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ABSTRACT

We present here the cosmo-SLICS, a new suite of simulations specially designed for the analysis of current and upcoming weak
lensing data beyond the standard two-point cosmic shear. We sampled the [Ωm, σ8, h,w0] parameter space at 25 points organised in
a Latin hyper-cube, spanning a range that contains most of the 2σ posterior distribution from ongoing lensing surveys. At each of
these nodes we evolved a pair of N-body simulations in which the sampling variance is highly suppressed, and ray-traced the volumes
800 times to further increase the effective sky coverage. We extracted a lensing covariance matrix from these pseudo-independent
light-cones and show that it closely matches a brute-force construction based on an ensemble of 800 truly independent N-body runs.
More precisely, a Fisher analysis reveals that both methods yield marginalized two-dimensional constraints that vary by less than 6%
in area, a result that holds under different survey specifications and that matches to within 15% the area obtained from an analytical
covariance calculation. Extending this comparison with our 25 wCDM models, we probed the cosmology dependence of the lensing
covariance directly from numerical simulations, reproducing remarkably well the Fisher results from the analytical models at most
cosmologies. We demonstrate that varying the cosmology at which the covariance matrix is evaluated in the first place might have
an order of magnitude greater impact on the parameter constraints than varying the choice of covariance estimation technique. We
present a test case in which we generate fast predictions for both the lensing signal and its associated variance with a flexible Gaussian
process regression emulator, achieving an accuracy of a few percent on the former and 10% on the latter.
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1. Introduction

Weak lensing has recently emerged as an accurate probe of cos-
mology, exploiting the high-quality photometric data recorded
by dedicated surveys such as the Canada-France-Hawaii Tele-
scope Lensing Survey1 (CFHTLenS hereafter), the Kilo Degree
Survey2 (KiDS), the Dark Energy Survey3 (DES) and the Hyper
Suprime-Cam Survey4 (HSC). These collaborations have devel-
oped a number of tools to model, extract and analyse the cos-
mic shear signal – the weak lensing distortions imprinted on
the image of background galaxies by the foreground large scale
structures (see Bartelmann & Schneider 2001; Kilbinger 2015,
for reviews).

Given a catalogue of galaxies with shear and redshift esti-
mates, there exist many ways to extract the lensing information
that is required to constrain the underlying cosmological param-
eters that describe our Universe at its largest scales. The central
approach adopted by the above-mentioned surveys starts with
the measurement of a two-point summary statistics, either the
configuration-space correlation function (as in Kilbinger et al.
2013; Hildebrandt et al. 2017, 2018; Troxel et al. 2018) or the
Fourier-space power spectra (as in Liu et al. 2015a; Köhlinger
et al. 2017; Hikage et al. 2019).

The motivations for choosing these statistics are multiple and
compelling: the accuracy of the signal predictions is better than
a percent over many scales (see e.g. Mead et al. 2015), while the

1 http://www.cfhtlens.org
2 http://kids.strw.leidenuniv.nl
3 http://darkenergysurvey.org
4 https://hsc.mtk.nao.ac.jp/ssp/

effect of most known systematic effects can be either modelled,
measured, mitigated, self-calibrated, or suppressed with simple
cuts applied on the data vector. Examples of such effects include
the secondary signal caused by the intrinsic alignment of galax-
ies (Joachimi et al. 2015; Kiessling et al. 2015; Kirk et al. 2015),
the strong baryon feedback processes that modify the lensing
signal at small and intermediate scales (Semboloni et al. 2011)
or the relatively large uncertainty on the source redshift distri-
bution and on the shape measurement. For a recent review of
the many systematics that affect weak lensing measurements, see
Mandelbaum (2018).

In the case of two-point functions, it has been possible
to model or parameterise most of these effects in a way that
allows for an efficient marginalisation, and therefore leads to a
potentially unbiased estimation of the cosmological parameters
(MacCrann et al. 2018). These statistics benefit from another
key advantage, which is that there exist analytical calculations
that describe the covariance of the signal (see, e.g., Scoccimarro
& Frieman 1999; Takada & Jain 2009; Krause & Eifler 2017).
In addition to its reduced computational cost compared to the
simulation-based ensemble approach, this estimate is noise-free,
providing a significant gain in stability during the inversion pro-
cess that occurs within the cosmological inference segment of
the analysis. For these reasons, the analytical approach stands
out as a prime method for evaluating the statistical uncertain-
ties in cosmic shear analyses (Hildebrandt et al. 2017, 2018;
Hikage et al. 2019; Troxel et al. 2018). The caveat is that its
accuracy is not well established, and comparisons with the
ensemble approach yield discrepancies. Hildebrandt et al.
(2017), for example, show that swapping the covariance matrix
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from a simulation-based to the analytic method shifts the cosmo-
logical results by more than 0.5σ. This clearly calls for further
investigations in both methods, which have yet to come.

Although two-point functions are powerful and clean sum-
mary statistics, they do not capture all the cosmological infor-
mation contained within the lensing data, and hence they are
sub-optimal in that sense. The situation would be different if the
matter distribution resembled a Gaussian random field, however
gravity introduces a variety of non-Gaussian features that can
only be captured by higher-order statistics. Accessing this addi-
tional information generally results in an improved constraining
power on the cosmological parameters with the same data, as
demonstrated in lensing data analyses based on alternative esti-
mators such as the bispectrum (Fu et al. 2014), the peak count
statistics (Liu et al. 2015a,b; Kacprzak et al. 2016; Martinet
et al. 2018; Shan et al. 2018), the Minkowski functionals (Petri
et al. 2015), clipped lensing (Giblin et al. 2018), the density-split
lensing statistics (Brouwer et al. 2018; Gruen et al. 2018) or con-
volutional neural networks (Fluri et al. 2019). Recent studies fur-
ther suggest that some of these new methods on their own could
outperform the two-point cosmic shear at constraining the sum
of neutrino masses, and further help in constraining many other
parameters (notably Ωm and σ8) when analysed jointly with the
two-point functions (Li et al. 2019; Liu & Madhavacheril 2019;
Marques et al. 2019; Coulton et al. 2019). Moreover, there is
growing evidence that some of these methods could be partic-
ularly helpful for probing modifications to the theory of Gen-
eral Relativity (see Liu et al. 2016; Peel et al. 2019, 2018, for
modified gravity analyses with peak counts and machine learn-
ing methods). These are all compelling reasons to further refine
such promising tools, but at the moment they are often regarded
as immature alternatives to the standard two-point functions for
a number of reasons.

Indeed, developing a new analysis strategy relies heavily
on weak lensing numerical simulations for modelling the pri-
mary and secondary signals, for covariance estimation and for
understanding the impact of residual systematics in the data.
Furthermore, these simulations must meet a number of require-
ments: the redshift distribution of the mock source galaxies has
to match that of the data; the noise properties must be closely
reproduced; the cosmology coverage of the simulations must be
wide enough for the likelihood analysis5; the overall accuracy in
the non-linear growth of structure has to be sufficiently high to
correctly model the physical scales involved in the measurement.
For instance, the Dietrich & Hartlap (2010, DH10 hereafter) sim-
ulations were used a number of times (Kacprzak et al. 2016;
Martinet et al. 2018; Giblin et al. 2018) and have been shown
by the latest of these analyses to be only 5−10% accurate on the
cosmic shear correlation functions, a level that is problematic
given the increasing statistical power of lensing surveys. Other
limitations such as the box size and the mass resolution must
further be taken into account in the calibration, carefully under-
standing what parts of a given lensing estimator are affected by
these. To illustrate this point, consider the DarkMatter simula-
tion suite6 described in Matilla et al. (2017), where 5123 parti-
cles were evolved in volumes of 240 h−1 Mpc on the side (see
Table 1 for more details on existing lensing simulation suites).
Such a small box size significantly affects the measurement of

5 This precise requirement has been a severe limitation for cosmic
emulators based on the Coyote Universe (Heitmann et al. 2014) or the
Mira Titan simulations (Heitmann et al. 2016), which span a parameter
space that is too restricted for current lensing data.
6 http://columbialensing.org/#dm

shear correlation functions at the degree scale, but has negligible
impact on the lensing power spectrum, peak counts or PDF count
analyses. Understanding these properties is therefore an integral
part of the development of new lensing estimators.

In this paper we introduce a new suite of simulations, the
cosmo-SLICS, which are primarily designed to calibrate novel
weak lensing measurement statistics and enable competitive cos-
mological analyses with current weak lensing data. We followed
the global numerical setup of the SLICS simulations7 (Harnois-
Déraps et al. 2018, HD18 hereafter) in terms of volume and parti-
cle number, which accurately model the cosmic shear signal and
covariance over a wide range of scales and are central to many
CFHTLenS and KiDS data analyses (e.g. Joudaki et al. 2017,
2018; Hildebrandt et al. 2017; van Uitert et al. 2018; Amon et al.
2018; Giblin et al. 2018). We varied four cosmological param-
eters over a range informed by current constraints from weak
lensing experiments: the matter density Ωm, a combination of
the matter density and clumpiness S8 ≡ σ8

√
Ωm/0.3, the dark

energy equation of state w0 and the reduced Hubble parameter
h. We sampled this four-dimensional volume at 25 points organ-
ised in a Latin hyper-cube, and developed a general cosmic shear
emulator based on Gaussian process regression, similar to the tool
discussed in e.g. Schneider et al. (2008), Lawrence et al. (2010)
and Liu et al. (2018), but in principle applicable to any statistics.

We show in the appendix that with as few as 25 nodes, the
interpolation accuracy is at the percent level over the scales rel-
evant to lensing analyses with two-point statistics, for most of
the four-dimensional parameter volume. Our emulator is fast,
flexible and easily interfaces with a Markov chain Monte Carlo
sampler.

When calibrating an estimator with a small number of
N-body simulations, one needs to consider the impact of sam-
pling variance. This becomes an important issue especially when
the measurement is sensitive to large angular scales that fluctu-
ate the most. We suppressed this effect with a mode-cancellation
technique that preserves Gaussianity in the initial density fields,
unlike the method presented in Angulo & Pontzen (2016) that
sacrifice this statistical property, but achieve a higher level
of cancellation. Our approach has a significant advantage that
becomes clear in the following use.

As a first application, we investigate the accuracy of a weak
lensing covariance matrix estimated from the cosmo-SLICS,
when compared to the results from 800 truly independent sim-
ulations. We revisit and reinforce the findings from Petri et al.
(2016), according to which the lensing covariance matrix can
be estimated from a reduced number of independent realisa-
tions. We discuss the reasons why this works so well with the
cosmo-SLICS, and how this can be put to use. In particular, the
smaller computational cost allows us to explore the cosmologi-
cal dependence of the covariance matrices in a four-dimensional
parameter space, eventually for any lensing estimator. The vari-
ations with cosmology are known to matter to some level, and
its impact on the inferred cosmological parameters could lead
to important biases if neglected (Eifler et al. 2009; van Uitert
et al. 2018). A recent forecast by Kodwani et al. (2019) sug-
gests that the impact on a LSST-like survey would be negligi-
ble provided that the fixed covariance is evaluated at the true
cosmology, which is a priori unknown. Indeed, under assump-
tion of Gaussian field, a Gaussian likelihood approximation with
fixed covariance recovers the mode and second moments of the
true likelihood, as shown by Carron (2013). The most accurate

7 Scinet LIghtCone Simulations (SLICS): https://slics.roe.ac.
uk
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posterior with a Gaussian likelihood can therefore be obtained
by choosing a covariance model that adopts the best-fit parame-
ters. This can in practice be achieved by the iterative scheme of
van Uitert et al. (2018), which observe a clear improvement on
the accuracy of the cosmological constraints, however it requires
either access to a cosmology-dependent covariance estimator, or
to the matrix evaluated at the best-fit cosmology. So far this was
only feasible with two-point analyses, however the simulations
presented in this paper, combined with our flexible emulator,
facilitate incorporating the full cosmological dependence of the
covariance for arbitrary statistics into the parameter estimation.

In the context of the lensing power spectrum in a wCDM
universe, we verify our covariance estimation against analytical
predictions based on the halo model and find a reasonable match,
although not for all cosmologies. We study the importance
of these differences with Fisher forecasts, assuming different
covariance matrix scenarios and different survey configurations.
Notably, we investigate whether the impact on the parameter
constraints is larger for variations in the cosmology with a fixed
covariance estimator, or for variations in estimators at a fixed
cosmology. This question is central for determining the next
steps to take in the preparation of the lensing analyses for next
generation surveys.

This document is structured as follow: we review in Sect. 2
the theoretical background and methods; in Sect. 3 we describe
the construction and assess the accuracy of the numerical simu-
lations; we present in Sect. 4 our comparison between different
covariance matrix estimation techniques, and investigate their
impact on cosmological parameter measurements; we discuss
our results and conclude in Sect. 5. Further details on the simu-
lations, the emulator and the analytical covariance matrix calcu-
lations can be found in the Appendices.

2. Theoretical background

In this section we present an overview of the background
required to carry out these investigations. We first review the
modelling aspect of the two-point functions and the correspond-
ing covariance, then describe how these quantities are measured
from numerical simulations, and finally we lay down the Fisher
forecast formalism that we later use as a metric to measure the
effect on cosmological parameter measurements of adopting (or
not) a cosmology-dependent covariance matrix. Although our
main science goal is to outgrow the two-point statistics, they
nevertheless remain an excellent point of comparison that most
experts can easily relate to. The method described here can be
straightforwardly extended to any other lensing estimator, how-
ever we leave this for future work.

2.1. 2-point weak lensing model

The basic approach of two-point cosmic shear is that the cos-
mology dependence is captured by the matter power spectrum,
P(k, z), which is therefore the fundamental quantity we attempt
to measure. Many tools exist to compute P(k, z), including fit
functions such as HaloFit (Smith et al. 2003; Takahashi et al.
2012), emulators (Heitmann et al. 2014; Nishimichi et al. 2019),
the halo model (Mead et al. 2015) or the reaction approach
(Cataneo et al. 2019). The weak lensing power spectrum Cκ

`
is

related to the matter power spectrum by8:

8 While C` in principle refers to full-sky calculations with ` taking on
integer values, we consistently use the flat-sky approximation in this
work, and hence ` should be interpreted as real-valued.

Cκ
` =

∫ χH

0

dχ
χ2 W2(χ)P

(
` + 1/2
χ

, z(χ)
)
, (1)

where χH is the comoving distance to the horizon, ` = kχ and
W(χ) is the lensing efficiency function for lenses at redshift z(χ),
which depends on the source redshift distribution n(z) via:

W(χ) =
3H2

0Ωm

2c2 χ(1 + z)
∫ χH

χ

n(χ′)
χ′ − χ

χ′
dχ′. (2)

Here H0 is the value of the Hubble parameter today, c is the
speed of light in vacuum, and n(χ) = n(z)dχ/dz. The lensing
power spectrum (Eq. (1)) is directly converted into the cosmic
shear correlation function ξ±(ϑ) with:

ξ±(ϑ) =
1

2π

∫ ∞

0
Cκ
` J0/4(ϑ`)`d`, (3)

where ϑ is the angular separation on the sky, and J0/4(x)
are Bessel functions of the first kind. Equations (1)–(3) are
quickly computed with line-of-sight integrators such as Nicaea9

or cosmoSIS10, and we refer to Kitching et al. (2017) and
Kilbinger et al. (2017) for recent reviews on the accuracy of this
lensing model.

2.2. 2-point weak lensing covariance

Essential to any analysis of the cosmic shear 2-point function
is an estimate of the lensing power spectrum covariance matrix,
Covκtot, that enters in the likelihood calculation from which the
best fit cosmological parameters are extracted. This covariance
matrix consists of three contributions, often written as:

Covκtot = CovκG + CovκNG + CovκSSC. (4)

The first term on the right-hand side is referred to as the
“Gaussian covariance”, which would be the only contribution
if the matter field was Gaussian. It can be calculated as:

CovκG =
2
N`

[
Cκ
` +

σ2
ε

n̄

]2

δ``′ , (5)

where Cκ
`

is evaluated from Eq. (1), σε characterizes the intrinsic
shape noise (per component) of the galaxy sample, n̄ is the mean
galaxy density of the source sample, and N` is the number of
independent multipoles being measured in a bin centred on `
and with a width ∆`. The quantity N` scales linearly with the
area of the survey as 2N` = (2` + 1) fsky∆`, fsky being the sky
fraction defined as Asurvey/(4π). The term δ``′ is the Kronecker
delta function, and its role is to forbid any correlation between
different multipoles, one of the key properties of the Gaussian
term.

The second term of Eq. (4) is the “non-Gaussian connected
term”, which introduces a coupling between the measurements
at multipoles ` and `′. This enhances the overall variance and
further makes the off-diagonal elements non-zero, by an amount
that depends on the parallel configurations of the connected
trispectrum, T κ(`,−`, `′,−`′), which can be computed analyti-
cally either from a halo-model approach (Takada & Jain 2009)
or from perturbation theory (Scoccimarro & Frieman 1999). The
CovκNG term is then given by:

CovκNG =
1

Asurvey

∫
|`|∈`

d`2

A(`)

∫
|`′ |∈`′

d`′2

A(`′)
T κ(`,−`, `′,−`′), (6)

9 Nicaea: www.cosmostat.org/software/nicaea/
10 CosmoSIS: https://bitbucket.org/joezuntz/cosmosis/
wiki/Home
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where A(`) is the area of an annulus in multipole-space covering
the bin centred on `. The lensing trispectrum T κ is computed
in the Limber approximation from the three-dimensional matter
trispectrum Tδ:

T κ(`1, `2, `3, `4) =

∫ χH

0

dχ
χ6 W4(χ)T δ(k1, k2, k3, k4, z(χ)). (7)

The last term in Eq. (4) is called the Super Sample Covari-
ance (SSC) which describes the coupling of survey modes to
background density fluctuations δb larger than the survey win-
dow M. It is evaluated as (Li et al. 2014; Takada & Hu 2013):

CovκSSC =
1

Asurvey

∫ χH

0

dχ
χ6 W4(χ) σ2

b(χ,M)
(
∂P(k, z)
∂δb

) (
∂P(k′, z)
∂δb

)
,

(8)

with k = `/χ, k′ = `′/χ and z = z(χ). The term σb denotes
the variance of super-survey modes for the mask M, while the
derivatives of the power spectrum can be estimated from e.g.
separate universe simulations or fit functions to these results (Li
et al. 2014; Barreira et al. 2018a), or from the halo model directly
(Takada & Hu 2013). Note that to first order, this SSC term also
scales with the inverse of the survey area.

In this paper we employ the halo model to compute the
matter trispectrum and the response of the power spectrum to
background modes, using the same implementation that was val-
idated with numerical simulations in Hildebrandt et al. (2017)
and van Uitert et al. (2018). Details of the code are provided in
Appendix D. In order to match the simulations, we considered a
survey area of 100 deg2 in these calculations, and the maskM is
assumed to be square. Beyond the SSC term, no survey boundary
effects were incorporated in the model in this work.

2.3. 2-point measurements from simulations

Our main weak lensing simulation products consist of con-
vergence κ-maps and galaxy catalogues that include positions,
shear, convergence and redshift for every objects. The lensing
power spectra Ĉκ

`
were estimated directly from the Fourier trans-

form of κ-maps (see Sect. 3.4 for details about their construc-
tions), as:

Ĉκ
`

= 〈|̃κ(`)|2〉, (9)

where the brackets refer to an angular averaging over the Fourier
ring of radius `. For both simulation measurements and model
predictions, we adopted a log-space binning scheme, spanning
the range [35 ≤ ` ≤ 104] with 20 bins. The lensing power spec-
trum covariance was computed from an ensemble of N measure-

ments Ĉκ,i
`

, following:

Covκsim =
1

N − 1

N∑
i=1

[
Ĉκ,i
`
− 〈Cκ

`〉

] [
Ĉκ,i
`′
− 〈Cκ

`′〉

]
. (10)

This expression contains all at once the three terms from Eq. (4)
with the caveat that the SSC term may not be fully captured due
to the finite simulation volume; we present in Sect. 4 a compar-
ison between the two approaches. The shear 2-point correlation
functions ξ̂±(ϑ) were extracted from our simulated galaxy cat-
alogues with TreeCorr (Jarvis et al. 2004), which basically
measures:

ξ̂±(ϑ) =

∑
i j wiw j

(
ei

te
j
t ± ei

×e j
×

)
∆i j∑

i j wiw j
· (11)

Here ei
t/× are the tangential and cross components of the ellip-

ticity measured from galaxy i, wi is a weight generally related
to the shape quality and taken to be unity in this work, and the
sums run over all galaxy pairs separated by an angle ϑ falling
in the angular bin; the binning operator ∆i j = 1.0 in that case,
otherwise it is set to zero. Following Hildebrandt et al. (2017),
we computed the ξ̂±(ϑ) in 9 logarithmically-spaced angular sep-
aration bins between 0.5 and 300 arcmin.

2.4. Fisher forecasts

Given a survey specification, a theoretical model and a covari-
ance matrix, we can estimate the constraints on four cosmolog-
ical parameters by employing the Fisher matrix formalism. In
particular, we are interested in measuring the impact on the con-
straints from different changes in the covariance matrix, either
switching between estimator techniques at a fixed cosmology, or
varying the input cosmology for a fixed estimator.

The Fisher matrix Fαβ for parameters pα,β quantifies the
curvature of the log-likelihood at its maximum and provides
a lower bound on parameter constraints under the assumption
that the posterior is well approximated by a Gaussian. We can
construct our matrix Fαβ from the derivative of the theoretical
model Cκ

`
with respect to the cosmological parameter [pα,β] =

[Ωm, σ8, h,w0], from the covariance matrix C, and from the
derivative of the covariance matrix with respect to these cos-
mological parameters. Under the additional assumption that the
underlying data is Gaussian distributed, we can write (Tegmark
1997):

Fαβ =
∑
`,`′

∂Cκ
`

∂pα
[C]−1

``′

∂Cκ
`′

∂pβ
+

1
2

Tr
[
C−1 ∂C

∂pα
C−1 ∂C

∂pβ

]
· (12)

Carron (2013) argues that parameter-dependent covariance
matrices are not suitable for Fisher forecasts, which are only
accurate for Gaussian likelihoods with fixed covariance. In light
of this, we neglected the second term of Eq. (12), which at the
same time simplified the evaluation. Equipped with this tool, it is
now straightforward to compare the impact of using C ≡ Covκtot
(Eq. (4)) or C ≡ Covκsim (Eq. (10)) in our Fisher forecast, and
to investigate the effect of varying the input cosmology at which
the covariance matrix is evaluated (and fixing that value, so the
derivative of the covariance is still set to zero). Specifically, we
monitored changes of the area of the Fisher ellipses, which we
took as a metric of the global constraining power. This analysis
was repeated with different configurations of theσε , n̄ and Asurvey
parameters, which we adjusted to construct covariance matrices
that emulate the KiDS-1300, DES-Y5 and LSST-Y10 surveys.
Whereas the analytic calculations can evaluate the terms at any
specified area and noise levels, the simulations estimates had to
be area-rescaled. This introduced a small error since technically
the SSC term does not exactly scale that way, but the size of
this error is negligible compared to other aspects of the calcu-
lations, especially for featureless square masks. In addition, we
opted to implement the shape noise term in the simulations sim-
ply by adding its analytic contribution, which we obtained from
evaluating CovN =

(
CovκG − CovκG,σε=0

)
with Asurvey = 100 deg2.

This includes both the pure shape noise term and the mixed term,
obtained from Eq. (5). Overall, we computed the survey covari-
ance as:

Covκsim

∣∣∣∣
survey

=
(
Covκsim + CovN

)
×

(
Asim

Asurvey

)
· (13)
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Having established our methods, we now turn to the descrip-
tion of the cosmo-SLICS numerical simulations from which we
extracted our light-cone data and evaluated Covκsim.

3. Weak lensing simulations

There exists a number of ways to construct simulated light-cones
for cosmic shear studies, and we adopted here the multiple-
plane prescription detailed in Harnois-Déraps et al. (2012); this
method was thoroughly tested to meet the accuracy require-
ments of ongoing weak lensing surveys (see, e.g., Heymans
2012; Hildebrandt et al. 2017). Briefly, the construction pipeline
proceeds as follow: after the initial design for volume, particle
number and cosmology was specified, an N-body code gener-
ated density snapshots at a series of redshifts, chosen to fill the
past light-cone. Under the Born approximation, the mass planes
were aligned and ray-traced at a pre-selected opening angle,
pixel density and source redshifts. In our implementation, this
post-processing routine constructed as many mass over-density,
convergence and shear maps as the number of density check-
points in the light-cone. Finally, galaxies were assigned positions
and redshifts, and their lensing quantities were obtained by inter-
polating from the maps. We refer the reader to HD18 for more
details on the implementation of this pipeline with the SLICS
simulations, and focus hereafter on the new aspects specific to
the cosmo-SLICS.

3.1. Choosing the cosmologies

The first part of the design consisted in identifying the parameter
space that we wished to sample. Although a significant part of
this paper focuses on power spectrum covariance matrices, the
cosmo-SLICS have a broader range of applicability, and our pri-
mary science goal is, we recall, to provide the means to carry out
alternative analyses of the current state-of-the-art weak lensing
data, paving the way for LSST and Euclid. Cosmic shear is max-
imally sensitive to a particular combination of Ωm and σ8, often
expressed as S8 ≡ σ8

√
Ωm/0.3, but also varies at some level with

all other parameters. In particular, tomographic lensing analyses
are sensitive to the growth of structures over cosmic time and
hence probe the dark energy equation of state w0, a parameter
that we wish to explore. Furthermore, because of recent claims of
a tension in the measurements of the Hubble parameter between
CMB and direct H0 probes (Riess et al. 2018; Bonvin et al. 2017;
Planck Collaboration I 2019), we decided to vary h as well. In
order to reduce the parameter space, we kept all other parameter
fixed. More precisely, we fixed ns to 0.969, Ωb to 0.0473 thereby
matching the SLICS input values, we ignored any possible evo-
lution of the dark energy equation of state, and we assumed that
all neutrinos are massless. In the end, we settled for modelling
variations in [Ωm, S8, h,w0].

We examined the current 2σ constraints from the KiDS-
450 and DES-Y1 cosmic shear data11 (Hildebrandt et al. 2017;
Troxel et al. 2018), which are both well bracketed by the range
Ωm ∈ [0.10, 0.55] and S8 ∈ [0.60, 0.90]. This upper bound
on S8 falls between the upper 1σ and the 2σ constraints from
Planck, but this is not expected to cause any problems since
the cosmo-SLICS are designed for lensing analyses. Constraints
on the dark energy equation of state parameter from these

11 Results from the first HSC cosmic shear analysis (Hikage et al. 2019)
were released after the completion of our simulations, and their 2σ
lower limit on Ωm extends slightly outside of our range. If the cosmo-
SLICS were used in this HSC data analysis, the error contours would
likely appear truncated below Ωm = 0.1.

Table 1. Ranges of the cosmological parameters varied in the cosmo-
SLICS, compared to those of the MassiveNuS, the DH10 and the Dark-
Matter simulation suites.

cosmo-SLICS MassiveNuS DH10 DarkMatter

Ωm [0.10, 0.55] [0.18, 0.42] [0.07, 0.62] [0.15, 0.70]
S8 [0.60, 0.90] [0.38, 1.20] [0.38, 1.03] [0.40, 1.35]
h [0.60, 0.82] 0.70 0.70 0.72
w0 [−2.0,−0.5] −1.0 −1.0 −1.0
Mν 0.0 [0.0, 0.62] 0.0 0.0
Lbox 505 512 140 240
Np 15363 10243 2563 5123

zmax 3.0 45.0 2.0 45.0

Notes. Also listed are some of the properties relevant to their use in cos-
mic shear analyses, including the box size (Lbox, in h−1 Mpc), the num-
ber of particles Np and the highest redshift available. Neutrino masses
are listed in eV.

lensing surveys allow for w0 ∈ [−2.5, −0.2]. This wide range
of values is expected to change rapidly with the improvement of
photometric redshifts, hence we restricted the sampling range
to w0 ∈ [−2.0,−0.5]. This choice could impact the outskirts
of the contours obtained from a likelihood analysis based on
the cosmo-SLICS, however this should have no effect on the
other parameters. Constraints on h from lensing alone are weak,
with KiDS-450 allowing a wide range of values and hitting the
prior limits, and DES-Y1 presenting no such results. We instead
selected the region of h informed by the Type IA supernovae
measurements from Riess et al. (2016). The 5σ values are close
to h ∈ [0.64, 0.82], and we further extended the lower limit to
0.60 in order to avoid likelihood samplers from approaching the
edge of the range too rapidly. A summary of our final parameter
volume is presented in Table 1.

Inspired by the strategy of the Cosmic Emulator12 (Heitmann
et al. 2014), we sampled this four-dimensional parameter space
with a Latin hyper-cube13, and constructed an emulator to inter-
polate at any point within this range (see also Nishimichi et al.
2019; Knabenhans et al. 2019; Liu et al. 2018, for other exam-
ples relevant to cosmology). A Latin hyper-cube is an efficient
sparse sampling algorithm designed to maximise the interpola-
tion accuracy while minimising the node count (see Heitmann
et al. 2014, and references therein for more details on the prop-
erties of these objects).

Given our finite computing resources, we had to compromise
on the number of nodes, which ultimately reflects on the accu-
racy of the interpolation. We therefore quantify the interpola-
tion error as follow: 1- we varied the number of nodes from 250
down to 50 and 25, then generated for each case a Latin hyper-
cube that covered the parameter range summarised in Table 1;
2- we evaluated the ξ± theoretical predictions at these points
and trained our emulator on the results (details about our emu-
lator implementation, its accuracy and training strategy can be
found in Appendix A); 3- we constructed a fine regular grid
over the same range, and compared at each point the predic-
tions from our emulator with the “true” predictions computed on
the grid points; 4- we examined the fractional error and decided
on whether our accuracy benchmark was reached, demand-
ing an uncertainty no larger than 3%, which is smaller but

12 CosmicEmu: http://www.hep.anl.gov/cosmology/Cosmic
Emu/
13 We used lhsdesign, a Latin hyper-cube generator included in the
Matlab Statistics Function kit.
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Fig. 1. Cosmological parameters covered by the cosmo-SLICS. Our
fiducial cosmology is depicted here with the “×” symbols.

comparable in size to the accuracy of the HaloFit model itself.
We also recall that the current uncertainty caused by photomet-
ric redshifts significantly exceeds this 3% threshold, and that the
smaller scales are further affected by uncertainty about baryon
feedback mechanisms, hence this interpolation error should be
sub-dominant.

We present the fractional error in Fig. A.1 for the 25 nodes
case; we achieve a 1−2% accuracy over most of the parame-
ter range, which meets our accuracy requirement, and which we
report as our fiducial interpolation error. We emphasise that this
error size is not strictly applicable to all types of measurements,
for instance the ξ+ interpolation becomes less accurate than that
for angular scales larger than two degrees. Instead, this should be
viewed as a representative error given an arbitrary lensing signal
that varies in cosmology with similar strength as the ξ+ observ-
able over the range 0.5 < ϑ < 72 arcmin.

Increasing the node counts from 25 to 50 significantly
reduces the size of the regions in parameter space where the
accuracy exceeds 2%, which are now pushed to small pockets
on the outskirts. Further inflating to 250 nodes moves the bulk
of the accuracy below the 1% level. Since our current accuracy
target is less strict, we therefore developed the cosmo-SLICS on
25 wCDM plus one ΛCDM nodes, but may complete the Latin
hyper-cube with more nodes as in Rogers et al. (2019) in the
future; the exact parameter values are listed in Table 2, and their
two-dimensional projections are presented in Fig. 1.

3.2. Preparing the light-cones

Prior to running the N-body code, we needed to specify the box
size, the particle count and redshift dumps of the projected mass
maps, which must form contiguous light-cones along the line
of sight. Following HD18, we fixed the simulation volume to
Lbox = 505 h−1 Mpc on the side (note that h varies between mod-
els) and the particle count to Np = 15363, offering an excel-
lent compromise between large scales coverage and small scales
resolution. This set-up allows to estimate cosmic shear corre-
lation functions beyond a degree and under the arc minute with-
out significant impact from the two limitations above-mentioned,
thereby covering most of the angular range that enter the KiDS
analyses. By fixing the box size however, the number of redshift

dumps up to zmax varies with cosmology due to differences in
the redshift-distance conversion. We further split these volumes
in halves along one of the Cartesian axis and randomly chose
one of the six possibilities (three directions for the projections
axis times two half-volume options) at every redshift dump. We
finally aligned the resulting cuboids to form a long pencil, we
worked out the comoving distance to the mid-plane of each of
these cuboids, converted14 distances to redshift in the specified
cosmology, and proceeded from redshift z = 0 until the back
side of the last cuboid exceeds zmax, with zmax = 3.0. The list of
redshifts found that way were then passed to the main N-body
code which set out to produce particle dumps and mass sheets
for each entry. The total number of redshift dumps ranges from
15 (for models-08 and -23) to 28 (for model-01).

3.3. Cosmological simulations with matched pairs

The N-body calculations were carried out with the gravity solver
CUBEP3M (Harnois-Déraps et al. 2013) in a setup similar to
that described in HD18, except for key modifications due to the
wCDM nature of our runs. Dark matter particles were initially
placed on a regular grid, then displaced using linear perturba-
tion theory given an initial input power spectrum P(k, zi) and
a Gaussian noise map, with zi = 120. Different cosmological
models required distinct transfer functions T (k), obtained from
running the Boltzmann code camb (Lewis et al. 2000) with the
parameters values taken from Table 2. The initial power spec-
trum was then computed as P(k, zi) = Aσ8 D2(zi)T (k)kns , where
D(zi) is the linear growth factor, and the normalisation parame-
ter Aσ8 is defined such that P(k, z = 0) has the σ8 value given
by the model. The initial condition generator included with the
public CUBEP3M release can only compute growth factors in
ΛCDM cosmologies, hence we computed D(zi,Ωm,ΩΛ,w0) with
Nicaea instead, then manually input the results in the generator.

Since the central goal of the cosmo-SLICS is to model the
cosmological signal of novel weak lensing methods, it is impor-
tant to ensure that the simulation sampling variance does not lead
to mis-calibrations. Extra-large volume simulations can achieve
this through spatial averaging, however these are expensive to
run. Instead, we produced a pair of noise maps in which the sam-
pling variance cancels almost completely, such that the mean of
any estimator extracted from the pair will be very close to the
true ensemble mean. We achieved this in a relatively simple way:

1. We generated a large number of initial conditions at our
fiducial cosmology and extracted their power spectra P(k, zi);

2. We computed the mean power spectrum for all possible
pair combinations and selected the pair whose mean was the
closest to the theoretical predictions, allowing a maximum of
5% residuals;

3. We further demanded that neither of the members of a
given pair is a noise outlier. What we mean by this is that the
fluctuations in P(k, zi) must behave as expected from a Gaus-
sian noise map and scatter evenly across the input power spec-
trum. Quantitatively, we required the fluctuations to cross the
mean at almost every k-mode. This last requirement further pre-
vented power leakage from large to small scales, which other-
wise affects the late-time structure formation.

Figure 2 shows the fractional difference between the
HaloFit predictions (set to the horizontal line with zero
y-intercept) and the mean initial P(k, zi) measured from our best
pair (solid blue); other random pairs are also shown (thin dotted
14 The distance-to-redshift relations are obtained from the public
w0waCDM module within python astropy.cosmology numerical
package.
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Table 2. Cosmological parameters in the 25+1 cosmo-SLICS models,
with S8 is defined as σ8

√
Ωm/0.3.

ID Ωm S8 h w0 σ8 Ωc ΩΛ

FID 0.2905 0.8231 0.6898 −1.0000 0.8364 0.2432 0.7095
00 0.3282 0.6984 0.6766 −1.2376 0.6677 0.2809 0.6718
01 0.1019 0.7826 0.7104 −1.6154 1.3428 0.0546 0.8981
02 0.2536 0.6133 0.6238 −1.7698 0.6670 0.2063 0.7464
03 0.1734 0.7284 0.6584 −0.5223 0.9581 0.1261 0.8266
04 0.3759 0.8986 0.6034 −0.9741 0.8028 0.3286 0.6241
05 0.4758 0.7618 0.7459 −1.3046 0.6049 0.4285 0.5242
06 0.1458 0.7680 0.8031 −1.4498 1.1017 0.0985 0.8542
07 0.3099 0.7861 0.6940 −1.8784 0.7734 0.2626 0.6901
08 0.4815 0.6804 0.6374 −0.7737 0.5371 0.4342 0.5185
09 0.3425 0.7054 0.8006 −1.5010 0.6602 0.2952 0.6575
10 0.5482 0.6375 0.7645 −1.9127 0.4716 0.5009 0.4518
11 0.2898 0.7218 0.6505 −0.6649 0.7344 0.2425 0.7102
12 0.4247 0.7511 0.6819 −1.1986 0.6313 0.3774 0.5753
13 0.3979 0.8476 0.7833 −1.1088 0.7360 0.3506 0.6021
14 0.1691 0.8618 0.7890 −1.6903 1.1479 0.1218 0.8309
15 0.1255 0.6131 0.7567 −0.9878 0.9479 0.0782 0.8745
16 0.5148 0.8178 0.6691 −1.3812 0.6243 0.4675 0.4852
17 0.1928 0.8862 0.6285 −0.8564 1.1055 0.1455 0.8072
18 0.2784 0.6500 0.7151 −1.0673 0.6747 0.2311 0.7216
19 0.2106 0.8759 0.7388 −0.5667 1.0454 0.1633 0.7894
20 0.4430 0.8356 0.6161 −1.7037 0.6876 0.3957 0.5570
21 0.4062 0.6620 0.8129 −1.9866 0.5689 0.3589 0.5938
22 0.2294 0.8226 0.7706 −0.8602 0.9407 0.1821 0.7706
23 0.5095 0.7366 0.6988 −0.7164 0.5652 0.4622 0.4905
24 0.3652 0.6574 0.7271 −1.5414 0.5958 0.3179 0.6348

Notes. In all runs, the baryon density, primordial tilt and neutrino den-
sity have been fixed to Ωb = 0.0473, ns = 0.969 and Ων = 0. Two
matched-seed N-body simulations are evolved at each of these nodes,
as detailed in Sect. 3.3.

blue lines) and exhibit much larger variance. The drop at high k is
caused by the finite mass resolution of our simulations; the grey
zone indicates the scales where the departure is greater than 10%
at redshift z = 0.0, which occurs at k = 4.0 h−1 Mpc. We used
the same pair of noise maps in the initial conditions for our 25
wCDM cosmologies, further ensuring that the sample variance
in P(k, zi) is exactly the same across models, and that differences
are attributed solely to changes in the input cosmological param-
eters.

After this initialisation step, the gravity solver evolved the
particles until redshift zero, writing to disk the particles’ phase
space and the projected densities at each snapshot. The back-
ground expansion subroutine of CUBEP3M has been adapted
to allow for w0 , −1 cosmologies by Taylor-expanding the
FRW equation to third order in the time coordinate. The exact
value of the particle mass depends on the volume and on the
matter density, hence varies with h and Ωm, spanning the range
[1.42, 7.63]×109 M�. The N-body computations were carried out
on 256 compute nodes on the Cedar super computer hosted by
Compute Canada, divided between 64 mpi tasks and further par-
allelised with 8 openmp threads; they ran for 30−70 h depend-
ing on the cosmology. After completion of every simulation, we
computed the matter power spectra at every snapshot then erased
the particle data to free up space for other runs15. The red and
black lines in Fig. 2 show the fractional difference between the

15 Dark matter halo catalogues were stored, with properties and for-
mat fully described in HD18; the halo mass function is presented in
Appendix B.
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Fig. 2. Fractional difference between the mean of simulation pairs at
the fiducial cosmology (i.e. model-FID) and the input theoretical model
P(k), obtained with HaloFit. Faint blue dotted lines show the results
for a number of random pairs at the initial redshift zi = 120, while the
thick blue line highlights the best pair. The sampling variance cancels to
better than 5% also at z = 0.64 and 0.04, as demonstrated respectively
by the red and black lines. The grey zone indicates the regime where
the discrepancy exceeds 10%.

non-linear predictions from Takahashi et al. (2012) and the mean
P(k) measured from the matched pair at lower redshifts. They
demonstrate that the phase cancellation survives well the non-
linear evolution.

One potential catch in our matched-pair method is that it
is only calibrated against the two-point function, and there is
no formal mathematical proof that the sampling variance can-
cels at the same level for higher order statistics. Evidence points
in that direction however: in the initial conditions, the density
fields follow Gaussian statistics, hence all the information is
captured by the matter power spectrum. Minimising the vari-
ance about P(k) is thereby equivalent to minimising the variance
about the cosmological information, irrespective of the measure-
ment technique. The results of Villaescusa-Navarro et al. (2018)
are encouraging and demonstrate that the matched-pair tech-
nique of Angulo & Pontzen (2016) introduces no noticeable bias
on the matter-matter, matter-halo and halo-halo power spectra,
nor on the halo mass function, void mass function and matter
PDF. Additionally, some estimators reconnect with the two-point
functions on large scales (e.g. shear clipping, as in Giblin et al.
2018), and for these we expect a significant noise cancellation as
well.

3.4. Ray-tracing the light-cone

Closely following the methods of HD18, we constructed mass
over-density, convergence and shear maps from the output of the
N-body runs. Every light-cone map subtends 100 deg2 on the sky
and is divided in 77452 pixels. For each redshift dump zl, we ran-
domly chose one of the six projected density fields, we shifted its
origin, then interpolated the result onto the light-cone grid to cre-
ate a mass over-density map δ2D(θ, zl). We needed here to min-
imise a second source of sampling variance that arises from the
choice of our observer’s position, and which we refer to as the
“light-cone sampling variance”. This is distinct from the “Gaus-
sian sampling variance” caused by drawing Fourier modes from
a noise map in the initial condition generator. Since the number
of mass planes required to reach a given redshift varies across
cosmology models, there is an inevitable amount of residual
light-cone sampling variance introduced in the δ2D(θ, zl) maps.
We nevertheless reduced this by matching the origin-shift vec-
tors and the choice of projection planes at the low-redshift end
in our construction.
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We computed convergence maps from a weighted sum over
the mass planes:

κ(θ, zs) =
3H2

0Ωm

2c2

χH∑
χl=0

δ2D(θ, χl)(1 + zl)χl

[ χH∑
χs=χl

n(χs)
χs − χl

χs
∆χs

]
∆χl,

(14)

where ∆χl = Lbox/nc, nc = 3072 being our grid size. We used
Eq. (14) to construct a series of κ(θ, zs) maps for which the
source redshift distribution is given by n(z) = δ(z − zs), where zs
corresponds to the redshift of the back plane of every projected
sub-volume that make up the light-cone. Shear maps, γ1,2(θ, zs),
were obtained by filtering the convergence fields in Fourier space
as described by Kaiser & Squires (1993). Our specific imple-
mentation of this transform makes use of the periodicity of the
full simulation volume to eliminate the boundary effects into the
light-cone, as detailed in Harnois-Déraps et al. (2012). There-
after, any quantity (δ2D, κ, γ1,2) required at an intermediate red-
shift (e.g. for a galaxy at coordinate θ and redshift zgal) can be
interpolated from these series of maps. For both members of the
matched pair and for every cosmological models, we repeated
this ray-tracing algorithm with 400 different random shifts and
rotations, thereby probing each cosmo-SLICS node 800 times,
or total area of 80 000 deg2. We stored the maps for only 50 of
these given their significant sizes, but provide galaxy catalogues
for all others. These pseudo-independent light-cone maps and
catalogues are the main cosmo-SLICS simulation products that
we make available to the community.

3.5. Accuracy

3.5.1. Matter power spectrum

As we mentioned before, the calibration of a weak lensing
signal can be affected by limitations in the simulations, more
specifically by the accuracy of the non-linear evolution, by the
finite resolution and by the finite box size. These systematic
effects impact every estimator in a different way, and generally
exhibit a scale and redshift dependence (see Harnois-Déraps &
van Waerbeke 2015, for such a study on ξ± from the SLICS).
In many cases however, one can estimate roughly the range of
k-modes (or the ϑ values) that enters a given measurement, as in
Fig. A1 of van Uitert et al. (2018), hence it is possible to con-
struct an unbiased calibration by choosing only the data points
for which the cosmo-SLICS are clean of these systematics. We
observe from Fig. 2 that our fiducial cosmology run recovers the
non-linear model to better than 2% up to k = 1.0 h−1 Mpc at
all redshifts, then the agreement slowly degrades with increas-
ing k-modes, crossing 5% at k = 2−3 h−1 Mpc and 10% at
4−6 h−1 Mpc, depending on redshift. This comparison is not nec-
essary representative of the true resolution of the cosmo-SLICS,
since the HaloFit predictions themselves have an associated
error. It is shown in Harnois-Déraps & van Waerbeke (2015) that
the CUBEP3M simulations agree better with the Cosmic Emu-
lator, extending the agreement up to higher k-modes. Unfortu-
nately we cannot use this emulator as our baseline comparison
since all of our wCDM nodes lie outside the allowed parameter
range.

With regards to the growth of non-linear structure across red-
shifts and cosmologies, the accuracy of the simulations is cleanly
inspected with ratios of power spectra, where the small residual
sampling variance cancels exactly, owing to the fact that all pairs
of N-body calculations originate from the same two noise maps.
A comparison between the cosmo-SLICS measurements and
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Fig. 3. Ratio between the power spectrum P(k, z) in model-12 and in
model-FID (see Table 2). The lines show the predictions from HaloFit,
while the square and triangle symbols are measured from the pair of
cosmo-SLICS N-body simulations. Upper (black), middle (red) and
lower (blue) lines correspond to redshifts z = 0, 0.6 and 120, respec-
tively. Other cosmologies are shown in Appendix B.

the HaloFit calculations therefore reveals the degree of agree-
ment in a noise-free manner. We show in Fig. 3 a representative
example, the ratio between the model-12 and model-FID power
spectra, P12(k)/PFID(k). The different colours represent three
redshifts, and the vertical offset is caused by differences in the
linear growth factor. We observe an excellent match over a large
range of scales for the two runs (labelled “sims-A” and “sims-B”
in the figure). Some discrepancy is seen at small scales where
HaloFit and the cosmo-SLICS are only 5−8% accurate any-
way. A more detailed comparison can be found in Appendix B,
where for example we measure that beyond k = 2.0 h−1 Mpc,
this ratio agrees to within 10% at z ∼ 0.6, and 5% at z ∼ 0.0. In
summary, ratios from simulations are mostly within a few per-
cent of the ratios from the predictions, but some larger depar-
tures are observed at low redshift in dark energy models where
w0 � −1.0, which we attribute to inaccuracies in the calibra-
tion of the Takahashi et al. (2012) predictions in that parameter
space.

3.5.2. Lensing 2-point functions

For the particular goal of testing the accuracy of the light-cone
products, we examined the lensing power spectrum for each of
the 800 pseudo-independent realisations described in Sect. 3.4,
assuming a single source plane at zs ∼ 1.0. We present the Cκ

`
measurements from model-FID and model-12 in Fig. 4, com-
pared to the predictions from Nicaea. The grey band identifies
a relatively ambitious cut on the lensing data at ` = 5000; most
forecasts (e.g. The LSST Dark Energy Science Collaboration
2018) are more conservative and reject the ` > 3000 multipoles.
The agreement between simulations and theory is of the order
of a few percent over most of the multipole range for these two
cosmologies; the drop at high-` is once again caused both by lim-
itations in the simulation’s resolution and by inaccuracies in the
non-linear predictions. Figure 5 next presents the ratio between
these two models, and is therefore the light-cone equivalent of
Fig. 3. The same trends are recovered, namely a generally good
agreement at large scales, followed by an overshooting of a few
percent compared to the theoretical models at smaller scales.
This disagreement is a known source of uncertainty in the non-
linear evolution of the matter power spectrum and hence must be
included in the error budget in data analyses that include these
scales. It is however sub-dominant compared the uncertainty
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Fig. 4. Fractional difference between the Cκ
` estimated from the sim-

ulation pairs and the input theoretical model, for sources at zs = 1.0.
The fiducial and model-12 cosmologies are shown in the upper and
lower panels, respectively. The mean and error bars are calculated from
resampling every simulation 400 times; we show here the error on the
mean.
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Fig. 5. Ratio between the convergence power spectrum Cκ
` from model-

12 and model-FID. Other models are presented in Appendix B.

on baryonic feedback over these same scales, which reaches
up to 40%, depending on the hydrodynamical simulations
(Semboloni et al. 2011; Harnois-Déraps et al. 2015; Mead et al.
2015; Chisari et al. 2018), and hence is not worrisome for lensing
analyses that marginalise over the baryon effects. Ratios com-
puted from other models are presented in Appendix B.

The accuracy of the shear 2-point correlation functions ξ±(ϑ)
was next investigated, this time in a more realistic application
of the cosmo-SLICS: we populated the simulated light cones
with mock galaxies following a N(z) described by the KiDS+
VIKING-450 lensing data (Hildebrandt et al. 2018, KV450
hereafter) and compared the mean value from each cosmologi-
cal model with the theoretical predictions. The fractional differ-
ence, presented in Fig. 6, shows that for many models we recover
an agreement of a few percent over most of the scales included
in the KiDS-450 cosmic shear analysis (the other angular scales
are in the grey regions). Some models exceed the 10% agree-
ment marks, highlighting once again limitations in the HaloFit
calibration. This is discussed in greater detail in Appendix A.

4. Covariance matrices

As a first application of the cosmo-SLICS, we investigated the
accuracy of the covariance matrix of the convergence power
spectra constructed from the 800 light-cones (see Sect. 3.5.2).
This enquiry was motivated by a recent study from Petri et al.
(2016), where it is shown that a lensing covariance matrix esti-

Fig. 6. Fractional differences between the cosmo-SLICS measurements
of ξ± for all models, averaged here across the 50 light-cones, and the
corresponding theoretical predictions from Nicaea (with the HaloFit
calibration from Takahashi et al. 2012). The magenta line corresponds
to the measurements from the fiducial cosmology, and the grey bands
indicate angular scales we recommend to exclude from an emulator
training on these simulations. Simulations and predictions are both con-
structed with the KV450 n(z) here, and we plot the error on the mean.

mated with pseudo-independent realisations could be as accurate
as one estimated from truly independent simulations, leading to
negligible biases on cosmological parameters constraints. Their
results are based on a smaller simulation suite with degraded
properties compared to the cosmo-SLICS or the SLICS: they use
200 independent N-body simulations with Lbox = 240 h−1 Mpc
and Np = 5123, which they ray-trace up to 200 times each.
The authors warn that their findings have to be revisited with
better mocks before claiming that the method is robust, a ver-
ification we carry out in Sect. 4.1. We further validate the two
estimators with the analytical calculations described in Sect. 2.2,
then explore in Sect. 4.2 the impact of variations in cosmology
on the covariance, and propagate the effect onto error contours
about four cosmological parameters. Lastly, we demonstrate in
Sect. 4.3 how our Gaussian process emulator can learn the cos-
mology dependence of these matrices and hence be used in an
iterative algorithm similar to the analytical model strategy, but
now based exclusively on numerical simulations.

4.1. Simulation-based vs. analytical model: a comparison

In this comparative study, we considered four lensing covariance
matrix estimators:

1. Our “baseline” was constructed from 800 truly inde-
pendent measurements of Cκ

`
extracted from the SLICS, with

galaxy sources placed at zs = 1.0. We additionally estimated the
uncertainty on that covariance from bootstrap resampling these
800 measurements 1000 times;

2. We identified 14 pairs of simulations within the SLICS
whose initial P(k, zi) also satisfy the matched-pair criteria
described in Sect. 3.3 (e.g. their mean closely follows the solid
blue line in Fig. 2). We resampled the underlying N-body sim-
ulations to produce 800 pseudo-independent Cκ

`
measurements

and an associated covariance matrix for each of these 14 pairs.
We refer to this method as the “matched SLICS” estimate, and
treated the variance between the 14 matrices as the uncertainty
on the technique;
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Fig. 7. Ratio between the variance of the shape noise-free lensing
power spectrum estimated from the cosmo-SLICS simulations and that
obtained from the analytical calculations. The upper panel is for the
Gaussian CovκG term only, while the lower panel shows our results for
the full Covκtot estimates. The lines are colour-coded as a function of w0,
ranging from magenta (w0 ∼ −2) to blue (w0 ∼ −0.5), with the fiducial
model shown in red squares. Models with high (low) w0 exhibit larger
(smaller) ratios.

3. We estimated the covariance matrix from the 800 pseudo-
independent power spectra extracted from the cosmo-SLICS. We
assigned the same uncertainty on that method as on the matched-
SLICS method (item 2 above), both being equivalent in their
nature. In the fiducial cosmology, we refer to this method as the
“model-FID” covariance estimate. We also estimated a matrix
for the other 25 cosmological points, which we label “model-
00”, “model-01” and so on;

4. At each of the 25+1 cosmologies sampled, we computed
the analytic covariance model presented in Eqs. (4)–(8), keeping
distinct the Gaussian, non-Gaussian and SSC terms.

We first examined for these four estimators the diagonal and
the off-diagonal parts separately, then investigated the overall
impact of their residual differences with a Fisher forecast about
Ωm, S8, w0 and h. We began with an inspection of the noise-free
case before including survey-specific shape noises, galaxy densi-
ties and sky coverage. Aside from assuming a global square foot-
print, we did not apply survey masks in this comparison. This
would introduce an extra level of complexity in the comparison,
which we would rather keep at a more fundamental level.

4.1.1. Diagonal elements

Even though the diagonal part of the covariance is generally the
easiest to capture, we do not expect a perfect match between
the simulation-based and the analytic methods since differences
are already clear at the power spectrum level (see Fig. 4). We
show in Fig. 7 the ratio between the variance estimated from
the cosmo-SLICS and the analytical estimate, for all cosmolo-
gies and in the shape noise-free case, again assuming zs = 1.
The baseline and matched SLICS methods closely follow the
cosmo-SLICS hence are not shown here for clarity. We exam-
ined both the ratio between the Gaussian terms (upper panel,
computed from Eq. (5)) and between the diagonal of the full
covariance (lower panel), colour-coding the results as a function
of w0. Departure from unity in this figure are caused by: 1- resid-
ual sampling variance (especially at low `-modes); 2- pixeliza-
tion of the simulations and slight differences in the `-binning that
impact the mode-count 3- resolution limits in the simulations
and 4- potential inaccuracies in the theoretical models. We fur-

ther observe that the high-` mismatch is higher in Covκtot than in
CovκG, which likely follows from the fact that the Gaussian term
is only quadratic in Cκ

`
, whereas it is raised to a higher power

inside the trispectrum, (to the third power, within first order per-
turbation theory); consequently the discrepancies observed in the
Cκ
`

are expected to scale more rapidly in the latter case. Models
with high and low w0 are shown with blue and magenta lines,
respectively. While the Gaussian terms show no colour trend,
there is a clear split in the full covariance ratios (lower panel),
where blue lines are generally higher than magenta lines. Given
that order 50% discrepancies are seen at almost all scales in some
models, this points to major differences in the SSC terms, which
consequently suggests differences in the halo-mass function. We
confirmed this conclusion in Appendix B, where we show that
the match in halo mass function degrades for cosmologies with
dark energy w0 significantly different from −1.0.

Finally, when repeating the above comparison for different
redshifts in the model-FID cosmology, we note that the agree-
ment in the full variance improves at higher redshift, where non-
linear evolution is less important.

We next investigated the relative departure from pure Gaus-
sian statistics on the diagonal by dividing the full matrix by the
Gaussian term. It is therefore convenient to define:

R` ≡ diag
[
Covκtot

CovκG

]
, (15)

which we evaluated separately for the four methods described
at the beginning of this section. The baseline measurement of
R` is reported as the magenta squares in Fig. 8, and clearly cap-
tures the non-Gaussian features reported before (e.g. Takahashi
et al. 2009, see their Fig. 1). In comparison, the purely Gaus-
sian term CovκG is shown with the thin solid line, which signifi-
cantly underestimates the simulated variance for `-modes larger
than a few hundreds. The matched SLICS are shown with the
blue upward triangles, and the cosmo-SLICS model-FID with
the black downward triangles. At all scales, we recover an excel-
lent match between these three simulation-based approaches.
More precisely, the baseline and the model-FID agree to within
20%, corresponding to a 10% difference on the non-Gaussian
part of the error bar about Cκ

`
. We further examined the agree-

ment with the analytical calculations of R` for three cases:
CovκG + CovκNG + 0% SSC contribution, shown on Fig. 8 as the
lower thick solid line; +75% SSC, shown with the thick dashed
line; +100% SSC, shown with the upper thick solid line. All
simulation-based estimates are bracketed by the two solid lines
(except at a few noisy points, e.g. `= 190), consistent with cap-
turing most but not all of the SSC contribution. The k-modes
smaller than 2π/Lbox are absent from the simulations and hence
do not contribute to the measured SSC, which instead comes
from the simulated volume that is not part of the light-cones
(this conclusion was also reported in van Uitert et al. 2018, for
the baseline estimate). The bottom panel of Fig. 8 compares the
error on R` between the baseline and the model-FID methods,
showing that our gain of a factor 400 in computation resources
incurs a degradation in precision about R` by a factor of ∼2−3.

To frame this comparison in a broader context, we further
add to the figure two cases where the shape noise has been
included in the Gaussian term, following a KiDS-like (upper/left
dotted red curve) and a LSST-like (lower/right) survey configu-
ration (see Table 3 for the numerical specifics of these surveys).
In the KiDS-like case, the diagonal is dominated by this noise
component, which means that differences of order 10−20% in
the non-Gaussian terms are negligible in the total error. In the
LSST-like survey however, the shape noise is massively reduced
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Fig. 8. Upper: ratio between the diagonal of the lensing power spectrum covariance matrices and the noise-free Gaussian term (i.e. Eq. (15)).
We further divide this ratio by

√
` to increase the readability of the low-` part. The magenta squares correspond to the “baseline” measurement

estimated from 800 independent light-cones with error bars from bootstrap resamplings. The blue upward pointing triangles show the results from
multiple ray-tracing the 14 matched-pairs found in the SLICS, while the black downward triangles are from the cosmo-SLICS (see main text in
Sect. 4.1 for more details). The error bars on the two sets of triangles are estimated from the scatter over the 14 matched SLICS pairs. Horizontal
positions are offset for clarity. The thick solid and dashed lines represent the analytic calculations with 0, 75 and 100% of the SSC term (see
Eq. (4)). The red dotted-lines show the Gaussian term only, but this time with shot noise included assuming either KiDS (left) or LSST (right)
survey configuration described in Table 3. Lower: ratio between the error on R` estimated from the cosmo-SLICS and from the baseline methods.

Table 3. Survey characteristics used in the analytical covariance
calculations.

Survey Area (deg2) ngal (arcmin−2)

KiDS 1300 7.54
DES-Y5 5000 5.07
LSST 15 000 26.00

Notes. All include a Gaussian distributed shape noise with standard
deviation σε = 0.29 per component.

and becomes mostly sub-dominant, meaning that differences
between the covariance estimators are expected to have a larger
impact.

4.1.2. Off-diagonal elements
We next constructed and compared the four cross-correlation
coefficient matrices, defined as r``′ = Covκ``′/

√
Covκ``Covκ`′`′ ,

which highlight the amplitude of the mode-coupling. The results
are presented in Fig. 9, where we show slices through the matri-
ces while holding one of the components fixed (`′ = 115, 900
and 5000). From the upper to the lower panel, we present r`,115,
r`,900 and r`,5000, using the symbol convention of Fig. 8. We
observe an excellent agreement between the simulation-based
methods, which both appear to be consistent with capturing
about 75% of the SSC contribution once compared with the ana-
lytic methods. These results correspond to the shape noise-free
case and thereby provide the upper limit on the importance of
these off-diagonal terms; the inclusion of shape noise signif-
icantly down-weights their overall contributions, further dilut-

0

0.5

1 baseline
model-FID
analytic, 75% SSC
analytic, no/all SSC
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1

102 103 104
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1

Fig. 9. Comparison between the cross-correlation coefficients measured
from the baseline method (magenta squares), from the cosmo-SLICS
(triangles) and from the analytic model with different amounts of SSC
(thick and dashed lines). The spikes seen in these panels indicate the
point of crossing with the diagonal, where r``′ ≡ 1.0 for ` = `′.

ing the small differences between the estimators observed in
Figs. 8 and 9.

4.1.3. Fisher forecast

The four different methods agree qualitatively on most properties
of the full covariance matrix, but differ in the details, exhibit-
ing various noise levels and converging on coupling strengths
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Fig. 10. Measurement forecasts on cosmological parameters obtained with different estimates for the covariance matrix (shown with the different
lines in the sub-panels), and for different survey properties. Curves show the 95.4% confidence intervals. In our LSST-Y10 configuration, and
cycling through the panels starting from the uppermost, the CovκG term accounts for (92, 98, 72, 96, 91, 94)% of the area.

that are at times slightly offset. Given that it is unclear which
of these covariance estimates is the best, we sought to find out
whether these differences matter for weak lensing data analyses.
To answer this, we carried out a series of Fisher forecast analyses
based on Eq. (12) in which we cycled through three of our four
covariance matrix options (baseline, model-FID and analytic, but
we dropped the matched SLICS for redundancy reasons) and
examined the differences in the constraints on Ωm, σ8,w0 and
h. We additionally fragmented the analytical case in its three
components to further our insight on the relative importance of
each term. We included multipoles in the range 35 < ` < 3000,
inspired by the fiducial angular scale selection of the LSST Sci-
ence Requirement Document (The LSST Dark Energy Science
Collaboration 2018).

Starting with the analytic methods, the forecasted constraints
from the Gaussian-only matrix are shown in Fig. 10 with the
dashed-blue lines, the Gaussian+non-Gaussian case with the
inner solid red lines, and the total covariance with the outer solid
red line (these three lines are plotted in every panel, but over-
lap in most cases). In the first survey configuration (upper-left
triangle plot), we assumed an area of 1300 deg2 with no shape
noise. Our results are consistent with the findings of Barreira
et al. (2018b), where it is demonstrated that the Gaussian and
the SSC terms together capture most of the uncertainty about
the cosmological parameters, whereas CovκNG contributes min-
imally. Adopting the area of the Fisher ellipses as a metric,
neglecting the non-Gaussian term amounts to underestimating

the areas by 5−7% only, except for the [σ8 − h] join contour
where the change reaches 18%. Differences in survey geometry
and data vectors can explain why we observe a sensitivity in this
particular parameter plane while Barreira et al. (2018b) do not:
their measurements, made with fine tomographic sampling, are
more sensitive to the growth of structure, which translates into
tighter constraints in general. The degeneracy direction of the
[w0 −Ωm] is also flipped for the same reason. These conclusions
about the relative non-importance of CovκNG cannot be gener-
alised to all weak lensing measurement techniques, since some
alternatives (e.g. peak statistics) may be more sensitive than Cκ

`
to the non-Gaussian signal, and therefore might receive a larger
contribution from the CovκNG term.

The simulation-based methods are also shown on these plots;
the baseline with the dashed black lines and the cosmo-SLICS
results with the solid black lines. Although it is difficult to
observe in the figure, the Fisher ellipses from these two methods
differ by 10−15% in area; the baseline and the analytic estimates
(assuming 100% SSC) differ by less than 7%, while the model-
FID and the analytic method by less than 11%. Whether these
apparently slight differences matter or not depends on the over-
all error budget of the measurement. In the KiDS-450 cosmic
shear analysis for example, these changes were shown to be sub-
dominant compared to the uncertainty associated with the pho-
tometric redshift estimation or with the baryon feedback models
(Hildebrandt et al. 2017). This is bound to change as the statisti-
cal power of weak lensing surveys increases, and for this reason
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we repeated the forecasts with three survey configurations (sum-
marised in Table 3).

First, we included shape noise and sky coverage in amounts
that mimic the KiDS survey configuration defined in Table 3
(upper right triangle plot). In this case, the two simulation-based
methods provide areas that differ by less than 6%, and by at most
15% with the analytical estimate. Second, we lowered the galaxy
density but increased the area to emulate a DES-Y5 survey (lower
left triangle). In that case, the baseline and the cosmo-SLICS
methods agree to better than 4%, with a 10−16% match in area
with the analytic method. We finally increased both the area and
the density to generate a LSST Y10-like survey (lower right), in
which case the match in areas between the two simulation esti-
mates decreases to the 10% level, while preserving the agree-
ment with the analytic model seen in the DES-Y5 set-up. In sum-
mary, when propagated into a Fisher forecast, the three covariance
matrices predict cosmological constraints that agree well given
their radically different estimation methods. One could then pos-
sibly interpret the scatter in area as an uncertainty on the error
contours, sourced by systematic error on the covariance.

Once we move away from the two-point statistics however,
the simulation-based methods are often the only option left. If
we further wish to evaluate the covariance matrix at an arbitrary
point in parameter space (i.e. at the best-fit cosmology given
by the data), then cosmo-SLICS could be a prime estimation
method, which we present next.

4.2. Dependence on cosmology

We have established in the last section that the lensing covari-
ance matrix estimated from the model-FID is well suited for
current Cκ

`
-based lensing analyses16, and possibly for upcom-

ing experiments as well. Achieving this accuracy with only two
independent N-body simulations opens up a new path to study
the impact that variations in cosmology have on the lensing
covariance and on the parameter constraints, regardless of the
choice of weak lensing estimator. The matched-pair strategy pre-
sented in this work could play a key role, as there are no large
ensembles required anymore: one simply needs to resample the
cosmo-SLICS nodes (or other simulation pairs produced in a
similar way) and to interpolate between the nodes to the desired
cosmology, as suggested by Schneider et al. (2008).

That being said, multiple studies suggest that varying the
covariance matrix in a multivariate Gaussian likelihood is nei-
ther mathematically correct (e.g. Carron 2013) nor necessary
(Kodwani et al. 2019), and that instead one should evaluate the
matrix at the best fit cosmology and keep it fixed in the likeli-
hood. This approach was adopted by van Uitert et al. (2018) who
use the same analytic covariance model as ours in their analy-
sis of the combined KiDS-450×GAMA data. At the parameter
inference stage, they first guess an initial cosmology at which
the covariance matrix is evaluated, they next solve for the best fit
cosmology given the data and that initial covariance matrix, they
then update the covariance with these new parameters and recal-
culate a new best fit cosmology; convergence on the posterior
distributions of the parameters is achieved after 2−3 iterations.

It seems however that a consensus on the subject has not
been reached, considering that cosmology-dependent covariance
matrices are utilised as a cross-check in the angular power
spectrum analysis of the BOSS-DR12 data (Loureiro et al.
2019, see their Fig. 10), in the HSC-Y1 cosmic shear analysis

16 Analyses based on correlation functions ξ± further need to account
for the finite box effects inherent to the SLICS simulations.

(Hikage et al. 2019), or in the hybrid17 approach of the CFHTLenS
cosmic shear analysis (Kilbinger et al. 2013). We do not intend to
settle the issue here, but rather wish to enable this type of inquiries
with simulation-based covariance estimators.

Besides deciding on whether to fix the covariance or let it
vary within the likelihood sampling, anchoring the matrix (or con-
verging) to different points in cosmology will have consequences
on the parameter constraints, by an amount we need to quantify.
We therefore examined in this section what happens to the Fisher
forecast contours when we varied the cosmology at which the
covariance matrix is fixed. We adopted the same data vector as in
Sect. 4.1.3, and present the results at the 25 wCDM cosmologies
from both the analytic model and the cosmo-SLICS estimator.

The diagonal terms are plotted in Fig. 11 for all models (in
red circles), compared to the model-FID estimate (grey triangles)
and the analytic model with and without the SSC term (red solid).
We first observe that the simulation-based estimates fall between
the two analytic cases for all cosmologies except models-03 and
-19, two models for which w0 is close to−0.5 and hence their SSC
term is not well calibrated (we examine the halo mass function
of model-03 in Appendix B). Since other components are known
to be uncertain as well, we conclude that this bracket adequately
bounds the simulation results most of the time.

Our second observation is that although rarely in agreement,
the cosmo-SLICS and analytic estimates are highly correlated:
the red curves and symbols move up or down with respect to the
model-FID in the same way, although not by the same amount,
suggesting that at a fundamental level, variations in cosmol-
ogy push the mode-coupling term in the right direction. In fact,
this aligns with some of the tests carried out in Reischke et al.
(2017), where the consistency in the Ωm andσ8 scalings is estab-
lished between a tree-level perturbation theory trispectrum and
a small number (50) of numerical simulations. Although a direct
comparison is unfortunately not possible, our results appear to fol-
low their scaling relations. For example, they find that decreas-
ing S8 from 0.82 to 0.7 reduces the trace of the lensing covari-
ance matrix by about 50%, while increasing S8 to 0.9 aug-
ments it by 50%. The cosmo-SLICS models-00, -08 and -11
feature a similar decrease in S8 with respect to the model-FID,
and also display a reduction in their traces by 49%, 72% and 63%,
respectively18. When increasing the lensing signal to S8 ∼ 0.9
with models-04, -17 and -19, we find that the traces vary by +9%,
+25% and −22%, respectively. The scatter in scaling values is
caused by the variations in the other parameters, which in the end
contribute to the covariance and further complicate this compar-
ison. In their study, Reischke et al. (2017) compute the scaling
of the Frobenius norm with Ωm and σ8, but are unable to validate
the trispectrum scaling on an element-by-element basis. Given the
large size of their error bars, the numerical convergence that they
recognise is not achieved, and the important role of other cosmo-
logical parameters such as h and w0, we conclude that despite
a broad agreement with their results, it is currently impossible
to assert the accuracy of analytical trispectrum calculation out-
side ΛCDM, up to and beyond ` = 3000. In this context, the

17 The covariance matrix used by Kilbinger et al. (2013) consists of
a non-Gaussian term estimated from an ensemble of mocks at a fixed
cosmology, and a Gaussian term that varies with cosmology in the
likelihood.
18 For this calculation only we employ a similar `-binning scheme and
reject bins with centres outside the range ` ∈ [115−2900]; Reischke
et al. (2017) carried out their analysis over the range ` ∈ [100−2500].
Further differences exist in our redshift distributions: ours consist of a
single plane at zs = 1.0, whereas theirs follows a broad Euclid-like n(z)
peaking at z = 0.9.
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Fig. 11. Similar to the upper panel of Fig. 8, but now showing with red circles the results from all different cosmo-SLICS models, and with red
lines the corresponding analytical predictions with none and all of the SSC contribution. For reference, we also overplot with grey triangles the
model-FID in each of the panels.

cosmo-SLICS offer an avenue to push our understanding of the
lensing covariance one step further, exploring new cosmologies
without being restricted to two-point statistics.

The off-diagonal components of these matrices are next pre-
sented in Fig. 12 for two representative cosmologies (models-12
and -20). The agreement with the analytic models is similar to
the fiducial scenario shown in Fig. 9, being mostly bracketed
by the two solid curves in both cases. We overplot on this figure
the previous baseline (in magenta squares) and the predictions at
the fiducial cosmology (in black solid line) to illustrate that the
cosmology scaling of r``′ is well captured by both methods. We
have verified that this holds for all other models as well, which
we therefore decided not to show.

We finally present in Fig. 13 our Fisher forecasts in the LSST
Y10-like case (i.e. equivalent to the bottom-right triangle plots of
Fig. 10), but now varying the input cosmology of the covariance
matrix. We show here representative results from four models out
of 25 to illustrate our point, comparing in each case the constraints
from the analytic model and from the cosmo-SLICS; we also
include the baseline model as a reference. The impact of cosmol-
ogy on these ellipses is striking, especially between models-02
and -17, with changes in area that sometimes almost reach a fac-
tor 6. The simulations and theoretical models trace each other gen-
erally well across many of these scenarios, matching on average
the ellipses’ area at the 15−25% level, even though they exhibited
major differences in R`. The worst agreement occurs for models-
03, -17 and -19, in which the areas of simulation-based ellipses
are up to 16% smaller than for the analytic method. These models
all have extreme values of w0, for which the halo mass function is
not well calibrated (see Appendix B).

Also obvious from Fig. 13 is that changing the cosmology has
a much larger effect than changing estimator at a fixed cosmology
(e.g. switching from the model-FID to the analytical estimates or
the baseline in the top-left triangle plots of Fig. 10). In other words,
it is more important to estimate the lensing covariance matrix at
the correct cosmology than to fine-tune the estimator, especially if
computed at the wrong cosmology. In light of this it becomes clear
that the ability to evaluate the covariance matrix at a flexible cos-
mology is critical, and in order to achieve this for an arbitrary weak

lensing signal, we propose to train an emulator on the 25 cosmo-
SLICS covariance matrices and interpolate at the desired cosmol-
ogy. The next section presents a toy example that illustrates how
this can be achieved in an actual lensing data analysis.

4.3. Emulation of the cosmic shear covariance

In this section we present how well our Gaussian process (GP)
emulator can learn the cosmology dependence of the covariance
matrices from the 25 cosmo-SLICS nodes. More precisely, we
trained the emulator on theR` measurements presented in Fig. 11
and defined in Eq. (15). In this setup, we imagine that we have
confidence in the analytical Gaussian term only, but would prefer
to use the CovκNG and CovκSSC terms from the simulations; CovκG
and the cosmo-SLICS estimate of R` can therefore be combined
to compute the full variance about the cosmic shear signal at any
cosmology.

Following a similar approach to Heitmann et al. (2016) and
Knabenhans et al. (2019), we emulated the principal components
of logR`, which varies over a reduced dynamical range (we refer
the reader to Appendix A for more details about our GP emula-
tor). We assessed the accuracy of our method with a “leave-one-
out” cross-validation test, in which we trained the emulator on
all but one of the nodes, then compared at that cosmology the
emulated prediction with the left-out measurement. Our results,
presented in Fig. 14, indicate an accuracy of better than 20% for
most of the models, with some outliers that perform less well in
this test. Notably, removing (extreme) models-01, -02, -10 or -14
resulted in a particularly poor interpolation. We recall that by
construction, cross-validation provides a lower limit on the accu-
racy, since it requires the emulator to interpolate to cosmolo-
gies at the outer edges of the training set range, and from an
incomplete set of training nodes. The only representative case
occurs when leaving out the ΛCDM model-FID, as it resides out-
side the Latin hyper-cube. For this reason, we consider this spe-
cial case as the benchmark accuracy of our covariance emulator.

The thick red line in Fig. 14 represents the compari-
son between our ΛCDM R` prediction after training on the
25 wCDM models, and the test value measured from the
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Fig. 12. Same as Fig. 9, but for different cosmologies. The magenta
squares and black lines are taken from Fig. 9 and show the baseline esti-
mator and the analytic model at the fiducial cosmology. The red circles
and red lines are from the cosmo-SLICS and the analytic predictions
respectively, for model-03 (upper) and model-10 (lower). Results from
all other models are similar to these.

model-FID. This test reveals that our GP emulator matches the
test case to better than 10%, a promising result that can likely
be generalized to other lensing statistics provided the reasonable
assumption that the variation of the covariance with cosmol-
ogy is of similar amplitude. The exact accuracy of the covari-
ance emulator based on the cosmo-SLICS of course needs to
be assessed for every lensing method, but the tests presented in
this section should serve as guidelines, and provide an order-of-
magnitude estimation of the accuracy one can achieve that way.

5. Discussion

As mentioned earlier in this paper, the fundamental motivation
behind the production of the cosmo-SLICS simulations is to pro-
vide a public training set with which new weak lensing observ-
ables can be developed. One can then wonder why we have
focused on Fisher analyses of two-point statistics, with no more
mention of these alternative techniques. The reason behind this
choice is sound however: we needed to assess the accuracy of
our simulated data, which is straightforward in the case of two-
point statistics given that analytical predictions are readily avail-
able. And although we have not established the performance of

all possible weak lensing estimators, the fact that both the mean
and the covariance of the lensing power spectra are in overall
agreement with the analytical predictions provides compelling
evidence that other higher-order moments are correctly captured
as well. Of course this has to be demonstrated in every case, but
not necessarily for all cosmologies.

We provide shear, convergence and mass over-density maps
for 25 light-cones per seed, per node, for a total of 5000 deg2

per cosmology, and 130 000 deg2 in total. The lensing maps can
then be ray-traced to construct a series of mock galaxy cata-
logues with a user’s defined Ns(z) and shape noise, while the
mass maps can be populated with foreground “lens” galaxies of a
given Nl(z) and a controlled linear bias (as in, e.g. van Uitert et al.
2018). The storage footprint of these maps is significant, ranging
from 14.4 to 26.9 Gb per light-cone per cosmology for the set of
maps. We are unfortunately not equipped to host 800 light-cones
per cosmology in that form, so instead we opted for the more
compact option of storing mock galaxy catalogues. Even with a
density as large as 45 gal arcmin−2, keeping 800 copies per cos-
mology with 6 entries per object (RA, Dec, zspec, γ1, γ2, κ)
requires just over 8Tb. We selected a redshift distribution that
exceeds at all redshift the forecasts from LSST and Euclid, such
that the cosmo-SLICS catalogues can be down-sampled to match
either data sets. In all cases, the source redshift distributions
assume a functional form given by:

n(z) ∝ z2exp
− (

z
z0

)β (16)

and are normalized such that
∑

n(z)dz = ngal (see Fig. 15). In
their Science Requirement Document, The LSST Dark Energy
Science Collaboration (2018) use ngal = 30 gal arcmin−2, β =
0.68 and z0 = 0.11 (see their Fig. F4); the Euclid Theory Work-
ing Group instead quote ngal = 30, β = 1.5 and z0 = 0.637
(Amendola et al. 2013, see their Eq. (1.212)); in our simu-
lations, we opted to use the LSST n(z), augmented to reach
ngal = 45.0 gal arcmin−2.

With these catalogues, a lensing covariance matrix can be
evaluated at each of the 25+1 nodes, then interpolated at any given
cosmology inside the parameter range with our GP emulator. One
must remember that this still provides a noisy estimate of the full
matrix, and that the inversion introduces extra errors that must be
accounted for (Hartlap et al. 2007; Dodelson & Schneider 2013;
Taylor & Joachimi 2014; Sellentin & Heavens 2016). One could
eventually push the envelope further and resample the volume
even more (Petri et al. 2016, for example, ray-traced the simula-
tions 104 times) potentially suppressing the noise down to neg-
ligible values, however this would likely hit the residual noise
inherent to our matched-pair technique. A robust verification of
this idea is required, which we defer to future work. Another
approach that may be worth exploring consists in working directly
with the precision matrix (the inverse of the covariance matrix)
without first estimating the covariance matrix, as suggested by
e.g. Padmanabhan et al. (2016) and Friedrich & Eifler (2018).

When calibrating an estimator on controlled mock data, one
has to bear in mind that the numerical simulations themselves are
subject to three basic limitations19, namely their finite box sizes,
their finite small-scales (or mass) resolution, and residual inac-
curacies in the non-linear evolution segment of the N-body code.
Given a novel measurement method, all of these aspects must
be carefully considered. We recommend to assess the accuracy

19 For the sake of simplicity, we are factoring out from this discus-
sion the effect of baryonic feedback, secondary signals and the detailed
implementation of observational effects.
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Fig. 13. Measurement forecasts on cosmological parameters from an LSST Y10-like survey, obtained with different estimates for the covariance
matrix, and for different input cosmology. Curves show the 95.4% confidence intervals. Measurement are shown relative to the input value (hence
the “∆” in the axis labels) in order to align the different cosmologies to the origin and highlight the change in size of the error contours caused by
variations in cosmology.
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Fig. 14. Fractional difference on R` between the measurements at the
25+1 cosmo-SLICS nodes and the interpolated predictions from our
GP emulator, obtained in our “leave-one-out” cross-validation test. The
thick red line represents the ΛCDM prediction after training on the
wCDM models, and the thin horizontal lines indicate the ±10% range.

range of the cosmo-SLICS by training on lensing simulations
with higher mass resolution (such as the SLICS-HR introduced
in Harnois-Déraps & van Waerbeke 2015) and larger volume
such as the HSC mocks (Takahashi et al. 2017) or the MICE-GC
described in Fosalba et al. (2015). That way, it becomes possible
to identify the part of the cosmo-SLICS data vector that can be
fully trusted.

Additionally, the parameter space can be expanded by com-
bining our simulations with external suites. For example, sensi-
tivity to variations in the neutrino mass Mν can be probed with
the MassiveNuS simulations20, which simultaneously vary Ωm,

20 http://columbialensing.org/#massivenus
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Fig. 15. Galaxy redshift distribution from the LSST and Euclid fore-
casts, compared to the cosmo-SLICS catalogues.

σ8 and Mν (Liu et al. 2018). Among the suites of existing simu-
lations, we also point out the Mira-Titan simulations (Heitmann
et al. 2016), the Aemulus simulations (DeRose et al. 2019) and
those from the DarkEmulator collaboration (Nishimichi et al.
2019), which could also serve this purpose, however their light-
cone data has not been released to the public yet.

We also acknowledge the fact that the area (100 deg2) of our
lines of sight prevents us from measuring structures at very large
angular separations in the simulations. Although a clear limita-
tion to some measurement techniques, the information contained
at such large (linear) scales is well captured with the two-point
correlation functions, and well described by the Gaussian term
of the covariance matrix, for which numerical simulations are
not required.

One question remains open throughout our work on covari-
ance, which concerns the exact amount of SSC that is actually

A160, page 16 of 26

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935912&pdf_id=13
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935912&pdf_id=14
http://columbialensing.org/#massivenus
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935912&pdf_id=15


J. Harnois-Déraps et al.: Cosmic shear covariance matrix in wCDM: Cosmology matters

contained in our simulation suites. Figures 8, 9, 11 and 12 pro-
vide compelling indicators that the two simulation-based covari-
ance estimates include a large fraction, but the exact amount is
difficult to measure. Some SSC contribution is expected to be
captured due to the cosmological volume that is unused in the
light-cone. This quantity varies with the source redshift, which
therefore introduces a redshift dependence on the simulated SSC
term. Additionally, the contribution from density fluctuations
with modes larger that the simulation box is completely miss-
ing. A lower bound on the missing SSC term could be estimated
by imposing a mask in k-space instead of a survey footprint in
Eq. (8) and carrying out the rest of the SSC calculation to find out
the difference on the end product. However our current imple-
mentation does not allow us to perform this calculation.

Another approach would consist of validating the matter
trispectrum calculations separately. Reischke et al. (2017) have
started to address this validation in the [Ωm−σ8] plane, but much
of the wCDM space remains unverified as of yet. If we could
establish a range of scales for which the simulations and the
theory agree on P(k) and T δ(k, k′), then we could compare the
R` measurements, excluding the `-modes that are contaminated
by the unresolved scales, and any differences could be solely
attributed to the difference in the SSC term. The latter could
further be improved in wCDM cosmologies with a proper cal-
ibration of the halo mass function, as discussed in Appendix B.
We could then possibly down-scale the analytical CovκSSC term
until a match with the mock data is achieved. Again, changes to
R` caused by trispectrum modelling errors and resolution limits
will be wrongly interpreted as variations in the total SSC con-
tribution captured by the simulations. When we performed this
test with the cosmo-SLICS excluding the `-modes in the grey
zone of Fig. 8, we estimated that our simulations contain about
75% of the SSC at zs = 1. This is also what we found in the
cross-correlation coefficient terms (Fig. 9), although this num-
ber varies from model to model. It is nevertheless reassuring that
the global impact of these differences on the cosmological con-
straints is rather limited, as demonstrated by our Fisher forecasts.

6. Conclusions

We introduced in this paper the cosmo-SLICS, a new suite of
wCDM weak lensing simulations covering a wide parameter
space. The range was chosen such as to enclose most of the pos-
terior distributions about Ωm, σ8, w0 and h measured from the
KiDS-450 and DES-Y1 cosmic shear data analyses (Hildebrandt
et al. 2017; Troxel et al. 2018). We sampled this 4-dimensional
volume at 25 points with a Latin hyper-cube and trained a GP
emulator on these nodes, achieving an interpolation accuracy of
1−2% over most of the volume on ξ± in the noise-free case. At
each of the 25 nodes, we evolved a pair of N-body simulations
in which the large scale fluctuations mostly cancel, originating
from specific constraints on the initial conditions. This allowed
us to rapidly approach the ensemble mean with only a fraction
of the computational cost. Our method is largely inspired by the
work of Angulo & Pontzen (2016), which we simplified in order
to preserve Gaussianity in the matter density field, at the cost of
losing the exactitude of the cancellation: we instead engineered
a sample variance suppression.

We further ray-traced these simulations up to 400 times
each, and showed that the lensing covariance matrix about these
pseudo-independent light-cones was in close agreement with the
exact brute force ensemble approach, based on truly independent
realizations from the SLICS suite introduced in Harnois-Déraps
et al. (2018). When pushed through a Fisher parameter forecast,

we reached a conclusion similar to that of Petri et al. (2016),
namely that re-sampling one of our matched-pair of independent
simulations yields accurate constraints on dark matter and dark
energy parameters. More specifically, the area of the 2σ confi-
dence region varies by less than 6% between both methods, a
result that we verified holds for areas and galaxy densities that
emulate the final KiDS, DES and LSST surveys.

Having shown that our matched-pair simulation setup led to
robust estimates of the lensing covariance matrix, we repeated
the measurement at each of the 25+1 cosmological nodes, and
compared our results with an analytical covariance calculation
based on the halo model (and implemented in many KiDS cos-
mic shear analyses, e.g. Hildebrandt et al. 2017, 2018; van Uitert
et al. 2018). We found an excellent agreement on the parameter
uncertainty contour between the simulation-based and the theo-
retical approaches, with a response to cosmology variations that
by far exceeds the 6% effect observed between our two fixed-
cosmology estimates. This led us to conclude that evaluating the
covariance at the correct cosmology should be prioritised over
improving the accuracy of a covariance matrix estimator at a
fixed but offset cosmology, at least for the two-point functions.
The analytical methods naturally allow for this type of calcula-
tion, where one can first evaluate the matrix at a guessed cosmol-
ogy, then solve for the best fit parameters, update the matrix and
iterate; the shortfall of this approach however is that the internal
accuracy of the analytical covariance matrix has not been fully
verified. Simulation-based covariance matrices are potentially
more flexible in terms of weak lensing measurement method,
but it is now clear that biases on the parameter constraints will
occur if they are evaluated at the wrong cosmology. The cosmo-
SLICS offer for the first time a way to vary the cosmology in
the covariance matrix that is fully simulation-based, and that can
therefore be generalised to any weak lensing estimator.

Our primary goal is to facilitate the development of novel
lensing techniques beyond the current two-point statistics, and
for this reason we make the GP emulator21 public and the sim-
ulated light-cone data available upon request. The emulator is
flexible enough to train on a variety of input data vectors, and we
presented two examples in this paper, the cosmic shear ξ± signal
(presented in Appendix A) and the diagonal of the covariance
matrices of the lensing power spectrum, Covκ(`, `) (presented in
Sect. 4.3). We introduced various tests to assess the performance
of the emulator, and concluded that the weak lensing signal and
variance can be interpolated with an accuracy of 1−2% and 10%,
respectively.

We envision that interested users will download the mock
light-cone data for their own science case, with the cosmo-
SLICS supporting and accelerating the development of novel,
more optimal, weak lensing measurement techniques, besides
the two-point statistics. Peak statistics, shear clipping, density-
split lensing statistics and Minkowski functionals are examples
of promising avenues, and their full deployment relies on the
availability of dedicated well controlled calibration samples such
as the simulations presented herein. With its extended parameter
range, the cosmo-SLICS probe far outside the target domain of
many fit functions, notably for the mass power spectrum (e.g the
HaloFit calibration by Takahashi et al. 2012) and the halo mass
function (Tinker et al. 2010), and hence can serve to re-calibrate
these tools.

A larger dimensionality in the cosmology parameter space
can be achieved by combining the cosmo-SLICS with external
simulation suites in which other parameters are varied, and where

21 https://github.com/benjamingiblin/GPR_Emulator
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lensing maps and catalogues are also made available. There is
a large gain in cosmological information within reach, and its
extraction will require a sustained effort within the community of
weak lensing data analysts and simulation specialists. Upcoming
lensing surveys such as the LSST22, Euclid23 and WFIRST24 will
map dark matter with a billion galaxies, and we must gear up to
exploit these exquisite data sets at their maximal capacity.
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Appendix A: The cosmo-SLICS emulator

A.1. Emulation strategy

In this section, we describe the basics of employing a Gaussian
process regression emulator to train on the cosmo-SLICS suite
and thus predict weak lensing statistics for wCDM cosmolo-
gies. We present the accuracy of the emulator’s predictions of
the shear correlation functions, ξ±, as a function of the galaxy
angular separation and cosmological parameters, by compar-
ing to theoretical predictions from Nicaea, ran with the recal-
ibrated HaloFit model (Takahashi et al. 2012), and assume
these results representative of those which would be obtained
for an arbitrary cosmological statistic measured from these sim-
ulations. We calculated the shear correlation functions from our
simulations using the public TreeCorr software in 9 bins of
angular separation, ϑ, logarithmically spaced between 0.5 and
300 arcmin. We further show to what extent the accuracy of the
emulator depends on the distribution of the cosmological param-
eters, π = {Ωm, S8, h,w}, rather than the noise on the training set
predictions, by replacing the simulated ξ± from cosmo-SLICS
with the noise-free theoretical ξ±. We used the public Scikit
learn Gaussian process regression code25 and the KV450 n(z)
for all analyses in this section.

The mathematics behind GP regression emulators have been
covered extensively in previous work; we refer the interested
reader to Rasmussen & Williams (2006) for a general discus-
sion of GP and to Habib et al. (2007) and Schneider et al. (2008)
for its applications in cosmology. Here we summarise only the
key details of this methodology.

GP regression is a non-parametric Bayesian machine learn-
ing algorithm for constraining the distribution of functions
which are consistent with observed data. Typically, we have a
training data set,D, consisting of n measurements of an observ-
able, y, corresponding to different input parameters π, i.e. D =
{(π j, y j)| j = 1, . . . , n}. The cosmo-SLICS ξ± predictions can be
regarded as 9 such data sets corresponding to the 9 ϑ bins, with
each set consisting of the measurements from the n = 26 dif-
ferent d-dimensional cosmological parameter vectors, π, where
d = 4. Based on this training set, the task of the GP emulator is
to learn the distribution of functions, f (π), which are consistent
with the mapping between the training set input parameters – the
“nodes” – and output, via

y(π) = f (π) + εn(π), (A.1)

where εn(π) is a noise term sampled from a mean-zero Gaussian
distribution with a standard deviation given by the error on y(π),
the training set observable. The prediction, y∗, corresponding to
an arbitrary coordinate π∗, is then sampled from a generalisation
of a Gaussian posterior probability distribution over the range of
consistent functions. In other words, the GP emulator interpo-
lates the observables from the input coordinates of the training
set to trial coordinates across a d-dimensional parameter space.

A key ingredient of our posterior is the Gaussian prior dis-
tribution of functions deemed to reasonably map between input
and output. The prior is determined by a mean, conventionally
taken to be zero, and a covariance function, known as the “kernel”.
The kernel can take various functional forms, each described by
a vector of hyperparameters, h, governing the kernel’s behaviour.
Following Heitmann et al. (2009), in this work we adopted
the squared exponential form, which has h = {A, p1, . . . , pd} and

25 https://scikit-learn.org/stable/modules/gaussian_
process.html

specifies the covariance between the functions f (π) and f (π∗) as

K( f , f ∗; h) ≡ cov
(
f (π), f (π∗); h

)
= A

d∏
l=1

exp
 (πl − π

∗
l )2

p2
l

 ·
(A.2)

This kernel has the following properties: (1) the covariance varies
smoothly within the parameter space; (2) it depends only on
the Euclidean distance between points, such that K( f , f ∗; h) =
K( f ∗, f ; h); (3) predictions become maximally correlated when
π = π∗; (4) the correlation is large for points in relative proximity
and small for largely separated points; (5) each pl corresponds to
the functions’ characteristic length-scale of variation in each of
the d dimensions, while A is the kernel amplitude.

The emulator is generally trained by finding values for the
hyperparameters which define a distribution of functions that are
optimally consistent with all realisations in the training set. In
this work, we fit for these using the method built-in to Scikit
learn, which employs a gradient ascent optimisation of the
marginal likelihood conditioned on the training set. Emulator
accuracy is also strongly affected by the shape of the observable
being predicted, performing best for smooth monotonic func-
tions with narrow dynamic ranges. Since the ξ±(ϑ) statistics vary
over orders of magnitude, ln ξ±(ϑ) presents a wiser choice of
quantity to emulate. We found that emulation performance is fur-
ther improved by decomposing the ln ξ±(ϑ) observable into a lin-
ear sum of nΦ orthogonal basis vectors, φi

±(ϑ) where i ∈ [1, nΦ],
using a principal component analysis (PCA),

ln ξ±(ϑ;π) = µ±(ϑ) +

nφ∑
i=1

φi
±(ϑ)wi

±(π) + ε i
±(π) + εPCA

± (π), (A.3)

where µ±(ϑ) is the mean across the training set ln ξ±(ϑ;π) pre-
dictions, and the orthogonal basis functions, φi

±(ϑ), are calcu-
lated from a PCA of the mean-subtracted training set. In this
formulism, the weight parameters, wi

±(π), specifying how much
each basis function contributes to the ln ξ±(ϑ;π) recipe for a
given π, now become the target of our emulator’s predictions,
taking the place of y(π) in Eq. (A.1), rather than ln ξ±(ϑ;π) itself.
The εPCA

± and ε i
± are terms arising from two different sources of

error, that vary slightly between the cosmo-SLICS cosmologies.
εPCA
± arises if one uses an insufficient number of basis

functions to reconstruct the emulated statistic. PCA decompo-
sition is a standard procedure (see for example Habib et al.
2007; Schneider et al. 2008; Heitmann et al. 2016), facilitating
improvements in emulation time where nΦ is less than the length
of the statistic of interest, in this case determined by the number
of ϑ bins. Computational expense is not a problem for our ξ±(ϑ)
measured from cosmo-SLICS however, consisting of only 9 bins
in angular separation. Hence we simply set nφ = 9, for perfect
PCA reconstruction of the ln ξ±(ϑ;π). We verified however that
this number is sufficient to reconstruct more than 99.99% of the
variance in theoretical ln ξ± sampled in 70 bins and that using
more basis functions has minimal effect on the emulator accu-
racy. Hence, with 9 basis functions the error induced from the
PCA reconstruction is negligible.

The remaining error term, ε i
±(π), comes from the Gaussian

noise, denoted by εn(π) in Eq. (A.1), arising from uncertainties
on the training set. To inform the emulator of the error on the
cosmo-SLICS predictions, we first calculated the standard devi-
ation of the ln ξ±(ϑ;π) across the 25 light-cones and 2 seeds for
each cosmology, σ±(ϑ;π). We translated this into uncertainties
on the PCA weights by computing the upper and lower bounds,
given by
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Fig. A.1. Observed emulator accuracies for ξ+, averaged between 0.5 and 72 arcmin, with the grid ensemble of trial cosmologies, π∗g, shown by
the colour maps, when trained on the 26 cosmo-SLICS predictions (upper-left) and 26, 50 and 250 noise-free Nicaea predictions (upper-right,
lower-left, lower-right respectively). The training nodes are shown by the magenta circles. The black stars in the upper-left panel show the input
parameters of the Takahashi et al. (2012) simulations over our parameters volume (their two highest Ωm nodes have h and S8 values that exceed
our boundaries). For each grid in which two cosmological parameters vary, the remaining two are fixed to the corresponding fiducial values from
{Ωm = 0.3251, S8 = 0.75245, h = 0.7082,w0 = −1.254}. The contrast between the upper panels, for which the training cosmologies are the same,
indicates the extent to which simulation noise and inaccuracies in both the simulations and theoretical predictions degrade the apparent emulation
accuracy.

wi,upper
± =

9∑
m=1

Φi
±(ϑm)

[
ln ξ±(ϑm) +

(
σ±(ϑm)/

√
50

)]
wi,lower
± =

9∑
m=1

Φi
±(ϑm)

[
ln ξ±(ϑm) −

(
σ±(ϑm)/

√
50

)]
. (A.4)

Here, the ξ± is the average of the measurements for the dif-
ferent light-cones and seeds per cosmology, the factor

√
50 is

included to scale the standard deviation to an error on the mean,
and for simplicity we have dropped the dependence on the cos-
mological parameters. The error on the PCA weight, approx-
imated as

ε i
± =

1
2

(
wi,upper
± − wi,lower

±

)
, (A.5)

serves as the standard deviation of the Gaussian distribution
from which the εn(π) is sampled. In this work we also emu-
lated noise-free HaloFit predictions; in these cases we set the εn

for all π to the arbitrarily-small constant default value in Scikit
learn26.

All results presented in this work demonstrating the emula-
tor performance correspond to accuracies in the inferred ξ±, and
not the logarithmic transforms of these statistics nor the weight
vectors, w±(π).

A.2. Emulator results

Having established our emulation strategy, we then sought to
test how accurately we can predict the ξ±(ϑ;π∗) corresponding
to an ensemble of trial cosmologies, π∗. It is too computation-
ally expensive to produce a fine grid of trial predictions covering
the entire 4D parameter space, against which emulator accu-
racy can be tested. Instead we generated two separate ensembles
of trial coordinates. The first, which we refer to as the “grid”

26 One cannot set εn = 0 or the marginal likelihood, entering into the
posterior from which predictions are sampled, becomes singular.
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Fig. A.2. Same as Fig. A.1 but for ξ− with accuracies averaged between 8 and 300 arcmin.

ensemble, π∗g, seeks to illuminate how accurately we can repro-
duce the predictions for different regions of the emulation space.
This ensemble consists of six cosmological parameter grids,
with dimensions 50 × 50, for the six different 2D projections
of the 4D space. For each grid in which two parameters vary,
the remaining two are fixed to the corresponding fiducial values
from {Ωm = 0.3251, S8 = 0.75245, h = 0.7082,w0 = −1.254},
selected on account of being the centre of the cosmo-SLICS
training set. This ensemble is useful for identifying for which
combinations of cosmological parameters our emulator will per-
form best and where there is room for improvement. The sec-
ond, “bulk”, ensemble, π∗

b
, consists of 300 cosmologies which

probe the bulk accuracy of the emulator throughout the emu-
lation space by varying in all 4 parameters simultaneously. We
sampled these cosmologies from an independent 4-dimensional
Latin hyper-cube with dimensions equal to that of the cosmo-
SLICS training set.

A crucial ingredient in evaluating the emulator’s accuracy is
a theoretical prediction with which to compare the emulator’s.
However, the fact that the cosmo-SLICS ξ±(ϑ;π) differ from
the corresponding theoretical predictions, as shown by Fig. 6,
means that the emulator will not recover the theoretical predic-
tions used to gauge accuracy, even at the nodes. The disagree-
ment between the two arises not only because of residual noise

and small, non-linear angular scales that are not fully resolved in
cosmo-SLICS, but also because of inaccuracies in the HaloFit
model prescription. These are caused by resolution limitations
also present in the simulations used to calibrate the Takahashi
et al. (2012) fitting function methodology mentioned earlier, and
also the fact that the range of input cosmologies for these mocks
does not cover the full range of the cosmo-SLICS input parame-
ters, especially in the w0 dimension. This is shown by the distri-
bution of black stars (Takahashi et al. 2012 simulation nodes)
relative to the magenta circles (cosmo-SLICS nodes) in the
upper-left panel of Figs. A.1 and A.2. The effect of the imper-
fections in the cosmo-SLICS (training) and HaloFit (trial)
predictions on the emulator performance cannot be completely
disentangled. Therefore, our results for the accuracy of the
cosmo-SLICS emulator should be regarded as a conservative,
“worst case scenario”; performance would likely improve with
perfect trial predictions to compare with.

To suppress the contribution of inaccuracies on non-linear
scales, we considered only the 0.5 < ϑ < 72 arcmin angular
range for ξ+ and 8.0 < ϑ < 300 arcmin for ξ− in evaluating
the emulator accuracy. This roughly corresponds to the scales
used in the Hildebrandt et al. (2017) cosmic shear analysis, but
with a slightly higher lower limit for ξ−, to select an angular
range with good agreement between cosmo-SLICS and Nicaea
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predictions for this statistic (see Fig. 6). In addition to testing
the emulator with the cosmo-SLICS training set, we also tested
with noise-free Nicaea ξ±(ϑ;π) training sets of various sizes.
Whereas training with cosmo-SLICS probes how emulator accu-
racy is affected by the limitations of both our simulations and
the trial HaloFit predictions, the latter isolates how well we are
able to interpolate ξ± statistics from finite distributions of points.

The accuracies for the emulated ξ+ and ξ−, averaged across
the aforementioned ϑ ranges, for the grid ensemble are shown in
Figs. A.1 and A.2 respectively. The upper-left panel in either
figure shows the accuracies when training on cosmo-SLICS.
The remaining panels correspond to the noise-free Nicaea sets,
increasing in size from that of our simulation suite, to 50 and
finally 250 training predictions.

When training on the cosmo-SLICS mocks themselves, we
observe emulation accuracies ≤5% in both ξ+ and ξ− across
much of the emulation space, suggesting that the cosmo-SLICS
nodes are well-placed to sample the cosmological dependence
on these parameters. Noticeably worse accuracies of 5−10%
manifest at low Ωm values however. Features such as this are
expected at the edges of the training set, where there is a lower
concentration of nodes from which to interpolate. We also note
that this region is not sampled at all by the HaloFit train-
ing set, hence the predictions completely rely on extrapolation.
Similarly, we see edge-effects at some corners in the other pro-
jections, but again most of these were not part of the model
calibration. The high dependence of the ξ± statistics on Ωm is
perhaps the reason why the feature is strongest in the 2D planes
with this parameter. Comparison of the upper-left panel to the
upper-right, where the training predictions are replaced by noise-
free theoretical ξ±, reveals how much of the inaccuracy seen
when training on cosmo-SLICS can be attributed to noise in
the simulations and differences between cosmo-SLICS and the
HaloFit prescription. The average observed accuracy reduces
to ≤2% although worse performance continues to be observed at
Ωm < 0.2.

The lower two panels of Figs. A.1 and A.2 show the emula-
tion accuracy when the training sets consist of 50 and 250 noise-
free theoretical predictions respectively, with nodes indicated by
the magenta points27. We found that these numbers of train-
ing points are sufficient to achieve accuracies around the level
of 1% across all of the explored parameter space, and that the
improvement between 50 and 250 nodes is negligible, suggest-
ing the former already samples the cosmological dependence of
the ξ± very well. The noticeable improvement increasing from
the 26 to 50 training nodes could be considered argument for
running cosmo-SLICS simulations at 50 distinct cosmologies.
However, we remind the reader that given an amount of com-
puting resources fixed to 50 runs, opting for running all different
cosmologies would lack the benefits of our matched-pair simu-
lation strategy, which facilitate an unbiased estimate of the true
P(k) and ξ±(ϑ) with a small amount of noise (see Sect. 3.3).

We interpret these results instead as evidence that augment-
ing cosmo-SLICS with an additional 24 cosmologies each hav-
ing the matched-pair simulations, would be quite beneficial to

27 The h-range for these training nodes, ∈ [0.65, 0.8], reflects that of
a previous experimental design for the cosmo-SLICS suite, before the
lower limit of h = 0.6 was chosen to better represent observational con-
straints. The cosmologies of the grid ensemble were selected to cover
the range of the present cosmo-SLICS suite, hence why the 50 and
250 magenta points do not cover the full grid size in projections featur-
ing h. It is not necessary to adjust the distribution of 50 and 250 training
points however, since these training sets already permit very accurate
extrapolation to these low h values.

Fig. A.3. The fraction of the trial cosmologies from the bulk ensem-
ble, π∗

b
, with accuracies, averaged over a range of angular scales

(0.5−72 arcmin for ξ+, 8.0−300 arcmin for ξ−), better than the value,
Ac, plotted on the horizontal axis. The grey curves correspond to ξ+ pre-
dictions, magenta to ξ−. The solid curves result from training the emu-
lator on the noise-free theoretical predictions from Nicaea, whereas
the dashed result from training on cosmo-SLICS itself. The decre-
ment in performance when training on cosmo-SLICS is expected due
to the added noise in the training set and inaccuracies in the theoretical
predictions.

emulation performance, especially at low Ωm values, but going
beyond this sized suite is unnecessary. Also worth considering
is that in this parameter space, baryons contribute to up to 50%
of the total matter density, hence will likely have a different and
stronger feedback on the lensing signal.

The results of exploring the bulk accuracy of the emulator,
where all 4 cosmological parameters were varied simultaneously
in the 300 trial ensemble, is plotted in Fig. A.3. Here we show the
fraction of trial cosmologies for which the mean accuracy across
the fiducial angular separation range is better than the thresh-
old, Ac, plotted on the horizontal axis. We see that when training
on the N = 26 noise-free theoretical ξ±, our emulator recovers
more than 90% of the trial predictions to better than 5% accuracy
(solid magenta and grey curves). Further inspection reveals that
the trial cosmologies with mean accuracies worse than 5% all
reside on the edges of the hyper-cube defined by the training set,
where emulation is expected to perform less well. In particular,
we see cosmologies with Ωm < 0.2 over-represented, by factors
of 3 (considering ξ− predictions) and 5 (considering ξ+), in the
set of trials which failed to achieve this mean accuracy. This is
consistent with our accuracy tests involving the grid ensemble,
further pointing to a necessity for extra training nodes to improve
the emulation for this part of the parameter space.

The dashed lines in Fig. A.3 demonstrate the cumulative
mean accuracy when we instead trained on the cosmo-SLICS
predictions. We observe a decrement in performance relative to
the noise-free training set results as expected; for 25%(33%)
of the trial cosmologies, the mean emulator accuracies for the
ξ+(ξ−) statistics are worse than 5%. The slight assymetry in per-
formance for these two statistics is also consistent with grid
ensemble tests, where accuracy for emulating ξ+ (Fig. A.1) when
training on the cosmo-SLICS predictions was slightly better
than emulations of ξ− (Fig. A.2). We emphasise once again that
these results represent a conservative view of emulation accu-
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racy given cosmo-SLICS as a training set, owing to the imper-
fections of the theoretical predictions used for comparison. We
hence conclude that our simulation suite permits emulated pre-
dictions with accuracies at the level of '5% or better. It is pos-
sible that accuracy would improve further given an alternative
interpolation strategy, such as sparse polynomial chaos expan-
sion, as exercised by Knabenhans et al. (2019). We leave inves-
tigation of this for future work.

Appendix B: Comparison with theory

The overall accuracy of the N-body simulations is generally well
captured by the matter power spectrum P(k), which provides a
per-scale assessment of the resolution, and which is straightfor-
ward to compare with publicly available fit functions or emu-
lators. In Sect. 3.5 we explained why ratios of P(k) provide
noise-free estimates, and we provided an example in Figs. 3
and 5, where we compared model-12 to model-FID in the
form of P12(k)/PFID(k) and Cκ,12

`
/Cκ,FID

`
, respectively. In this

appendix, we further examine the agreement between our the-
oretical predictions and the cosmo-SLICS.

We present in Fig. B.1 the ratio between the simulation
estimate of Pmodel(k)/PFID(k) and the corresponding HaloFit
calculations, where the “model” subscript cycles through all
25 wCDM cosmologies. The redshift dumps vary between cos-
mological models, hence we show here a comparison at z =
120 (blue), z ∼ 0.6 (red) and z ∼ 0.0 (black). We notice that
although some models display an excellent agreement over the
full range of scales and redshifts (e.g. models-04 or -22), most
exhibit deviations of order 5−10% in the non-linear regime,
some even stronger (models-01, -03, -19 and -21 in particular).
Model-01 takes on particularly extreme values of σ8 (= 1.34)
and Ωm (0.10), models-03 and -19 have high values for their
dark energy equation of states, with w0 ∼ −0.5), while that same

parameter becomes very low in model-21 (w0 = −1.99). Also,
models-01, -15, -06, -14, -03 and -17 take very values of Ωm,
and we see discrepancies even at zi = 120. This seems to points
to a miss-match in the BAO amplitude imposed in the simula-
tions by the CAMB transfer function, and that computed by the
CAMB code. Very likely this has to do with the fact that the code
treats cold dark matter and baryons the same way, while CAMB
does not, causing this shift. Many cosmo-SLICS models fall out-
side the calibration range of HaloFit, where the predictions are
less robust; generally the match between the ratios degrades in
the non-linear regime.

We also note that in some cases, the black and the red
lines split at high-k, meaning that the two seeds evolve slightly
differently (see, for example, model-01). This is not expected
and points to residual systematics in the simulations, most
likely caused by numerical errors and affecting the P(k) at the
1−2 % level. This is much smaller that the overall difference
with respect to HaloFit (at the 10−20% level), hence is sub-
dominant.

We show the accuracy of our weak lensing light-cones for
all models in Fig. B.2, where we compare the ratio between our
wCDM power spectra and the ΛCDM case, model-FID. The
measurements from the cosmo-SLICS are in excellent agree-
ment with the predictions over a wide range of scales. Some dis-
crepancies are observed in the non-linear regime, where both the
theory and simulations are known to be less accurate.

Finally, we compare in Fig. B.3 the halo mass function mea-
sured in the simulations, with that computed from the Tinker
et al. (2010) fit function. We show our results for the ΛCDM
case in black, extracted from the SLICS simulations, and for
the wCDM model-03, in red, both taken at redshift z = 0.04.
Model-03 is particularly interesting here as it corresponds to
the uppermost blue line in the bottom panel of Fig. 7, which
exhibits strong differences in variance between simulations and

Fig. B.1. The sampling variance cancels when computing ratio between simulated power spectra, which eases the comparison with theoretical
predictions. This figure shows a comparison between these ratios, when computed from the cosmo-SLICS (denoted with subscript “sim”) or from
HaloFit (subscript “th”). More precisely, we compute Pmodel(k)/PFID(k) for both cases and for all 25 cosmological models, and examine the ratio
between the two estimates at z = 120 (blue), z ∼ 0.6 (red) and z ∼ 0.0 (black).
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Fig. B.2. Ratio between the lensing convergence power spectra from all 25 wCDM cosmological models and that from model-FID. The symbols
are from the simulations, the red lines from the theoretical predictions. These measurements show the average over the 800 pseudo-independent
line-of-sights, and the error bars represent the error on the mean.
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Fig. B.3. Comparison between the halo mass function measured from
the simulations (symbols) and the fit function from Tinker et al. (2010,
shown with the blue dashed lines). The red circles present the measure-
ments from model-03 at redshift z = 0.043, while the black squares
are from the SLICS simulations (hence the error bars). Lower panel:
fractional error between simulations and models, where the latter is
taken as the reference. The vertical lines mark the mass of dark mat-
ter haloes containing 100 particles, which varies between cosmologies
due to changes in the particle mass.

theory. We see that the lack of variance observed in the analyt-
ical model can be directly linked to an undershoot of the halo
mass function, which is systematically lower than in the simu-
lations. Given that the Tinker et al. (2010) fit function was only
calibrated with ΛCDM simulations28, it is not too surprising to

28 The Tinker et al. (2010) fit to the halo mass function is calibrated
over the range Ωm ∈ [0.2, 0.3], σ8 ∈ [0.75, 0.9], h ∈ [0.7, 0.73], Ωb ∈

[0.040, 0.045] and ns ∈ [0.94, 1.0].

see such large deviations when the dark energy equation of state
deviates significantly from w0 = −1.0. The cosmo-SLICS open
up a possibility to recalibrate the halo model fit functions in that
context, which we leave to future work.

Appendix C: Covariance estimation with a
matched-pair of N-body runs

The model-FID covariance estimation described in Sect. 4 is
a hybrid method between the ensemble approach from inde-
pendent measurements (two here) and an internal resampling
technique. Ray-tracing effectively selects a part of the total sim-
ulated volume to extract a light-cone, hence extracting multiple
light-cones is equivalent to drawing multiple sub-sets of the sim-
ulated data while allowing for repetitions, parent to the bootstrap
approach. In this section we expand on the method and further
investigate why it works so well in this context.

To restate the set-up, the matched-pair are constructed from
two N-body simulations evolved at the same cosmology, in
which the random seeds are chosen such that the initial fluc-
tuations in the matter power spectrum are Gaussian, they can-
cel to better than 5%, and oscillate about the mean with cross-
ing at (almost) every k-mode. More than one solution exists that
can satisfy these conditions, and we used an empirical approach
to draw our matched-pair from an ensemble of initial condi-
tions. We show in Fig. C.1 the variance extracted from this pair,
compared to the baseline variance, and observe that large and
small scales are in excellent agreement, however the model-FID
variance is low over the range k ∈ [0.2 − 3.0] at z = 0. The
level of agreement at this stage is surprisingly high, and some
other choice of pairs (i.e. not matched) produce a variance that
deviate significantly more, both at large and small scales (see
Fig. 4 in Harnois-Déraps & Pen 2013). The small discrepancies
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Fig. C.1. Comparison between the signal-to-noise, (σ/P(k))2, extracted
from the SLICS simulations and that estimated from the matched-pair.
Upper and lower panels: different redshifts.
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Fig. C.2. Ratio between the elements of the standard covariance

matrix,
〈
∆Cκ,α

` ∆Cκ,α
`′

〉
, and those from the “cross-sample” covariance,〈

∆Cκ,α
` ∆Cκ,β

`′

〉
, where α, β label individual light-cones, and α , β. These

matrices contain 182 elements, hence for every `-mode we plot the 18 `′
components of the baseline (in magenta squares, offset for clarity) and
model-FID estimator (in black triangles).

are subsequently suppressed during the line-of-sight projection
that leads to weak lensing observables.

Each member of the pair was ray-traced 400 times, for a total
of 800 pseudo-independent light-cones per pair. The matched-
pair covariance estimator can be written from Eq. (10), which
we repeat here for completeness:

Covκsim =
1

N − 1

N∑
i=1

[
Ĉκ,i
`
− 〈Cκ

`〉

] [
Ĉκ,i
`′
− 〈Cκ

`′〉

]
· (C.1)

In contrast with the baseline estimate, there is an implicit caveat
here, which is that the different realizations are not perfectly
independent. This approximation converges to an unbiased esti-
mator in the limits where the mean 〈Cκ

`
〉 matches the ensemble

mean, and where the residual correlations between the multiple
light-cones are small. The first condition naturally emerges from
the matched-pair by construction, while the second is satisfied
when:〈
∆Cκ,α

`
∆Cκ,β

`′

〉
�

〈
∆Cκ,α

`
∆Cκ,α

`′

〉
, for α , β, (C.2)

where ∆Cκ,α
`

is the mean-subtracted lensing power spectrum
measured in light-cone α, and the angular brackets refer to the
ensemble average over our realizations.

The term on the right-hand side of Eq. (C.2) corresponds to
(N + 1)/N times the usual lensing covariance matrix, while the
term on the left-hand side measures the cross-light-cone covari-
ance matrix. We measured these two terms both from the model-
FID and from the baseline, for all ` and `′ pairs, averaging over
all possible combination of α and β. We found that in the weak-
est case, the right-hand side is about ten times larger; for most

matrix elements the ratio
〈
∆Cκ,α

`
∆Cκ,β

`′

〉
/
〈
∆Cκ,α

`
∆Cκ,α

`′

〉
is larger

than 100, as reported in Fig. C.2. Interestingly, we observe that
the model-FID and the baseline scatter plots are very similar,
leading us to the conclusion that the residual correlations across
light-cones are negligible.

Appendix D: Analytical covariance calculations

In the following we describe the details of the analytical covari-
ance calculation. The code is the same as used in the cosmology
analyses of the Kilo-Degree Survey (Hildebrandt et al. 2017,
2018; Köhlinger et al. 2017; van Uitert et al. 2018), with similar
implementations also used as default in DES and HSC (Troxel
et al. 2018; Hikage et al. 2019; see also Krause & Eifler 2017
for analogous implementation details). We follow Takada & Hu
(2013), Li et al. (2014), Cooray & Hu (2001) closely in our
notation.

The matter trispectrum in Eq. (7) is given by the sum of the
terms

T 1h(k1, k2, k3, k4) = I0
4 (k1, k2, k3, k4); (D.1)

T 2h
22 (k1, k2, k3, k4) = Plin(k12)I1

2 (k1, k2)I1
2 (k3, k4) + 2 perm.;

T 2h
13 (k1, k2, k3, k4) = Plin(k1)I1

1 (k1)I1
3 (k2, k3, k4) + 3 perm.;

T 3h(k1, k2, k3, k4) = BPT(k1, k2, k34)I1
1 (k1)I1

1 (k2)I1
2 (k3, k4) + 5 perm.;

T 4h(k1, k2, k3, k4) = TPT(k1, k2, k3, k4)I1
1 (k1)I1

1 (k2)I1
1 (k3)I1

1 (k4),

where Plin is the linear matter power spectrum and where B/TPT
are the tree-level matter bispectrum and trispectrum, respectively
(see e.g. Eq. (30) in Takada & Hu 2013 for explicit expressions).
Here, halo model integrals were defined as

Iβµ(k1, k2, . . . , kµ) =

∫ ∞

0
dM

dn
dM

bβ

(
M
ρ̄m

)µ µ∏
i=1

ũM(ki), (D.2)

with ρ̄m the mean matter density in the Universe and ũM the
Fourier transform of an NFW halo matter density profile (see
Eq. (11) in Scoccimarro et al. 2001). For the latter we assumed
the mass-concentration relation by Duffy et al. (2008). More-
over, we set bβ = 0 for β ≥ 2, b0 = 1, and b1 = bh(M), the halo
bias. The expression for the halo bias is consistently matched
to the halo mass function, dn/dM. By default, we adopted the
fit functions by Tinker et al. (2010), but tested the models by
Sheth et al. (2001) and Press & Schechter (1974) as well. In
the results shown in this work we have skipped the two 2-halo
contributions to the trispectrum as they have negligible impact
on the power spectrum covariance and are time-consuming to
compute.

To calculate Eq. (8), we determined the response of the mat-
ter power spectrum to a background mode in the halo model as
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∂P(k)
∂δb

=

68
21
−

1
3

d ln
[
k3I1

1 (k)2Plin(k)
]

d ln k

 I1
1 (k)2Plin(k) + I1

2 (k, k).

(D.3)
The variance of background modes within the survey footprint
is given by

σ2
b(χ,M) =

1
Asurvey

∫
d2`

(2π)2 |M̃(`)|2Plin(`/χ, χ), (D.4)

where M̃ is the Fourier transform of the survey mask. Since
the simulated survey area is small, the flat-sky approximation in
Eq. (D.4) is adequate. As we assumed a simple square geometry,
the Fourier transform can be determined analytically as

M̃(`) = Asurvey sinc
(
`x

2

√
Asurvey

)
sinc

(
`y

2

√
Asurvey

)
, (D.5)

where sinc(x) = sin x/x, and where `x,y are the Cartesian com-
ponents of the vector `. Note that all halo model terms and
polyspectra carry a redshift dependence that we have only made
explicit as an argument where necessary.

In the Gaussian term (Eq. (5)) we based the calculation on
the full non-linear matter power spectrum, using the fit function
of Takahashi et al. (2012). We evaluated the lensing efficiencies
at the exact redshift of the simulated convergence map, which
varies slightly with cosmology. The covariance elements were
evaluated at a single effective angular frequency at the logarith-
mic centre of each bin.
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