the LV are not known. 
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Conclusions 

 

Short-term OL training elicited acute fatigue and a subsequent supercompensation in 

endurance performance for competitive level road cyclists. Acute fatigue was 

associated with dilatation of the LV, and a maintenance of global function (despite 

decreased LV twist) at rest. Exercise stress revealed mildly reduced LV EF and a shift 

towards late diastolic filling with altered ventricular mechanics in acutely fatigued 

subjects. All structural, functional and mechanical adaptations elicited by OL training 

returned to baseline levels following TA.   

These findings suggest a mild form of EICF may be expressed by athletes following 

the common practice of OL endurance training, even when a performance decrement 

is not present. As a result, the potential role of LV dysfunction (and thus cardiac 

output) in performance decrements observed in cases of over-reaching and/or 

overtraining should be considered. Furthermore, as in-exercise assessment is 

commonly used to clarify ambiguous echocardiographic parameters in road cyclists, 

these data highlight the importance of standardising the timing of pre-participation 

screening to account for OL training induced alterations in LV function/mechanics.  

Further work is required to elucidate the mechanisms of OL training-induced 

alterations in LV structure, function and mechanics. Assessment of the over-reached 

athlete’s LV in response to dobutamine infusion should be considered to exclude beta-

adrenergic receptor de-sensitisation. The sensitivity of the RV to acute EICF (Elliott 

and La Gerche, 2015) also makes it an ideal candidate for assessment in over-reached 

athletes, to investigate the impact of serial ventricular interaction.    
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 General Discussion 
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7.1 Aims of Thesis 

 

The work in this thesis enabled the following objectives to be achieved: 1) to establish 

the impact of moderate and very high training loads on structural, functional and 

mechanical adaptation of the road cyclist’s LV; 2) to determine how the LV responds 

to variations in training hours across a competitive road cycling season; 3) to assess 

the impact of short-term overload endurance training on LV structure-function-

mechanical relationships of the road cyclist’s LV; 4) to evaluate the relationship 

between LV function and road cycling performance following short-term overload 

endurance training.  

7.2 Brief Summary of Findings 

 

A summary of key findings generated by the work in this thesis is presented in figure 

19. 

 

Chapter 4 highlighted that the high dynamic, high static nature of road cycling alone 

was not sufficient to develop marked structural remodelling of the LV. Significant 

differences in chamber volume and wall thickness between EC and SEC provide strong 

evidence for the role of chronic high training hours as a primary driver for development 

of the AH phenotype. Furthermore, this study demonstrated concentric remodelling 

does not represent a normal or common physiological adaptation, as previously 

described (Abergel et al., 2004). In stark contrast, over one-third of this group presented 

with eccentric hypertrophy. The extent of structural remodelling presented by EC was 

also associated with reduced conventional measures of systolic and diastolic function, 

which are suggestive of a considerable functional reserve. Similar GL ɛ values between 
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EC, SEC and NA groups provide support for the application of this robust STE measure 

in a pre-participation screening setting.  

 

Chapter 5 aimed to elucidate alterations in structure-function relationships of the LV in 

response to varying training hours. In agreement with previous assessments of the LV 

in rowers (Weiner et al., 2015) and soccer players (D’Ascenzi et al., 2015), a 

progressive increase in LV mass was observed in parallel with accumulation of training 

hours. No change in LV MWT or concentricity were observed during this period, 

suggesting an eccentric-type remodelling precedes hypertrophic adaptation found in 

athletes with a chronic high training hours. RC presented with a transient decrease in 

diastolic function at the point training hours increased most sharply (+80%). This 

appeared similar in nature (but not severity) to previous descriptions of EICF (Lord et 

al., 2018b).  

 

Chapter 6 aimed to determine the impact of the common overload endurance training 

model employed in road cycling, on structure-function relationships of the LV. This 

study revealed significant eccentric-type remodelling of the LV can be expected within 

3 weeks, when an overload training model is applied. In contrast to previous 

descriptions of normal physiological training adaptation (Weiner et al., 2010) where 

performance is improved, a decrease in LV twist and a trend towards decreased GL ɛ 

was observed in acutely fatigued athletes. Furthermore, exercise echocardiography 

revealed decreased systolic function with altered mechanics, and a shift towards late 

diastolic filling following OL.  
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Figure 19. Overview of key findings generated by the work in this thesis 
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Following a 2-week taper period whereby training quantity was reduced, all functional 

and mechanical alterations had normalised to baseline values. These findings provide 

new evidence that mild EICF may be extended from an acute phenomenon to medium-

term in the case of overload HDHS training. 

 

Overall, the results from this thesis have developed understanding of how high training 

quantity impacts LV structure, function and mechanics in short, medium- and long-

term timeframes. In addition to resting echocardiographic data, exploratory in-exercise 

assessment of the LV has provided new insight into the ability of the AH phenotype to 

augment function (or not) dependent upon previous training quantity. The mechanisms 

of diminished LV function in response to overload training appear complex and 

multifactorial.  

7.3 Overarching Issues 

 

This thesis aimed to develop understanding of training-load induced adaptation of the 

LV, and to gain new insight into the timeframe and mechanisms responsible. Current 

understanding of training-load induced LV adaptation is predominantly based on cross-

sectional assessment of athletes presumed to have high chronic training loads (Whyte 

et al., 2004; Makan et al., 2005; Basavarajaiah et al., 2008; Santoro et al., 2014; Utomi 

et al., 2014; Caselli et al., 2015), and acute assessment of athletes completing a highly 

strenuous single exercise bout (Neilan et al., 2006; Hart et al., 2007; Nottin et al., 2009; 

Oxborough et al., 2010b; Oxborough et al., 2011; La Gerche et al., 2012b; Elliott and 

La Gerche, 2015; Lord et al., 2015). Of the few studies to consider medium-term 

adaptation in a longitudinal design, only one has examined athletes from a high 

dynamic, high static component sport (Weiner et al., 2015). 
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Chronic Training Load 

 

Studies within this thesis have confirmed the role of training hours in determining the 

magnitude and nature of structural, function and mechanical adaptation of the LV. 

Chapter 4 confirmed that there is a predominance of normal LV geometry in high 

dynamic, high static athletes, as previously suggested (Utomi et al., 2014). However, 

over one-third of EC (completing very high training hours) presented with eccentric 

dilated LV hypertrophy. This magnitude of structural remodelling appears to be 

reserved for athletes completing extreme training hours, as SEC almost exclusively 

presented with normal LV geometry (96.7%). In agreement with recent cross-sectional 

analyses of the AH phenotype, concentric hypertrophy was found to be rare in EC 

(3.3%), and almost exclusively accompanied by chamber dilation (2.7%). 

 

In chapter 5, a progressive eccentric type remodelling between off- and end-season was 

demonstrated in competitive road cyclists, in tandem with training quantity. These 

findings support the theory that chronic high training quantity (independent of intensity) 

forms the principal driver for long-term structural adaptation of the LV. The timeframe 

of data collection utilised in chapter 5 did not, however, capture the increase in LV 

concentricity observed between SEC and EC in chapter 4. These findings therefore 

appear to be in concurrence with the phasic adaptation proposed by (Weiner et al., 

2015), but confirm that the initial phase of remodelling may be extended to at least 10 

months. The mechanism that initiates the secondary phase of adaptation whereby wall 

thickening drives further increases in LV mass remains unclear, particularly as a very 

high proportion (87%) of training carried out by EC is carried out below a heart rate 

corresponding to LT1 (resting blood lactate + 0.4 mmol/L) (Sanders et al., 2017).  
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LV systolic function, as measured using EF, was comparable between SEC and NA. 

However, like Abergel et al. (2004), significantly lower EF was observed in EC. Cases 

of reduced EF (<52%) were more prevalent in this group (11.6 %) than previously 

reported (Abergel et al., 2004; Lang et al., 2015). In addition to the marked cavity 

dilatation presented by these athletes, the potential for misdiagnosis of DCM is 

increased (Millar et al., 2017). However, in the case of the AH phenotype, this simply 

reflects the development of a considerable functional reserve whereby lower contractile 

force is required to generate an appropriate stroke volume at rest (Claessen et al., 2018). 

The high sensitivity and specificity of exercise echocardiography has been 

demonstrated in the differentiation between AH phenotype and DCM, via the ability to 

augment LV EF ≥10% (Millar et al., 2017). Although a small proportion of SEC 

presented with reduced EF in chapter 4 (6.7%), the process of generating a functional 

reserve large enough to influence EF appears to take longer than 10 months, or more 

significant training hours than those recorded in chapter 5. 

 

In agreement with previous assessments of the AH phenotype, GL ɛ represented a 

robust measure of LV mechanics, with EC, SEC and NA presenting similar peak values 

despite considerable differences in chronic training quantity. Furthermore, this 

parameter remained unchanged despite a sustained period of training quantity elevation 

in chapter 5. Together, these findings provide additional support for the translation of 

GL ɛ into clinical practice, as chronic high training hours do not influence resting 

measurements in healthy individuals, even in extreme cases (Beaumont et al., 2017). 
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In contrast, increased GC ɛ was found to be as a characteristic of the AH phenotype in 

EC. Increased GC ɛ appears to represent a compensatory mechanism to develop 

appropriate SV in the presence of a vastly increased LV EDV and unchanged LV twist 

for these individuals. The role of GC ɛ in generating SV is well established, and has a 

far greater influence on EF compared to GL ɛ (67% compared to 33%) (MacIver, 2012). 

Increased basal circumferential ɛ, but not GC ɛ has previously been demonstrated for 

competitive endurance athletes (Beaumont et al., 2017). Whether the increased GC ɛ 

we observed can be attributed to the magnitude of functional reserve in EC, or if it is 

reflective of a different methodological approach (whereby GC ɛ excludes apical 

segments) requires further elucidation.  

 

In addition to mild reductions in resting systolic function, structural adaptation of the 

LV driven by very high chronic training hours elicits reductions in early diastolic filling 

and early diastolic tissue velocities at rest. The present findings in EC are in agreement 

with Finocchiaro et al. (2018), who demonstrated a clear association between LVIDd 

and early diastolic tissue velocities. The mild increase in septal E’ observed in SEC 

(despite increased LVIDd) presents a challenge to this theory. It may be the case that 

differential acute and chronic adaptation of the LV can be extended to sub-elite and 

elite development phases. In this example, differing rates of blood volume expansion 

and adaptive myocyte hypertrophy result in altered mechanics via the Frank-Starling 

mechanism. The increased pre-load demand in SEC (relative to EC) requires a more 

compliant chamber in comparison to EC, whereby more pronounced ventricular 

adaptation can accommodate elevated blood volume without challenge (Weiner et al., 

2015).  
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LV Twist plays a key role in both systolic and diastolic function, due to its “wringing” 

motion that ejects blood from the ventricle, and subsequent recoil, generating a pressure 

gradient from the LA to LV (Weiner and Baggish, 2011). The present work observed 

preserved LV twist, but with a reduced apical contribution in EC, compared to SEC and 

NA in chapter 4. This finding of reduced apical rotation is in keeping with previous 

analyses of the high dynamic AH phenotype (Santoro et al., 2014; Weiner et al., 2015), 

and reflects the aforementioned decrease in resting pre-load associated with profound 

structural adaptation (Beaumont et al., 2017). As the relationship between peak apical 

rotation and untwist rate is reciprocal, a diminished recoil carried over to diastole in EC 

(Burns et al., 2009). In combination, reduced E, E’ and apical rotation could be 

interpreted as reduced diastolic function, likely driven by impaired chamber relaxation. 

However, exercise echocardiography reveals superior augmentation in the AH 

phenotype and acts as confirmation for a functional reserve capacity (La Gerche et al., 

2012a).  

 

 Acute Overload Training 

 

Previous descriptions of EICF have presented atypical structural, functional and 

mechanical adaptation of the LV in response to an acute bout of strenuous exercise 

(Lord et al., 2018b). The atypical adaptations can be expected to return to baseline 

levels in 2-28 days (Lord et al., 2018b). In chapter 6, the impact of repeated bouts of 

strenuous exercise with insufficient recovery periods was assessed, to determine 

whether EICF can be extended from an acute phenomenon, to a short-term (mal-

)adaptation.  
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Upon completion of a 3 week overload training period, a small but significant eccentric 

type remodelling of the LV was observed. This appeared similar in nature to training-

induced increase over a 3 month period reported in chapter 5 and previous literature 

(Weiner et al., 2015). This structural remodelling is in stark contrast to acute EICF 

however, where LV EDV can be expected to decrease (Lord et al., 2018b). That said, 

LV EDV alterations are heavily influenced by altered post-exercise loading conditions 

(Lord et al., 2018b). Subjects refrained from training for at least 6 hours prior to 

echocardiographic examination, to minimise the potential for post-exercise loading 

alterations to confound findings. 

 

In contrast to previous assessments of EICF where systolic and diastolic function are 

depressed (Middleton et al., 2006; Hart et al., 2007), or short-term training-induced 

adaptation where systolic and diastolic function are increased (Weiner et al., 2015), no 

change in resting function was observed upon completion of overload training. Normal 

function was achieved with altered mechanics however, as resting GL ɛ and LV Twist 

decreased.  

 

Pre-load alterations are proposed to play a role in both EICF and short-term training-

induced physiological adaptation of the LV (Weiner et al., 2015). In the case of EICF, 

acute dehydration and decreased chamber volume are associated with reduced LV twist 

(Lord et al., 2018b), whereas training-induced blood volume and chamber expansion 

are associated with increased LV twist (Weiner et al., 2010). The observation of 

decreased twist in a dilated LV therefore represents an atypical adaptation, likely 

indicated a degree of intrinsic myocardial dysfunction. The trend identified towards 
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decreased GL ɛ appears to confirm this, as GL ɛ is considered a far less load-dependent 

mechanical measure (Marwick, 2006).  

 

Exercise-echocardiography revealed more significant disturbances in LV function, as a 

result of overload training. In stark contrast to chapter 5, where a normal augmentation 

response to exercise is presented, overload training was associated with decreased EF 

and longitudinal SRS at 50% HR max. These alterations provide further evidence of 

intrinsic contractile dysfunction. Cardiomyocyte damage (i.e. stunning) (driven by 

excessive wall stress), oxidative stress signalling (Vitiello et al., 2011) and β-

adrenoreceptor desensitisation (driven by an extended period of elevated 

catecholamine) have been proposed as causative mechanisms in EICF (Nottin et al., 

2009; Lord et al., 2018b).   

 

Overload training-induced dysfunction of the HPA-axis, and resultant decreases in 

systemic adrenaline production has also been proposed as a potential factor driving 

functional and mechanical dysfunction in the LV (Le Meur et al., 2014). This is 

particularly prescient, as greater dysfunction becomes apparent as exercise-stress 

increases (Le Meur et al., 2014). That said, technological and logistical implications 

mean echocardiographic assessment of maximal exercise (when adrenal insufficiency 

is most impactful), is not feasible. Furthermore, β-adrenoreceptor desensitisation and/or 

HPA-axis mediated adrenal insufficiency fail to account for the reduced diastolic 

function observed in overloaded athletes. 

 

Increases in late diastolic filing and tissue velocity are not characteristics of the AH 

phenotype. A shift from early to late diastolic filling under normal loading conditions 
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is indicative of impaired chamber relaxation (Neilan et al., 2006). Failure to generate a 

pressure gradient through relaxation/suction places a larger emphasis “active” atrial 

component of diastole (Neilan et al., 2006). Recent work has proposed upstream RV 

systolic dysfunction is likely to play a central role in EICF mediated LV diastolic 

dysfunction (Lord et al., 2015). Sustained periods of strenuous exercise (which 

characterise overload training in RC) place a disproportionate stress on the RV free 

wall, due to the pulmonary arteries’ inability to dilate (Elliott and La Gerche, 2015). 

The elevation in stress placed upon the thin RV free wall is proposed to generate 

myocyte damage, resulting in decreased contractile function (Lord et al., 2015). 

Consequently, downstream LA pre-load is decreased, and LV filling compromised 

(Oxborough et al., 2010b).  

 

Decreased contractile capacity in GL ɛ and LV twist suggest β-adrenoreceptor 

desensitisation likely plays a role in overload induced LV mechanical alteration. In its 

dual role as a determinant of LV systolic and diastolic function, LV twist appears to 

present limited contractile capacity, subsequently resulting in reduced untwisting rate 

to generate an early diastolic pressure gradient. The additional diastolic dysfunction 

brought about by exercise stress raises the possibility of serial ventricular interaction, 

driven by upstream RV systolic dysfunction. It is possible that adrenal insufficiency 

plays a role in decreasing exercise longitudinal SRS, and warrants further investigation. 

This may be limited by practicalities of echocardiography imaging, however. 

 

It is important to consider that findings in chapter 6 represent a very mild alteration in 

LV mechanics and function. This is likely due to the training hours employed, which, 

while high in relative terms for the subjects enrolled in this study, would not represent 
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a challenge for elite athletes. Nonetheless, this work provides novel evidence that 

mechanisms of LV dysfunction in EICF are also present following a short-term 

overload training structure commonly employed by RC.  

 

7.4 Implications 

 Clinical/research perspective 

 

The data presented in this thesis provide further evidence that development of the AH 

phenotype is a phasic phenomenon, whereby initial adaptation is characterised by an 

eccentric-type chamber remodelling (as shown in chapters 5 and 6), and the secondary 

stage includes increased chamber concentricity (as in chapter 4). Irrespective of 

development stage, pronounced concentric hypertrophy is unlikely to represent a 

physiological adaptation, and warrants investigation. 

 

Athletes with marked structural remodelling are likely to present with depressed 

systolic and diastolic function at rest. Exercise echocardiography represents a sensitive 

and specific method to differentiate functional reserve capacity from cardiomyopathy. 

However, augmentation may be compromised in the case of an acutely fatigued athlete, 

increasing the likelihood of false-positive identification of pathology. Clinicians should 

carefully consider the timing and context of screening to ensure appropriate action is 

taken in this case. 

 

The long-term consequences of repeated overload training periods on the LV remain 

unknown. The proposed long-term negative impact of repeated assaults on the RV with 

insufficient recovery suggests LV diastolic function may be challenged via serial 
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ventricular interaction (Heidbüchel and La Gerche, 2012). The findings in this thesis 

suggest cardiomyocyte damage is less likely to be the primary cause of intrinsic LV 

dysfunction, and that EICF-type symptoms should be more reversible as a result.   

  

Performance/athletic perspective 

 

Cardiac output plays a central role in determining endurance capacity (Levine, 2008). 

Chronic high training hours, and sustained periods of high dynamic, high static training 

result in marked structural remodelling of the LV to facilitate this. An appropriate 

balance between training stimulus and recovery opportunity facilitate maintenance of 

normal in-exercise LV function. In contrast, overload training stimulates a mild 

presentation of EICF, whereby function and mechanics are compromised. Although no 

impact on SV was observed at 50% HR max (albeit with reduced EF), the work of Le 

Meur et al. (2014) suggests this may not be the case at higher intensities. Overload 

training induced LV dysfunction is therefore likely to have a direct impact on endurance 

performance. 

7.5 Future Research 

 

This thesis presents novel information concerning LV structure-function-mechanics 

relationships in response to short-term and chronic high training hours. The finding that 

short-term overload training elicits reductions in LV function during exercise has clear 

implications for the capacity to generate cardiac output, and by association, endurance 

performance. Future research should therefore seek to clarify the mechanisms which 

drive overload induced reductions in LV systolic and diastolic function, and provide 

practical surrogate measures which provide; 1) applied sport scientists the opportunity 
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to monitor and manipulate athletes’ response to training in the field, and 2) sports 

cardiologists with context when determining the cause of ambiguous findings. 

 

From a methodological perspective, this would require perturbation of the HPA-axis, 

oxidative stress, blood volume and biomarkers of cardiomyocyte damage to be 

measured alongside in-exercise bi-ventricular echocardiographic assessment, likely 

during an event which pre-disposes athletes to development of an overreached state (i.e. 

Grand Tour in RC).  

 

This knowledge would provide valuable insight to applied sport scientists, guiding the 

use of data gathered from practical tests such as plasma adrenaline concentration (Le 

Meur et al., 2014), oxidative stress index (Lewis et al., 2020), and serum cTnT 

concentration (Shave et al., 2010) to manage training stress-recovery balance more 

effectively in the pursuit of endurance performance. Furthermore, generation of normal 

reference ranges for these parameters could be used by clinicians in a secondary/tertiary 

care setting to enhance differential diagnosis of pathology/overload induced 

dysfunction in ambiguous cases. 

   

 

7.6 Overall Conclusions 

 

The application of conventional and novel echocardiographic techniques provided 

additional understanding of how short-term to chronic high training quantity influences 

adaptation of the AH phenotype. Short- to medium- term structural adaptation of the 

LV is characterised by eccentric type remodelling, likely due to blood volume 
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expansion (and thus pre-load). Chronic high training quantity is associated with 

increased chamber concentricity, often resulting in eccentric-dilated LV hypertrophic 

geometry.  

 

Stable or conservative short-term increases in training hours do not impact LV function 

or mechanics, whereas athletes undertaking rapid overload training present with 

decreased function and altered mechanics at rest. Somewhat confoundingly, athletes 

with very high chronic training hours also present with reduced LV function and 

mechanics at rest. Exercise echocardiography represents a specific, sensitive means to 

differentiate reserve capacity (in the case of athletes with very high chronic training 

hours) and genuine dysfunction in the case of fatigued athletes, where augmentation is 

compromised.  

 

New insights into the differential responses to short-term and chronic high training 

quantities are likely to improve the sensitivity of pre-participation in RC. Furthermore, 

these insights bear importance in the context of athletic overtraining-, overreaching- 

and/or acute fatigue mediated underperformance. 
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Appendices 

Appendix 1 – Seasonal Variation in the Cardiac Structure, Function and 

Mechanics of Competitive Road Cyclists: Sex-specific echocardiographic 

outcomes. 

 

Table 18. Male and female left ventricular structural parameters 

 

  

Variable Group Off-Season Pre-Season Mid-Season End-Season 

  M F M F M F M F 

LVd (mm) 
RC 53.6 ± 1.4 51.0 ± 3.0 52.8 ± 0.8 50.5 ± 5.5 54.6 ± 1.7  51.5 ± 2.5 54.0 ± 0.9 51.0 ± 3.0 

NA 49.3 ± 3.9 47.3 ± 1.8 47.0 ± 1.6 45.5 ± 4.0 48.0 ± 4.3 46.8 ± 4.1 50.3 ± 1.2 47.8 ± 3.5 

LV EDV (ml) 
RC 152 ± 12 123 ± 7 168 ± 4 119 ± 1 158 ± 11 123 ± 5 167 ± 9 133 ± 7 

NA 135 ± 33 109 ± 18 135 ± 28 114 ± 12 130 ± 26 118 ± 22 140 ± 16 111 ± 19 

MWT (mm) 
RC 7.9 ± 0.5 6.9 ± 0.2 8.6 ± 0.2 7.1 ± 0.6 8.9 ± 0.2 7.3 ± 0.4 8.5 ± 0.3 6.8 ± 0.6 

NA 7.2 ± 0.4 6.2 ± 0.2 7.4 ± 0.1 6.4 ± 0.3 7.3 ± 0.5 6.2 ± 0.4 6.8 ± 1.1 6.4 ± 0.3 

LV 

Concentricity 

(g/(ml)2/3) 

RC 5.4 ± 0.4 4.8 ± 0.7 5.4 ± 0.3 5.2 ± 0.6 6.1 ± 0.1 5.1 ± 0.1 5.9 ± 0.4 4.5 ± 0.5 

NA 4.6 ± 0.8 4.5 ± 1.1 4.2 ± 0.5 3.7 ± 0.6 4.1 ± 0.3 3.6 ± 0.8 4.1 ± 0.5 4.2 ± 1.1 

LV Mass (g) 
RC 152 ± 8 118 ± 12 166 ± 10 126 ± 13 178 ± 10 125 ± 6 180 ± 18 117 ± 9 

NA 119 ± 20 99 ± 15 109 ± 8 86 ± 11 104 ± 20 84 ± 12 112 ± 23 95 ± 15 
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Table 19. Male and female left ventricular conventional resting functional parameters 

 

Table 20. Male and female resting Speckle Tracking Echocardiography (STE) parameters 

  

Variable Group Off-Season Pre-Season Mid-Season End-Season 

  M F M F M F M F 

LV EF (%) 
RC 55 ± 4 64 ± 4 56 ± 4 55 ± 2 57 ± 5 62 ± 0 58 ± 2 59 ± 1 

NA 58 ± 4 58 ± 6 57 ± 4 56 ± 6 55 ± 2 57 ± 4 59 ± 4 56 ± 4 

MV E (cm/s) 
RC 0.93 ± 0.08 0.91 ± 0.01 0.82 ± 0.07 0.84 ± 0.08 0.83 ± 0.08 1.02 ± 0.12 0.94 ± 0.01 0.85 ± 0.03 

NA 0.92 ± 0.06 0.98 ± 0.17 0.92 ± 0.07 1.02 ± 0.12 0.84 ± 0.09 1.00 ± 0.16 0.81 ± 0.05 1.04 ± 0.11 

MV A 
(cm/s) 

RC 0.41 ± 0.04 0.40 ± 0.06 0.42 ± 0.01 0.48 ± 0.06 0.42 ± 0.01 0.45 ± 0.01 0.42 ± 0.02 0.43 ± 0.01 

NA 0.44 ± 0.06 0.53 ± 0.08 0.43 ± 0.06 0.57 ± 0.10 0.40 ± 0.03 0.56 ± 0.21 0.39 ± 0.05 0.49 ± 0.09 

MV E:A 
RC 2.27 ± 0.27 2.32 ± 0.32 1.98 ± 0.16 1.77 ± 0.04 1.97 ± 0.25 2.29 ± 0.24 2.33 ± 0.13 1.96 ± 0.01 

NA 2.13 ± 0.42 1.95 ± 0.66 2.14 ± 0.16 1.82 ± 0.33 2.10 ± 0.35 2.02 ± 0.65 2.07 ± 0.17 2.22 ± 0.62 

Medial S' 
(cm/s) 

RC 9 ± 1 8 ± 0 9 ± 1 7 ± 1 9 ± 1 8 ± 1 9 ± 1 8 ± 1 

NA 10 ± 1 9 ± 1 10 ± 1 9 ± 1 9 ± 1 9 ± 2 9 ± 2 9 ± 1 

Medial E' 
(cm/s) 

RC 16 ± 3 16 ± 1 15 ± 2 14 ± 0 16 ± 1 16 ± 1 15 ± 2 17 ± 1 

NA 14 ± 1 13 ± 3 15 ± 4 16 ± 1 14 ± 3 16 ± 3 15 ± 2 16 ± 3 

Medial A' 
(cm/s) 

RC 7 ± 1 6 ± 0 7 ± 1 6 ± 1 7 ± 2 6 ± 0 8 ± 1 6 ± 0 

NA 9 ± 2 8 ± 2 10 ± 1 8 ± 2 8 ± 1 8 ± 1 8 ± 1 6 ± 0 

Lateral S' 
(cm/s) 

RC 12 ± 2 11 ± 2 11 ± 0 10 ± 2 10 ± 1 10 ± 1 11 ± 2 11 ± 2 

NA 13 ± 1 11 ± 1 12 ± 4 11 ± 2 12 ± 2 11 ± 2 13 ± 3 10 ± 1 

Lateral E' 
(cm/s) 

RC 19 ± 4 20 ± 1 19 ± 1 21 ± 2 21 ± 1 20 ± 3 19 ± 1 21 ± 1 

NA 23 ± 3 20 ± 4 21 ± 3 19 ± 3 21 ± 2 20 ± 2 21 ± 2 19 ± 4 

Lateral A' 
(cm/s) 

RC 6 ± 1 6 ± 0 7 ± 0 7 ± 1 6 ± 1 8 ± 2 6 ± 0 6 ± 0 

NA 8 ± 1 8 ± 3 9 ± 1 7 ± 2 7 ± 1 8 ± 1 7 ± 1 8 ± 2 

Variable Group Off-Season Pre-Season Mid-Season End-Season 

  M F M F M F M F 

Global Longitudinal 
Strain (%) 

RC -18.0 ± 1.8 -21.4 ± 0.4 -19.3 ± 1.6 -19.2 ± 2.5 -18.5 ± 1.9 -20.6 ± 0.1 -18.4 ± 0.7 -20.9 ± 1.4 

NA -19.1 ± 1.8 -20.9 ± 2.0 -18.7 ± 2.5 -21.1 ± 0.7 -18.4 ± 1.3 -20.2 ± 1.6 -19.4 ± 1.5 -21.6 ± 1.7 

Peak Global 
Circumferential 

Strain (%) 

RC -19.5 ± 0.9 -19.9 ± 1.3 -19.0 ± 1.5 -19.2 ± 0.6 -19.1 ± 0.5 -18.1 ± 0.2 -19.0 ± 0.9 -18.8 ± 3.4 

NA -20.8 ± 0.8 -19.9 ± 3.1 -20.1 ± 1.3 -18.8 ± 1.4 -19.6 ± 0.8 -18.1 ± 2.0 -20.7 ± 1.1 -19.6 ± 1.2 

Peak LV Twist (⁰) 
RC 16.8 ± 5.5 19.6 ± 3.5 17.6 ± 3.5 9.6 ± 4.5 14.3 ± 2.6 13.2 ± 1.3 18.2 ± 4.8 7.5 ± 2.1 

NA 22.0 ± 2.2 18.8 ± 4.5 19.4 ± 2.4 12.7 ± 1.3 23.7 ± 7.6 17.7 ± 6.8 22.6 ± 3.7 13.4 ± 2.5 

Peak Basal 
Rotation (⁰) 

RC -5.4 ± 1.0 -9.4 ± 0.4 -4.7 ± 1.5 -4.9 ± 1.0 -5.6 ± 1.5 -8.4 ± 1.7 -6.1 ± 1.2 -4.6 ± 1.6 

NA -7.7 ± 2.3 -9.3 ± 4.5 -7.2 ± 1.4 -8.6 ± 3.6 -5.9 ± 1.8 -9.7 ± 2.0 -6.6 ± 2.3 -7.0 ± 2.4 

Peak Apical 
Rotation (⁰) 

RC 12.1 ± 5.1 10.2 ± 3.1 14.1 ± 5.1 5.3 ± 3.0 9.9 ± 3.2 5.1 ± 0.6 13.7 ± 6.3 4.1 ± 0.1 

NA 14.4 ± 1.7 9.5 ± 1.0 12.7 ± 1.3 6.7 ± 2.8 17.6 ± 7.7 11.5 ± 3.4 14.5 ± 1.1 7.7 ± 2.3 
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Table 21. Male and female 50% HR max Speckle Tracking Echocardiography (STE) parameters 

 

 

 

  

Variable Group Off-Season Pre-Season Mid-Season End-Season 

  M F M F M F M F 

Global Longitudinal 
Strain (%) 

RC -19.9 ± 1.7 -24.3 ± 0.8 -19.3 ± 2.4 -21.7 ± 1.8 -19.0 ± 1.6 -25.1 ± 1.7 -19.9 ± 0.5 -22.7 ± 1.7 

NA -21.6 ± 1.9 -23.1 ± 2.3 -21.0 ± 1.8 -22.9 ± 1.4 -19.5 ± 1.6 -21.2 ± 1.9 -20.5 ± 1.1 -23.6 ± 1.4 

Peak Global 
Circumferential 

Strain (%) 

RC -20.2 ± 1.5 -22.6 ± 0.9 -21.8 ± 0.7 -20.0 ± 1.2 -21.3 ± 0.5 -22.9 ± 1.0 -21.5 ± 1.0 -20.7 ± 0.8 

NA -22.5 ± 1.1 -22.3 ± 2.6 -22.7 ± 0.5 -21.3 ± 2.4 -19.8 ± 3.5 -20.2 ± 3.8 -20.7 ± 2.5 -20.5 ± 1.9 

Peak LV Twist (⁰) 
RC 17.3 ± 2.9 9.8 ± 3.2 21.8 ± 4.9 16.0 ± 4.2 20.2 ± 4.5 10.9 ± 3.1 21.2 ± 6.1 12.2 ± 3.6 

NA 31.0 ± 6.6 17.5 ± 1.0 29.7 ± 5.3 21.5 ± 5.8 28.0 ± 6.6 20.8 ± 3.5 30.4 ± 5.7 24.8 ± 4.9 



148 

 

Appendix 2 – Ethical Approval (Seasonal Variation in the Cardiac 

Structure, Function and Mechanics of Competitive Road Cyclists) 

Dear Ben 

 

With reference to your application for Ethical Approval: 

 

17/SPS/006 – Ben Brown, PGR - Changes in Cardiac Structure, Function and Mechanics 

During the Competitive Road Cycling Season 

 

The University Research Ethics Committee (UREC) considered the above application by 

proportionate review.  I am pleased to inform you that ethical approval has been granted and 

the study can now commence. 

 

Approval is given on the understanding that: 

 

• any adverse reactions/events which take place during the course of the project are 

reported to the Committee immediately; 

 

• any unforeseen ethical issues arising during the course of the project will be reported 

to the Committee immediately; 

 

• the LJMU logo is used for all documentation relating to participant recruitment and 

participation e.g. poster, information sheets, consent forms, questionnaires. The LJMU 

logo can be accessed at http://www.ljmu.ac.uk/corporatecommunications/60486.htm  

                                                 

Where any substantive amendments are proposed to the protocol or study procedures further 

ethical approval must be sought.  

 

Applicants should note that where relevant appropriate gatekeeper / management permission 

must be obtained prior to the study commencing at the study site concerned. 

 

For details on how to report adverse events or request ethical approval of major amendments 

please refer to the information provided at http://www.ljmu.ac.uk/RGSO/93205.htm 

 

Please note that ethical approval is given for a period of five years from the date granted and 

therefore the expiry date for this project will be March 2022.  An application for extension of 

approval must be submitted if the project continues after this date. 

 

 

Mandy Williams 

 

Research Support Officer 
 
 
 
 
 
 
 

http://www.ljmu.ac.uk/corporatecommunications/60486.htm
http://www.ljmu.ac.uk/RGSO/93205.htm
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Appendix 3 – Ethical Approval (The Impact of Short-Term Overload 

Training on Cardiac Mechanics in Trained Road Cyclists) 

 

Dear Ben 

 

With reference to your application for Ethical Approval: 

 

16/SPS/036 Ben Brown, PGR - Cardiac Adaptation in Response to Short-Term Overload 

Training (David Oxborough/Keith George) 

 

The University Research Ethics Committee (UREC) has considered the above application by 

Chairs action and I am pleased to inform you that ethical approval has been granted and the 

study can now commence.  

 

Approval is given on the understanding that: 

 

·         any adverse reactions/events which take place during the course of the project are 

reported to the Committee immediately; 

 

·         any unforeseen ethical issues arising during the course of the project will be reported 

to the Committee immediately; 

 

·         the LJMU logo is used for all documentation relating to participant recruitment and 

participation e.g. poster, information sheets, consent forms, questionnaires. The LJMU 

logo can be accessed at http://www2.ljmu.ac.uk/corporatecommunications/60486.htm  

                                                 

Where any substantive amendments are proposed to the protocol or study procedures further 

ethical approval must be sought.  

 

Applicants should note that where relevant appropriate gatekeeper / management permission 

must be obtained prior to the study commencing at the study site concerned. 

 

For details on how to report adverse events or request ethical approval of major amendments 

please refer to the information provided at http://www2.ljmu.ac.uk/RGSO/93205.htm 

 

Please note that ethical approval is given for a period of five years from the date granted and 

therefore the expiry date for this project will be July 2021.  An application for extension of 

approval must be submitted if the project continues after this date. 

 

 

Mandy Williams 

 

Research Support Officer 

  

http://www2.ljmu.ac.uk/corporatecommunications/60486.htm
http://www2.ljmu.ac.uk/RGSO/93205.htm
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Appendix 4 – Participant Information Sheet (Seasonal Variation in the 

Cardiac Structure, Function and Mechanics of Competitive Road 

Cyclists) 

 

 

 

Title of Project: Changes in cardiac structure, function and mechanics during the competitive 
road cycling season  

Name of Researcher: Mr Benjamin Brown, Research Institute for Sport and Exercise 
Sciences.  

You are being invited to take part in a research study. Before you decide it is important that 
you understand why the research is being done and what it involves. Please take time to 
read the following information. Ask us if there is anything that is not clear or if you would 
like more information. Take time to decide if you want to take part or not.  

1. What is the purpose of the study?  

Athletes commonly place large amounts of stress upon the cardiovascular system during 
training and competition. As a precaution, it is common practice to carry out pre-
participation cardiac screening to ensure there are no underlying pathologies which could 
trigger a cardiac event during exercise. Currently, there is no consensus regarding the time 
point at which cardiovascular screening should be carried out.  

The aim of this study is to investigate how changes in training load over the course of a road 
cycling season impact on the normal variation of structure and function of the heart.  

2. Do I have to take part?  

No. It is up to you to decide whether or not to take part. If you do you will be given this 
information sheet and asked to sign a consent form. You are still free to withdraw at any 
time and without giving a reason. A decision to withdraw will not affect any future 
treatment.  

3. What will happen to me if I take part?  

In total, four testing periods will be carried out (at pre-, mid-, end-, and off-season time 
points). Each testing period includes the following:  

Firstly, you will be required to wear a heart rate monitor during all of your normal training 
sessions over a 2 week period. The results of each training session will be shared with a 
researcher, allowing training volume and intensity to be calculated.  

Upon completion of this 2 week monitoring period, you will be invited to the Liverpool John 
Moores University laboratories to complete a health questionnaire, an assessment of height, 
weight and resting blood pressure, an exercise test to establish fitness (VO2 max test), an 
assessment of the electrical activity of the heart (12-lead electrocardiogram (ECG)), and an 

 

LIVERPOOL JOHN MOORES UNIVERSITY 
PARTICIPANT INFORMATION SHEET 



151 

 

ultrasound scan of the heart (an echocardiogram) at rest and during a short exercise 
stimulus. In total, each laboratory visit will take approximately 2.5 hours, and is divided up as 
follows:  

 

Exercise VO2 max Test  

The VO2 max assessment is a test of aerobic fitness. This test will be carried out on a 
stationary exercise bike in the laboratory. You will be asked to wear a soft rubber mask, from 
which oxygen and carbon dioxide levels are monitored while you cycle. After a 5 minute 
period of cycling at moderate intensity,  

resistance will be increased every 2 minutes until you are no longer able to continue to 
cycle. This test will take between 8 and 30 minutes depending on fitness.  

12-Lead ECG  

The 12-lead ECG will take approximately 10 minutes and requires you to lie still on your back 
while a researcher places small stickers across your chest, and on your wrists and ankles. The 
stickers will be connected to a machine via 10 leads. You will be instructed to breathe 
normally and relax while your heart beat is recorded and a graph will be printed from the 
ECG machine.  

Resting Echocardiogram  

The echocardiographic assessment will take approximately 15 minutes, and requires you to 
lie on the left side of your body while an ultrasound probe is placed upon your chest. The 
ultrasound probe will be moved across your chest to take images/video clips of the heart 
from various angles.  

Exercise Echocardiogram  

The second part of the echocardiographic assessment will take approximately 20 minutes, 
and will involve cycling while lying on a specially adapted bed. When your heart rate hits 
specific targets, the bed will be tilted on an angle, and more images and video clips will be 
taken as you continue to cycle.  

Please arrive for laboratory testing sessions in a well-hydrated state, having abstained from 
consumption of caffeine and alcohol in the 6 hours prior to testing.  

 

 

 

 

Please see full protocol diagram 
overleaf  
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4. Are there any risks / benefits involved?  
 
All electro and echocardiograms will be performed or interpreted by an experienced clinical 
physiologist with expertise in the assessment of cardiac disease. In the very unlikely event 
that a cardiac abnormality is detected then the following pathway will be initiated. The 
significance of the abnormality will be established and the participant will follow one of two 
routes:  
 
1) In the case of a minor non-life threatening abnormality the participant will be informed of 
the possible implications and potential diagnosis. They will be advised to make an 
appointment with their General Practitioner (GP) and the Clinical Physiologist (Dr David 
Oxborough) will write to the GP detailing the electrocardiographic and echocardiographic 
findings, suggesting they refer the participant to a local Cardiologist (if deemed appropriate). 
Until a firm diagnosis is made within the hospital setting it would be considered 
inappropriate to provide patient information leaflets at this early stage, however 
reassurance and the ability for the participant to directly contact the Clinical Physiologist will 
be available.  
 
2) In the very unlikely setting where a more urgent referral is deemed appropriate the 
Clinical Physiologist will discuss directly with a Consultant Cardiologist (Prof. John Somauroo) 
and the appropriate action will be undertaken i.e. referral to secondary or tertiary care.  
 
It is important to be aware that this is not a complete cardiac screening and discrete 
underlying disease or sub-clinical disease that affects the coronary arteries may not be 
detected.  
 
If at any point during each of these protocols you feel uncomfortable (or unable to 
continue), testing will be ceased immediately.  
 
The benefits from involvement in this study include a cardiac health check (please be aware 
that this is not a full cardiac screening) and you will also receive an accurate assessment of 
your aerobic fitness which may will help you to adapt your training to maximise 
performance.  
 
5. Will my taking part in the study be kept confidential?  
 
Data collected in this investigation will be fully anonymised using codes with no way of 
linking data to you. Data collected may be reported at national or international conferences 
and/or in journal publications but your identity will be protected by the use of a pseudonym. 
All data will be stored in a password protected computer file which only the researcher and 
academic supervisory team will have access to. Upon completion of the study this data will 
be destroyed by electronic deletion and any hard copies shredded. You will have access to 
your personal results at the end of the study should you wish to obtain these.  
 
This study has received ethical approval from LJMU’s Research Ethics Committee 
(17/SPS/006)  

 

Contact Details of Researcher  
B.Brown@2011.ljmu.ac.uk  
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Contact Details of Academic Supervisor  
D.L.Oxborough@ljmu.ac.uk  
 

If you any concerns regarding your involvement in this research, please discuss these with 

the researcher in the first instance. If you wish to make a complaint, please contact 

researchethics@ljmu.ac.uk and your communication will be re-directed to an independent 

person as appropriate.   
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Appendix 5 – Participant Information Sheet (The Impact of Short-Term 

Overload Training on Cardiac Mechanics in Trained Road Cyclists) 

 

 
 
Title of Project: Cardiac adaptation to normal and short-term overload training 
 
Name of Researcher: Mr Benjamin Brown, Research Institute for Sport and Exercise Sciences. 
 
You are being invited to take part in a research study. Before you decide it is important that 
you understand why the research is being done and what it involves. Please take time to read 
the following information. Ask us if there is anything that is not clear or if you would like more 
information. Take time to decide if you want to take part or not. 
 
1. What is the purpose of the study? 
 
Athletes commonly place large amounts of stress upon the cardiovascular system during 
training and competition. As a precaution, it is common practice to carry out pre-participation 
cardiac screening to ensure there are no underlying pathologies which could trigger a cardiac 
event during exercise. Currently, there is no consensus regarding the time point at which 
cardiovascular screening should be carried out.  
 
The aim of this study is to investigate how short-term increases in training load may impact 
the structure and function of the heart, and whether changes caused by training load could 
affect diagnostic interpretation of tests undertaken for cardiovascular screening. 
 
2. Do I have to take part? 

 
No. It is up to you to decide whether or not to take part. If you do you will be given this 
information sheet and asked to sign a consent form. You are still free to withdraw at any time 
and without giving a reason. A decision to withdraw will not affect any future treatment. 
 
3. What will happen to me if I take part? 
 
Testing will be carried out over a 9 week period, with all subjects completing periods of 
“normal training”, “overload training” and “tapered training” periods. 
 
Firstly, you will be invited to the Liverpool John Moores University laboratories to complete 3 
pre-testing sessions. These sessions will consist of: 
 

Pre-Testing 
Visit One (approximately 2 hours) 

• Health questionnaire 

• Assessment of height, weight and resting blood pressure 

• A resting heart rate variability assessment 

 

LIVERPOOL JOHN MOORES UNIVERSITY 
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• Exercise VO2 max test to establish aerobic fitness 

• Instructions on how to use an actigraphic wristwatch, which you will use to monitor 
your sleep for the following week 

 
Session Two (approximately 1.5 hours) 

• A resting assessment of the electrical activity of the heart (12-lead ECG) 

• A resting ultrasound scan of the heart (resting echocardiogram) 

• An in-exercise ultrasound assessment of the heart (exercise echocardiogram) 

• A cycling sprint test (30 second Wingate test) 
 

Session Three (approximately 1.5 hours) 

• A training and recovery questionnaire 

• In-exercise blood pressure assessment 

• Simulated 10 mile cycling time trial, including pre- and post- venous blood samples 
 

Normal Training 
 
You will then complete two weeks of normal training. Each training week will consist of high 
intensity intermittent training (HIIT) sessions, carried out on a Wattbike within the Liverpool 
John Moores University laboratories, and road based training sessions (on your own bicycle). 
Heart rate variability will be assessed in the university laboratories three times per week, prior 
to HIIT sessions. You also will be required to wear a heart rate monitor (provided) for all 
training sessions. Each “normal training” week will consist of 12 training hours. 
 

Taper Period 1 
After three weeks of normal training have been completed, a one week taper period will take 
place. All procedures carried out in pre-testing will be repeated, to monitor changes which 
have occurred following three weeks of training. This taper period will consist of 6 training 
hours. 
 

Overload Training 
A three week period of overload training will then commence. Training will consist of the 
same HIIT and road-based training sessions, and heart rate variability assessment and heart 
rate monitoring will continue. All procedures carried out in pre-testing (apart from VO2 max) 

will be re-tested in week 3 of this period. Each overload training week will consist of 19 
training hours. 
 

Taper Period 2 
Finally, you will undertake a two week taper period. All pre-testing procedures will be re-
tested in weeks one and two of this phase (apart from VO2 max). 
 
Each of the testing processes are described below: 
 
Exercise VO2 max Test 
The VO2 max assessment is a test of aerobic fitness. This test will be carried out on a stationary 
exercise bike in the laboratory. You will be asked to wear a soft rubber mask, from which 
oxygen and carbon dioxide levels are monitored while you cycle. After a 5 minute period of 
cycling at moderate intensity, resistance will be increased every 2 minutes until you are no 
longer able to continue to cycle. This test will take between 8 and 30 minutes depending on 
fitness.  
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30 Second Wingate 
The 30 second Wingate test is a test of cycling sprinting ability. This test will be carried out on 
a stationary exercise bike in the laboratory. After completing a 5 minute period of cycling at 
moderate intensity, and a 2 minute resting period, you will be asked to sprint as fast as 
possible against a high resistance for 30 seconds.  
 
Simulated 10 mile Cycling Time Trial 
The simulated 10 mile time trial is a cycling specific test of endurance ability. This test will be 
carried out on a stationary exercise bike in the laboratory. 30 minutes before your structured 
warm-up commences, a venous cannula will be fitted to your arm by a trained phlebotomist. 
Immediately prior to your warm-up, a small blood sample will be taken via the cannula. You 
will then complete a 10 minute, structured warm up, and a 2 minute resting period. You will 
be asked to complete the 10 mile time trial as quickly as possible. Upon completion of the 
time trial, a second venous blood sample will be taken via the cannula. 
 
Heart Rate Variability 
The heart rate variability assessment will take approximately 15 minutes and requires you to 
lie still on your back while wearing a heart rate monitor. You will be instructed to breathe 
normally and relax while your heart beat is recorded. 
 
Sleep Monitoring 
Upon your first visit to the Liverpool John Moores University laboratories, you will be 
presented with a wrist-worn actigraphy watch. Once you have been instructed how to use the 
watch, you will be asked to record each night’s sleep for the duration of the study. 
 
12-Lead ECG 
The 12-lead ECG will take approximately 10 minutes and requires you to lie still on your back 
while a researcher places small stickers across your chest, and on your wrists and ankles. The 
stickers will be connected to a machine via 10 leads. You will be instructed to breathe normally 
and relax while your heart beat is recorded and a graph will be printed from the ECG machine. 
 
Resting Echocardiogram 
The echocardiographic assessment will take approximately 15 minutes, and requires you to 
lie on the left side of your body while an ultrasound probe is placed upon your chest. The 
ultrasound probe will be moved across your chest to take images/video clips of the heart from 
various angles.  
 
Exercise Echocardiogram 
The second part of the echocardiographic assessment will take approximately 20 minutes, and 
will involve cycling while lying on a specially adapted bed. When your heart rate hits specific 
targets, the bed will be tilted on an angle, and more images and video clips will be taken as 
you continue to cycle. 
 

      
 
 
 

Please see full protocol diagram overleaf 



158 

 

 



159 

 

4. Are there any risks / benefits involved? 
 
All electro and echocardiograms will be performed or interpreted by an experienced clinical 
physiologist with expertise in the assessment of cardiac disease. In the very unlikely event that 
a cardiac abnormality is detected then the following pathway will be initiated. The significance 
of the abnormality will be established and the participant will follow one of two routes:  
 
1) In the case of a minor non-life threatening abnormality the participant will be informed of 
the possible implications and potential diagnosis. They will be advised to make an 
appointment with their General Practitioner (GP) and the Clinical Physiologist (Dr David 
Oxborough) will write to the GP detailing the electrocardiographic and echocardiographic 
findings, suggesting they refer the participant to a local Cardiologist (if deemed appropriate). 
Until a firm diagnosis is made within the hospital setting it would be considered inappropriate 
to provide patient information leaflets at this early stage, however reassurance and the ability 
for the participant to directly contact the Clinical Physiologist will be available. 
 
 2) In the very unlikely setting where a more urgent referral is deemed appropriate the Clinical 
Physiologist will discuss directly with a Consultant Cardiologist employed by Liverpool John 
Moores University, and the appropriate action will be undertaken i.e. referral to secondary or 
tertiary care. 
 
The high volume of exercise involved in this project is likely to cause fatigue and muscle 
soreness. In addition to this, previous research suggests this level of intensive training may 
cause small, short-term decreases in cardiac function. These training induced changes are 
reversible, and generally return to normal within 1 week. Regular echocardiographic screening 
will allow us to assess the nature of these changes throughout the training period. In the very 
unlikely case of a significant cardiac abnormality being presented, we will be able to advise 
you to make an appointment with your GP, or refer you to secondary/tertiary care if 
appropriate. 
 
If at any point during each of these protocols you feel uncomfortable (or unable to continue), 
testing will be ceased immediately.  
 
In addition to receiving free screening for CV disease, participants will be given the VO2max 

which may will help you to adapt your training to maximise performance. 
 
5. Will my taking part in the study be kept confidential? 
 
Data collected in this investigation will be fully anonymised using codes with no way of linking 
data to you.  Data collected may be reported at national or international conferences and/or 
in journal publications but your identity will be protected by the use of a pseudonym. All data 
will be stored in a password protected computer file which only the researcher and academic 
supervisory team will have access to. Upon completion of the study this data will be destroyed 
by electronic deletion and any hard copies shredded. You will have access to your personal 
results at the end of the study should you wish to obtain these.   
 
This study has received ethical approval from LJMU’s Research Ethics Committee 
(16/SPS/036, 22/07/17) 

 
Contact Details of Researcher  
B.Brown@2011.ljmu.ac.uk 

mailto:B.Brown@2011.ljmu.ac.uk
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Contact Details of Academic Supervisor 
D.L.Oxborough@ljmu.ac.uk 
 
If you any concerns regarding your involvement in this research, please discuss these with 
the researcher in the first instance.  If you wish to make a complaint, please contact 
researchethics@ljmu.ac.uk and your communication will be re-directed to an independent 
person as appropriate. 
  

  

mailto:D.L.Oxborough@ljmu.ac.uk
mailto:researchethics@ljmu.ac.uk
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Appendix 6 – Participant Consent Form (Seasonal Variation in the 

Cardiac Structure, Function and Mechanics of Competitive Road 

Cyclists) 

 

 

 
 
 
 
 

Changes in cardiac structure, function and mechanics during the competitive road 
cycling season 
 
Mr Benjamin Brown 
Research Institute for Sport and Exercise Sciences 
 
1. I confirm that I have read and understand the information provided for the above study. 

I have had the opportunity to consider the information, ask questions and have had these 
answered satisfactorily 

 
2. I understand that my participation is voluntary and that I am free to withdraw at any 

time, without giving a reason and that this will not affect my legal rights. 
 
3. I understand that any personal information collected during the study will be anonymised 

and remain confidential 
 
4. I agree to take part in the above study 
 
 
 
 
 
 
 
 
 
Name of Participant    Date    Signature 
 
 
 
Name of Researcher    Date   Signature 
 
 
 
Name of Person taking consent   Date   Signature 
(if different from researcher) 

 

LIVERPOOL JOHN MOORES UNIVERSITY 
CONSENT FORM 
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Appendix 7 – Participant Consent Form (The Impact of Short-Term 

Overload Training on Cardiac Mechanics in Trained Road Cyclists) 

 

 

 
 
 
 
 

Cardiac Adaptation to Normal and “Short-Term Overload Training 
 
Mr Benjamin Brown 
Research Institute for Sport and Exercise Sciences 
 
5. I confirm that I have read and understand the information provided for the above study. 

I have had the opportunity to consider the information, ask questions and have had these 
answered satisfactorily 

 
6. I understand that my participation is voluntary and that I am free to withdraw at any 

time, without giving a reason and that this will not affect my legal rights. 
 
7. I understand that any personal information collected during the study will be anonymised 

and remain confidential 
 
8. I agree to take part in the above study 
 
 
 
 
 
 
 
 
 
Name of Participant    Date    Signature 
 
 
 
Name of Researcher    Date   Signature 
 
 
 
Name of Person taking consent   Date   Signature 
(if different from researcher) 
 

 

LIVERPOOL JOHN MOORES UNIVERSITY 
CONSENT FORM 
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Appendix 8 – Cardiac Screening Questionnaire  
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Appendix 9 – RESTQ-76 Sport Questionnaire  

 
 
 
  
 



166 

 

 
 
 
 
  
 
 



167 

 

 
 
 
  
 



168 

 

 
 
 
  
 
 



169 

 

 
 
 
  
 
 



170 

 

 
 
 
 
  
 
 
 



171 

 

 
 
 
  
 
 



172 

 

 
 
 
 


