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ABSTRACT
We present cosmological parameter constraints from a joint analysis of three cosmological
probes: the tomographic cosmic shear signal in ∼450 deg2 of data from the Kilo Degree Survey
(KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass
Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation
function of the same GAMA galaxies. We use fast power spectrum estimators that are based
on simple integrals over the real-space correlation functions, and show that they are practically
unbiased over relevant angular frequency ranges. We test our full pipeline on numerical
simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different
combinations of power spectra, we demonstrate that the three probes are internally consistent.
For all probes combined, we obtain S8 ≡ σ8

√
�m/0.3 = 0.800+0.029

−0.027, consistent with Planck
and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide
priors on the mean of the tomographic redshift distributions yields consistent results for S8

with an increase of 28 per cent in the error. The combination of probes results in a 26 per cent
reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain
from these additional probes comes through their constraining power on nuisance parameters,
such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions,
which are up to a factor of 2 better constrained compared to using cosmic shear alone,
demonstrating the value of large-scale structure probe combination.

Key words: methods: data analysis – methods: statistical – large-scale structure of Universe.

� E-mail: b.joachimi@ucl.ac.uk

1 IN T RO D U C T I O N

The total mass-energy content of the Universe is dominated by two
components, dark matter and dark energy, whose unknown nature

C© 2018 The Author(s)
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constitutes one of the largest scientific mysteries of our time. Our
knowledge of these components will increase dramatically in the
coming decade, due to dedicated large-scale imaging and spectro-
scopic surveys such as Euclid1 (Laureijs et al. 2011), the Large
Synoptic Survey Telescope2 (LSST; LSST Science Collaboration
2009) and the Wide-Field Infrared Survey Telescope3 (Spergel et al.
2015), which will increase the mapped volume of the Universe
by more than an order of magnitude. The two main cosmological
probes from these surveys are the clustering of galaxies and weak
gravitational lensing. Combined, they provide a particularly power-
ful framework for constraining properties of dark energy (Albrecht
et al. 2006).

Weak gravitational lensing measures correlations in the distortion
of galaxy shapes caused by the gravitational field of the large-scale
structure in the foreground (Bartelmann & Schneider 2001) and is
sensitive to the geometry of the Universe and the growth rate. These
distortions can be extracted by correlating the positions of galaxies
in the foreground (which trace the large-scale structure) with the
shapes of the galaxies in the background, which is the galaxy-matter
cross-correlation (often referred to as galaxy–galaxy lensing), or by
correlating the observed shapes of galaxies, which is commonly
referred to as cosmic shear (for a review, see Kilbinger 2015).

Most cosmic shear studies to date used the shear correlation
functions (e.g. Heymans et al. 2013; Jee et al. 2013; Dark Energy
Survey Collaboration 2016; Hildebrandt et al. 2017) or the shear
power spectrum (e.g. Brown et al. 2003; Heymans et al. 2005;
Kitching et al. 2007; Lin et al. 2012; Kitching et al. 2014; Dark
Energy Survey Collaboration 2016; Köhlinger et al. 2016; Als-
ing, Heavens & Jaffe 2017; Köhlinger et al. 2017) to constrain
cosmological parameters. An intriguing finding of the fiducial cos-
mic shear analyses of the Canada–France–Hawaii Lensing Survey
(CFHTLenS; Heymans et al. 2013) and the Kilo Degree Survey
(KiDS; Hildebrandt et al. 2017), two of the most constraining sur-
veys to date, is that they prefer a cosmological model that is in
mild tension with the best-fitting cosmological model from Planck
Collaboration XIII (2016). The first cosmological results from the
Dark Energy Survey (DES) are consistent with Planck, but their
uncertainties are considerably larger. Also, the result from the Deep
Lens Survey (DLS; Jee et al. 2016) agrees with Planck. Further
investigation of this tension is warranted, because if it is real and
not due to systematics, the implications would be far-reaching (see
e.g. Battye & Moss 2014; MacCrann et al. 2015; Kitching et al.
2016; Joudaki et al. 2017b).

To tighten the constraints, we combine the cosmic shear mea-
surements from KiDS with two other large-scale structure probes
that are sensitive to cosmological parameters: the galaxy-matter
cross-correlation function and the two-point clustering autocorrela-
tion function of galaxies. These probes have been used to constrain
cosmological parameters (e.g. Cacciato et al. 2013; Mandelbaum
et al. 2013; More et al. 2015; Kwan et al. 2017; Nicola, Refregier
& Amara 2017). Instead of combining the different cosmological
probes at the likelihood level, which is what is usually done, we fol-
low a more optimal ‘self-calibration’ approach by modelling them
within a single framework, as this enables a coherent treatment of
systematic effects and a lifting of parameter degeneracies (Nicola,
Refregier & Amara 2016).

1 http://euclid-ec.org
2 https://www.lsst.org/
3 https://wfirst.gsfc.nasa.gov/

In this work, we adopt a formalism from Schneider et al. (2002)
to estimate power spectra by performing simple integrals over the
real-space correlation functions using appropriate weight functions.
Schneider et al. (2002) demonstrate that this method works using
analytical predictions of cosmic shear measurements. Brown et al.
(2003) applied this formalism to data to measure shear power spec-
tra, while Hoekstra et al. (2002) used it to constrain aperture masses.
We extend the formalism to the galaxy-matter power spectrum and
the angular power spectrum, and apply these power spectrum esti-
mators for the first time to data. Although this approach is formally
only unbiased if the correlation function measurements were avail-
able from zero lag to infinity, we show that it produces unbiased
band power estimates over a considerable range of angular mul-
tipoles. This method is much faster than established methods for
estimating power spectra. Furthermore, these cosmic shear power
spectra are insensitive to the survey masks. Modelling the power
spectra instead of the real-space correlation functions enables us to
cleanly separate scales and to separate the cosmic shear signal in E
modes and B modes, with the latter serving as a test for systematics,
although it should be noted that this advantage is not exclusive to
power spectra, as COSEBIs (Schneider, Eifler & Krause 2010), for
example, also split the signal in E and B modes. Finally, it puts
the different probes on the same angular-frequency scale, which
could help with identifying certain types of systematics that affect
particular angular frequency ranges.

We use the most recent shape measurement catalogues from the
KiDS survey, the KiDS-450 catalogues (Hildebrandt et al. 2017), to
measure the weak lensing signals, and the foreground galaxies from
the Galaxies And Mass Assembly (GAMA) survey (Driver et al.
2009, 2011; Liske et al. 2015) from the three equatorial patches
that are completely covered by KiDS, to determine the galaxy-
matter cross-correlation as well as the projected clustering signal.
A parallel KiDS analysis that is similar in nature, in which KiDS-
450 cosmic shear measurements are combined with galaxy–galaxy
lensing and redshift space distortions from BOSS (Dawson et al.
2013) and the 2dFLenS survey (Blake et al. 2016), will be released
imminently in Joudaki et al. (2018).

The outline of the paper is as follows. We introduce the three
power spectrum estimators in Section 2. The data and the measure-
ments are presented in Section 3, which is followed by the results in
Section 4. We conclude in Section 5. We validate our power spec-
trum estimators in Appendix A, and the entire fitting pipeline using
N-body simulations tailored to KiDS in Appendix B. In Appendix C,
we compare our cosmic shear power spectra to those estimated with
a quadratic estimator, and in Appendix D we present our iterative
scheme for determining the analytical covariance matrix. The full
posterior of all fit parameters is shown in Appendix E. Finally, in
Appendix F we check the impact of the flat-sky approximation on
our power spectrum estimators, and in Appendix G we discuss the
effect of cross-survey covariance when probes from surveys with
different footprints on the sky are combined.

2 POW ER SPECTRUM ESTI MATO RS

Computing power spectra directly from the data, for example using
a quadratic estimator (Hu & White 2001), is usually a compli-
cated and CPU-intensive task (e.g. Köhlinger et al. 2016). This is
particularly challenging for cosmic shear studies as the high signal-
to-noise regime of the cosmological measurements is on relatively
small scales, thus requiring high-resolution measurements. Alterna-
tively, pseudo-C� methods can be used (Hikage et al. 2011; Asgari
et al. 2016), but they are sensitive to the details of the survey mask.
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Here, we adopt a much simpler and faster approach: we integrate
over the corresponding real-space correlation functions, which can
be readily measured with existing public code. We will demonstrate
that this method accurately recovers the power spectra over a rele-
vant range of �. This ansatz is very similar to the ‘Spice/PolSpice’
methods (e.g. Chon et al. 2004; Becker et al. 2016), except that we
calculate correlation functions via direct galaxy pair counts instead
of passing through map-making and pseudo-C� estimation steps
first.

2.1 Cosmic shear power spectrum

The weak lensing convergence power spectrum can be obtained
from the 3D matter power spectrum Pδ via

Pκ (�) =
(

3H 2
0 �m

2c2

)2 ∫ χH

0
dχ

g2(χ )

a2(χ )
Pδ

(
� + 1/2

fK (χ )
, χ

)
, (1)

with H0 the Hubble constant, �m the present-day matter density
parameter, c the speed of light, χ the comoving distance, a(χ ) the
scale-factor, fK(χ ) the comoving angular diameter distance, χH the
comoving horizon distance, and g(χ ) a geometric weight factor,
which depends on the source redshift distribution pz(z) dz = pχ (χ )
dχ :

g(χ ) =
∫ χH

χ

dχ ′ pχ (χ ′)
fK (χ ′ − χ )

fK (χ ′)
. (2)

Hence for a given theoretical matter power spectrum Pδ , we can
predict the observed convergence power spectrum once the source
redshift distribution is specified.

As in equation (1), we assume the Limber and flat-sky approxi-
mations throughout in our power spectrum estimator. We validate
the latter explicitly in Appendix F. A number of recent papers have
demonstrated for the case of cosmic shear that these approxima-
tions are very good on the scales that we consider (Kilbinger et al.
2017; Kitching et al. 2017; Lemos, Challinor & Efstathiou 2017).
For all signals we employ the hybrid approximation proposed by
Loverde & Afshordi (2008), which uses � + 1/2 in the argument of
the matter power spectrum but no additional prefactors. Limber’s
approximation is more accurate the more extended along the line
of sight the kernel of the signal under consideration is (see e.g.
Giannantonio et al. 2012). We will therefore assess the validity of
our galaxy clustering estimator and model more carefully in Sec-
tion 2.3.

The convergence power spectrum can be converted into the shear
correlation functions:

ξ+(θ ) =
∫ ∞

0

d� �

2π
J0(�θ )Pκ (�) ,

ξ−(θ ) =
∫ ∞

0

d� �

2π
J4(�θ )Pκ (�), (3)

where Jn(x) are the nth order Bessel functions of the first kind.
The use of shear correlation functions is popular in observational
studies (Kilbinger 2015) because they can be readily measured from
the data using ξ̂± = ξ̂tt ± ξ̂××, with

ξ̂tt(θ ) =
∑

wiwjεt,iεt,j∑
wiwj

; ξ̂××(θ ) =
∑

wiwjε×,iε×,j∑
wiwj

, (4)

with εt and ε× the tangential and cross-component of the ellipticities
of galaxies i and j, measured with respect to their separation vector,
and w the inverse variance weight of the shape measurements,
which comes from our shape measurement method lensfit (Miller
et al. 2013; Fenech Conti et al. 2017). The sum runs over all galaxy

pairs whose projected separation on the sky falls inside a radial bin
centred at θ and with a width �θ .

Although the shear correlation functions are easy to measure,
power spectrum estimators have a number of advantages (Köhlinger
et al. 2016). First, they enable a clean separation of different
� modes, while ξ± averages over them; if systematics are present
that affect only certain � modes, they are more easily identified in
the power spectra. Furthermore, the covariance matrix of the power
spectra is more diagonal than its real-space counterpart, also leading
to a cleaner separation of scales, that is easier to model. Finally, the
power spectrum estimators can be readily modified to extract the
B-mode part of the signal, which should be consistent with zero if
systematics are absent and hence serves as a systematic check.

We estimate �2Pκ (�) in a band with an upper and lower � limit
of �iu and �il directly from the observed shear correlation functions
using the estimator from Schneider et al. (2002):

P E
band,i = 1

�i

∫ �iu

�il

d� � Pκ (�)

= 2π

�i

∫ �iu

�il

d� �

×
∫ θmax

θmin

dθ θ [K+ξ+(θ )J0(�θ ) + (1 − K+)ξ−(θ )J4(�θ )]

(5)

= 2π

�i

∫ θmax

θmin

dθ

θ
{K+ξ+(θ ) [g+(�iuθ ) − g+(�ilθ )]

+ (1 − K+)ξ−(θ ) [g−(�iuθ ) − g−(�ilθ )]}, (6)

with θmin and θmax the minimum and maximum angular scale that
can be used, �i = ln (�iu/�il), and

g+(x) = xJ1(x); g−(x) =
(

x − 8

x

)
J1(x) − 8J2(x). (7)

To ensure a clean E-/B-mode separation, the scalar K+ should be
fixed to 0.5. This can be seen by expressing ξ+/ − as a function
of the E-/B-mode power spectra (see e.g. equation 9 in Joachimi,
Schneider & Eifler 2008) and inserting that into equation (5).

This estimator is only unbiased if θmin = 0 and θmax = ∞. How-
ever, even if we restrict the range of the integral to what can be
realistically measured in our data, we can retrieve unbiased esti-
mates of P E

band,i over a large � range, as is shown in Appendix A,
because most of the information of a given � mode comes from a
finite angular range of the shear correlation functions. The lowest
� bins we adopt may have a small remaining bias, for which we
derive an integral bias correction (IBC), as detailed in Appendix A.
To compute the IBC, we need to adopt a cosmology, which makes
the correction cosmology dependent. However, since the correction
is smaller than the statistical errors, a small bias in the IBC due
to adopting the wrong cosmology does not impact our results, and
we will demonstrate that not applying the correction at all does not
affect our results.

The B-mode part of the signal is measured by

P B
band,i := π

�i

∫ θmax

θmin

dθ

θ
{ξ+(θ ) [g+(�iuθ ) − g+(�ilθ )]

− ξ−(θ ) [g−(�iuθ ) − g−(�ilθ )]}, (8)

which we measure simultaneously in the data to test for the presence
of systematics.

A similar power spectrum estimator has been proposed in Becker
& Rozo (2016) and applied to data in Becker et al. (2016), specifi-
cally designed to minimize E-mode/B-mode mixing. However, how

MNRAS 476, 4662–4689 (2018)
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this estimator performs when ξ± have been measured in limited an-
gular ranges, has not yet been explored. Although our estimator has
some E-mode/B-mode mixing, we demonstrate that it is negligible
for all but the lowest � bin, and we derive a robust correction scheme
for it.

2.2 Galaxy-matter power spectrum

The projected galaxy-matter power spectrum is related to the matter
power spectrum via

P gm(�) = b

(
3H 2

0 �m

2c2

)

×
∫ χH

0
dχ

pF(χ )g(χ )

a(χ )fK (χ )
Pδ

(
� + 1/2

fK (χ )
; χ

)
, (9)

with pF(χ ) the redshift distribution of the foreground sample. We
assume that the galaxy bias is linear and deterministic4 such that b
is the effective bias of the lens sample. We will motivate this choice
in Section 3.4.

In analogy with equations (4) and (5), we estimate the projected
galaxy-matter power spectrum as

P gm(�) = 2π

∫ ∞

0
dθ θ γt(θ )J2(�θ ), (10)

with γ t(θ ) the tangential shear around foreground galaxies. The
band galaxy-matter power spectrum estimator then follows from

P
gm
band,i := 1

�i

∫ �iu

�il

d� �P gm(�)

= 2π

�i

∫ θmax

θmin

dθ

θ
γt(θ ) [h(�iuθ ) − h(�ilθ )] , (11)

with

h(x) = −xJ1(x) − 2J0(x). (12)

The final result is derived by inserting equation (10) into the first
line of equation (11), changing the order of the integrals, renaming
the variables and making use of the derivative identity of Bessel
functions. The analogy for the B-mode part of the signal is obtained
by replacing γ t with the cross-shear part, γ ×:

P
g×
band,i := 2π

�i

∫ θmax

θmin

dθ

θ
γ×(θ ) [h(�iuθ ) − h(�ilθ )] . (13)

The tangential shear and cross-shear are measured with the follow-
ing estimators:

γ̂t(θ ) =
∑

i εt,iwi∑
wi

; γ̂×(θ ) =
∑

i ε×,iwi∑
wi

. (14)

In practise, we also measured the tangential shear and cross-shear
signals around random points and subtracted that from the measure-
ments around galaxies, as discussed in Section 3.2. As for the cos-
mic shear power spectra, we verify that our galaxy-matter power
spectrum estimator is unbiased using analytical correlation func-
tions and N-body simulations tailored to KiDS (see Appendices A
and B). We also derive and apply the IBC, which is negligible for
all but the lowest � bin, and for the first � bin it is smaller than the
measurements errors.

4 In other words, the cross-correlation coefficient r (e.g. Pen 1998; Dekel &
Lahav 1999) is fixed to unity.

2.3 Angular power spectrum

The angular power spectrum can be determined from the matter
power spectrum via

P gg(�) = b2
∫ χH

0
dχ

p2
F(χ )

f 2
K (χ )

Pδ

(
� + 1/2

fK (χ )
; χ

)
, (15)

where, as above, b corresponds to the effective bias of the sample
(as motivated in Section 3.4).

The 0th order Limber approximation for the angular correlation
function is accurate to less than a percent at scales � > 5χ (z0)/σχ ,
with χ (z0) the comoving distance of the mean redshift of the fore-
ground sample and σχ the standard deviation of the galaxies’ co-
moving distances around the mean (see section IV-B of Loverde &
Afshordi 2008). For our low- and high-redshift foreground samples
(defined in Section 3), we obtain scales of � � 15 and � � 25, re-
spectively. Since the minimum � scale entering the analysis is 150,
the Limber approximation is valid here.

Analogous to the cosmic shear and the projected galaxy-matter
power spectra, we derive an estimator for the angular power
spectrum:

P gg(�) = 2π

∫ ∞

0
dθ θ w(θ )J0(�θ ), (16)

with w(θ ) the angular correlation function. We estimate the galaxy–
galaxy band powers using:

P
gg
band,i := 1

�i

∫ �iu

�il

d� �P gg(�)

= 2π

�i

∫ θmax

θmin

dθ

θ
w(θ ) [f (�iuθ ) − f (�ilθ )] , (17)

with

f (x) = xJ1(x). (18)

The angular correlation function is estimated from the data using
the standard LS estimator (Landy & Szalay 1993):

ŵ(θ ) = DD − 2DR + RR

RR
, (19)

with DD the number of galaxy pairs, DR the number of galaxy–
random point pairs, and RR the number of random point pairs. The
counts with random points are scaled with the ratio of the total
number of galaxies and the total number of random points.

As for the cosmic shear and galaxy-matter power spectra, we
verify that our angular power spectrum estimator is unbiased using
analytical correlation functions and N-body simulations tailored to
KiDS (see Appendices A and B). For completeness, we also apply
the IBC, but the impact on the power spectra is negligible. Note that
in the remainder of this paper, we omit the subscript ‘band, i’ from
the band power estimates for convenience, which we do not expect
to cause any confusion.

3 DATA A NA LY SIS

3.1 Data

The KiDS ( de Jong et al. 2013) is an optical imaging survey that
aims to span 1500 deg2 of the sky in four optical bands, u, g, r, and
i, complemented with observations in five infrared bands from the
VISTA Kilo-degree Infrared Galaxy (VIKING) survey (Edge et al.
2013). The exceptional imaging quality particularly suits the main
science objective of the survey, which is constraining cosmology
using weak gravitational lensing.

MNRAS 476, 4662–4689 (2018)
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4666 E. van Uitert et al.

Figure 1. Normalized redshift distribution of the four tomographic source
bins of KiDS (solid lines), used to measure the weak gravitational lensing
signal, and the normalized redshift distribution of the two spectroscopic
samples of GAMA galaxies (histograms), that serve as the foreground sam-
ple in the galaxy–galaxy lensing analysis and that are used to determine the
angular correlation function. For plotting purposes, the redshift distribution
of GAMA galaxies has been multiplied by a factor 0.5. The shaded regions
indicate the photometric redshift (zB) selection of the tomographic source
bins.

In this study, we use data from the most recent public data re-
lease, the KiDS-450 catalogues (Hildebrandt et al. 2017; de Jong
et al. 2017), which contains the shape measurement and photomet-
ric redshifts of 450 deg2 of data, split over five different patches
on the sky, which include the three equatorial patches that com-
pletely overlap with GAMA. Below, we give an overview of the
main characteristics of this data set.

The redshift distribution of the source galaxies was determined
using four different methods in KiDS-450. The most robust is the
weighted direct calibration method (hereafter referred to as DIR),
which is based on the work of Lima et al. (2008). In this method,
catalogues from deep spectroscopic surveys are weighted in such a
way as to remove incompleteness caused by their spectroscopic se-
lection functions (see Hildebrandt et al. 2017, for details). The true
redshift distribution for a sample of KiDS galaxies selected using
their Bayesian photometric redshifts from BPZ (Benı́tez 2000) can
then be determined by matching to these weighted spectroscopic
catalogues. The resulting redshift distribution is well calibrated in
the range 0.1 < zB ≤ 0.9, with zB the peak of the posterior photomet-
ric redshift distribution from BPZ. In this work, we use the same
four tomographic source redshift bins as adopted in Hildebrandt
et al. (2017) by selecting galaxies with 0.1 < zB ≤ 0.3, 0.3 < zB ≤
0.5, 0.5 < zB ≤ 0.7 and 0.7 < zB ≤ 0.9. The redshift distribution
of the four source samples from the DIR method is shown in Fig. 1
. The main properties of the source samples, such as their average
redshift, number density and ellipticity dispersion, can be found in
table 1 of Hildebrandt et al. (2017).

The galaxy shapes were measured from the r-band data using an
updated version of the lensfit method (Miller et al. 2013), carefully
calibrated to a large suite of image simulations tailored to KiDS
(Fenech Conti et al. 2017). The resulting multiplicative bias is of
the order of a percent with a statistical uncertainty of less than
0.3 per cent, and is determined in each tomographic bin separately.
The additive shape measurement bias is determined separately in
each patch on the sky and in each tomographic redshift bin as the

weighted average galaxy ellipticity per ellipticity component, and
has typical values of ∼10−3. We corrected the additive bias at the
catalogue level, while the multiplicative bias was accounted for
during the correlation function estimation.

To avoid confirmation bias, the fiducial cosmological analysis of
KiDS (Hildebrandt et al. 2017) was blinded: three different shape
catalogues were analysed, the original and two copies in which the
galaxy ellipticities were modified such that the resulting cosmolog-
ical constraints would differ. Only after the analysis was written up,
an external blinder revealed which catalogue was the correct one.
Since the lead authors of this paper were already unblinded else-
where, the current analysis could no longer be performed blindly.
However, since the shear catalogues were not changed after un-
blinding, we still partly benefit from the original blinding exercise.

We used the KiDS galaxies to measure the cosmic shear cor-
relation functions, and to measure the tangential shear around the
foreground galaxies from the GAMA survey (Driver et al. 2009,
2011; Liske et al. 2015). GAMA is a highly complete spectroscopic
survey up to a Petrosian r-band magnitude of 19.8. In total, it tar-
geted ∼240 000 galaxies. We use a subset of ∼180 000 galaxies that
reside in the three patches of 60 deg2 each near the celestial equator,
G09, G12, and G15, as those patches fully overlap with KiDS. The
tangential shear measurements in these three patches are combined
with equal weighting. Due to the flux limit of the survey, GAMA
galaxies have redshifts between 0 and 0.5. We select two GAMA
samples, a low-redshift sample with zspec < 0.2, and a high-redshift
sample with 0.2 < zspec < 0.5. Their redshift distributions are also
shown in Fig. 1.

We also use the same subset of GAMA galaxies to determine the
angular correlation function, and thus the corresponding angular
power spectrum. To determine the clustering, we make use of the
GAMA random catalogue version 0.3, which closely resembles the
random catalogue that was used in Farrow et al. (2015) to measure
the angular correlation function of GAMA galaxies. We sample the
random catalogue such that we have 10 times more random points
than real GAMA galaxies.

3.2 Measurements

We use the shape measurement catalogues of KiDS-450 to measure
the cosmic shear correlation functions, ξ+ and ξ−, and the tangen-
tial shear around GAMA galaxies. All projected real-space corre-
lation functions in this work are measured with TREECORR5 (Jarvis,
Bernstein & Jain 2004). Since the ξ+ and ξ− measurements have
already been presented in Hildebrandt et al. (2017), we will not
show them here. The � range in which we can obtain unbiased esti-
mates of the power spectra depends on the angular range where we
trust the correlation functions. For ξ+ and ξ−, we use an upper limit
of θ < 120 arcmin, as the measurements on larger scales become
increasingly sensitive to residual uncertainties on the additive bias
correction. The lower limit is 0.06 arcmin, but our power spectrum
estimator is insensitive to any signal below 1 arcmin. The PE band
powers are nearly unbiased in the range � > 150 (see Appendix A).
We measure ξ+ and ξ− in 600 logarithmically spaced bins between
0.06 and 600 arcmin, to account for the rapid oscillations of the
window functions used to convert the shear correlation functions to
the power spectra, but we only use scales 0.06 < θ < 120 arcmin in
the integral.

5 https://github.com/rmjarvis/TreeCorr
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Figure 2. Cosmic shear power spectra for KiDS-450, derived with our power spectrum estimator that integrates the shear correlation functions in the range
0.06 < θ < 120 arcmin. The numbers in each panel indicate which shape (S) samples are correlated, with the numbers defined in the legend of Fig. 1. The
panels on the left show the E modes, and the ones on the right the B modes. Error bars have been computed analytically. The B modes have been multiplied
with � instead of �2 for improved visibility of the error bars. Solid lines correspond to the best-fitting model, for our combined fit to PE, Pgm, and Pgg. There is
one � bin whose B mode deviates from zero by more than 3σ , the highest � of the S2–S4 cross-correlation; the corresponding E mode is high as well. We have
verified that excluding this bin from the analysis does not change our results.

To test the sensitivity of our estimator to a residual additive shear
bias, we also measured the power spectra without applying the
additive bias correction. This only affected the lowest � bins by
shifting them with a typical amount of 0.5σ ; the impact on other
bins was negligible. Since the error on the additive bias correction
is smaller than the correction itself, its impact on the power spectra
is even smaller and can therefore be safely ignored.

Since PE does not vary rapidly with �, we only need a small
number of � bins to capture most of the cosmological information.
We use five logarithmically spaced bins, whose logarithmic means
range from � = 200 to � = 1500; the � ranges they cover can be
read off from Fig. A1. Truncating the integral to θ < 120 arcmin
leads to a small negative additive bias of the order of 10−6 in the
lowest � bin (smaller than the statistical errors). We derive an IBC
for this in Appendix A and apply it to all power spectra, although not
applying this correction leads to negligible changes of our results.
The resulting E modes and B modes are shown in Fig. 2.

We obtain a clear detection for PE in each tomographic bin com-
bination. The signal increases with redshift, which is expected as
the impact of more structures is imprinted on the galaxy ellipticities
if their light traversed more large-scale structure and because of the
geometric scaling of the lensing signal (see equation 2).

Fig. 2 also shows PB, the B modes that serve as a systematic test.
Note that the IBC has also been applied to the B modes. There are
a number of � bins which appear to be affected by B modes; the

most prominent feature is the highest � bin for the cross-correlation
between the second and fourth tomographic bins. To quantify this,
we determined the reduced χ2 value of the null hypothesis for
all bins combined, which has a value of 1.96. This corresponds
to a p-value of 0.0001. This number is driven by this single �

bin; excluding this bin alone lowers the reduced χ2 to 1.55 (and a
p-value of 0.0082), which is still a tentative sign of residual B modes.
Not applying the IBC slightly improves the overall reduced χ2 to
1.87 (1.45 after removing the suspicious � bin). The origin of the
B modes in KiDS is under active investigation and will be presented
in Asgari et al. (in preparation). To test how it may affect our
cosmological results, we repeat the test of Hildebrandt et al. (2017),
subtract the B modes from the E modes, and run the cosmological
inference. This B-mode correction shifts our main cosmological
result by less than 0.5σ , thus demonstrating that if the source of the
B modes also generates E modes in equal amounts, our results are
not significantly biased if we do not account for that. More details
of this test are provided in Appendix C.

The large amplitude of PB of this suspicious � bin suggests that
the corresponding PE measurement might not be trustworthy, and
indeed, it appears high. We have tested that removing this single
� bin from the analysis does not affect the cosmological inference
except for the goodness of fit. Another apparent feature is that the
PE of the first � bins of the cross-correlation between the second
tomographic bin and the second, third and fourth tomographic bins
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4668 E. van Uitert et al.

Figure 3. Tangential shear and cross-shear around GAMA galaxies measured with KiDS sources in tomographic bins, as indicated in the panels. The cross-
shear measurements have been multiplied with a factor (θ/100)0.5 to ensure that the error bars are visible over the plotted angular range. Open squares show
negative points of γ t with unaltered error bars. The lensing signal measured around random points has been subtracted, which is consistent with zero on the
scales of interest for all but the third tomographic source bin, where it is small but positive on scales >20 arcmin. Furthermore, the signal has been corrected for
the contamination of source galaxies that are physically associated with the lenses. The errors are derived from jackknifing over 2.5 × 3 deg non-overlapping
patches. They are only used to assess on which scales the signal is consistent with not being affected by systematics; when we fit models to our power spectra
we use analytical errors throughout.

are ∼2σ below the best-fitting model. However, the first � bins of
the various tomographic bin combinations are fairly correlated (see
e.g. Fig. B3 in Appendix B2), so this feature is less significant than
it appears. Furthermore, in Section 4 we will show that excluding
the lowest � bins from the fit does not impact our results.

We have also compared our power spectrum estimates with those
derived using the quadratic estimator from Köhlinger et al. (2017).
A detailed comparison is presented in Appendix C. Overall, we
find good agreement between the E modes, although for one to-
mographic bin combination we find a noticeable difference at high
�. A possible explanation is the presence of some B modes in the
cosmic shear correlation functions (as reported in Hildebrandt et al.
2017). This is further supported by the fact that we detect B modes
at a higher significance than Köhlinger et al. (2017), where they are
found to be consistent with zero. It is still unclear if or how this
affects the cosmological inference, although the B-mode correction
test we did in Appendix C suggests that the impact is small.

Next, we determined the galaxy-matter power spectrum, for
which we needed to measure the tangential shear signal around
GAMA galaxies first. This lensing signal is shown in Fig. 3. We
also measured the signal with an independent code, and the results
agreed very well. For illustrative purposes, we used 20 logarith-
mically spaced bins between 0.1 and 300 arcmin. To compute the
power spectra, we need a much finer sampling, as the window func-
tions used to convert the correlation functions to power spectra
oscillate rapidly. Hence we measured the signal in 600 logarithmi-
cally spaced bins in the range 0.06 < θ < 600 arcmin, but only used
the measurements on scales θ < 120 arcmin to compute the power
spectrum.

Some of the galaxies from the source sample are physically as-
sociated with the lenses. They are not lensed and bias the tangen-
tial shear measurements. As demonstrated in Mandelbaum et al.
(2005), this bias can easily be corrected by multiplying the lensing
signal with a boost factor, which contains the overdensity of source
galaxies as a function of projected radial distance to the lens. The
boost factor generally increases towards smaller separations, but de-
creases very close to the lens, due to problems with the background
estimation caused by the lens light (see e.g. Dvornik et al. 2017).
The boost factor can be made smaller by applying redshift cuts to
the source sample; here, we do not apply such cuts because we want
to use the exact same sources as in the cosmic shear measurements.
In our case, the impact of the boost correction is negligible, as our
estimator is insensitive to scales θ < 2 arcmin (see Appendix A).
At 2 arcmin, the boost factor is 7 per cent at most for the F2–S2 bin,
and decreases quickly with radius. For all other bins, the correc-
tion is much smaller. We have checked that not applying the boost
correction does not significantly affect the power spectra.6

The impact of magnification on the boost factor is negligible in
this radial range and can safely be ignored. Furthermore, we mea-
sured the tangential shear around random points from the GAMA

6 The boost correction implicitly assumes that satellite galaxies are not in-
trinsically aligned with the foreground galaxies, although our model can
account for such alignments. Most dedicated studies of this type of align-
ments show that it is consistent with zero (see e.g. Sifón et al. 2015, and
references therein). If it is not, this could incur a small bias in the boost
correction. We will address this in a future work.
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Figure 4. Galaxy-matter power spectrum (top) and galaxy-cross-shear power spectrum (bottom) around GAMA galaxies in two lens redshift bins, measured
with KiDS sources using four tomographic source bins. The numbers in each panel indicate the foreground (F) sample–shape (S) sample combination, as
defined in Fig. 1. The errors are computed analytically and correspond to the 68 per cent confidence interval. Pg × has been multiplied with � instead of �2 for
improved visibility of the error bars. Solid lines correspond to the best-fitting model, for our combined fit to PE, Pgm, and Pgg. The Pg × in the bottom rows
serves as a systematic test, and it is consistent with zero.

random catalogue, and subtracted that from the real signal. Apart
from removing potential additive systematics in the shape measure-
ment catalogues, this procedure also suppresses sampling variance
errors (Singh et al. 2017).

To obtain the errors on our galaxy–galaxy lensing measurements,
we split the survey into 24 non-overlapping patches of 2.5 × 3 deg,
and used those for a ‘delete one jackknife’ error analysis. These
errors should give a fair representation of the true errors, and thus
be sufficient to assess at which scales we consider the measurements
robust. Note that we used jackknife errors instead of analytical errors
on these real-space measurements for convenience; we stress that in
the cosmological inference, we used an analytical covariance matrix
for all power spectra.

Fig. 3 also shows the cross-shear, the projection of source el-
lipticities at an angle of 45 deg with respect to the lens–source
separation vector. Galaxy–galaxy lensing does not produce a parity
violating cross-shear once the signal is azimuthally averaged, and
hence it serves as a standard test for the presence of systematics.
The cross-shear is consistent with zero on most scales, although
some deviations are visible, e.g. at scales of half a degree for the
F1–S4 bin. The cross-shear at small separations for the F2–S1 and
F2–S2 bins is not worrisome, as our estimator is not sensitive to the
galaxy–galaxy lensing signal on those scales. For consistency with
the cosmic shear power spectrum, we only use the galaxy–galaxy
lensing measurements in the range <120 arcmin. As demonstrated
in Appendix A, we can obtain unbiased estimates on Pgm from γ t

in the range � ≥ 150.

We estimate Pgm using the same � range as for PE/B. The mea-
surements are shown in Fig. 4. We apply the IBC, which on average
causes a 6 per cent change in the lowest � bin, and much smaller
changes for the higher � bins. We obtain significant detections for all
lens–source bin combinations. The error bars have been computed
analytically as discussed in Section 3.3. The amplitude of the power
spectrum increases for higher source redshift bins as expected, be-
cause of the geometric scaling of the lensing signal. We also show
Pg ×, the power spectrum computed using the cross-shear, which
serves as a systematic test. There are a few neighbouring � bins that
are systematically offset, for example the low-� bins of F1–S3 and
F1–S4. We already pointed out the presence of some cross-shear in
Fig. 3 on the scale of half a degree for those bins, which translates
into those Pg × bins. On average, however, the amplitude of Pg × is
not worrisome as the reduced χ2 of the null hypothesis has a value
of 1.13. The corresponding p-value is 0.27.

Finally, to determine Pgg, we first measure the angular correla-
tion function of the two foreground galaxy samples from GAMA.
We show the signal in Fig. 5. Errors come from jackknifing over
2.5 × 3 deg patches and only serve as an illustration; in the cos-
mological inference, we use analytical errors for Pgg. The angular
correlation function is robustly measured on all scales depicted.
Therefore, we use an upper limit of 240 arcmin in the integral to
determine Pgg. We adopt the same � ranges as for PE and Pgm

and show the band powers of Pgg in Fig. 6. The angular power
spectrum of the F2 sample is lower than that of the F1 sample
because the redshift range of F2 is wider. Note that the angular
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Figure 5. Angular correlation function of the two foreground galaxy sam-
ples from GAMA. The inset in each panel shows the signal on large scales
with a linear vertical axis. The errors are derived from jackknifing over
2.5 × 3 deg non-overlapping patches and serve for illustration. When we fit
models to our power spectra we used analytical errors throughout.

Figure 6. Angular power spectrum of the two foreground galaxy samples
from GAMA. The depicted errors are determined analytically. Solid lines
correspond to the best-fitting model, for our combined fit to PE, Pgm, and
Pgg.

correlation function w(θ ) has an additive contribution due to the
fact that the mean galaxy density is estimated from the same data
set. This integral constraint only contributes to the � = 0 mode
in Pgg and therefore does not have to be considered further in our
modelling.

3.3 Covariance matrix

We determine the covariance matrix of the combined set of power
spectra analytically, following a similar formalism as in Hildebrandt

et al. (2017). The covariance matrix includes the cross-covariance
between the different probes. One particular advantage of this ap-
proach is that it properly accounts for super-sample covariance
(SSC), which are the cosmic variance modes that are larger than the
survey window and couple to smaller modes within. This term is
typically underestimated when the covariance matrix is estimated
from the data itself, for example through jackknifing, or when it is
estimated from numerical simulations. Another advantage is that it
is free of simulation sampling noise, which could otherwise pose
a significant hindrance for joint probe analyses with large data
vectors.

The analytical covariance matrix consists of three terms: (i) a
Gaussian term that combines the Gaussian contribution to sample
variance, shape noise, and a mixed noise-sample variance term,
estimated following Joachimi et al. (2008), (ii) an in-survey non-
Gaussian term from the connected matter trispectrum, and (iii) a
SSC term. To compute the latter two terms, we closely follow the
formalism outlined in Takada & Hu (2013), which can be readily
expanded to galaxy–galaxy lensing and clustering measurements
(e.g. Krause & Eifler 2017).

By subtracting the signal around random points from the galaxy-
matter cross-correlation, we effectively normalize fluctuations in
the galaxy distribution with respect to the mean galaxy density in
the survey area instead of the global mean density. This substantially
reduces the response to super-survey modes (Takada & Hu 2013)
and diminishes error bars (Singh et al. 2017), and we do account
for this effect in our covariance model.

One further complication is that the KiDS survey area is larger
than GAMA. While the galaxy-matter power spectrum and the
angular power spectrum are measured in the 180 deg2 of the
three GAMA patches near the equator that are fully covered by
KiDS, the cosmic shear power spectrum is measured on the full
450 deg2 of KiDS-450. This partial sky overlap of the differ-
ent probes affects the cross-correlation and is accounted for (see
Appendix G).

In order to compute the covariance matrix, we need to adopt an
initial fiducial cosmology as well as values for the effective galaxy
bias. For the fiducial cosmology, we use the best-fitting parameters
from Planck Collaboration XIII (2016), and for the effective galaxy
biases we assume values of unity for both bins. If our data prefers
different values for these parameters, the size of our posteriors could
be affected (as illustrated in Eifler, Schneider & Hartlap 2009, for
the case of cosmic shear only). Therefore, after the initial cosmo-
logical inference, the analytical covariance matrix is updated with
the parameter values of the best-fitting model. This is turned into an
iterative approach, as detailed in Appendix D. It is made possible
by the use of an analytical covariance matrix, which is relatively
fast and easy to compute. Since the parameter constraints do not
change significantly at the second iteration, we adopt the resulting
analytical covariance matrix for all cosmological inferences in this
paper.

The analytical covariance matrix for ξ+ and ξ− has been vali-
dated against mocks in Hildebrandt et al. (2017). We repeat that
exercise for the three power spectra in Appendix B. The analyti-
cal covariance matrix agrees well with the one estimated from the
N-body simulations. Our choice of power spectrum estimator is not
guaranteed to reach the expected errors that we calculate analyti-
cally, but the comparison with the simulations did not reveal any
evidence for significant excess noise. We did not include intrinsic
alignments or baryonic feedback in the covariance modelling, but
since all our measurements are dominated by the cosmological sig-
nals, the impact of the astrophysical nuisances on sample variance
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is small.7 We have checked that a potential error on the additive bias
correction has a negligible contribution to the covariance matrix.

3.4 Model fitting

To constrain the cosmological parameters, we used COSMOMC8

(Lewis & Bridle 2002), which is a fast Markov Chain Monte Carlo
code for cosmological parameter estimation. The version we use
is based on Joudaki et al. (2017a),9 which includes prescriptions
to deal with intrinsic alignment, the effect of baryons on the non-
linear power spectrum, and systematic errors in the redshift distribu-
tion. This framework has been further developed to simultaneously
model the tangential shear signal of a sample of foreground galaxies
and redshift space distortions (Joudaki et al. 2018). We extended
it by modelling the angular correlation function of the same fore-
ground sample. Furthermore, we modified the code in order to fit
the power spectra instead of the correlation functions. Since the
conversion from power spectra to correlation functions could be
skipped, the runtime decreased by a factor of 2. We computed the
power spectra at the logarithmic mean of the band instead of inte-
grating over the band width, as the difference between the two was
found to be at the percent level and therefore ignored. We checked
that the impact of this simplification on our cosmological parameter
constraints was less than 0.3σ for our fiducial data vector.

The effect of non-linear structure formation and baryonic feed-
back are modelled in COSMOMC using a module called HMCODE, which
is based on the results of Mead et al. (2015). Baryonic effects are
accounted for by modifying the parameters that describe the shape
of dark matter haloes. AGN and supernova feedback, for example,
blow material out of the haloes, making them less concentrated.
This is incorporated in HMCODE by choosing the following form for
the mass–concentration relation,

c(M, z) = B
1 + zf

1 + z
, (20)

with zf the formation redshift of a halo, which depends on halo
mass. The free parameter in the fit, B, modulates the amplitude
of this mass–concentration relation. It also sets the amplitude of a
‘halo bloating’ parameter η0 which changes the halo profile in a
mass-dependent way (see equation 26 of Mead et al. 2015), where
we follow the recommendation of Mead et al. (2015) by fixing
η0 = 1.03–0.11B. Setting B = 3.13 corresponds to a dark-matter-
only model. The resulting model is verified with power spectra
measured on large hydrodynamical simulations, and found to be
accurate to 5 per cent for k ≤ 10 h Mpc−1. This is a relative uncer-
tainty, not an absolute one (the absolute accuracy of any theoretical
matter power spectrum prediction is not well established), and in-
dicates the relative accuracy of their halo model fits with respect
to hydrodynamical simulations, which are uncertain themselves. In
addition, as fig. 2 of Mead et al. (2015) shows, this accuracy is
strongly k-dependent, and at small k (k < 0.05 h Mpc−1), the agree-
ment is much better than 5 per cent. Therefore, putting a meaningful
prior on the accuracy of the theory predictions is currently out of
reach. However, the main source of theoretical uncertainty is caused
by baryonic feedback, which mainly affects the small scales (high

7 By far the most strongly affected bin combination is F2–S1 whose redshift
distributions have substantial overlap. For AIA = 1, the galaxy position-
intrinsic shape correlation contributes at most 17 per cent to the total signal,
with little dependence on angular scale.
8 http://cosmologist.info/cosmomc/
9 https://github.com/sjoudaki/CosmoLSS

k). By marginalizing over B, we account for this main source of
uncertainty.

Intrinsic alignments affect both the cosmic shear power spectrum
and the galaxy-matter power spectrum. For the cosmic shear power
spectrum, there are two contributions, the intrinsic–intrinsic (II)
and the shear-intrinsic (GI) terms (see equations 5 and 6 of Joudaki
et al. 2017a). The galaxy-matter power spectrum has a galaxy-
intrinsic contribution (e.g. Joachimi & Bridle 2010). These three
terms can be computed once the intrinsic alignment power spectrum
is specified, which is assumed to follow the non-linear modification
of the linear alignment model (Catelan, Kamionkowski & Blandford
2001; Hirata & Seljak 2004; Bridle & King 2007; Hirata & Seljak
2010):

PδI(k, z) = −AIAC1ρcrit
�m

D(z)
Pδ(k, z), (21)

with Pδ(k, z) the full non-linear matter power spectrum, D(z) the
growth factor, normalized to unity at z = 0, ρcrit the critical density,
C1 = 5 × 10−14h−2M−1
Mpc3 a normalization constant, and AIA the
overall amplitude, which is a free parameter in our model. Our in-
trinsic alignment model is minimally flexible with a single, global
amplitude parameter. Since the mean luminosities of the different
tomographic bins are similar, there is no need to account for a lu-
minosity dependence in the model; in addition, there currently does
not exist observational evidence for a significant redshift depen-
dence (see e.g. Joudaki et al. 2017b, 2018). Adding flexibility to
the intrinsic alignment model is therefore currently not warranted
by the data.

To model Pgm and Pgg, we assume that the galaxy bias is con-
stant and scale independent. Since we include non-linear scales in
our fit, this bias should be interpreted as an effective bias. It is
fitted separately for the low-redshift and high-redshift foreground
sample. The scale dependence of the bias has been constrained
in observations by combining galaxy–galaxy lensing and galaxy
clustering measurements for various flux-limited samples and was
found to be small (e.g. Hoekstra et al. 2002; Simon et al. 2007;
Cacciato et al. 2012; Jullo et al. 2012). In a recent study on data
from the Dark Energy Survey, Crocce et al. (2016) constrained the
scale dependence of the bias using the clustering signal of flux-
limited samples, selected with i < 22.5, modelling the signal with
a non-linear power spectrum from Takahashi et al. (2012) with a
fixed, linear bias as fit parameter. They report that their linear bias
model reproduces their measurements down to a minimum angle of
3 arcmin for their low-redshift samples (although the caveat should
be added that our foreground sample is selected with a different
apparent magnitude cut). While the aforementioned studies report
little scale dependence of the bias in real space, our assumption of a
scale-independent bias is made in Fourier space. The largest � bin is
centred at 1500, which uses information from ξ+/ − down to scales
of less than an arcminute (see Appendix A). Hence a strong scale
dependence of the bias on scales less than 3 arcmin could violate
our assumption. However, if the bias is strongly scale dependent
on scales of � < 1500, this will show up in our measurements as a
systematic offset between data and model for the highest � bin of
Pgg (and, to a lesser extent, Pgm). Also, on small scales, the cross-
correlation coefficient r might differ from one, which would lead to
discrepancies between Pgm and Pgg. However, as Figs 4 and 6 show,
there is no clear evidence for such a systematic difference, which
serves as further evidence that our approach is robust. Also, when
we exclude the highest � bin of Pgm and Pgg from our analysis, our
results do not change significantly (see Section 4.1).
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We validated the Pgg model predictions using an independent
code that was internally available to us. The signal agreed to within
3 per cent in the range 150 < � < 2000, with a mean difference
of 2 per cent. The small remaining difference is caused by different
redshift interpolation schemes of the galaxy number density; in our
code, we used a spline interpolation, while a linear interpolation
was used in the independent code. When we adopted a spline inter-
polation in the independent code, the model signal agreed to within
1.5 per cent, with a mean difference of ∼1 per cent. Since it is not a
priori clear which interpolation scheme is better, we decided to keep
using the spline interpolation scheme. The model prediction of PE

has been compared to independent code in Hildebrandt et al. (2017)
and was found to agree well. We have not explicitly compared the
predictions of Pgm with an independent code, but since that model
is built of components used in the computation of Pgg and PE, we
expect a similar level of accuracy.

We marginalize over the systematic uncertainty of the redshift
distribution of our source bins following the same methodology
adopted in Hildebrandt et al. (2017) and Köhlinger et al. (2017), that
is by drawing a random realization of the redshift distribution in each
step of the MCMC. This approach fully propagates the statistical
uncertainties included in the redshift probability distributions, but
does not account for sample variance in the spectroscopic calibration
data. We investigated the robustness of this method by also fitting
models in which we allowed for a constant shift in the redshift
distributions. This procedure basically marginalizes over the first
moment of the redshift distribution, which is, to first order, what the
weak lensing signal is sensitive to Amara & Réfrégier (2007). We
discuss the result of this test in Section 4.3. We do not account for
the uncertainty of the multiplicative shear calibration correction, as
Hildebrandt et al. (2017) showed that it has a negligible impact on
correlation function measurements.

To obtain a crude estimate of how much cosmic variance in the
source redshift distribution affects our cosmological results, we per-
formed the following test. We used the DIR method separately on
the different spectroscopic fields. The variation between the result-
ing redshift distributions suggests that cosmic variance and Poisson
noise contribute roughly equally to the total uncertainty. To estimate
the potential impact on our cosmological constraints, we fixed the
redshift distribution to the mean from the DIR method, but allowed
for a shift in the mean redshift of each tomographic bin, using a
Gaussian prior with a width that equals the error on the mean red-
shift (from table 1 of Hildebrandt et al. 2017). Using this set-up,
we recovered practically identical errors on the cosmological pa-
rameters compared to our fiducial approach. Next, we increased the
width of the Gaussian prior by a generous factor of 1.5, to roughly
include the impact of cosmic variance. This increased the error on
our cosmology results by 5 per cent. Note that this is a conservative
upper limit, as the cosmic variance between the separate spectro-
scopic fields is larger than the cosmic variance of all the fields
combined. Hence we conclude that cosmic variance of the source
redshift distribution affects our cosmological constraints by a few
per cent at most. We do not adopt this as our fiducial approach,
however, since our current method of estimating the impact is not
sufficiently accurate.

We adopt top-hat priors on the cosmological parameters, as well
as the physical ‘nuisance’ parameters discussed earlier in this sec-
tion. The prior ranges are listed in Table 1. Furthermore, we fix
kpivot, the pivot scale where the scalar spectrum has an amplitude of
As, to 0.05 Mpc−1. Even though the sum of the neutrino masses is
known to be non-zero, we adopt the same prior as Hildebrandt et al.
(2017) and fix it to zero. We have tested that adopting 0.06 eV in-

Table 1. Priors on the fit parameters. Rows 1–6 contain the priors on cos-
mological parameters, rows 7–10 the priors on astrophysical ‘nuisance’
parameters. All priors are flat within their ranges.

Parameter Description Prior range

100θMC 100 × angular size of sound horizon [0.5,10]
�ch2 Cold dark matter density [0.01,0.99]
�bh2 Baryon density [0.019,0.026]
ln (1010As) Scalar spectrum amplitude [1.7,5.0]
ns Scalar spectral index [0.7,1.3]
h Dimensionless Hubble parameter [0.64,0.82]
AIA Intrinsic alignment amplitude [ − 6, 6]
B Baryonic feedback amplitude [2,4]
bz1 Galaxy bias of low-z lens sample [0.1,5]
bz2 Galaxy bias of high-z lens sample [0.1,5]

stead leads to a negligible change in our results. Note that the priors
and fiducial values we adopted are the same as in Hildebrandt et al.
(2017), which makes a comparison of the results easier. As a test,
we also fitted our joint data vector adopting the broader priors on H0

and �b from Joudaki et al. (2017b) and found negligible changes to
our results, showing that we are not sensitive to the adopted prior
ranges of these parameters.

A number of the assumptions we made could affect the measured
or theoretical power spectra, and thus our cosmological constraints,
at the per cent level. We have decided to ignore the assumptions
whose impact is of the order of 1 per cent or less. This includes
the Limber approximation, the flat-sky approximation, and the un-
certainty on the multiplicative bias correction. Other effects whose
impact is either uncertain or expected to be larger are addressed in
the text.

We ran COSMOMC with 12 independent chains. To assess whether
the chains have converged, we used a Gelman–Rubin test (Gelman
& Rubin 1992) with the criterion that the ratio between the variance
of any of the fit parameters in a single chain and the variance of that
parameter in all chains combined is smaller than 1.03. Furthermore,
we have checked that the chains are stable against further explo-
ration. When analysing the chains, we removed the first 30 per cent
of the chains as the burn-in phase. Before fitting the measured power
spectra from the data, we ran COSMOMC on our mock results, and ver-
ified that we retrieved the input cosmology. Details of this test can
be found in Appendix B3.

4 R ESULTS

We fitted all power spectra simultaneously and show the best-fitting
model as solid lines in Figs 2, 4, and 6. Overall, the model describes
the trends in the data well. The reduced χ2 of the best-fitting model
has a value of 1.29 (115.9/[100 data points − 10 fit parameters])
and the p-value is 0.034. Hence our model provides a fair fit. If we
exclude the highest � bin of the S2–S4 correlation of PE, whose
corresponding B mode is high, the best-fitting reduced χ2 becomes
1.19 without affecting any of the results (a shift of 0.1σ in S8). We
do include this particular � bin in all our results below to avoid a
posteriori selection.

4.1 Cosmological inference

The main result of this work is the constraint on �m–σ 8, which is
shown in Fig. 7. It is this combination of cosmological parameters
to which weak lensing is most sensitive. We recover the familiar
‘banana-shape’ degeneracy between these two parameters, which
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Figure 7. Constraints on �m and σ 8 from this work, from the fiducial KiDS-
450 analysis (Hildebrandt et al. 2017), and from Planck Collaboration XIII
(2016). Our combined-probe constraints lie between those from the fiducial
KiDS-450 analysis and those from Planck, and are consistent with both.

is expected as gravitational lensing roughly scales as σ 2
8 �m (Jain &

Seljak 1997). Also shown are the main fiducial results of KiDS-450
(Hildebrandt et al. 2017) and the constraints from Planck Collabo-
ration XIII (2016). Our confidence regions are somewhat displaced
with respect to those of Hildebrandt et al. (2017) and our error
on S8 is 28 per cent smaller. Interestingly, our results lie somewhat
closer to those of Planck Collaboration XIII (2016), showing better
consistency with Planck than KiDS-450 cosmic shear alone. As
discussed below, our cosmic shear-only results are fully consistent
with the results from Hildebrandt et al. (2017), although not identi-
cal, because our power spectra weight the angular scales differently
than the correlation functions. Hence this shift towards Planck must
either be caused by Pgm or Pgg or a combination of the two.

We computed the marginalized constraint on S8 ≡ σ8
√

�m/0.3
and show the results in Fig. 8. The joint constraints for our fiducial
setup is S8 = 0.800+0.029

−0.027. The fiducial result from KiDS-450 is
S8 = 0.745 ± 0.039 (Hildebrandt et al. 2017), whilst those of Planck
Collaboration XIII (2016) is S8 = 0.851 ± 0.024.

Compared to the results from Hildebrandt et al. (2017), our pos-
teriors have considerably shrunk along the degeneracy direction.
Since we applied the same priors, this improvement is purely due
to the gain in information from the additional probes. Hence the
real improvement becomes clear when we compare the constraints
on �m and σ 8, for which we find �m = 0.326+0.048

−0.057 and σ8 =
0.776+0.064

−0.081, while Hildebrandt et al. (2017) report �m = 0.250+0.053
−0.103

and σ8 = 0.849+0.120
−0.204. Hence our constraint on σ 8 has improved by

roughly a factor of 2 compared to Hildebrandt et al. (2017).10

To understand where the difference between our results and
Hildebrandt et al. (2017) comes from, and to learn how much Pgm

and Pgg help with constraining cosmological parameters, we also

10 The improvement compared to the PE only results that are discussed
below is ∼44 per cent.

Figure 8. Comparison of our constraints on S8 with a number of recent
results from the literature. We show the results for different combinations
of power spectra on top with black squares, as well as the results from our
conservative runs where we excluded the lowest � bin of all power spectra
(cons-1) and the highest � bin of Pgm and Pgg (cons-2) in the fit. In general,
our results agree well with those from the literature, including those from
Planck.

ran our cosmological inference on all pairs of power spectra, as well
as on PE alone. The resulting constraints are shown in Fig. 8. Fig. 9
shows the relative difference of the size of the error bars, while
Fig. 10 shows the marginalized posterior of �m–σ 8 and �m–S8.
Interestingly, the constraints from PE and Pgm + Pgg are some-
what offset, with the latter preferring larger values. The constraint
on S8 from PE alone is 0.761 ± 0.038, hence close to the results
from Hildebrandt et al. (2017), while for Pgm + Pgg we obtain
S8 = 0.835 ± 0.037. PE is only weakly correlated with Pgg and
Pgm (see e.g. Fig. B3), and if we ignore this correlation (it is fully
accounted for in all our fits), the constraints on S8 from PE and
Pgm + Pgg differ by 1.4σ . Since the reduced χ2 is not much worse
for the joint fit, our data does not point at a strong tension between
the probes, and they can be safely combined.

Combining PE with Pgm or Pgg results in a relatively minor de-
crease of the errors of S8 of 11 per cent. Also, the mean value of S8

does not change much. The reason is that the amplitude of Pgm and
Pgg, which contains most of the cosmological information, is de-
generate with the effective galaxy bias, and as a result, PE drives the
cosmological constraints. When both Pgm and Pgg are included in the
fit, this degeneracy is broken. Fitting all probes jointly leads there-
fore to a larger decrease of 26 per cent compared to fitting only PE

(see Fig. 9), although this could partly be driven by the displacement
of the posteriors in the �m–σ 8 plane between PE and Pgm + Pgg.
Finally, it is interesting to note that PE and Pgm + Pgg have sim-
ilar statistical power, even though the latter is measured on less
than half the survey area (see also Seljak et al. 2005; Mandelbaum
et al. 2013). Using the full 3D information content of Pgg instead of
the projected quantities that we used here, will improve the cosmo-
logical constraining power of this probe even further.

We also performed two conservative runs to test the robustness of
our results. In the first run, we excluded the lowest � bins of all power
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4674 E. van Uitert et al.

Figure 9. Ratio of the error bar on S8 for various combinations of our
data vector and for results from the literature, relative to our fiducial results
(PE + Pgm + Pgg). The solid vertical line indicates a ratio of unity, while
the dashed lines are displaced by relative shifts of 0.2. Our error bar is
28 per cent smaller than the one from Hildebrandt et al. (2017), while the
error bar from Planck Collaboration XIII (2016) is 18 per cent smaller than
ours. The two points shown for Jee et al. (2016) are for the quoted lower
and upper limit on S8.

spectra, as it has the largest IBC and our results might be biased if
the correction is cosmology dependent. In the second conservative
run, we only removed the highest � bins of Pgg and Pgm, as these
bins are potentially most biased if the effective galaxy bias (which
we assumed to be constant) has some scale dependence, which

would affect the small scales (largest � bin) most. The constraints
on S8 are also shown in Fig. 8, and the relative increase in errors
is shown in Fig. 9. We find fully consistent results. The errors
on S8 increase by 4 per cent and 11 per cent for the first and second
conservative run, compared to the fiducial results. As a final test, we
fitted Pgm + Pgg only excluding the highest � bins. The difference
between the constraint on S8 from this run and the fit of PE has
decreased to 1.0σ , because of the increase of the error bars and
because the results from Pgm + Pgg are shifted to a slightly lower
value.

Fig. 8 shows that our results agree fairly well with a number of
recent results from the literature. There is a mild discrepancy with
the results from Köhlinger et al. (2017), which is noteworthy as
they also used the KiDS-450 data set to estimate power spectra,
but with a quadratic estimator. The difference is likely caused by a
conspiracy of several effects. First of all, Köhlinger et al. (2017) em-
ployed a different redshift binning and fitted the signal up to lower
values of �, that is in the range 76 < � < 1310; they report in their
work that the signal on large scales prefers somewhat smaller val-
ues of S8. In Appendix C, we directly compare the power spectrum
estimators for the same redshift and � bins. For the highest tomo-
graphic bins, the quadratic estimator band powers are lower than
our PE estimates at high �. This is accommodated by the model fit
of Köhlinger et al. (2017) with a large, negative intrinsic alignment
amplitude of AIA = −1.72. Since AIA and S8 are correlated (e.g. see
Fig. 12), this pushes the S8 from Köhlinger et al. (2017) down rela-
tive to our results. Note that a thorough internal consistency check
of KiDS-450 data, including a comparison of the information con-
tent from large and small scales, is currently underway (Köhlinger
et al. in preparation). A more in-depth discussion of the difference
is presented in Appendix C.

The constraints from the other works from the literature that we
compare to are consistent with ours (i.e. differences are less than
2σ ), as is shown in Fig. 8. This includes the results from Joudaki
et al. (2017a), who re-analysed the shear correlation functions from
CFHTLenS (Heymans et al. 2013) using the extended version of
COSMOMC that we used here as well. Jee et al. (2016) presented results

Figure 10. Constraints on �m–σ 8 and �m–S8 from this work for different combinations of power spectra. Also shown are the fiducial results for KiDS-450
(H+17; Hildebrandt et al. 2017) and Planck (P+16; Planck Collaboration XIII 2016).
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Figure 11. Reduced χ2 values of the best-fitting models, corresponding p-values of the fit, and constraints on the amplitude of the intrinsic alignment model
AIA and effective biases of the two foreground samples, bz1 and bz2, for the different combinations of power spectra. The lower points show the results of the
conservative run, where we excluded the lowest � bin from PE (c1) and the highest � bin from Pgm and Pgg (c2) in the fit. The red, vertical dashed line in the
second panel indicates a p-value of 0.05, the 2σ discrepancy line.

based on a tomographic cosmic shear analysis of the DLS, a deep
20 deg2 survey with a median source redshift of 1.2. Furthermore,
we show the first constraints from the DES (Dark Energy Survey
Collaboration 2016), who used 139 deg2 of Science Verification data
for a tomographic cosmic shear analysis, and finally, we show the
results for WMAP9 (Hinshaw et al. 2013). We caution that the above
works have been analysed with different models and assumptions,
which complicates a detailed comparison of the results.

4.2 Constraints on astrophysical nuisance parameters

Our analysis constrains a number of physical ‘nuisance’ parame-
ters, which are interesting in themselves. Their 1D marginalized
posterior means and 68 per cent confidence intervals are shown in
Fig. 11, together with the reduced χ2 of the best-fitting model, for
all combinations of power spectra as well as for the conservative
runs. Overall, we find a fair agreement between the constraints be-
tween probes. Interestingly, the fit of PE alone has the worst reduced
χ2 of 1.46. However, that fit is relatively more affected by the high-
est � bin of the S2–S4 cross-correlation, compared to the joint fit;
excluding that bin from the fit leads to a reduced χ2 of 1.28, more
in line with the χ2 values of the other fits.

The amplitude of the intrinsic alignment model is well con-
strained in the combined fit, with AIA = 1.27 ± 0.39. Most of
the constraining power on AIA comes from Pgm, as the redshift
distributions of the foreground samples and the shape samples
partly overlap; fitting only PE, AIA = 0.92+0.76

−0.60 and is therefore
only inconclusively detected. In an analysis of cosmic shear data
from CFHTLenS combined with WMAP7 results, Heymans et al.
(2013) reported AIA = −1.18+0.96

−1.17. Joudaki et al. (2017a) analysed
CFHTLenS data and found AIA = −3.6 ± 1.6, while the correla-
tion function analysis of KiDS (Hildebrandt et al. 2017) reported
AIA = 1.10 ± 0.64. Hence, similar to Hildebrandt et al. (2017),
our results prefer a positive intrinsic alignment amplitude, but we
detect it with a larger significance. The preference for negative val-
ues in CFHTLenS but positive values in KiDS suggests that AIA

is not simply a measure of the amount of intrinsic alignments of
galaxies, but that in fact it accounts for systematic effects that might
differ between surveys. Further evidence for this scenario is that the

amplitude we obtain is larger than what is expected based on re-
sults from previous dedicated intrinsic alignment studies; although
intrinsic alignments have been detected for luminous red galax-
ies (e.g. Joachimi et al. 2011; Singh, Mandelbaum & More 2015),
the constraints for less luminous red galaxies and blue galaxies
are consistent with zero (Mandelbaum et al. 2006; Hirata et al.
2007; Mandelbaum et al. 2011). We provide evidence that AIA ef-
fectively accounts for uncertainty in the redshift distributions in
Section 4.3.

The effective biases of the foreground samples are constrained to
bz1 = 1.12 ± 0.15 and bz2 = 1.25 ± 0.16 in the combined fit. The
most remarkable difference is the lower value for bz1 = 0.78+0.14

−0.18

for PE + Pgm, compared to bz1 = 1.21 ± 0.14 for PE + Pgg,
which is a 2.1σ difference. The constraint on the bias, however, is
dominated by the angular correlation functions, which is expected
as it scales quadratically with the effective bias while the galaxy-
matter power spectrum only linearly. A direct comparison of our bias
constraints with results from other work is complicated, since most
studies focus on volume-limited rather than flux-limited samples,
and because the fitting methodology is different. However, values a
bit larger than unity are typical for samples selected in luminosity or
stellar mass bins close to the mean of our sample (e.g. Zehavi et al.
2011; Zu & Mandelbaum 2015; Crocce et al. 2016). Furthermore,
we note that our cosmological results are not sensitive to the actual
values of the biases, as the bias is degenerate with the �m–σ 8

degeneracy, as illustrated in Fig. B5 in Section B3.
The last physical nuisance parameter we fit is the baryonic feed-

back parameter B. Even when we include Pgm and Pgg in the fit,
it is rather poorly constrained at B = 2.97+0.56

−0.69. Fitting PE only,
we obtain B = 3.26+0.74

−0.22, while Hildebrandt et al. (2017) reported
B = 2.88+0.30

−0.88. All results are consistent with B = 3.13, a pure
dark-matter-only model, but the errors are still large and do not rule
out that baryonic feedback has some impact on the matter power
spectrum (which is supported by observational results on the scal-
ing relation between baryonic properties of haloes and their dark
matter content, see e.g. Viola et al. 2015).

The full marginalized 2D posteriors of all fit parameter pairs is
shown in Appendix E, and the mean and 68 per cent credible regions
of the marginalized 1D posteriors are listed in Table E1.
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4676 E. van Uitert et al.

Figure 12. Posteriors on the shifts of the redshift distributions of our four tomographic source redshift bins a1z to a4z. Grey dashed lines correspond to our
fiducial results where the shifts are fixed to zero.

4.3 Redshift distribution uncertainty

To investigate uncertainty in the redshift distribution, we per-
formed an analysis where we allowed a constant shift in the
redshift distributions of our source samples, independently for
each tomographic source bin. These shifts a[x]z are defined as
nshift(z) = norig(z + a[x]z), with norig and nshift the original and shifted
source redshift distribution of tomographic bin [x]. We adopted
priors in the range [−0.1, 0.1], as larger shifts are extremely un-
likely, given the differences between the various photometric red-
shift methods tested in Hildebrandt et al. (2017). The purpose of
this test is two-fold: it enables us to roughly estimate the impact

of unknown systematic uncertainties in the redshift distributions on
our results, and it also tests whether our data point to systematic
biases in the redshift distributions. The actual redshift bias may be
more complicated than a simple shift of the distribution, and future
work could explore more complicated redshift bias models, such as
changes to the tails of the distribution.

We fit this extended model to our fiducial data set of
PE + Pgm + Pgg and to PE only, to test whether they are inter-
nally consistent and to assess how much additional constraining
power Pgm + Pgg brings. The 2D marginalized posteriors of these
four shift parameters, together with those on S8 and the intrinsic
alignment amplitude, are shown in Fig. 12. The constraints on the
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Table 2. Mean and 68 per cent credible intervals of the shifts
of the four tomographic redshift bins, S8 and AIA.

Bin shift parameter PE + Pgm + Pgg PE

a1z −0.033+0.030
−0.050 0.008+0.077

−0.041

a2z −0.022+0.030
−0.027 0.018+0.050

−0.036

a3z −0.057+0.012
−0.042 −0.051+0.013

−0.049

a4z 0.032+0.068
−0.019 0.039+0.061

−0.017

S8 0.808+0.036
−0.035 0.765 ± 0.045

AIA 0.89+0.48
−0.58 1.01+1.18

−0.90

shifts are listed in Table 2. Both data sets clearly prefer a negative
offset for the third tomographic bin of ∼−0.05. The joint analysis
disfavours a zero shift in this bin at ∼2σ .

It has been suggested that the redshift distribution obtained
by the DIR method (our fiducial one) and the CC method (a
cross-correlation method based on the work of Schmidt et al.
2013; Ménard et al. 2013) are discrepant for this tomographic bin
(Efstathiou & Efstathiou, private communication), and fig. 2 of
Hildebrandt et al. (2017) indeed indicates that the redshift distribu-
tion of the CC method is shifted by roughly this amount towards
lower values, relative to the DIR method. A similar shift between
the mean of the redshift distributions of DIR and CC is reported
in table 1 of Morrison et al. (2017), although this shift is not sig-
nificant there given that the error on the mean for the CC method
is large. Further evidence is presented in appendix A of Joudaki
et al. (2017b), who fit for an unknown constant offset of the KiDS-
450 shear correlation functions per tomographic bin, and report a
weak preference for a negative shift of the third tomographic bin,
and finally in Johnson et al. (2017), who cross-correlated galaxies
from the 2dFLenS survey with KiDS galaxies using the same pho-
tometric redshift bins. For the other tomographic bins, the shifts
are consistent with zero. Furthermore, it is interesting to note that
including Pgm + Pgg leads to tighter constraints on the shift for the
first and second tomographic redshift bin, due to the overlap with
the foreground sample.

Allowing for a shift does not significantly change our constraints
on S8, as Fig. 12 shows. For the combined data set, we obtain
S8 = 0.808+0.036

−0.035, entirely consistent with our fiducial 0.800+0.029
−0.027.

The uncertainty in S8 is 29 per cent larger when we include the
redshift shifts in the fit.

We also show the constraints on AIA in Fig. 12. As already alluded
to in Section 4.2, AIA may effectively serve as a genuine nuisance
parameter, rather than a parameter which corresponds to the actual
intrinsic alignment amplitude of galaxies. Allowing for the shifts
already leads to weaker constraints centred at lower values, that is
AIA = 0.89+0.48

−0.58 (for the combined fit), but even more interesting is
the degeneracy with the shift of the first and second tomographic
redshift bin. If the shifts of these two bins are negative, the intrinsic
alignment amplitude becomes smaller, which shows that in our
fiducial runs, where the shifts are fixed to zero, AIA is at least partly
serving as a nuisance parameter that absorbs potential biases in the
redshift distributions.

5 C O N C L U S I O N S

We constrained parameters of a flat �CDM model by combin-
ing three cosmological probes: the cosmic shear measurements
from KiDS-450, the galaxy-matter cross-correlation from KiDS-
450 around two foreground samples of GAMA galaxies, and the

angular correlation function of the same foreground galaxies. The
analysis employed angular band power estimates determined from
integrals over the corresponding two-point correlation functions.
This simple formalism provides practically unbiased band pow-
ers over a considerable range in �. In our case, the range was
150 < � < 2000 (see Appendix A).

We fitted cosmological models to our data using the updated
version of the COSMOMC pipeline from Joudaki et al. (2017a), ex-
tended to simultaneously model galaxy–galaxy lensing measure-
ments (Joudaki et al. 2018). The baseline model consists of a flat
�CDM model and physically motivated prescriptions for the in-
trinsic alignment of galaxies and baryonic feedback. We assumed a
scale-independent effective galaxy bias for our foreground samples.
Fitting this model to the three sets of power spectra simultaneously
enabled us to coherently account for the physical nuisance parame-
ters, lifting degeneracies between the fit parameters. We tested our
full pipeline on numerical simulations that are tailored to KiDS and
recovered the input cosmology.

In the model fitting, we used an analytical covariance matrix,
accounting for all cross-correlations between power spectra and
also for the partial spatial overlap between KiDS-450 and three
equatorial GAMA patches. We validated the analytical covariance
matrix with numerical simulations and obtained a reasonable level
of agreement. Our approach of using an analytical covariance matrix
has the advantage that we can accurately account for the effect of
SSC, whose impact is subdominant compared to the other terms
but not irrelevant. Furthermore, it enabled us to derive an iterative
scheme where we updated the analytical covariance matrix with the
best-fitting parameters of the previous run (see Appendix D). This
led to a ∼1σ shift of the effective galaxy bias posteriors after one
iteration, but the posterior of S8 was not significantly affected (i.e.
a shift of less than 0.5σ in the mean).

We obtained tight constraints on the two cosmological param-
eters to which weak gravitational lensing is most sensitive, �m

and σ 8. Our results can be summarized with the S8 parameter, for
which we obtained S8 ≡ σ8

√
�m/0.3 = 0.800+0.029

−0.027. We demon-
strated that our three probes are internally consistent, and that in-
cluding Pgm and Pgg in the fit leads to a 26 per cent improvement in
constraining power on S8. We compared our results to a number of
recent studies from the literature and found good overall agreement.
The fiducial KiDS-450 cosmic shear correlation function analysis
(Hildebrandt et al. 2017) revealed a value for S8 that is lower than
the Planck cosmology, with the tension being 2.3σ . Interestingly,
the results from our combined probe analysis point to a somewhat
higher S8 value, in-between the KiDS-450 and Planck results (and
consistent with both). Our constraints from cosmic shear alone are
fully consistent with the results from Hildebrandt et al. (2017) and
maintain the same level of discrepancy with Planck.

The physical nuisance parameters that we marginalize over are
interesting in themselves from an astrophysical perspective. How-
ever, they have to be interpreted with care. For example, when
taken at face value, our constraints on the intrinsic alignment am-
plitude, AIA = 1.27 ± 0.39, suggests that galaxies are on average
intrinsically aligned with the large-scale density field. However, by
allowing for an additional shift in the source redshift distributions
in the fit, we demonstrated that AIA could partly work as a nuisance
parameter that accounts for such residual biases in the redshift dis-
tributions. This test also demonstrated that our data prefers a small,
negative shift of the redshift distribution of the third bin with �z =
−0.057+0.012

−0.042, but this does not impact our cosmological results. The
nuisance parameters are better constrained when Pgm and Pgg are
included in the fit, which highlights the power of combining these
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cosmological probes. Marginalizing over wide priors on the mean
of the tomographic redshift distributions yields consistent results
for S8 with an increase of 28 per cent in the error.

As in Hildebrandt et al. (2017), we detect B modes in the cosmic
shear signal at a low level. Under the strong assumption that the
underlying residual systematic generates the same amount of E and
B modes, we obtain a 0.5σ shift in S8 away from the Planck values.
As the cause of the systematic is currently unknown, we caution
that its eventual correction could lead to similar changes in the S8

posterior.
Another KiDS study of a similar nature has run in parallel to

this work and will be presented imminently in Joudaki et al. (2018)
In that work, cosmic shear measurements from KiDS-450 are com-
bined with galaxy–galaxy lensing and redshift space distortion mea-
surements for a foreground sample of galaxies from BOSS (Dawson
et al. 2013) and 2dFLenS (Blake et al. 2016). Even though the anal-
yses differ in many aspects (e.g. different lens samples, different
clustering statistics, different scales used in the fit, different meth-
ods to estimate the covariance matrices and different priors in the
fit), the combination of probes used in that work lead to a similar
∼20 per cent decrease of the error bar of S8, but maintain in tension
with Planck.

Our work shows that large-scale structure self-calibration meth-
ods work on real data. This not only leads to significant improve-
ments in the constraints of cosmological parameters, but also prop-
erly accounts for nuisance effects such as galaxy bias, intrinsic
alignments, and biases in the source redshift distributions. Future
extensions of this work will include other cosmological probes such
as redshift space distortions, but also explore extensions of the as-
trophysical and cosmological models considered.

AC K N OW L E D G E M E N T S

We thank Elisabeth Krause for a helpful comparison of covariance
models, Hiranya Peiris for useful discussions, and Andy Taylor,
Niall MacCrann, and Gerrit Schellenberger for useful feedback on
the draft. We thank our referee, Joe Zuntz, for valuable feedback.
EvU and BJ acknowledge support from an STFC Ernest Rutherford
Research Grant, grant reference ST/L00285X/1. BJ acknowledges
support by an STFC Ernest Rutherford Fellowship, grant refer-
ence ST/J004421/1. JHD acknowledges support from the European
Commission under a Marie-Sklodwoska-Curie European Fellow-
ship (EU project 656869). CH and MA acknowledge support from
the European Research Council under grant number 647112. CB ac-
knowledges the support of the Australian Research Council through
the award of a Future Fellowship. Parts of this research were con-
ducted by the Australian Research Council Centre of Excellence
for All-sky Astrophysics (CAASTRO), through project number
CE110001020. HH is supported by an Emmy Noether grant (No.
Hi 1495/2-1) of the Deutsche Forschungsgemeinschaft. This work
was supported by the World Premier International Research Cen-
ter Initiative (WPI), MEXT, Japan. TDK is supported by a Royal
Society URF. This work is supported by the Deutsche Forschungs-
gemeinschaft in the framework of the TR33 ‘The Dark Universe’.
KK acknowledges support by the Alexander von Humboldt Foun-
dation. The research leading to these results has received funding
from the People Programme (Marie Curie Actions) of the European
Union’s Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement number 627288. RN acknowledges support
from the German Federal Ministry for Economic Affairs and En-
ergy (BMWi) provided via DLR under project no. 50QE1103. MV
acknowledges support from the European Research Council un-
der FP7 grant number 279396 and the Netherlands Organisation

for Scientific Research (NWO) through grants 614.001.103. This
work is based on data products from observations made with ESO
Telescopes at the La Silla Paranal Observatory under programme
IDs 177.A-3016, 177.A-3017, and 177.A-3018. GAMA is a joint
European-Australasian project based around a spectroscopic cam-
paign using the Anglo-Australian Telescope. The GAMA input cat-
alogue is based on data taken from the Sloan Digital Sky Survey
and the UKIRT Infrared Deep Sky Survey. Complementary imaging
of the GAMA regions is being obtained by a number of indepen-
dent survey programs including GALEX MIS, VST KiDS, VISTA
VIKING, WISE, Herschel-ATLAS, GMRT, and ASKAP providing
UV to radio coverage. GAMA is funded by the STFC (UK), the
ARC (Australia), the AAO, and the participating institutions. The
GAMA website is http://www.gama-survey.org/.

Author Contributions: All authors contributed to the development
and writing of this paper. The authorship list is given in three groups:
the lead authors (EvU, BJ, SJ), followed by two alphabetical groups.
The first alphabetical group includes those who are key contributors
to both the scientific analysis and the data products. The second
group covers those who have either made a significant contribution
to the data products, or to the scientific analysis.

R E F E R E N C E S

Albrecht A. et al., 2006, preprint (arXiv:astro-ph/0609591)
Alsing J., Heavens A., Jaffe A. H., 2017, MNRAS, 466, 3272
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A P P E N D I X A : AC C U R AC Y O F T H E POW E R
SPECTRUM ESTI MATO RS

By definition, our power spectrum estimators from equations (5),
(11), and (17) are unbiased when we integrate the corresponding
real-space correlation functions from zero to infinity. However, even
if the correlation functions are measured over a finite range, we
can extract practically unbiased band powers over a considerable
range in �. Outside this range, the measured power spectra can
be corrected for this integral bias. We show that this correction is
robust, but recommend only applying it when the bias correction is
smaller than the statistical errors, as is the case here.

For this test, we compute the 3D matter power spectrum with the
non-linear corrections from Takahashi et al. (2012) and the trans-
fer function fit by Eisenstein & Hu (1998), adopting cosmological
parameters that correspond to the best-fitting values of Planck Col-
laboration XIII (2016). We convert this into the convergence power
spectrum using the redshift distribution of our fourth tomographic
bin, which has the highest signal-to-noise and is therefore the most
conservative test case. This is then converted into the shear cor-
relation functions ξ+/ − using equation (3), adopting the same θ

binning as on the data. These are treated as the observed correlation
functions, and inserted in equation (5) and (8) to estimate PE and
PB, respectively, using the same � ranges that we adopted in the
data.

In the first column on Fig. A1, we show how the recovered band
powers vary when we increase the lower limit of the integrals of
equation (5). Each row corresponds to a given � range, as indicated in
each panel. The solid black line is the recovered band power, while
the dashed red line corresponds to the theoretical power spectrum at
the logarithmic mean of the � bin. The band powers become biased
when the lower limit of the integral becomes larger than 1 arcmin.
The higher � bins are more strongly affected, as expected, as they
retrieve more information from small angular scales. The cyan area
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Figure A1. Recovered band powers from analytically computed real-space correlation functions, obtained by varying the lower limit of the conversion integral
whilst keeping the upper limit fixed to 600 arcmin (the first, third, fifth, and seventh column), or by varying the upper limit whilst keeping the lower limit fixed
to 0.06 arcmin (the second, fourth, sixth, and eighth column). The black line indicates the recovered power spectrum, the red line the input power spectrum at
the logarithmic mean of the � bin. The five rows correspond to five different � ranges, indicated in the panels. The first two columns are for PE, column 3–4 for
PB, column 5–6 for Pgm, and column 7–8 for Pgg. We use the lens and source redshift distributions from the data, and select those bins that have the highest
signal to noise. For PE/B, that is the S4–S4 bin, for Pgm it is F2–S4, and for Pgg it is F2–F2. Other bins show similar trends. The cyan regions indicate the
analytical error for those bins in our data. The thin dotted vertical lines show the maximum scales available in the data (2 deg for PE and Pgm, 4 deg for Pgg),
showing that the lowest � bin may suffer from a small bias, which we correct for.

indicates the analytical error on PE for the fourth tomographic bin
of KiDS-450. Since we can measure the shear correlation functions
to much smaller scales than 1 arcmin, we conclude that our band
powers are not biased from shifting the minimum scale from zero
to 0.06 arcmin.

In the second column, we repeat the exercise, but now changing
the upper limit of the integral. The highest � bins are completely
unaffected. The band powers in the lower � bin become biased if the
upper limit becomes less than 200 arcmin. We measure the shear
correlation functions in the data up to 120 arcmin. For that scale,
there is a small bias for the lowest � bin, but it is smaller than our
statistical error. We apply an IBC by adding the difference between
the observed and input power spectrum, to the one measured on
the data. A similar correction scheme was implemented for a power
spectrum estimator in Tröster et al. (2017) in the context of a cross-
correlation study of gamma-ray maps with weak lensing data.

The third and fourth columns show the corresponding B modes.
The trends are similar as for PE: we recover B modes in the range
where the E modes are biased. However, if there are significant
B modes in the data, it does not automatically mean that they
are caused by leakage in our band power estimators. If leakage
is present, it is most likely to affect the first and the last � bin.

The fifth and sixth column show the results for the galaxy-
matter power spectrum. The analytical power spectra are deter-
mined with equation (10), where we used the redshift distribution
of the F2 foreground sample from GAMA, adopted an effective
bias of unity, and used the redshift distribution of the fourth to-
mographic shape sample from KiDS-450 to estimate the lensing
efficiencies. We recover a similar result. Given the � ranges, our
band powers are unbiased as long as we use a minimum lower

limit of 2 arcmin or less, which is trivially met. Furthermore, for
a maximum scale of 120 arcmin (the maximum scale available
in the data), there is a small bias in the lowest � bin, which we
correct for.

The final two columns repeat this test for the angular power
spectrum. The angular power spectrum is more sensitive to the lower
limit of the integral, and the highest � bin becomes significantly
biased if the minimum scale is less than 0.2 arcmin; we measure
the angular correlation function up to 0.06 arcmin in the data, hence
the highest � bin is not affected by the integral bias. The lowest
� bin is recovered without bias as long as the maximum scale is
200 arcmin or more. Since we trust the angular correlation function
up to 4 deg, also this bin should not be biased. The larger sensitivity
to the lower limit of the integral comes from the mixing between
θ and � scales through J0. PE, for example, uses information from
both ξ+ and ξ−, which yields a different mixing between θ and �

scales through the combination of J0 (for ξ+) and J4 (for ξ−). If we
adopt K+ = 1 to compute PE (i.e. only using information from ξ+),
the bias increases much faster when the lower limit of the integral
increases, similar to what is observed for Pgg.

Note that in Fig. A1, we chose the combinations of foreground
sample and shape sample bins that resulted in the highest signal-
to-noise, which are the most affected by the integral bias. We have
checked that the relative impact of the integral bias is smaller for
the other power spectra, relative to their statistical powers.

We computed the IBC for all power spectra and applied it to the
data. We note that applying this correction has a negligible effect
on our results; the constraints on S8 shift by less than 0.2σ if we
do not apply the correction. The error on the IBC correction will
therefore cause a shift of S8 that is much smaller than 0.2σ .
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To test the dependence of the IBC on cosmology, we repeated
the test for a Planck cosmology where we either increased or de-
creased the value of σ 8 by 10 per cent. As a result, the curves shown
in Fig. A1 shifted vertically, meaning that the error on the IBC
linearly depends on the error of the amplitude of the theoretical
power spectrum used to compute the correction. It is unlikely that
the amplitude of the theoretical power spectrum is off by more than
10 per cent, which puts an upper limit on the bias of the IBC of
∼10 per cent as well. As long as the IBC is smaller than the mea-
surement errors, such an error is subdominant and will not impact
the results. Second-order effects, such as small differences in the
shape of the power spectrum, are expected to lead to even smaller
biases. We note that the issue of a cosmology dependence of the
IBC can be circumvented by computing a new correction for every
cosmological model evaluated in the MCMC and applying that to
the data before determining the likelihood.

A P P E N D I X B: VA L I DATI O N O N MO C K S

Next, we determine the accuracy of our power spectrum estima-
tors on numerical simulations, which enables us to test whether we
measure the correlation functions correctly, and whether the red-
shift distributions are properly accounted for. The main purpose of
these numerical simulations, however, is to compute the covariance
matrix from different realizations in order to validate the analytical
covariance matrix, and secondly, to test our cosmological inference
pipeline by fitting the mock power spectra (using the analytical co-
variance matrix, hence mimicking the observational procedure), to
verify whether we recover the input cosmology.

The mock catalogues are based on the Scinet Light Cone Simu-
lations ( Harnois-Déraps & van Waerbeke 2015), a series of about
1000 N-body simulations tailored for weak lensing surveys. Each
realization follows the evolution of 15363 dark matter particles in
a cube that measures 505 Mpc h−1 on a side, which are projected
on 18 redshift mass planes in the range 0 < z < 3. Light cones are
then extracted from these planes on 77452 pixel grids and turned into
convergence and shear maps by ray-tracing. The cosmology is fixed
to WMAP9 + SN + BAO, 11 that is �m = 0.2905, �� = 0.7095,
�b = 0.0473, h = 0.6898, σ 8 = 0.826 and ns = 0.969.

These mocks have been tailored specifically for the KiDS-450
analyses and were first presented in Hildebrandt et al. (2017), al-
though the version we use here has a larger opening angle (100 deg2

instead of 60 deg2). Source galaxies are placed at random positions
in the mocks and are assigned both a true redshift (enforcing the
tomographic n(z) estimated with the DIR method, see Hildebrandt
et al. 2017) and a photometric redshift, zB, based on the joint proba-
bility distribution of these two quantities. This enables the selection
of tomographic redshift bins whose true redshift distributions ex-
actly match those of KiDS. The gravitational shears are interpolated
from the simulated shear maps at the galaxy positions, while the
intrinsic ellipticities are from a Gaussian with a width equalling the
intrinsic ellipticity dispersion measured for KiDS galaxies.

To simulate a foreground galaxy sample, which we need to mea-
sure the galaxy-matter power spectrum and the angular power spec-
trum, we use the simulation boxes that are at a mean redshift of
z = 0.221 and span a redshift range of 0.1747 to 0.2680. Lens po-
sitions are drawn from the projected mass maps with a probability
that is proportional to the density, ensuring that the bias of the lens

11 https://lambda.gsfc.nasa.gov

Figure B1. Ratio of power spectra measured on the numerical simulations
and the theoretical power spectra. The top row shows the autocorrelation
and cross-correlation of the cosmic shear power spectra for the two shape
samples, the middle row shows the galaxy-matter power spectrum for one
foreground sample and two shape samples, and the bottom row shows the
angular power spectrum of the foreground sample. Open black circles (blue
triangles) correspond to theoretical power spectra computed using the non-
linear corrections of Smith et al. (2003) (Takahashi et al. 2012). Error bars
show the error on the mean of the different mock realizations.

sample is constant at b = 1 and does not depend on scale. Hav-
ing a lens sample with a known bias is advantageous as we can
check whether we recover it. The disadvantage is that it does not
enable us to test whether the effective galaxy bias is scale inde-
pendent in the simulations. Although our mock foreground sample
does not reproduce the galaxy sample from GAMA, it allows us to
test our pipelines by replacing the GAMA clustering and redshift
distribution by that of these mock foreground galaxies.

For simplicity, we only use one lens sample and two source sam-
ples, selected with 0.1 < zB ≤ 0.5 and 0.5 < zB ≤ 0.9, respectively.
The various real-space correlation functions are measured with the
same pipelines as those applied to the data, and converted into power
spectra using the same angular scales.

B1 Validating the power spectrum estimator

We measured the cosmic shear correlation functions of our two
source samples (two autocorrelations and one cross-correlation), the
two tangential shear signals around the foreground sample, and the
clustering signal of the foreground sample, and converted those into
their respective power spectra, using the same angular ranges that
we adopted in the data. We compare that to theoretical predictions,
computed for the same cosmological parameters that were used in
the mocks and using the non-linear corrections of either Smith et al.
(2003) or Takahashi et al. (2012). These theoretical power spectra
bracket the power spectrum measured directly from the simulations
(see Harnois-Déraps & van Waerbeke 2015).

The ratio of the power spectra measured on the mocks and
the theoretical power spectra is shown in Fig. B1. The theoreti-
cal power spectra computed using Smith et al. (2003) are up to
10 per cent smaller than the power spectra measured on the mocks,
while the theoretical predictions using Takahashi et al. (2012) agree

MNRAS 476, 4662–4689 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/476/4/4662/4935170 by Liverpool John M
oores U

niversity user on 22 July 2020

https://lambda.gsfc.nasa.gov


4682 E. van Uitert et al.

Figure B2. Comparison of the analytical and numerical simulation covariance matrix, for the case without shape noise. The left-hand side shows the ratio
of the square root of the diagonals, separately for the six different power spectra. Numbers on the horizontal axis correspond to the different � ranges, as
indicated in the figure. Red open squares correspond to the full analytical covariance matrix, black circles to the analytical predictions excluding SSC. These
two extremes bracket the mock covariance, which has some SSC, but not the full effect. The right-hand side shows the correlation matrix, with the analytical
covariance including SSC in the top left and the numerical simulation covariance matrix in the lower right. The off-diagonal terms agree reasonably well.

very well, and only overestimate the signal by ∼5 per cent of the
cosmic shear S2–S2 power spectrum. If the mock power spectra
lie right in the middle of the Smith et al. (2003) and Takahashi
et al. (2012) predictions (as was found in Harnois-Déraps & van
Waerbeke 2015), we conclude that our power spectra are accurate
to better than ∼5 per cent. This is the relative precision with respect
to the simulations, not the absolute precision of our estimator. As
demonstrated in Appendix A, the absolute error of our estimator is
much smaller than the statistical errors and can therefore be safely
ignored in our error budget.

Note that the tangential shear signal around the foreground sam-
ple steeply drops on scales <2 arcmin, which is a sign that their
positions do not exactly coincide with the centre of their dark mat-
ter haloes. This may be due to the finite resolution of the simulations.
However, as Fig. A1 shows, this does not affect Pgm, as the band
power in the highest � bin only becomes biased if the lower limit of
the integral is larger than 3 arcmin.

B2 Validating the covariance matrix

We computed the covariance matrix of the numerical power spectra
using 136 different realizations of the mocks. We do this sepa-
rately using galaxy shapes with and without intrinsic shape noise.
We consider the case without shape noise as it enables us to as-
sess whether the non-Gaussian in-survey term and the SSC term,
which are subdominant in the presence of shape noise, are correctly
modelled.

We computed the analytical covariance matrix using the specifics
of the mocks, that is with the same cosmological parameters, the
same mock foreground and source redshift distributions, the same
mock intrinsic shear dispersion, and the same mock survey coverage
(a total survey area of 100 deg2, with complete overlap between the
three probes).

A comparison of the covariance matrix for the mocks without
shape noise is shown in Fig. B2. The left-hand panel shows the
ratio of the square root of the diagonals, while the right-hand panel

compares the off-diagonal terms. In the left-hand panel, we compare
to analytical covariance matrices with and without a SSC contribu-
tion. The mocks have some SSC from the regions in the original
simulation boxes that were outside the light cones, but not the full
effect, hence we expect the two analytical predictions to bracket
the result from the numerical simulations, which they do for the
cosmic shear power spectra. For Pgm and Pgg, the analytical error is
∼10 per cent smaller than the error estimated from the mocks.

In the right-hand panel, we compare the off-diagonal terms of
the mock covariance to the analytical one including SSC. We find
a good overall agreement, suggesting that the cross-correlation of
the different power spectra is correctly modelled with our analytical
covariance matrix. The mean difference of the off-diagonal elements
of the analytical and mock correlation matrix is only ∼0.06.

In Fig. B3, we repeat the test for the case with shape noise.
The left-hand panel shows that the analytical covariance with and
without SSC is quite similar, because the covariance matrix is dom-
inated by shape noise. We find a good overall agreement between
the diagonals, with typical differences of the order of 10 per cent
for the three power spectra. Given the small residual differences
in the power spectra measurements, this level of agreement is ex-
pected. Also the off-diagonal terms match well. The covariance
between the different power spectra is much smaller, and there is
little correlation left between PE and Pgm or Pgg.

B3 Validating the cosmological inference

The final purpose of the mocks is to test our cosmological inference
pipeline. We fit different combinations of mock power spectra, using
the analytical covariance matrix that includes SSC. The mocks have
an area of 100 deg2, which is smaller than the survey area of the
data. To ensure that the cosmological inference is unbiased given
our current statistical precision on the data, we simply rescale the
analytical covariance matrix such that it corresponds to an area
of 500 deg2. Consequently, the SSC contribution to the analytical
covariance matrix is not completely correctly modelled, but since
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Figure B3. Similar to Fig. B2, but with the inclusion of shape noise.

Figure B4. Constraints on �m–σ 8 for different combinations of mock
power spectra, measured on the numerical simulations, assuming a total
effective survey area of 500 deg2. The cross-hair indicates the input cosmol-
ogy, which is comfortably recovered by our fitting pipeline.

its impact is relatively small it is not expected to affect our results
much.

We use the extended version of COSMOMC using the same settings
as on the data and with the same convergence criterion. The resulting
constraints on �m–σ 8 are shown in Fig. B4. The input cosmology
is indicated with the grey cross-hair and falls comfortably within
the 1σ contours for all combinations of power spectra that we fit.
Hence our cosmological inference pipeline correctly retrieves the
input parameters of the mocks, and any remaining systematic bias
is smaller than our statistical precision. The constraints from the
various power spectrum combinations show little scatter, since we
fit the mean signal of the different realizations of the mocks.

Figure B5. Constraints on �m–σ 8 obtained by fitting all mock power spec-
tra simultaneously, colour-coded by the value of the bias. It illustrates the
degeneracy between the bias and the �m–σ 8 degeneracy. The cross-hair
indicates the input cosmology, at which point the bias has a value of unity.

In all fits, the bias of the foreground sample is consistent with
unity, the input value (except when we only fit PE, which leaves b
unconstrained), although for PE + Pgg + Pgm it is shifted by 0.3σ

towards lower values. This explains why the cross-hair in Fig. B4
is not exactly centred in the middle of the contours for this power
spectra combination. If we fix the bias to unity, the contours shrink
dramatically and centre on the cross-hair. The degeneracy between
the bias and the degeneracy direction of the posterior in the �m–σ 8

plane is further illustrated in Fig. B5, where we colour-coded the
posterior of the PE + Pgg + Pgm fit using the average values of the
bias.

Ideally, one would like to know whether our estimators are un-
biased for a much larger survey (e.g. 10 times larger than KiDS).
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4684 E. van Uitert et al.

However, we already noted in Section B1 that we do not exactly
recover the input power spectra, but that there are differences left of
up to ∼5 per cent. It is unclear whether these differences are caused
by limitations of our mocks, of our analytical predictions or of our
power spectra estimators, although we note that the tests on the an-
alytical power spectrum–correlation function pairs in Appendix A,
as well as tests we have performed on Gaussian random fields (not
reported here), suggest that the accuracy of our power spectrum
estimator is much better than 5 per cent. For future surveys with im-
proved statistical power, these tests need to be revisited to a higher
level of precision.

A P P E N D I X C : C O M PA R I S O N TO QUA D R AT I C
ESTIMATO R

We compare our band powers to the quadratic estimator from
Köhlinger et al. (2017). To do that, we adopt the redshift binning
from that work, that is three tomographic source redshift bins se-
lected with SK1 = 0.1 < zB ≤ 0.3, SK2 = 0.3 < zB ≤ 0.6 and
SK3 = 0.6 < zB ≤ 0.9. We measure the shear correlation functions
with our standard angular binning, apply the shear calibration bias
corrections, and estimate our power spectra for the same � binning
as Köhlinger et al. (2017). Note that we use the full KiDS-450 area
to measure the shear correlation functions, while Köhlinger et al.
(2017) exclude 36 deg2 from disconnected patches. We have tested
that excluding those fields does not affect our measurements. Fur-

thermore, we do not apply an IBC to our band powers, which means
that our first � bin is biased low. These limitations should not affect
the comparison much. The results are shown in Fig. C1. We plot the
full statistical error bars in both cases. The differences between the
power estimates should be substantially smaller than these errors as
the input data is practically identical, although residual fluctuations
will occur because the measurements are weighted differently in
the quadratic and band power estimates.

We find a fair agreement for PE for the first and second tomo-
graphic bin. For the third tomographic bin, our band powers at high
� are higher than the quadratic estimator. This is most apparent in
the SK3–SK3 bin. The B modes also appear to show fair agree-
ment, except for the highest � bin in the SK3-SK3 combination
and in the SK2-SK3 combination, where again the band powers
are higher than the power determined from the quadratic estimator.
We note that both estimators were tested on very similar (B-mode
free) Gaussian random field simulations and found to faithfully re-
produce the input power, which implies that the differences seen
are due to some systematic trend in the data that was not included
in the mocks. A corresponding trend can be seen in fig. D11 of
Hildebrandt et al. (2017). In their autocorrelation of the third tomo-
graphic bin (which has substantial overlap with SK3), ξB displays a
positive signal below ∼4 arcmin. While our band power estimator
is sensitive to these scales in the correlation function, the quadratic
estimator is expected to be immune to systematics at a few arcmin-
utes or less. Note that we find similar reduced χ2 values of the
null-hypothesis as for our fiducial four redshift bin analysis, while

Figure C1. Comparison of PE (left-hand panels) and PB (right-hand panels) for the various tomographic bin combinations, measured with our estimator
(black, solid squares) and the quadratic estimator from Köhlinger et al. (2017) (red, open squares). The black dashed lines indicate the best-fitting model from
PE alone from this work, the dotted blue line indicates the best-fitting model to PE using the cosmological inference code from Köhlinger et al. (2017), and the
solid red lines indicate the best-fitting model from Köhlinger et al. (2017). The measurements in the grey area were excluded from the cosmological inferences
with the Köhlinger et al. (2017) model. The only noticeable difference between the estimators is observed for the highest tomographic bin of PE, where our
estimator returns higher band powers at large � than the quadratic estimator.
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Köhlinger et al. (2017) report that their B modes are consistent
with zero.

To test for the potential impact of B modes on the cosmological
inference, Hildebrandt et al. (2017) applied a correction under the
assumption that the underlying systematics contribute equally to the
E- and B modes, which led to a downward shift in S8 by ∼1 σ , in
the direction of the Köhlinger et al. (2017) results. We repeated this
test by creating a new data vector where we subtracted the B modes
from the E modes. We updated the covariance matrix by adding
the analytical B-mode covariance matrix to the E-mode one. The
cosmological inference resulted in S8 = 0.787 ± 0.034, which is
within 0.5σ of our fiducial result. As in Hildebrandt et al. (2017), the
shift is towards the results from Köhlinger et al. (2017), but does not
close the gap. As the source of the low-level B-mode contamination
is currently unknown (see the discussion in Hildebrandt et al. 2017),
we do not know how it affects the E modes, hence we do not attempt
to remove it in our fiducial analysis but defer this to forthcoming
work. It is interesting to note that the B-mode signature appears
to vary with the choice of redshift binning (cf. Figs C1 and 2).
The link between cosmic shear B modes and binning in terms of a
photometric redshift point estimate will be explored in more detail
in Asgari et al. (in preparation).

Fig. C1 also shows the best-fitting model from Köhlinger et al.
(2017), our best-fitting model from fitting PE only on the default
KiDS-450 four-bin data (but shown for the current three tomo-
graphic redshift bins), as well as the best-fitting model obtained
by applying the cosmological inference method of Köhlinger et al.
(2017) to our band powers. The differences between the latter two
are small, which suggests that differences in modelling choices are
not driving the shift of S8; these include the approaches to the non-
linear matter power spectrum, baryon feedback and massive neutri-
nos, which might contribute at a lower level. The lower quadratic
estimator band powers at high � for the SK3–SK3 bin is accommo-
dated by the model with a negative intrinsic alignment amplitude,
AIA = −1.72 (weighted median), albeit with large error bars. The fit
of the Köhlinger et al. (2017) to our band powers results in an intrin-
sic alignment amplitude of AIA = 1.53. Since AIA is correlated with
S8 (see Fig. 12), this lowers the constraints on S8 from Köhlinger
et al. (2017) relative to our results. Such a large, negative intrinsic
alignment amplitude is not expected from physical models of the
effect. Given the findings of Section 4.3, the low value of AIA could
point to inconsistencies in the relative strengths of the tomographic
power spectra caused by biases in the redshift distributions.

A P P E N D I X D : IT E R AT E D A NA LY T I C A L
C OVA R I A N C E M AT R I X

In our first run on the data, we used an analytical covariance matrix
computed using the best-fitting parameters of Planck Collaboration
XIII (2016), and effective galaxy biases of unity for the two fore-
ground samples. If the parameter values we adopted for the covari-
ance model were far from the high-probability region in the resulting
posterior, our inferred cosmological model would be inconsistent
with the error model used in the likelihood. For example, if we un-
derestimated the effective galaxy biases, the error bars on Pgm and
Pgg would be too small and these power spectra would get too much
weight in the cosmological inference. Therefore, we updated the
analytical covariance matrix using the best-fitting parameters from
our initial fit to the data, and repeated the cosmological inference.
We repeated this procedure a second time to make sure that this
iterative approach is stable and converging. Ideally, one would like
to update the analytical covariance matrix in each step in the chain

Figure D1. Constraints on the reduced χ2 value of the best-fitting model
and the fit parameters S8, bz1 and bz2, where we iteratively update the
analytical covariance matrix using the best-fitting parameter values from the
previous run, and starting with a fiducial Planck Collaboration XIII (2016)
cosmology and effective galaxy biases of unity (black stars) or starting with
a fiducial WMAP9 cosmology and effective galaxy biases of 1.5 (red stars).
The subsequent constraints are shown by black diamonds and red circles for
the Planck and WMAP9 runs, respectively. The constraints on the galaxy
biases shift significantly after the first iteration, but do not change after the
second iteration.

during the cosmological inference, but the computational demands
make this approach currently infeasible. Note that in these runs,
we did not marginalize over the uncertainty of the source redshift
distributions, as we found that to be less stable due to the increased
noise.

In Fig. D1, we show the reduced χ2 of the best-fitting model,
the constraints on S8 and on the nuisance parameters bz1 and bz2

in each step of the iteration. The reduced χ2 of the initial fit is
1.34 and remains constant. The constraints on S8 does not change
much either and is therefore not sensitive to small changes in the
parameters of the analytical covariance matrix. The effective bi-
ases, however, change significantly. The constraints from the ini-
tial fit are bz1 = 1.25 ± 0.13 and bz2 = 1.43 ± 0.15, while the
constraints after the second iteration are bz1 = 1.11 ± 0.15 and
bz2 = 1.25 ± 0.17. Hence the posteriors shift not only by about
1σ , but also the 68 per cent confidence intervals increase. The cos-
mological parameters that are degenerate with the galaxy biases, in
particular �m and σ 8, shifted by similar amounts. All cosmological
inferences on data in this paper use the analytical covariance matrix
based on the best-fitting parameters of the second iteration, as the
parameters do not change significantly after another iteration.

To test the stability of this iterative procedure, we also com-
puted the analytical covariance matrix using a WMAP9 cosmology
(Hinshaw et al. 2013) and effective galaxy biases of 1.5 and used
that as the starting point. The resulting parameter constraints are
also shown in Fig. D1. The results converge after the first iteration
and are thus not very sensitive to the exact starting point of the
iterative procedure.
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4686 E. van Uitert et al.

A P P E N D I X E: FU L L PO S T E R I O R

We show the full posterior of all fit parameters in our fiducial run
in Fig. E1, which highlights the degeneracies between parameters.

The mean and 68 per cent confidence interval of the fit parame-
ters for the different combinations of power spectra are listed in
Table E1.

Figure E1. Posterior of combinations of all fit parameters, obtained by marginalizing over all other parameters. The contours indicate the 1σ and 2σ regimes.
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Table E1. Mean and 68 per cent confidence interval of the fit parameters (row 1–10) and derived parameters (row 11–13), χ2 of the best-fitting model (row
14) and the number of degrees of freedom (row 15). Also shown are the results from our conservative runs where we excluded the lowest � bin of all power
spectra (cons-1) and the highest � bin of Pgm and Pgg (cons-2) in the fit.

PE + Pgm + Pgg PE PE + Pgm PE + Pgg Pgm + Pgg PE + Pgm + Pgg PE + Pgm + Pgg Pgm + Pgg

Parameter cons-1 cons-2 cons-2

100θMC 1.082+0.045
−0.034 1.064+0.056

−0.038 1.063+0.050
−0.039 1.093+0.040

−0.032 1.087+0.046
−0.035 1.064+0.049

−0.039 1.094+0.040
−0.032 1.095+0.043

−0.033

�ch2 0.153+0.032
−0.038 0.134+0.044

−0.046 0.132+0.033
−0.042 0.169+0.034

−0.038 0.159+0.034
−0.041 0.133+0.031

−0.041 0.169+0.032
−0.038 0.173+0.037

−0.042

�bh2 (× 10−2) 2.25 ± 0.35 2.24+0.36
−0.34 2.24+0.36

−0.34 2.25 ± 0.35 2.25 ± 0.35 2.25 ± 0.35 2.25 ± 0.35 2.25 ± 0.35

ln (1010As) 2.63+0.37
−0.44 2.75+0.29

−1.05 2.80+0.52
−0.77 2.30+0.20

−0.54 2.67+0.37
−0.45 2.92+0.45

−0.58 2.33+0.22
−0.58 2.43+0.31

−0.58

ns 0.97+0.14
−0.19 1.11+0.19

−0.05 1.08+0.22
−0.06 0.97+0.14

−0.18 0.93+0.07
−0.23 1.03+0.21

−0.13 0.99+0.15
−0.18 0.91+0.06

−0.21

h 0.73+0.06
−0.05 0.74+0.06

−0.05 0.74+0.06
−0.05 0.73 ± 0.06 0.73+0.06

−0.05 0.74+0.06
−0.05 0.73 ± 0.06 0.73 ± 0.06

AIA 1.27 ± 0.39 0.92+0.76
−0.60 1.46 ± 0.41 0.88+0.69

−0.52 1.38 ± 0.47 1.27 ± 0.46 1.20 ± 0.41 1.42 ± 0.55

B 2.97+0.56
−0.69 3.26+0.74

−0.22 3.28+0.72
−0.22 3.08+0.80

−0.41 2.86+0.27
−0.86 3.03+0.70

−0.55 2.99 ± 0.62 2.82+0.25
−0.82

bz1 1.12 ± 0.15 – 0.78+0.14
−0.18 1.21 ± 0.14 1.13 ± 0.15 1.00 ± 0.17 1.23+0.16

−0.17 1.24 ± 0.18

bz2 1.25 ± 0.16 – 1.45+0.27
−0.32 1.45±0.18 1.23 ± 0.17 1.11 ± 0.19 1.37 ± 0.17 1.36 ± 0.19

�m 0.33+0.05
−0.06 0.29+0.08

−0.09 0.29+0.06
−0.07 0.36 ± 0.06 0.34+0.05

−0.06 0.29+0.05
−0.06 0.36 ± 0.06 0.37+0.06

−0.07

σ 8 0.78+0.06
−0.08 0.80+0.10

−0.17 0.81+0.10
−0.13 0.70+0.05

−0.08 0.80+0.07
−0.09 0.84+0.08

−0.11 0.72+0.06
−0.08 0.74+0.07

−0.09

S8 0.800+0.029
−0.027 0.761 ± 0.038 0.769+0.036

−0.033 0.759+0.036
−0.032 0.835 ± 0.037 0.808+0.030

−0.028 0.778 ± 0.033 0.805+0.044
−0.043

χ2 115.9 61.5 97.0 67.3 45.4 84.5 101.6 32.5

d.o.f. 90 42 80 50 40 70 80 30

APPENDIX F: VALIDITY O F FLAT-SKY
APPROX IMATION

We check if the flat-sky approximation that underlies our power
spectrum estimators has any impact on the accuracy of our mea-
surements. Before taking band-power averages, the estimators can
be expressed as

P̂ E
κ (�) = π

∫ ∞

0
dθ

{
K+(�, θ ) ξ̂+(θ ) + K−(�, θ ) ξ̂−(θ )

}
, (F1)

P̂ gm(�) = 2π

∫ ∞

0
dθ Kgm(�, θ ) γ̂t(θ ), (F2)

P̂ gg(�) = 2π

∫ ∞

0
dθ Kgg(�, θ ) ŵ(θ ). (F3)

The full-sky expressions for the kernels K± were derived in Chon
et al. (2004), while their result for the TE spectrum can be adopted
for our galaxy–galaxy lensing estimator. Together with the well-
known full-sky relation between scalar power spectrum and corre-
lation function (Peebles 1973), one obtains

K+(�, θ ) = d�
22(θ ) sin θ, (F4)

K−(�, θ ) = d�
2−2(θ ) sin θ, (F5)

Kgm(�, θ ) = d�
20(θ ) sin θ, (F6)

Kgg(�, θ ) = d�
00(θ ) sin θ, (F7)

where d�
mm′ is the Wigner small-d matrix, and d�

00(θ ) = P�(cos θ ) is a
Legendre polynomial. The flat-sky (large �, small θ ) approximations
for these kernels, denoted by Kflat, can be read off equations (1),
(10), and (15); see Kitching et al. (2017), Kilbinger et al. (2017),
and Lemos et al. (2017) for more detailed discussions.

We additionally propose an extended flat-sky approximation with
the following kernels,

Kext
+ (�, θ ) = J0 [(� + 1/2)θ] θ, (F8)

Kext
− (�, θ ) = J4 [(� + 1/2)θ] θ, (F9)

Kext
gm(�, θ ) = J2 [(� + 1/2)θ] θ, (F10)

Kext
gg (�, θ ) = J0 [(� + 1/2)θ] θ, (F11)

obtained from the standard flat-sky expression by replacing � →
�+ 1/2. In Fig. F1, we show the difference between the standard and
extended flat-sky approximated kernels and the full-sky expressions
at � = 100, which is slightly beyond the largest scales that we
consider. The extended approximation can readily be implemented
in our current estimators, with the integral corresponding to the
band power average now performed numerically.

We compare the power spectrum estimates under the assump-
tions of the standard and extended flat-sky approximations in the
case of galaxy clustering, which extends to the largest angular scales
and should thus be most affected. As expected, we find the largest
discrepancy for the lowest � bin, which amounts to a relative dif-
ference of 3.3 × 10−5 in F1 and less than 10−6 in F2. Since the
extended flat-sky approximation is typically two orders of magni-
tude more accurate over the scales used in this analysis (see Fig. F1,
bottom panel), this implies that the discrepancy that we have mea-
sured is also the one between standard flat-sky approximation and
full expression to within 1 per cent. It is reasonable to expect this
discrepancy to be very small because we choose to altogether ig-
nore large scales which are inaccessible from our data, rather than
merely misrepresenting their geometry. We have demonstrated in
Appendix A that the IBC, resulting from cutting in particular the
large scales from the integrals in our estimators, is much larger but
still well controlled in our measurements.
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4688 E. van Uitert et al.

Figure F1. Comparison between kernels in the conversion from correlation
functions to power spectra. Shown is the difference between the standard
flat-sky (Kflat, solid lines), as well as the extended flat-sky (Kext, dashed
lines), approximation and the exact full-sky kernel as a function of angular
separation for fixed � = 100. The top panel shows the cosmic shear kernels
relating to ξ±; the bottom panel those for Pgm and Pgg.

APPENDIX G : C RO SS-SURV EY COVARIANCE

In this analysis we combine probes from two surveys with substan-
tially different areas, where the smaller survey is fully contained
in the larger’s area coverage. While the covariances of individ-
ual probes can be modelled analytically with the respective survey
footprint over which they are measured, there may be significant
cross-variances between probes due to the shared sky that need to
be included in the joint likelihood analysis.

We model the cross-variances under the same assumptions ap-
plied to previous analytic approaches (e.g. Takada & Hu 2013),
neglecting the explicit effect of the survey mask on modes well
within the footprint, and only taking it into account for the coupling
between in-survey and super-survey modes (the SSC). Under these
assumptions, the spin-2 nature of gravitational shear does not im-
pact on the covariance, so it is sufficient to work with the scalar
weak lensing convergence and the galaxy number density. More-
over, shot/shape noise does not contribute to the cross-variances
we consider. Therefore, we consider the simple, idealized power
spectrum estimator (see Joachimi et al. 2008, for the analogous full
calculation for gravitational shear estimates) for survey A

P̂A(�) ≡ 1

�A �R(�)

∫
�R(�)

d2�1|x̃ob
A (�1)|2, (G1)

with

x̃ob
A (�) =

∫
d2�′ x̃(�′) �A(� − �′), (G2)

where �A is the (effective) survey area, �R(�) is the area of an
annulus centred on �, and �A is the Fourier transform of the survey
aperture, divided by 4π2 (see equation 12 of Joachimi et al. 2008).
For ease of notation, we consider a single random field x, but the
following calculations hold equally for any combination of the weak

lensing convergence and galaxy number density fields. The Fourier-
transformed field is denoted by a tilde.

This power spectrum estimator is unbiased under certain assump-
tions about the survey footprint, which can be seen by taking the
expectation value,

〈P̂A(�)〉 = 1

�A �R(�)

∫
�R(�)

d2�1

∫
d2�′

∫
d2�′′ 〈

x̃(�′) x̃(�′′)
〉

× �A(�1 − �′) �A(−�1 − ��′′)

= (2π)2

�A �R(�)

∫
�R(�)

d2�1

∫
d2�′ Px(�′) �2

A(�1 − �′),

(G3)

where in the second equality the definition of the power spectrum
of the random field x was used,〈
x̃(�) x̃(�′)

〉 = (2π)2 δD(� + �′) Px(�), (G4)

with δD the Dirac delta distribution. The larger the survey area,
the closer �A will be to a Dirac delta distribution. It is therefore
appropriate to approximate �2

A(�) ≈ δD(�) �A/(2π)2, as long as
we consider modes well within the survey footprint. Inserting this
expression, we find that equation (G1) is an unbiased estimate of
the annular average of the power spectrum of x,

〈P̂A(�)〉 = 1

�R(�)

∫
�R(�)

d2�1 Px(�1). (G5)

We use this estimator to calculate the cross-variance between
surveys A and B,

〈
�PA(�) �PB(�′)

〉 = 1

�A �B �R(�) �R(�′)

∫
�R(�)

d2�1

∫
�R(�′)

d2�2

×
{ 〈

x̃ob
A (�1)x̃ob

B (�2)
〉 〈

x̃ob
A (−�1)x̃ob

B (−�2)
〉

+ 〈
x̃ob

A (�1)x̃ob
B (−�2)

〉 〈
x̃ob

A (−�1)x̃ob
B (�2)

〉
+ 〈

x̃ob
A (�1)x̃ob

B (−�1)x̃ob
A (�2)x̃ob

B (−�2)
〉

c

}
, (G6)

where the subscript c denotes the connected correlator that encap-
sulates the non-Gaussian cosmic variance contributions. Here, �P
denotes the fluctuation of the power spectrum estimator around its
expectation. We continue with the first term of equation (G6), as-
suming without loss of generality that survey A is the larger of the
two,〈
x̃ob

A (�1)x̃ob
B (�2)

〉 〈
x̃ob

A (−�1)x̃ob
B (−�2)

〉
=

∫
d2�a

∫
d2�b

∫
d2�c

∫
d2�d 〈x̃(�a)x̃(�b)〉 〈x̃(�c)x̃(�d )〉

× �A(�1 − �a) �B(−�2 − �b) �A(−�1 − �c) �B(�2 − �d )

= (2π)4
∫

d2�a

∫
d2�c Px(�a) Px(�c) �A(�1 − �a)

× �A(−�1 − �c) �B(−�2 + �a) �B(�2 + �c)

≈ (2π)4 P 2
x (�1) �2

B(�1 − ��2)

≈ (2π)4 �B P 2
x (�1) δD(�1 − ��2). (G7)

To arrive at the third equality, we approximated the �A of the
larger survey A by the Dirac distribution. This assumption is fair as
long as �A � �B; however, if the two surveys approached similar
coverage, the standard expression for a single survey could be used
to good accuracy anyway. The final equality results from the same
approximation that was made in the derivation of equation (G5).

The remaining terms in equation (G6) are processed in full anal-
ogy to yield the following expression for the in-survey contributions
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to the cross-variance,

〈
�PA(�) �PB(�′)

〉
in− survey

≈ 8π2

�max �R(�)
δ��′P 2

x (�)

+ 1

�max �R(�) �R(�′)

∫
�R(�)

d2�1

×
∫

�R(�′)
d2�2 Tx(�1, �2, −�1, −�2),

(G8)

where δ��′ is the Kronecker delta acting on the angular frequency
bins at which the covariance is evaluated, and where Tx is the
trispectrum of the field x. We have defined �max ≡ max(�A, �B).
This result reduces to the standard expression for �A → �B and
is straightforward to generalize to the multifield and tomographic
case (see e.g. Joachimi & Bridle 2010; Krause & Eifler 2017).

It remains to be shown how the SSC term is modified for the
cross-variance across different surveys. We follow Takada & Hu
(2013) closely and refer to their paper for detailed calculations.
They showed that in the single-survey case the SSC of angular
power spectra (again for a single field) is given by

〈
�PA(�) �PA(�′)

〉
SSC

=
∫ χhor

0
dχ

K4(χ )

fK(χ )6

∂Pδ [�/fK(χ )]

∂δb

× ∂Pδ

[
�′/fK(χ )

]
∂δb

σ 2
A(χ ), (G9)

where χ is comoving distance, fK(χ ) comoving angular diame-
ter distance, and K(χ ) the line-of-sight kernel of the signal un-
der consideration. The expression above is based on the Limber

approximation, which we expect to hold similarly well as for the
signals we model, due to the broad line-of-sight distributions en-
tering our signals. The derivatives of the matter power spectrum Pδ

with respect to a fluctuation in the background density δb provide
the response of the measurement to super-survey modes, while

σ 2
A(χ ) = 1

�2
A

∫
d2�1

(2π)2
P lin

δ

(
�1

fK(χ )

)
|�A(�1)|2 (G10)

is the variance of this background density field within the mask of
survey A. The linear matter power spectrum is employed in this
expression. Repeating the derivation of Takada & Hu (2013), but
now with the last term of equation (G6) as the starting point, which
accounts for different survey footprints, we obtain

σ 2
AB(χ ) = 1

�A �B

∫
d2�1

(2π)2
P lin

δ

(
�1

fK(χ )

)
�A(�1) �B(−�1).

(G11)

Note that σ 2
AB remains real because the imaginary parts of the

Fourier transforms of the survey masks are antisymmetric and will
thus vanish after the area integration over �1. Our implementation
of the SSC contribution uses equation (G9) with σ 2

AB determined
from the explicit GAMA and KiDS survey footprints provided in
the form of HEALPIX maps. A more detailed study of the impact of
survey geometry on covariance contributions will be presented in a
forthcoming publication; see also Lacasa, Lima & Aguena (2016)
for a detailed discussion of effects pertaining to the SSC term.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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