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Abstract 

Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many 

medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess 

antioxidant, neuroprotective, anti-inflammatory, antibacterial, antiviral, antidiabetic, anticancer, and anti-

obesity properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic 

applications due to their poor bioavailability. The attempts to understand their metabolic pathways to 

improve their bioavailability are investigated. In this review article, we will first summarize the number of 

PhGs compounds which is not accurate in the literature. The latest information on the biological activities, 

structure-activity relationships, mechanisms and especially the clinical applications of PhGs will be 

reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability 

will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the 

bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also 

discussed, highlighting research directions in the future.  

Keywords: Phenylethanoid glycosides; Bioavailability; Verbascoside; Salidroside; Echinacoside  
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1. Introduction 

Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many 

medicinal plants. PhGs have been isolated from the roots, stems, bark, leaves, flowers, fruits and seeds of 

medical plants, as well as from suspension cell cultures, callus tissues and hairy roots cultures. They are 

also found in various plant-based foods such as edible flowers and tea. However, their accumulations in 

each plant organ may vary considerably1-3. The main PhGs are reported from the families Acanthaceae, 

Berberidaceae, Asteraceae, Gesneriaceae, Lamiaceae, Loganiaceae, Magnoliaceae, Oleaceae, 

Orobanchaceae, Plantaginaceae, Portulacaceae, Rosaceae, Scrophulariaceae, and Verbenaceae4. For 

example, a total of 69, 51, 21 and 16 PhGs have been isolated from Cistanche herba5, Forsythiae fructus6, 

Magnoliae officinalis7 and Houttuynia cordata8, respectively. Verbascoside (also known as acteoside), one 

of the representative PhGs, is widely distributed in the family Lamiaceae，Plantaginaceae, Scrophulariaceae, 

and Orobanchaceae9. In1994, Jiménez and Riguera summarized the structures and biological activities of 

155 PhGs reported before 19922. In 2008, Fu et al. provided an overview in the advances on 190 new PhGs 

isolated from 1997 to 200710. The detailed information of 116 new PhGs identified during 2009-2016 was 

given in 20163. In the present review, we summarized the 111 PhGs11-56 that have not been reviewed 

previously (1993-1997, 2007-2009 and 2016-present) in Table 1 and Table 2. The latest new PhGs 

(Ginkgoside C and D) was published on 16 June 2020. Up to 572 PhGs were identified from nature until 

June 2020. These 572 PhGs are distributed in 21 orders and 35 families of the plant kingdom (Figure 1). It 

should be noted that some PhGs identified were not published in English. Thus, the actual number identified 

must be over 572. 

In general, the basic structure of PhGs consists of a hydroxyphenylethyl unit as an aglycone which is 

attached to a sugar moiety mostly a β-D-glucopyranose through a glycosidic bond at the C-1 site. In most 

cases, the glucose moiety is esterified with a hydroxycinnamic acid derivative such as caffeic acid, coumaric 

acid, cinnamic acid, and ferulic acid. Rhamnose, xylose, arabinose, allose, galactose, and apiose, among 

others, may also be attached to the glucose residue (Figure 2, Table 1 and 2). The diversity of sugar and 

hydroxyphenylethyl moieties make the plentiful variation of PhGs. Generally, the number of sugars ranges 

from one to three. However, four-sugar and five-sugar residues are also found occasionally. According to 

the number of the sugars bonded to hydroxyphenylethyl moieties, PhGs can be classified into 

monosaccharidic PhGs, dissaccharidic PhGs, trisaccharidic PhGs, tetrasaccharidic PhGs, and 

pentasaccharidic PhGs4. To date, there are 10 tetrasaccharidic PhGs reported, namely, magnolosides C57, 

ballotetroside58, trichosanthoside B59, marruboside60, velutinosides I61, velutinosides II61, lunariifolioside62, 
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raduloside63, barlerinoside64, and poliumoside B65. Only one pentasaccharidic PhGs named yulanoside A 

from M. salicifolia was reported in 201566. The representative chemical structures of monosaccharidic PhGs, 

dissaccharidic PhGs, trisaccharidic PhGs, tetrasaccharidic PhGs, and pentasaccharidic PhGs are shown in 

Figure 2. 

Most purified PhGs are white, buff or yellow amorphous powders with high polarity. They are soluble in 

polar solvents but insoluble in non-polar organic solvents67. As the characteristics of the strong ultraviolet 

(UV) absorption in PhGs, it is easy to monitor these compounds by UV spectrophotometer. The specific 

UV spectra of each PhGs can also serve as an index to deduce the structure. For example, the UV absorption 

peaks of verbascoside and isoverbascoside are 232, 246, 289, 332 nm, and 232, 246, 286, 328 nm, 

respectively68. And that of echinacoside are 236, 288, 330 nm69. 

PhGs and the extracts rich in PhGs exhibited various benefits, such as antioxidant activity, neuroprotective 

effect, anti-inflammatory activity, antibacterial activity, antivirus activity, anti-diabetic activity, anti-cancer 

activity, and anti-obesity activity3, 9. Figure 3 shows the number of papers and times cited of papers indexed 

in the Web of Science related to “PhGs”, illustrating a significant increase in publication in this area. 

Although over 572 PhGs have been isolated and identified, only a few of them are extensively studied. For 

example, the number of papers on salidroside, verbascoside, echinacoside, forsythoside and 

isoverbascoside are 1746, 1258, 538, 370 and 230, respectively. And the numbers of citations of the papers 

about verbascoside, salidroside, echinacoside, forsythoside and isoverbascoside are 19356, 14352, 6468, 

3234 and 4098, respectively. Other PhGs have fewer than 100 papers published. The number of papers 

published and number of citation of the papers of specific PhGs are also shown in Figure 3.  

Despite the many promising biological activities, PhGs have failed to fulfill the therapeutic applications 

due to poor bioavailability3. The bioavailability of verbascoside was found to be 0.12% in rats after 

verbascoside was given at the dosages of 100 mg/kg oral administration (p.o.) and 3 mg/kg intravenous 

injection (i.v.)70, but the bioavailability of verbascoside in dogs was around 4% after verbascoside was 

given at 40 mg/kg intragastric administration (i.g.) and 5 mg/kg i.v.71. The bioavailability of echinacoside, 

and angoroside C in rats at the dose of 100 mg/kg i.g. and 5 mg/kg i.v., was reported to be 0.83%72 and 

2.1%73, respectively. The bioavailability of forsythiaside (100 mg/kg p.o. and 5 mg/kg i.v.) and poliumoside 

(200 mg/kg p.o. and 10 mg/kg i.v.) in rats was 0.5%74 and 0.69%75, respectively. Feng et al. compared the 

pharmacokinetic and bioavailability characteristics of savaside A, verbascoside, and isoverbascoside in rats 

after the compounds were given at the dosages of 1000 mg/kg p.o. and 5 mg/kg i.v.. The bioavailability 

order of the three PhGs appears to be verbascoside > isoverbascoside > savaside A76. Zhang et al. 
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investigated the pharmacokinetic of four PhGs (verbascoside, isoverbascoside, martynoside, and 

crenatoside) after orally administrated 10.0 g crude Acanthus ilicifolius herb /kg to rats. Although the four 

PhGs share similar molecular structures, they displayed different elimination half-lives (T1/2), and different 

areas under the curves (AUC0–t), ranging from 3.4 to 9.0 h, and 1826.3 to 23.6 μg/L×h, respectively77. 

Different dosages and administrative patterns might affect the bioavailability of PhGs. However, there is 

one exception. The bioavailability of salidroside was reported to be 51.97%78. As for the reasons why the 

bioavailability of salidroside was significantly higher than other PhGs, this may be ascribed to its relatively 

simple structure (Figure. 2). Salidroside belongs to monosaccharidic PhGs consisting of phenylethanol and 

sucrose, and the relatively large polarity allowed it to be easily excreted from the urine without complicated 

metabolic processes. The higher absorption of salidroside may also lead to its obviously higher 

bioavailability than other PhGs (section 5.1). Numerous approaches such as bioenhancers, β-cyclodextrin 

encapsulation, liposomal PhGs, nanoparticles and phospholipid complex have been applied to improve the 

bioavailability of PhGs. 

There have been a number of reviews on PhGs since the 90’s. As early as 1994, Jiménez and Riguera 

reviewed the isolation, purification, as well as structure and biological activity of PhGs2. Pan et al. 

highlighted the pharmacological activities of natural PhGs in 200379. Fu et al. summarized the 

phytochemistry and bioactivity of PhGs in 200810. Radev et al. published a mini review on pharmacological 

effects of PhGs in 201080. Xue and Yang summarized advances in the phytochemistry, pharmacology and 

pharmacokinetics of PhGs in 20163. Alipieva et al. reviewed the biosynthesis and pharmacological 

significance of verbascoside, the most popular phenylethanoid glycoside in 20149. Liu et al. generalized 

the distribution, extraction methods, poor pharmacokinetics and therapeutic uses of echinacoside in 201881. 

Tao et al. gave a detailed summary of chemical, pharmacological, toxicological, and clinical studies of 

various Rhodiola species with salidroside as the characteristic chemical constituents in 201982. However, 

there are no comprehensive reviews concerning the stability, biotransformation, clinical application and 

bioavailability of PhGs. This review will summarize the latest information on the chemistry, pharmacology, 

stability, clinical application, pharmacokinetics, metabolites and biotransformation of PhGs. Recent 

advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs will 

also be summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting 

research directions in the future.  

 

2. Pharmacology of PhGs 
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PhGs have been reported to have various bioactivities in cell and animal models. Herein, the potential health 

benefits of PhGs are summarized (Figure 4), and the structure-activity relationship and mechanisms of 

PhGs’ pharmacology are highlighted.  

2.1 Antioxidant and free radical scavenging activity 

Many PhGs and extracts rich in PhGs have shown powerful antioxidant activity. Two new PhGs named 

macrophylloside E and macrophylloside F, together with eight known PhGs (jionoside C, forsythoside B, 

alyssonoside, verbascoside, isoverbascoside, martinoside, isomartinoside and leucosceptoside) were 

isolated from Callicarpa macrophylla. All the ten PhGs showed high to moderate antioxidant effect with 

the IC50 from 2.72 to 38.65 μM in the DPPH assay43. Verbascoside isolated from Plantago major can 

significantly scavenge both DPPH  (IC50, 11.27 μM) and superoxide radicals (IC50, 1.51 μM). 

Verbascoside can also inhibit lipopolysaccharide induced production of nitric oxide in RAW264.7 

macrophages (IC50, 75.0 μM) 83. Seven PhGs (plantalide A, verbascoside, plantamajoside, martynoside, 

himaloside B, desrhamnosyl isoverbascoside and plantainoside D) discovered from P. asiatica showed 

DPPH radical scavenging activity with the IC50 values ranging from 22.9–88.5 μM. While other 22 

compounds from P. asiatica showed weak antioxidant activity85. In addition, verbascoside and salidroside 

were demonstrated to be two major PhGs contributing to the great antioxidant capacities of Osmanthus 

fragrans flowers85.  All nine PhGs (magnolosides Ia, Ib, Ic, IIa, IIb, IIIa, Iva, and Va and crassifolioside) 

from M. officinalis were found to possess strong free radical scavenging potential with the IC50 ranging 

from 11.79 to 20.99 μM, and magnoloside Ia (IC50, 11.79 μM) was the strongest one86. The DPPH radical 

scavenging capacity of crassifolioside (IC50, 21.38 μM), magnoloside IIa (22.94 μM), and magnoloside IIb 

(24.62 μM) was weaker than that of magnoloside Ia (11.79 μM), magnoloside Ic (12.99 μM), magnoloside 

Ib (16.23 μM), and magnoloside Va (20.99 μM). As we can see from the structures of these compounds, 

crassifolioside, magnoloside IIa and magnoloside IIb contained three sugars while magnoloside Ia, 

magnoloside Ic, magnoloside Ib, and magnoloside Va contained two sugars. More sugars mean larger steric 

hindrance in compounds and prevent them from easily approaching the free radicals, finally causing the 

weaker DPPH radical scavenging capacity. In addition, compared with the other seven PhGs, magnoloside 

IIIa (32.18 μM) and magnoloside IV (35.17 μM) with two adjacent phenolic groups only in one side 

exhibited poor activity86. Furthermore, benzene ring plane conjugation in PhGs can be increased by the α, 

β-conjugated unsaturated ester structures and allow electron delocalization to inhibit free radicals86.  

  

2.2 Neuroprotective effect 
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Verbascoside, isoverbascoside, salidroside, and echinacoside exhibited antioxidant and neuroprotective 

activities in hydrogen peroxide induced apoptosis in PC12 cells via the nuclear factor erythroid 2-related 

pathway87. CaleolariosideB, paraboside B, and paraboside II isolated from Paraboea martinii effectively 

protected PC12 cells from H2O2-induced damage by upregulating HO-188. It is believed that β amyloid 

peptide (Aβ) is a major cause of Alzheimer’s disease89. Total PhGs extracted from C. Herba at 

concentrations of 5, 25 and 50 μg/mLincreased the viability and decreased LDH and MDA release by PC12 

cells injured with Aβ1‑42
90. Torenoside B and savatiside A were demonstrated to improve the enzyme activity 

of GSH‑Px and SOD, decrease the content of MDA and ROS, and downregulate intracellular Ca2+ 

concentrations and Calnexin expression in Aβ25–35 induced SH‑SY5Y cells91. Verbascoside, salidroside, 

and PhGs from C. Herba have significant protective potential against oxidative stress induced by Aβ92, 93. 

The characteristic pathology in Parkinson’s disease is the degeneration of dopamine neurons in the 

substantia nigra pars compacta94. Campneoide and tubuloside B can protect neurons from 1-methyl-4-

phenylpyridinium induced apoptosis in vivo 95, 96. Verbascoside has potential therapeutic value against PD 

through attenuating the oxidative stress and activating the Nrf2/ARE signaling pathway97. SAMP8 mice, a 

model for AD, were administered by PhGs extracted from C. Herba daily intraperitoneally at 25, 50, or 100 

mg/kg/day for 30 days. PhGs were found to improve cognitive deficits in SAMP8 mice by improving 

synaptogenesis and synaptic plasticity98. It has been reported that the mean lifespan of caenorhabditis 

elegans was extended by 13.64% and 15.82% after treated with 200 μM and 300 μM ECH, respectively. 

The protective effect of ECH on Aβ-induced toxicity in C. elegans was almost equal to that of ginkgolide 

A, a well-known agent with positive effects for AD99.  

Liu et al. synthesized eight PhGs derivatives based on calceolarioside A, and studied their neuroprotective 

effects in PC12 cells. The results showed that seven compounds could protect the cell damage or death 

from the free radical damage except the chloro-substituted analog. The structure-activity relationship 

indicated that the catechol moiety might not monopolize the bioactivity but probably could play an 

important role in neuroprotection and the glucose moiety seemed not important for the neuroprotection100. 

The findings were consistent with the recent structure-activity of caffeic acid phenethyl ester analogs101, 102. 

 

2.3 Hepatoprotective effect 

Verbascoside, isoverbascoside, echinacoside, tubuloside B, cistanoside A and 2-acetylacteosid offer 

hepatoprotective effects via multiple mechanisms including strengthening antioxidant defense system, free 
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radicals scavenging, and blocking cytochrome P450 biotransformation103. Leucoseceptoside A, crenatoside, 

martynoside, and 3-O-methylcrenatoside extracted from Incarvillea compacta alleviated CCl4-induced 

hepatotoxicity by enhancing the activity of superoxide dismutase, decreasing the intracellular ROS and 

malondialdehyde content as well as activating NF-κB pathway104. Fourteen PhGs isolated from Forsythia 

suspensa were evaluated for their hepatoprotective effects on HepG2 cells damage induced by APAP. It 

was found that forsythoside N, forsythoside O, forsythenside A and forsythenside B exerted significant 

hepatoprotective activities28 with the cell survival rates from 52.48% to 67.15%, 67.61%, and 64.88% at 

the concentration of 10 μM, respectively. Cistanoside A (125, 250, and 500 mg/kg/day) could alleviate 

ethanol-induced hepatotoxicity in mice by improving the activities of the activities of energy metabolism 

enzymes (Ca2+-Mg2+-ATPase, ATPase, and Na+-K+-ATPase), mitochondrial antioxidant enzymes (SOD, 

GST and CAT), and antioxidant defense system105. Besides, cistanoside A (100, 75, 50, and 25 μg/mL) 

suppressed the apoptosis of hepatocytes by increasing the expression of Bcl-2 and supressing c-fos105. 

Echinacoside (60 mg/kg, i.p.) could significantly protect LPS and D-galactosamine induced acute liver 

injury in mice due to its anti-apoptotic and anti-inflammatory activities106. PhGs from C. deserticola was 

assessed for their hepatoprotective activity in vitro and in vivo. Concentrations of 0.33, 1.00, 3.00 mg/mL 

PhGs could improve the HepG2 cells viability to almost 10%, 22% and 35%, respectively. After orally 

administered with PhGs at 200, 600 or 1800 mg/kg for 31 consecutive days, ICR mice with liver injury 

induced by alcohol showed improved hepatic indicators (superoxide dismutase, glutathione S-transferase, 

glutathione, glutathione peroxidase, malondialdehyde and triglyceride) levels107. 

Structure–activity relationship indicated that the catechol moiety on PhGs was important for the 

hepatoprotective activity108. Verbascoside (IC50, 4.6 μM), 2ʹ-acetylverbascoside (4.8 μM), isoverbascoside 

(5.3 μM), tubuloside A (8.6 μM) and echinacoside (10.2 μM) inhibited D-GalN-induced death of 

hepatocytes109. Verbascoside (IC50, 4.6 μM) showed significantly stronger activity than kankanose (>100 

μM), and echinacoside (10.2 μM) showed significantly stronger activity than cistanoside F (>100 μM), 

which indicated that aglycone was an important group for the activity109. As the activity of isoverbascoside 

(5.3 μM) was higher than kankanoside G (14.8 μM), it can be concluded that aglycone with the 4-hydroxy 

group showed weaker activity than that having 3,4-dihydroxy group109. The 8-O-β-D-glucopyranosyl part 

with 6ʹ-O-caffeol group (Tubuloside B, 14.6 μM) showed weaker activity than that with 4ʹ-O-caffeoyl group 

(2ʹ-acetylverbascoside, 4.8 μM)109. The introduction of 6-O-β-D-glucopyranosyl (echinacoside ＜

verbascoside) and 2ʹ-O-acetyl moiety (2ʹ-acetylverbascoside＜verbascoside) could reduce the protective 

effect109. 
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2.4 Anticancer activity 

In a recent study, echinacoside was reported to possess antiproliferative activities (20 μg/mL, 9.57 %; 50 

μg/mL, 26.67%; 100 μg/mL, 37.20%) on HepG2 cells by inactivating AKT pathway and decreasing 

TREM2 expression110. Verbascoside, echinacoside, cistantubuloside A, cistanoside A, and 2´-

acetylverbascoside inhibited the proliferation of mouse skin melanoma cancer cell line KML with the 

inhibition rate ranging from 33% to 93%111. Pretreatment with 5, 10, 20, 40 and 50 μM salidroside for 48 

h can inhibit the proliferation of human breast cancer MCF-7 cells to almost 70%, 60%, 55%, 45% and 

30%, respectively. The mechanism maybe related with increasing caspase activity, down-regulating the 

Bcl-2 expression, and up-regulating the Bax expression. Moreover, salidroside treatment inhibited tumor 

growth in a xenograft tumor model. Compared with control group, after treated with salidroside (50 mg/kg 

body weight) on alternate days for 3 weeks, the weight and volume of tumor was decreased by 0.7 g and 

300 mm3, respectively112. Salidroside was reported to possess antitumor activity against Wilms' tumor113, 

breast cancer114, ovarian cancer115, gastric cancer116, skin cancer117, renal cell carcinoma118 and colorectal 

cancer119. Li et al. investigated the effects of PhGs extract from C. tubulosa (CTPG) on the inhibition of 

melanoma cell (B16-F10) growth. In vitro, 100 μg/mL of CTPG for 48 h or 200 μg/mL of CTPG for 72 h 

treatment inhibited the growth rates of B16-F10 cell to higher than 60% and 90%, respectively. CTPG can 

up-regulate the expressions of BAX, down-regulate the expressions of BCL-2, increase the generation of 

ROS, and reduce the mitochondrial membrane potential in vitro. Furthermore, subcutaneously 

administering 400 mg/kg CTPG in mice every 2 days for up to 15 days lasted the survival of mice from 

8.3% to 41.7% 120. Verbascoside from Pedicularis striata could inhibit cancer cell growth and cell cycle in 

G2/M phase, induce apoptosis and inhibition of telomerase activity and reduced telomere length121. It 

should be noted that not all PhGs exhibit anticancer properties. For example, Kirmizibekmez et al. tested 

the cytotoxic activity of four PhGs (plantainoside D, calceolarioside D, neocalceolarioside D and 

lugrandoside) against a series cancer cell lines, namely SH-SY5Y, T98G, A375, HT29, MCF-7, PC3. All 

the four compounds showed no toxicity against the six cancer cell lines at the concentration of 1–50 μM122.  

A number of structure-activity relationships proved that the caffeic acid moiety and catechol group are 

essential for the cytotoxicity of PhGs. The number of acetyl moieties and their position in the aliphatic rings 

also play an important role in the anti-proliferative activities of PhGs123-125. The antiproliferative activity of 

verbascoside was almost twice as that of echinacoside and calceolarioside. The similar cytotoxic activity 

of calceorioside A and verbascoside suggest that rhamnose substitution does not influence the cytotoxic 
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activity of PhGs126. Verbascoside inhibited about 23%–30% of the proliferation activity of the cancer cells, 

which is almost twice as many as echinacoside (10%–18%), calceolarioside A (13%–18%), and 

calceolarioside B (5%–15%). The higher antiproliferative activity may be related to the α-Rha-(1→3)-

Glc disaccharide unit and the 4-caffeoyl function in verbascoside127. The structure-cytotoxicity 

relationships among 14 PhGs compounds indicated that the fewer sugar units they have, the stronger 

activities they may have. Furthermore, the position of phenolic acid does not affect the activity. Besides, 

methylation of the phenolic hydroxyl groups has an adverse impact on the activity128. 

 

2.5 Anti-inflammatory activity 

The anti-inflammatory activity of PhGs is often connected to suppression of MAPK, NF-κB, and JAK-

STATs pathways and activation of Nrf2 pathway129. Wu et al. confirmed that PhGs (verbascoside, 

parvifloroside A, syringalide A, 3′-α-L-rhanmnopyranoside, forsythoside B, poliumoside and alyssonoside) 

from C. kwangtungensis provided protection against LPS-induced inflammatory response in RAW 264.7 

macrophages by activating Keap1/Nrf2/HO-1 signaling pathway130. Echinacoside attenuated LPS-induced 

inflammation in rat intestine epithelial cells by suppressing the mTOR/STAT3 pathway131. Verbascoside 

can inhibit the release of β-hexosaminidase, arachidonic acid and histamine in RBL-2H3 cells through 

inhibiting MAPK and JNK pathways and Ca2+ independent phospholipase132-134. Verbascoside (30, or 60 

mg/kg) was shown to decrease inflammatory response against LPS-induced acute lung injury in mice by 

inhibiting NF-κB signaling pathway135. Gao et al. investigated the anti-inflammatory effects of 

verbascoside, isoverbascoside, torenoside B and savaside A and found that isoverbascoside (80 μM), 

possessed the strongest activity on inhibiting the expression of iNOS and COX-2136. Isoverbascoside exerts 

anti-inflammatory via modifying NF-κB and MAPK pathways136. Forsythiaside A was reported to have 

protective potential on LPS-induced inflammation in BV2 microglia cells and primary microglia cells via 

increasing Nrf2 and HO-1 levels and suppressing NF-κB pathway137. Forsythiaside A could attenuate 

inflammation in acute liver injury animals by activating Nrf2 and inhibiting NF-κB pathway138. PhGs from 

Phlomis younghusbandii exerted anti-inflammatory properties on acute hypobaric hypoxia-stimulated 

HACE in rats by rehabilitating the oxidative stress levels and inhibiting the expression of pro-inflammatory 

cytokines regulated by the NF-κB signaling pathways139. 

The anti-inflammatory activity of seven PhGs on inhibiting NO production showed that leucosceptoside A 

(IC50, 9.0 μM ), lipedoside A-I (11.6 μM ), verbascoside (12.8 μM ), isoverbascoside (13.7 μM ), and 

campneoside II (22.1 μM ) possessed stronger activity than martynoside (>100.0 μM) and angoroside C 
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(>100.0 μM). This indicated that the two adjacent hydroxide groups in PhGs may be related to their anti-

inflammatory activity140. Yang et al. demonstrated that PhGs with two sugar groups possessed weaker 

activities than others141.  

 

2.6 Antiviral, antibacterial and antiprotozoal activity 

Lippiarubelloside A and lippiarubelloside B, together with four known PhGs, verbascoside, isoverbascoside, 

forsythoside A, and poliumoside, isolated from Lippia rubella could inhibit the growth of Cryptococcus 

neoformans at the concentrations of 15-125 μg/mL32. Total PhGs extract from Monochasma savatieri 

showed significant antibacterial effects at a concentration from 0.0625 to 16 mg/mL142. Verbascoside and 

forsythoside B showed high antibacterial activities against five strains of Staphylococcus aureus from 64 

g/L to 256 g/L, which were comparable to that of norfloxacin143. When used alone at the dose of 200 μg/mL, 

verbascoside had no inhibitory activity against clinical isolate of Escherichia. coli and Staphylococcus. 

aureus. However, co-administration of verbascoside and gentamicin showed a synergistic effect against E. 

coli and S. aureus. This indicated that verbascoside could be applied to overcome bacterial resistance caused 

by traditional medicines144. Isoforsythiaside and forsythiaside are the main antibacterial constituents in 

Forsythia suspense, which is often applied to treat the infection in upper respiratory tract. Isoforsythiaside 

and forsythiaside well inhibited the growth of E. coli, P. aeruginosa and S. aureus145, 146. In addition, 

forsythoside H exhibited strong inhibitory effects against B. vulgare, B. dysenteriae, M. pneumonia, and A. 

bacillus147. Verbascoside has antiviral activity in vitro and anti-influenza activity in vivo. And the antiviral 

mechanism of verbascoside was related to the activation of ERK and enhancement of IFN-γ production148. 

Forsythiaside and calceolarioside B showed significant antiviral potential on respiratory syncytial virus in 

vitro149. Forsythiaside inhibited the infectivity of avian infectious bronchitis virus150. Taraffinisoside A, a 

new PhGs isolated from Tarphochlamys affinis, showed antihepatitis B activity with IC50 values of 0.50 

and 0.93 mM against hepatitis B surface antigen and hepatitis B eantigen, respectively67. Forsythoside A 

from F. suspensa decreased the viral titers of different influenza virus subtypes in cell cultures at the dose 

of 160 μM. Forsythoside A also increased the survival rate of the mice in an influenza virus infection model 

at 5 or 10 μg/g body weight 151. Hu et al. evaluated the anti-influenza virus effects of PhGs in vitro and in 

vivo. PhGs at 0.5 mg/mL could inhibit the influenza A virus H1N1 type infection of Madin Darby canine 

kidney cell in vitro. PhGs at 300 and 900 mg/kg significantly reduced the mouse lung index (p＜0.05), 

alleviated influenza-induced lethality and clinical symptoms, and prolonged mouse survival time (p＜0.05). 

The mechanism maybe related to up-regulating IFN-γ152.   
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It has been reported that verbascoside possessed antiprotozoal activity against Trypanosoma brucei 

rhodesiense, Leishmania infantum, L. donovani, and L. amazonensis153, 154. Verbascoside showed an EC50 

of 19 μM against L. promastigotes and is a competitive arginase inhibitor with Ki of 0.7 μM155. Among 

seven PhGs extracted from Tecoma mollis, luteoside B and luteoside A showed the strongest antileishmanial 

activity with the IC50 values of 6.7 and 15.1 μg/mL, respectively156.  

Little information is available about the structure-activity relationship of PhGs in its antiviral and 

antibacterial activities. Kyriakpoulou et al. discovered that samioside is more active than verbascoside 

against four strains of bacteria, indicating that an additional sugar moiety (apiose) at C-4 of rhamnose could 

contribute to the antibacterial activity157. Although phlinoside C and forsythoside B have a similar structure, 

phlinoside C hardly inhibit multi-drug-resistant strains of S. aureus. This indicated that introducing the third 

glycoside (rhamnose) to forsythoside B might cause its inactivity143. 

 

2.7 Antidiabetic activity 

A new PhGs named flavaioside from Scrophularia flava showed α-glucosidase inhibitory activities with 

IC50 value of 6.50 μg/mL. In addition, flavaioside possessed a significant inhibitory activity on the α-

glucosidase enzyme, and the inhibitory activity (91.85%) was comparable with the known anti-type 2 

diabetic drug, acarbose (92.87%)158. The in vitro experiments showed that verbascoside, echinacoside, 

isoverbascoside, 2'-acetylverbascoside, tubulosides A, tubulosides B, syringalide A' 3-O-rhamnose, 

campneoside I, and kankanoside J1 from C. tubulosa could offer strong inhibition against lens aldose 

reductase with their IC50 of 3.1, 1.2, 4.6, 0.071, 8.8, 4.0, 11.1, 0.53, and 9.3 μM, respectively. Especially, 

2'-acetylverbascoside showed the similar activity with epalrestat, a clinical aldose reductase inhibitor159. 

Verbascoside and echinacoside were demonstrated to improve glucose tolerance and decrease glucose level 

in mice at doses of 250-500 mg/kg159. Verbascoside and echinacoside could suppress the increased 

postprandial blood glucose level by inhibiting glucose transporter 1-mediated glucose uptake160. 

Isocampneoside II isolated from P. coreana could significantly inhibit recombinant human aldose reductase 

with the IC50 of 9.72 μM. Furthermore, verbascoside, isoverbascoside, isocampneoside II and cistanoside 

F effectively inhibited sorbitol accumulation in a rat lens incubated with a high concentration of glucose by 

almost 70.6, 47.9, 71.3, and 31.7% at 50 μM, respectively161. Compared with control group, three weeks 

oral administration of verbascoside (10, 20, and 40 mg/kg) caused a significant reduction of blood glucose 

to 111.30, 74.88, and 75.15 mg/dL, respectively, in diabetic rats. Regarding serum insulin levels, oral 

treatment with verbascoside (10, 20, and 40 mg/kg) elevated the serum insulin level to be 3.23, 5.38, and 
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6.80 μIU/mL, respectively, in diabetic rats162.  

 

2.8 Other activities 

Wu et al. investigated the anti-obesity properties of PhGs form Ligustrum purpurascens. The results showed 

that PhGs inhibited α-chymotrypsin, trypsin and pepsin with the IC50 values of 0.42, 0.38, and 0.68 mg/mL, 

respectively. Verbascoside exerted the anti-obesity effects by inhibiting pancreatic lipase. Verbascoside 

bounded to lipase at Ka = 1.88×104/l mol163. The anti-obesity effect of PhGs from L. purpurascens against 

fatty diet-fed mice was associated with the up-regulating of mRNA and protein levels of adipose leptin164. 

Echinacoside (0.01-10 nmol/L) was reported to boost bone regeneration in MC3T3-E1 cells by enhancing 

receptor activator of NF-κB ligand (RANKL)165. Similarly, 12 weeks’ daily i.g. administration of 

echinacoside (30, 90, and 270 mg/kg/day) to ovariectomized (OVX) rats significantly increased 

osteoprotegerin (OPG) level and decreased RANKL level166. Compared to OVX group, 270 mg/kg/day 

echinacoside treatment caused the highest levels of OPG and OPG/RANKL ratios (150.14% and 

197.64%)166. After 12 weeks’ daily orally administration of echinacoside (30, 90, 270 mg/kg/day) in OVX 

rats, the urine concentration of calcium, inorganic phosphorus, and hydroxyproline was increased by 

92.23%, 66.67% and 36.41%, respectively, in 270 mg/kg/day group167. Cistanoside A (p.o., 20, 40 and 80 

mg/kg/day for 12 weeks) was found to promote bone formation and prevent bone resorption in OVX rats 

by downregulating TRAF6, coordinating the inhibition of NF-kB pathway and stimulating PI3K/Akt 

pathway168. 

 

3. Clinical applications of PhGs 

Although PhGs exhibit many bioactivities in cell or animal models, the poor bioavailability of PhGs 

restricts their clinical applications. Various PhGs-based products including Traditional Chinese Medicines 

(oral liquid, capsules and tablets), dietary supplements and tea are summarized in Figure 5.  

In a randomized, single-center and double-blind clinical trial (phase II) conducted in 100 patients having 

cardiovascular risk factors, orally administration of verbascoside tablet (50 mg/tablet, twice daily) for 2 

weeks can significantly decrease platelet aggregation (PA) from 51% to 39% 169. According to the ongoing 

and unpublished clinical trials about PhGs on the International Clinical Trials Registry Platform 

(http://apps.who.int/trialsearch), a comparative evaluation of verbascoside and silymarin as 

hepatoprotective agents in acute hepatitis patients had been performed (Main ID: CTRI/2008/091/000247), 

but the results were not provided in the platform. Qiu et al. assessed the efficacy of verbascosides from 
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Rehmannia. glutinosa combined with irbesartan in treating chronic primary glomerulonephritis in 479 

patients. The patients were randomly divided into treatment group (R. glutinosa verbascoside, 200 

mg/capsule, two capsules one time, twice daily; and irbesartan, 150 mg/tablet, one capsules one time, once 

daily) and the control group (irbesartan, 150 mg/tablet, one capsule one time, once daily). After 8 weeks 

treatment, the mean reduction of proteinuria in 24h in treatment group (36.42%) was significantly higher 

than that in control group (27.97%), indicating the combination of R. glutinosa verbascosides and irbesartan 

can reduce proteinuria more effectively than irbesartan alone170. From the website of Clinicaltrials.gov., a 

phase II clinical study (Identifier: NCT02662283) had been conducted to test the therapy effect of Reh-

verbascoside (general verbascoside from rehmanniae leaves) in patients with immune globulin a 

nephropathy. But it is a pity that the results of this clinical trial are not available from the website. 

Salidroside powder (600 mg/day) was shown to prevent the symptom of early left ventricular regional 

systolic dysfunction caused by epirubicin in 60 patients with breast cancer171.  

In China, C. tubulosa glycosides (CTG, Memoregain®) have been approved as a treatment for vascular 

dementia and produced by Sinphar Tianli Pharmaceutical Company (Hangzhou, China) (Figure 5). This is 

the first Chinese government approved drug containing PhGs. An open-label, no placebo-controlled clinical 

trial was conducted to study the effect of CTG capsules for treating AD. A total of 18 patients with AD were 

administered by 300 mg CTG capsules, 3 times per day for 48 weeks. The Mini-Mental State Examination 

score, Alzheimer’s Disease Assessment Scale–cognitive subscale score, Activities of Daily Living score, 

Blessed Behavioral Scale, and Clinical Global Impression scales all showed no significant difference from 

baseline, indicating that AD patients did not show significant aggravation of cognitive function after 48 

weeks172. Observations from 131 patients with vascular dementia showed that CTG (0.3 g/capsule, 6 

capsules per day, 3 months) was more effective than positive control (hydergine, 1 mg/ tablet, 6 tablets per 

day, 3 months) against vascular dementia173. Peng et al. and Yuan et al. also reported that CTG (0.3 

g/capsule, 6 capsules per day, 48 weeks) can improve cognitive function in the early dementia and mild 

dementia patients174, 175. From the website of http://apps.who.int/trialsearch, a clinical trial about CTG for 

treatment of amyotrophic lateral sclerosis has been carried out (Main ID: ChiCTRIOR-15006524). 

Hopefully, the results of this clinical trial will be published soon. Echinacoside is one of the active 

ingredients in C. Herba and the main active component of Memoregain(®). In addition, two new agents 

named Echinacoside and Naoqing Zhiming tablet derived from echinacoside have been approved for 

clinical trials by the Chinese government in 2107. It should be noted that the clinical trials of Echinacoside 

and Naoqing Zhiming tablet were applied by Huayi Shennong Pharmaceutical Company (Beijing, China) 
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set up by Prof. Tu Pengfei from School of Pharmaceutical Sciences, Peking University. Prof. Tu has made 

great contribution to the development of Cistanche deserticola industry, and Memoregain(®) was also 

developed based on the researches of Prof. Tu. It has been demonstrated that cistanches herba capsule (0.3 

g/capsule, 3 capsules per day, 48 weeks) could increase cognitive abilities in AD patient’s and slow down 

their hippocampus atrophy process. It also decreased the expressions of TNF-𝛼, T-tau, and IL-1𝛽 in 

cerebrospinal fluid of AD patients as the similar effect as Donepezil tablet (5mg/tablet, 1 tablet per day, 48 

weeks)176. 

Herbs used together, rather than a single herb or a single compound, are the commonly used forms in 

traditional Chinese medicines (TCM), and often have significant clinical effects. PhGs are the active and 

characteristic compounds of F. forsythiae177. And F. forsythiae has been extensively used in TCM 

preparations, such as Shuang Huang Lian oral liquid, Niu Huang Shang Qing tablets and Yin Qiao Jie Du 

tablets, etc., which have long been used to treat respiratory tract infection178 (Figure 5). In the 2015 edition 

of Chinese Pharmacopoeia, over one hundred TCM preparations containing F. Forsythiae are listed 

(Pharmacopoeia Commission of PRC, 2015). Another example is that Bu Shen Huo Xue Granule with C. 

Herba as a main active component, can significantly improve the clinical symptom of patients with PD179. 

 

4. Stability of PhGs 

As we can see from the chemical structure of PhGs, there are several phenolic hydroxyl groups, ester bonds 

and glycosidic bonds, which makes them be easily oxidized and degraded. In addition, the intra-molecular 

acyl migration, and cis-/trans configurational conformation of acyl and glycosyl widely occur in this 

chemical cluster. These structural properties make PhGs labile compounds. PhGs are vulnerable to be 

degraded by various factors such as light, temperature and pH in theory.  

PhGs were found to be unstable under light exposure, high temperature, and high pH conditions180. The 

content of total PhGs (TPG) of O. fragrans flowers in water for 90 days was significantly decreased by 87% 

at 50 °C. And TPG was degraded by 84.25% after 7 days at 80 °C. Increasing of pH (from 5.0 to 9.0) 

accelerated the degradation of PhGs. At the same temperature (20 °C), the degradation rate of TPG in light 

was significantly higher than dark, indicating PhGs were unstable in light. The degradation patterns of 

salidroside and verbascoside were the same of TPG180. Verbascoside was more stable in a weak acid 

medium, low temperature and dark conditions. Under the condition of pH 7, verbascoside was completely 

degraded after two weeks (room temperature) and three weeks (40 ºC). While the degradation rate of 

verbascoside was 27% over 60 days, in the dark and room temperature at the pH of 5181. Oyourou et al. 



16 

 

assessed the stability of verbascoside in crude plant extract during storage. After 2 and 4 h exposure to 

sunlight, only 43.2% and 18.6% of the verbascoside were remained in the extract182.  

In order to imitate the storage condition of verbascoside at room temperature for two years, verbascoside 

was put in an oven at 56 ºC for 2 weeks. Verbascoside in crude plant extract was found to significantly 

decompose, with only 13.7% left after 2 weeks’ exposure. It indicated that verbascoside is unstable after 

stored for a long period182. Verbascoside in bitter tea was isomerized to isoverbascoside when heated in the 

boiling water183, while verbascoside remains intact during the process of steam pasteurization at 99 ºC for 

150 s184. This phenomenon was inconsistent with the findings that 98.2% and 5.4% of verbascoside was 

left following steam distillation and hydrodistillation, respectively182. It has been reported that 62.4% and 

100% of verbascoside were left at pH 7 and 3, respectively, after 24 h185. The reduction level of verbascoside 

at pH 7 was in agreement with the results of Vertuani et al.181. Verbascoside was moderately stable during 

digestive conditions in vitro with a recovery rate of 53%, while isoverbascoside was less stable with a 

recovery rate of 13%186. When echinacoside was stored in methanol, two primary products verbascoside 

and cistanoside A, could be observed by HPLC chromatogram． And cis-echinacoside，cis-verbascoside，

and cis-cistanoside A were detected after careful analysis of the 1H-NMR spectra of echinacoside, 

verbascoside and cistanoside A. These findings indicated that methylation and hydrolysis are the main 

transformation pathways of echinacoside in methanol, and mild transformation could also occur by 

cis/trans-configuration transferring in the caffeoyl group187. PhGs were reported to be stable in tincture with 

80% left after 6 months, probably because of the weak acid medium in tincture188.  

 

5. Pharmacokinetics of PhGs 

The main pharmacokinetic parameters of several PhGs in plasma are summarized in Table 3(70-76, 78, 189-194). 

5.1 Absorption 

The absorption of salidroside, verbascoside, isoverbascoside and echinacoside in Caco-2 cells were poor, 

and their transportation was mainly via passive diffusion (less than 3.0%)195, 196. Verbascoside was poorly 

absorbed with low apparent permeability (Papp) (4.75×10−7 cm/s). The peak accumulation of verbascoside 

and isoverbascoside was at 30 min in vitro, indicating their rapid uptake. But the uptake efficiency was very 

low (0.1-0.2%) 196. The intestinal absorption of verbascoside in viable and healthy human colonic tissues 

demonstrated that verbascoside was absorbed rapidly, but the total accumulation efficiency was less than 

0.12%. Major absorption of verbascoside happened in proximal tract of colon (5 to 15 min), and then it was 

descending to colon (30 to 60 min) and sigmoid rectum colon after 60 min197. A bioavailability study of 
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oral versus intravenous verbascoside dosing in rats reported that verbascoside given at the dose thirty times 

higher than the intravenous dose, lead to the Cmax of 0.13 and 48.6 μg/mL and the T1/2 of 92.1 and 10.7 min 

for oral and intravenous routes, respectively30. Similarly, verbascoside was reported to be absorbed 

extremely fast in rats. However, the maximum serum concentration was very low (Cmax, 312.54 ng/mL) 189. 

The uptake of verbascoside and plantamajoside was very quick with Tmax values of 13.3 and 16.7 min, 

respectively. Cmax values of verbascoside and plantamajoside in plasma were 135.5 and 172.3 ng/mL, 

respectively198. 

Echinacoside permeated poorly with the Papp of zero after 90 min in vitro. The uptake of echinacoside was 

at the same level of mannitol which is a known poor intestinal absorption compound199. Echinacoside can 

pass the intestinal barrier through carrier-mediated transport. The Peff values of jejunum, duodenum, and 

ileum was at the same level (0.006 μg/s), higher than that of colon (0.002 μg/s), suggesting that intestinal 

absorption of echinacoside was site dependent200. Echinacoside was absorbed quickly after i.g. 

administration at 100 mg/kg in rats, exhibiting the Cmax of 312.54 ng/mL after 0.29 h. However, the 

maximum serum concentration was very low with the Cmax of 612.2 ng/mL32. In humans, echinacoside 

cannot be detected in plasma after echinacea tablet ingestion201.  

The permeability of forsythiaside A in the basolateral-to-apical direction was similar to that in apical-to-

basolateral direction in Caco-2 cell model202. A similar research indicated that the absorption of 

forsythiaside A was mainly involved with paracellular transport route, and P-glycoprotein, multidrug 

resistance related proteins and uptake transporters might participate in its uptake in the intestine203. In 

addition, no statistical difference of absorption was found for forsythiaside among gastric, duodenum, 

jejunum, ileum and colon, indicating no specific absorption site of forsythiaside204. When given i.g.  

administration of 100 mg/kg forsythiaside to rats, a maximum serum concentration of 122.2 ng/mL was 

observed at 20 min73.  

The rapid but low absorption was also found in poliumoside and angoroside C. After i.g.  administration 

of poliumoside at 200 mg/kg in rats, the Tmax and Cmax were calculated to be 30 min and 561 ng/mL, 

respectively. Angoroside C can be absorbed extremely quickly (Tmax=15 min) after oral administration and 

can be eliminated very rapidly (T1/2, 1.26 h) 75.  

Unlike the rapid but low absorption pattern of the PhGs summarized above, salidroside was reported to 

have a rapid and high absorption. After p.o. administration of 5 mg/kg salidroside in rats, salidroside showed 

rapid oral absorption with a Tmax of 30 min. The Cmax of salidroside was approximately 6493 ng/mL, which 

is almost twenty times higher than that of verbascoside and echinacoside192. Salidroside has a rapid and 
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high absorption with the Cmax of 3716.73 ng/mL and 4300 ng/mL, after i.g. administration of 100 mg/kg 

and 12 mg/kg in rats, respectively78, 193. The high absorption of salidroside may lead to its obviously higher 

bioavailability than other PhGs.  

 

5.2 Distribution  

The distribution of PhGs in tissues is crucial for its bioactivity, although only few studies have reported on 

it. Wen et al. investigated the distribution of verbascoside in rats after p.o. administration (40 mg/kg) and 

found that verbascoside reached maximum level in most organs at 0.17 or 0.50 h post-administration. The 

highest concentration of verbascoside occurred in intestine (26474.50 ng/gtissue), followed by lung (23 

466.07), stomach (19918.21) and muscle (9498.13). The levels of verbascoside in intestine, lung, stomach 

and muscle were significantly higher than that in other tissues like spleen, kidney, liver, heart, brain, adipose, 

ovary and testis189. After 0.17 h, verbascoside cannot be detected in ovary and testis. Verbascoside in 

adipose and in kidney was undetectable after 1.5 h. The levels of verbascoside in all tissues remarkably 

reduced after 1.5 h, suggesting verbascoside cannot cause accumulative damage effect in vivo. In addition, 

a little amount of verbascoside was detected in brain, indicating verbascoside can pass the blood-brain 

barrier189. The verbascoside concentration in different brain regions ranged from 0.45 to 0.68%. There was 

no statistical difference of verbascoside concentration in different brain regions (brain stem, cerebellum, 

hippocampus, striatum, cerebral cortex, and the rest of brain) after i.v. administration of 10 mg/kg 

verbascoside in rats70. After i.g. administration of 200 mg/kg verbascoside and 200 mg/kg echinacoside in 

rats, their relative content in plasma, feces, urine and bile was calculated. Only 1.54% of echinacoside and 

no verbascoside was detected in plasma205. Sibirioside A (200 mg/kg) and angoroside C (200 mg/kg) from 

S. Radix were widely distributed in heart, lung, liver, stomach, kidney, and small intestine in rats206. The 

highest content of sibirioside A was in stomach and small intestine, followed by the kidney and liver. But 

no angoroside C was detected in the viscera except for stomach and small intestine. The highest level of 

angoroside C was found in lung 15 min after p.o. administration and angoroside C is distributed rapidly 

and cannot be detected from all of the organs after 6 h206.  

Distribution study in rats after i.v. administration of 15 mg/kg salidroside showed that salidroside 

distributed rapidly into tissues after 15 min207. At all three time points (15, 40 and 120 min), the 

concentration of salidroside in plasma was higher than that in any tissues. Half of the unchanged salidroside 

was detected in urine over 48 h, but only 0.89 ‰ and 1.8 ‰ was detected in bile and feces, respectively207. 

Compared with i.g. administration, the distribution of salidroside in rats changed greatly under i.v. 
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administration. After i.v. administration of salidroside (50 mg/kg) to rats, the maximum levels of salidroside 

were mainly in liver, kidney and heart. However, salidroside was only found in liver after i.g. administration 

of salidroside (100 mg/kg)208. After 72 h, 64% and 23.8% of the administered salidroside was excreted in 

the urine, after i.v. administration and i.g. administration, respectively. After 72 h, 0.3% of the administrated 

amount was detected in feces after i.v. administration, while no salidroside was detected in faeces after i.g. 

administration208. 

 

5.3 Metabolites in vivo 

Based on the metabolic pathways mentioned below, the metabolic pathways of PhGs in vivo are shown in 

Figure 6. 35 metabolites in rats orally administrated with verbascoside (100 mg/kg) were detected in rat 

urine. 19 metabolites belong to the parent compound and 16 metabolites belong to the degraded products 

of verbascoside. The metabolism processes include oxidation, glucuronidation, sulfation, and methyl 

conjugation, with methylation of the most easily occurred209. Verbascoside was easily hydrolyzed to 

degraded products, which is responsible for its low oral bioavailability209. After p.o. administration of 

verbascoside, 44 metabolites were identified in rats, plasma, urine, and feces samples. This is the first time 

to report the isomerization of verbascoside to isoverbascoside210. 

Eight metabolites of echinacoside, mainly methylation and glucuronidation conjugates, were found in the 

biliary of rats after oral dose of 200 mg/kg echinacoside 211. A later study identified 13 metabolites of 

echinacoside in rat urine and feces samples after p.o. administration of 1500 mg/kg echinacoside212. In 2019, 

Song et al. reported that 19 metabolites were identified in blood, urine and feces samples of echinacoside 

(50 mg/kg, i.g.) treated rats by analyzing m/z values, retention time, and optimal collision energy. 

Echinacoside firstly underwent extensively hydrolysis to generate verbascoside, followed by intermediates 

such as caffeic acid and hydroxytyrosol. Afterwards, the two intermediates received sulfonation, 

glucuronidation, methylation, oxidation, reduction, and/or hydrogenation to finally generate M1−M16. In 

addition, acyl-migration and acetylization of verbascoside (M17) produced isoverbascoside (M18) and 

acetyl-verbascoside (M19)213. 3 metabolites of forsythiaside A (200 mg/kg, p.o.) were identified in rats, 

with 42 in urine, 22 in plasma and 15 in feces214. In general, forsythiaside A was mainly methylated, 

dimethylated, sulfated, glucuronidated, diglucuronidated, and cysteine conjugated. Hydroxyl group on 

caffeic acid of forsythiaside A was the major target metabolic site214. 66 metabolites of poliumoside (1000 

mg/kg, p.o.) in rat feces samples were identified. The metabolic pathways of poliumoside involving in 

phase I were hydroxylation, hydration, hydrolysis, methoxylation, dehydrogenation and reduction; while 
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the phase II reactions were sulfation, dimethylation and acetylation. And hydroxylation was more likely to 

occur in the metabolic process. Verbascoside is a key degraded product of poliumoside215. After oral 

administration of poliumoside (1500 mg/kg), 34 poliumoside metabolites (30 from urine, 17 from plasma, 

and 4 from bile) were identified, which also demonstrated that verbascoside was a main degraded product 

of poliumoside and mainly existed in urine. The nine metabolic pathways of poliumoside were proposed as 

rearrangement, reduction, hydroxylation, hydration, dehydration, methylation, acetylation, hydrolyzation, 

and sulfation216, which are partly in accordance with the result of Deng et al.215. Metabolites of salidroside 

in rats plasma samples indicated that salidroside was metabolized through glucuronidation, deglycosylation, 

sulfation, methylation, hydroxylation, and dehydroxylation in vivo217. After p.o. administration of C. 

tubulosa extract (400 mg/kg), the in vivo metabolites in urine and fecal were obviously different in healthy 

and chronic unpredictable stress model rats. The metabolic ability to generate secondary glycosides and 

aglycones in depressive rat intestinal microbiota was much weaker than that in normal rat intestinal 

microbiota. The reason may be related to structural changes of the intestinal microbiota induced by 

depression, which finally lead to decreased activity of related enzymes produced by intestinal microbiota218.  

The metabolites of angoroside C and sibirioside A were studied after orally administrating 200 mg/kg 

compounds to rats206. 25 metabolites of angoroside C were found mainly in urine via hydrolyzation, 

dehydroxylation hydrogenation, gluconylation, demethylation, and sulfation. And gluconylation was the 

prime and representative metabolic reaction206. As for sibirioside A, four metabolites were found, with one 

in urine, two in feces, and one in stomach. The less metabolites of sibirioside A maybe due to its simple 

molecular structure. The main metabolic reactions of sibirioside A were hydrogenation, sulfation, 

hydroxylation, dimerization methylation, and glycosylation206.  

 

6. Biotransformation of PhGs by microbiota in vitro 

Intestinal bacteria are mainly involved in reduction, hydroxylation and hydrolyzation219. The metabolites 

of verbascoside in human or rat intestinal bacteria confirmed this point. Verbascoside was biotransformed 

to 14 metabolites through a series of reactions including isomerization, hydroxylation, hydrogenation, and 

dihydroxylation. The main metabolites of verbascoside was caffeic acid, hydroxytyrosol and m-

hydroxyphenylpropanoic acid220. Similarly, metabolites of verbascoside by intestinal bacteria in vitro were 

also identified by another two studies221,222. The metabolites may lead to the low bioavailability of 

verbascoside in vivo.  

The metabolism of echinacoside in human fecal microbial in vitro showed that the deglycosylation, 
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reduction, hydroxylation, dehydroxylation, and acetylation were the main pathways to generate 13 

echinacoside metabolites. The metabolites mainly include verbascoside, caffeic acid, hydroxytyrosol, m-

hydroxyphenylpropanoic acid, and dihydrocaffeic acid223. Only caffeic acid, hydroxytyrosol and 

dihydrocaffeic acid were found in the metabolites of forsythoside A by human intestinal bacteria in vitro. It 

was proposed that caffeic acid was produced by hydrolyzing forsythoside A, and was hydrogenated further 

to form 3,4-dihydroxybenzenepropionic acid224.  

Eleven metabolites of verbascoside, seven metabolites of isoverbascoside, and 11 metabolites of 2-

acetylverbascoside generated by gut microbiota were found via metabolic pathways including 

deglycosylation, deacetylation, dehydroxytyrosol, decaffeoyl, acetylation, reduction, and sulfate 

conjugation225. All the intermediates of verbascoside and isoverbascoside produced by gut microbiota were 

transformed to 3-hydroxyphenylpropionic acid and hydroxytyrosol after 48 h incubation, which is in 

consistent with the echinacoside microbial metabolisms223. Li et al. confirmed that PhGs were more likely 

to be biotransformed to their caffeic acid and aglycones derivatives via glucuronidation and deglycosylation 

and by human intestinal bacteria in vitro226. However, only 30% of echinacoside from the C. tubulosa 

extract was metabolized after incubated with gut microbiota for 48 h, while another research demonstrated 

that echinacoside was completely metabolized after incubation with gut microbiota for 48 h223. The 

difference in the metabolism of single compound and the C. tubulosa extract was probably because of the 

presences of oligosaccharides and polysaccharides in the plant extract. 

 

7. Bioactivities of PhGs metabolites 

As mentioned in section 2, PhGs exhibit extensive strong activities. However, clear pharmacological 

characteristics such as poor absorption, extensive and fast metabolism in the gut, liver and blood, lead to 

their extremely low bioavailability of PhGs. Thus, there is some controversy with regard to whether PhGs 

themselves are the primary compounds contributing significantly to the beneficial activities, or whether the 

activity of their metabolites are responsible for the biological activities. 

It is worth noting that the main and common degradation products of PhGs, such as caffeic acid and 

hydroxytyrosol, and the derivatives of caffeic acid and hydroxytyrosol, are reported to possess potent 

antioxidant with many health benefits 227, 228. The antioxidant activity of several PhGs, caffeic acid-related 

metabolites, and hydroxytyrosol-related metabolites were evaluated by the DPPH assay229. The metabolites 

showed stronger activity than PhGs. Their antioxidant activity decreased in the following order: ferulic acid 

(hydroxytyrosol-related), 3,4-dihydroxybenzenepropanoic acid (caffeic acid-related), caffeic acid, 
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tubuloside B, verbascoside, isoverbascoside, tubuloside A, poliumoside, hydroxytyrosol and echinacoside 

with the IC50 values of 1.312, 1.556, 1.601, 2.469, 3.166, 3.235, 3.452, 3.613, 3.952 and 4.799 μg/mL, 

respectively229. It has also been reported that caffeic acid and hydroxytyrosol were more active than 

verbascoside and isoverbascoside in antiprotein glycation activities in vitro230. The antimicrobial activity 

of forsythoside A, and its metabolites such as caffeic acid, hydroxytyrosol and 3,4-

dihydroxybenzenepropionic acid (DCA) was evaluated using the agar well diffusion method in vitro. 

Caffeic acid has no activity, and hydroxytyrosol displayed the highest antimicrobial activity, followed by 

forsythoside A and DCA. The MIC values of forsythoside A, hydroxytyrosol and DCA against S. aureus 

are 25, 50 and 50 μg/mL, respectively224. The antiendotoxin activities of forsythoside A, caffeic acid, 

hydroxytyrosol and DCA were determined by the LAL assay in vitro. The results showed forsythoside A 

and caffeic acid were invalid even at the maximal concentration (1000 μg/mL). While hydroxytyrosol and 

DCA were still effective when diluted four and three times, respectively224. It was found that verbascoside 

metabolites such as hydroxytyrosol, caffeic acid and 3-hydroxyphenylpropionic acid (3-HPP), possessed 

higher hepatoprotective activities than verbascoside through regulating oxidative stress, lipid peroxidation, 

and inflammatory responses in a GalN/LPS induced acute hepatic-injury mouse model at the dosage of 0.15 

mmol/kg231. In addition, dihydrocaffeic acid exhibited protective activities on ischemia-induced neuronal 

damage and brain edema cerebral on a focal cerebral ischemia rat model232. Besides, m-

hydroxyphenylpropanoic acid displayed antioxidant effect234 and decaffeoyl verbascoside possessed anti-

inflammatory activity in vivo and vitro233. Therefore, we can make the conclusion that the metabolites of 

PhGs such as hydroxytyrosol, caffeic acid, 3-HPP, DCA, decaffeoyl verbascoside and m-

hydroxyphenylpropanoic are the active substances in vivo.  

Further comparative studies would be of great value, to confirm whether the administration of PhGs 

metabolites is more beneficial than traditional PhGs administration. Even if PhGs metabolites showed 

promising acvities when tested alone in vivo and in vivo, whether the concentration of metabolites can reach 

the concentration that make it effective in vivo needs to be carefully considered. Thus, strategies to enhance 

the bioavailability of PhGs are still highly significant. 

8. Approaches to improve the bioavailability of PhGs 

Numerous approaches such as bioenhancers, β-cyclodextrin encapsulation, liposomal PhGs, nanoparticles 

and phospholipid complex have been applied to improve the bioavailability of PhGs (Figure 7). 

8.1 Bioenhancers 

Low intestinal absorption is one of the most important factors causing the low bioavailability of PhGs. 
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Some plant essential oils such as borneol, pennyroyal and clove oil could act as absorption promoters to 

improve intestinal absorption of active compounds235, 236. Moreover, some efflux proteins such as P-

glycoprotein (P-gp) belonging to ATP-binding cassette transporters superfamily, and multidrug resistance 

protein (MRP) are abundant in the human intestines, and play a significant role in drug absorption, transport, 

and bioavailability237, 238. Efflux protein inhibitors are potential to enhance the bioavailability of several 

important anticancer drugs (anthracyclines, taxanes, etc.) by occupying the drug binding sites as a 

competitive blocker, binding chemosensetizer sites as a non-competitive antagonist, altering P-gp 

expression or inhibiting the ATPase function and related proteins239, 240. 

Several bioavailability enhancers have been applied to improve the bioavailability of PhGs. The addition 

of 320 μM epigallocatechin gallate (EGCG) significantly increased the Papp(AP → BL) value of 

verbascoside (320 μM) to 5.69×10-7 cm/s in Caco-2 monolayers. Further pharmacokinetics study of 

verbascoside in rats demonstrated that after oral administration of 200 mg/kg verbascoside and 200 mg/kg 

EGCG, the AUC of verbascoside was increased to 1.43 fold that of pure verbascoside241. It was shown that 

the Papp value of forsythoside A in vitro Caco-2 monolayer model was significantly increased to 208% and 

206% by 32 μg/mL water-soluble chitosan and 80 μg/mL sodium caprate, respectively. Pharmacokinetics 

study of forsythoside A in rat showed that AUC0–480 min (ng min/mL) of forsythoside A, forsythoside A with 

100 mg/kg sodium caprate, and forsythoside A with 50 mg/kg water-soluble chitosan was 6396.5, 11041 

and 12412.7, respectively242. A similar research also demonstrated that the absorption of forsythoside A in 

SHL was increased by absorption enhancers such as water-soluble chitosan and sodium caprate242. 10, 32 

and 250 μg/mLwater-soluble chitosan increased the Papp value to 119%, 206% and 165% in Caco-2 cells242. 

And the Papp value was increased to 128%, 175% and 208% after the addition of 10, 32 and 80 μg/mL of 

the sodium caprate242. 100 mg/kg sodium caprate and 50 mg/kg water-soluble chitosan increased the AUC0-

t from 6396.5 ng min/mL to 11041.5 and 10597.0 ng min/mL, respectively, in rats242.  

The Papp values of forsythoside B, isoforsythoside, and forsythoside A were significantly improved to 

1282%, 989.6%, and 561.0% with the addition of 0.1% chito-oligosaccharide (COS)243. The Cmax values of 

isoforsythoside, and forsythoside B, forsythoside A were increased to 214%, 185.4%, and 161%, 

respectively. Besides, the AUC values of forsythoside A, isoforsythoside and forsythoside B were enhanced 

to 290%, 252% and 214%, respectively, after the addition of 25 mg/kg COS243. The Cmax values of 0.09 

mg/mL echinacoside + 0.1 mg/mL clove oil and 0.09 mg/mL echinacoside + 0.1 mg/mL verapamil were 

about 2.58 fold and 1.4 fold higher than of echinacoside alone. And the oral bioavailability of echinacoside 

(120 mg/kg) in rats administrated with clove oil (0.1 ml/mL) and verapamil (0.2 mg/mL) were significantly 
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improved by 2.36 fold and 1.37 fold, compared with echinacoside alone200.  

 

8.2 Different matrix 

The activity and bioavailability of bioactive component can be influenced by the complex chemicals in 

compound prescriptions. Zhou et al. investigated the pharmacokinetics of forsythoside A in different 

combinations of SHL, Scutellariae radix (SR), Japonicae flos (LJF), and F. fructus (FF). Compared with 

FF, Cmax of forsythoside A in SHL, FF+SR and FF+LJF was increased from 9.830 ng/mL to 30.559, 24.39 

and 15.97 ng/mL, respectively. And AUC0→1440 of forsythoside A in SHL, FF+SR and FF+LJF were 

prolonged from 1.210 μg min/mL to 6.879, 3.758, and 3.678 μg min/mL, respectively244. In the research of 

Tanino et al., the dietary of C. tubulosa extract enhanced the intestinal absorption of verbascoside and 

echinacoside to almost three times than pure verbascoside and echinacoside245. Similarly, another study 

showed that some pharmacokinetic parameters of salidroside after p.o. administration of Rhodiola. 

crenulata extract (at a dose containing salidroside 46.2 mg/kg) were not equal to those of pure salidroside. 

Salidroside in plasma can still be detected after 24 h of oral administration of the R. crenulata extract. The 

T1/2 value of salidroside was 7.91 h, which is much larger than that of pure salidroside (1.1 h)194. The 

increased bioavailability maybe caused by the following reasons. Firstly, other complex constituents in the 

matrix of PhGs promoted the absorption of PhGs, and thus increased the bioavailability. Secondly, other 

compounds were metabolized into compounds with the same m/z as PhGs in vivo, and thus the 

concentration of PhGs was increased. In addition, different dosage could also lead to the observed 

differences in pharmacokinetic parameters of PhGs. 

 

8.3 β-Cyclodextrin encapsulation 

Sheng et al. found the benzene ring of echinacoside can enter into the cavity of β-CD to form echinacoside-

β-CD complex, which provided a distinctive method to improve water solubility and thermal stability of 

echinacoside246. Stability studies made by nuclear magnetic resonance showed that verbascoside enclosed 

in β- CD complex was more stable than that of free verbascoside247. Verbascoside induced proton shifts and 

intermolecular ROE signals demonstrated that the caffeoyl moiety of verbascoside is deeply inserted in the 

cyclodextrin cavity247. It has been reported that the inclusion complex of β-CD and forsythiaside can 

significantly decrease the degradation degree of forsythiaside compared with free forsythiaside248. Under 

sunshine conditions, almost 90% forsythiaside was degraded after 100 h, while almost 45% of forsythiaside 

was still remained in forsythiaside inclusion complex248. Forsythiaside A was suffered from a degradation 
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of 11.47% under 75% relative humidity after 10 days. β-CD complex form can significantly improve the 

stability of forsythiaside A, with the degradation rate of only 4.57% under the same conditions. Under a 

strong light of 4500 ± 500 Lx, 29.23% of forsythiaside A was degraded, while forsythiaside A was degraded 

15.56% in inclusion complex249. Besides, forsythiaside A/β-CD complex showed higher scavenging free 

radical ability than forsythiaside A. The IC50 of forsythiaside A/β-CD complex and forsythiaside A were 

determined as 6.2×10–6 and 4.2×10–6 M, respectively249. 

 

8.4 Nanotechnology 

Nanotechnology is currently one of the hot fields in pharmaceutical research and it has been applied to 

increase the clinical efficacy of natural products. Nanoparticles have been shown to increase the 

bioavailability of natural products, by improving the compound’s stability within biological systems. 

Preventing natural products from rapid metabolization in the gastrointestinal tract and liver is also one 

general mechanism that can increase the bioavailability. In addition, nanoparticles can increase the 

solubility and transport across membranes of active compounds250. 

8.4.1 Liposomes 

Isacchi et al. developed and optimized the unilamellar liposomes loaded with verbascoside and tested its 

advantage in improving the stability and bioavailability of verbascoside. It was demonstrated that liposome 

was a suitable deliver to enhance the stability and efficiency of verbascoside. Liposomes can prevent the 

hydrolysis of verbascoside resulting in caffeic acid oxidation. 91% of verbascoside remained in the 

liposomes after 3 months. In addition, verbascoside liposomes (i. p., 100 mg/kg) showed a prolonged anti-

hyperalgesic activity compared with the pure verbascoside in rats at the same dose251. Zhao et al. compared 

the pharmacokinetics and tissue distribution of forsythiaside liposomes (20 mg/kg) and forsythiaside 

solution (20mg/kg) in chicks by intravenous administration. Compared with forsythiaside solution, the 

forsythiaside distribution in liver, spleen and lung were obviously increased in forsythiaside liposome. The 

concentration of forsythiaside in plasm was 14.42 10.72 and 3.70 μg/mL at 5 min, 10 min and 5min, 

respectively, for pure forsythiaside, while that for forsythiaside liposome was 35.98, 23.77, and 14.65 

μg/mL, respectively. The forsythiaside liposome could increase the T1/2 from 0.11h to 1.79 h, and increase 

the AUC from 4.26 μg·h/mL to 39.95 μg·h/mL, thus prolonged the drug effect time of forsythiaside in the 

blood circulating system252.  Release experiments indicated that the amount of salidroside released from 

salidroside liposome was significantly decreased253. Another experiment showed that salidroside liposome 

can enhance the plasma concentration and slow down the release rate, thus leading to an increase of its oral 
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bioavailability to 1.77 times in rats254. The activity of promoting skin repair and ameliorating skin 

inflammation of verbascoside suggests its potential application for cutaneous topical application. It has 

been reported that verbascoside liposome can not only increase the stability, but also promote verbascoside 

accumulation into the stratum corneum255 and improve the efficacy of a verbascoside based liposomal 

eyedrops256. Moreover, salidroside liposome formulation can be used in vaccine delivery systems to realize 

the controlled release of salidroside257. 

 

8.4.2 Improved liposomes 

Peng et al. investigated different delivery systems for controlled release of salidroside and found that the 

new polymeric liposomes based on amphiphilic chitosan derivatives (DC-Ls) showed better encapsulation 

potential and slower sustained release rates of salidroside than traditional liposomes 

(phosphatidylcholine/cholesterol liposomes, PC-Ls)258. the release rate was 82.33% and 66.98% for PC-Ls 

and DC-Ls after 50 h, respectively. Zhou et al. prepared a series of liposomes such as verbascoside liposome 

(Ac-Lip), verbascoside/EGCG liposome (AE-Lip), chitosan-coated liposomes (CS-Ac-Lip, CS-AE-Lip) 

and chitosan-coated liposome tripolyphosphate particles (CS-Ac-Lip-TPP, CS-AE-Lip-TPP). The highest 

entrapment efficiency was found in CS-Ac-Lip-TPP with the value of 92.74%. CS-AE-Lip-TPP enhanced 

the bioavailability of verbascoside to 5.32 times, and increased verbascoside contents in different tissues in 

rats259. After p.o. administration of 200 mg/kg verbascoside to rats, the Cmax, Tmax, T1/2, and AUC were 0.44 

μg/mL, 0.54 h, 1.83 h and 1.26 μg·h/mL, respectively. While these values for CS-Ac-Lip (200 mg/kg 

verbascoside content) were 0.76 mg/mL, 1.92 h, 5.16 h, and 5.58 μg·h/mL, respectively259. Li et al. prepared 

a form of cistanche PhGs (CPhGs) liquid proliposomes (CPhGsP). The CPhGsP showed higher 

encapsulation efficiency and was more stable than CPhGs ordinary liposomes. The plasma levels of 

echinacoside in rabbits administrated with CPhGsP (25 mg/kg) were higher than those with CPhGs (25 

mg/kg) at 5, 15, 30, 45, 60, 90, 120, 150, 180, 210, 240 and 360 min. The Cmax and Tmax values of 

proliposomes were 324.23 ng/mL and 30 min, respectively, while that of CPhGs was 193.17 ng/mL and 15 

min respectively. Besides that, AUC0−∞ values for CPhGsP group (15494 ng·h/mL) was also higher than 

CPhGs (24552.14 ng·h/mL). The oral bioavailability of CPhGs was significantly increased by the 

proliposome formulation, which offers a novel strategy to prepare liposomes for orally administrating of 

PhGs260. 

 

8.4.3 Other nanoparticles 
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Cadmium telluride quantum dots (QDs) have attracted the attention of biomedical researchers as they can 

be used as a novel drug delivery system. Verbascoside as a chemotherapeutic agent was successfully fixed 

into QDs through covalent bonding between the OH group of verbascoside and the COOH group of QDs261. 

Treatment of QDs together with verbascoside in HepG2/ADM cells caused the apoptosis rate to 90%, much 

higher than that treatment with verbascoside alone (45%). Besides, verbascoside QDs effectively inhibited 

the human HepG2 hepatoma cells growth in mice261. Multifunctional verbascoside coated Ni 

nanoparticles262 and Au nanoparticles263 have also been reported to effectively inhibit the growth and induce 

the apoptosis of tumor cells in vitro and in vivo. 

To improve the stability and enhance the bioavailability of echinacoside, poly (lactic-co-glycolic acid) 

PLGA encapsulated echinacoside was prepared. The in vitro release experiment showed that PLGA- 

echinacoside released 60% while the pure echinacoside released 90% after four h264. Salidroside-chitosan 

nanoparticles (SA-CS-NPs) showed sustained release properties with the maximum release rate of 86.55% 

after 24 h, while pure salidroside reached the maximum release rate in one hour265. Furthermore, pH-

sensitive nano-carrier provides another platform to improve the bioavailability of drugs. Peng et al. prepared 

a new pH-sensitive nano-carrier with poly (acrylic acid) (PAA) as shell-layers and mesoporous silica 

nanoparticles (MSNs) as cores to realize the sustainable release of salidroside. PAA layers had the 

characteristic of showing closed and opened states in response to different pH values, and thereby regulated 

the release and uptake of salidroside266.  

Salidroside has been demonstrated to possess skin protective effects, but the hydrophilicity of salidroside 

cause its poor permeability and absorption267. A nanosphere-gel delivery system exhibiting controlled 

release of paeonol and salidroside was successfully prepared. Compared with treatments of paeonol-loaded 

nanosphere dispersion and salidroside-loaded hydroge, the nanosphere-hydrogel formulation with paeonol 

and salidroside decreased the melanin levels to a larger extent in guinea pig skin induced by ultraviolet B268.  

Besides that, niosomes were also applied as transdermal nanocarriers in salidroside to enhance its 

transdermal delivery269. Niosomes have the advantage of less susceptible to oxidation, more stable, and less 

costly270. The bioavailability of topically administrated drugs can be improved by niosomes through 

increasing the skin permeability271. Zhang et al. prepared niosomes loaded with salidroside and investigated 

its uptake in two kinds of skin cells. The niosomal formulations delivered more amount of salidroside (2.3 

times) across the skin than that in aqueous solution272. 

 

8.5 Other methods 
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As liposomes exhibit many disadvantages mentioned above, and silica nanoparticles cannot be employed 

in drug and functional food industries, formulating novel systems for PhGs encapsulation may be an 

effective way to overcome these problems. Microsphere delivery systems based on natural polymer, such 

as zein, gelatin, and chitosan microsphere, have attracted widespread attention as they are non-toxic, well 

biocompatibility, and biodegradability273-275. Luo et al. demonstrated the potential of genipin crosslinked 

salidroside chitosan in the application of delivering salidroside. They successfully prepared salidroside-

chitosan microspheres using genipin which showed less cytotoxicity as a crossing agent. The salidroside 

stability was improved after being entrapped into chitosan microspheres. The release rate of salidroside 

from chitosan microspheres was rapid initially, followed by controlled release276. Improved stability and 

controlled release of salidroside were also achieved through incorporation of salidroside into polymer 

network microspheres prepared by chitosan and methylcellulose277.  

To enhance the intestinal absorption and oral bioavailability, echinacoside-phospholipid complex was 

prepared. Compared with echinacoside alone, the echinacoside phospholipid complex could significantly 

increase the absorption rate and Peff to 2.82 fold and 3.39 fold, respectively. Besides, the echinacoside 

phospholipid complex could increase the Cmax and AUC0–1 to 2.5 and 2.1 times, respectively278. 

 

9. Perspectives 

Almost 50 years have passed since the isolation of the first PhGs, and plenty of experimental data have 

demonstrated the potent pharmacological activities of PhGs. However, many issues remain unresolved 

concerning their effective applications in clinic at present. Firstly, of all the over 572 compounds, reported 

pharmacological studies only focused on limited number of compounds such as salidroside, verbascoside, 

echinacoside, forsythoside, and isoverbascoside. Other compounds exhibiting excellent pharmacological 

activities should also be investigated in depth. And also, 1310 articles about PhGs have been published so 

far, but 612 of them are from China, followed by Japan (144), Turkey (111), USA (55) and Italy (51). It is 

necessary to attract the attention of pharmacologists from other countries to carry on researches in PhGs. 

Another important aspect is that the mode of action and the structure activity relationships of PhGs are still 

not quite clear. Besides, although a large number of laboratory data illuminate the therapeutic effect of PhGs 

in various diseases, detailed clinical data are still quite limited. It is expected that the therapeutic potential 

of PhGs will be further explored with more PhGs identified, the further clarification of the mechanism of 

action and structure-activity relationships, as well as more clinical trials carried out on the safety and 

efficiency of PhGs. In addition, many factors such as different processing methods, different food matrix, 
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bio-encapsulation, as well as the addition of lipids can influence the bioavailability of PhGs. Thus, detailed 

relevant researches are required to identify the optimum conditions to improve the bioavailability of PhGs. 

What is more, although the present article summarized the different approaches to increase the 

bioavailability and efficacy of PhGs in different experimental models, studies about improving PhGs 

bioavailability and efficacy have not been conducted in human. Therefore, further research to enhance the 

bioavailability of these valuable phytochemicals are needed for human use.  
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Table 1. 101 of the 111 PhGs that have not been summarized before 
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No. Compounds R1 R2 R3 R4 R5 R6 R7 Source Bioactivity Ref 

1 Osmanthuside H H OH H H H H Api 

Osmanthus asiaticus NDa 11 2 Osmanthuside I H OH H H H H A1 

3 Osmanthuside J H OH H H H H A2 

4 NDa OH OH OH H Rha H Feru Sesamum indicum NDa 12 

5 Lipedosides A-I OH OH H H Rha Cou H 
Ligustrum pedunculare NDa 13 

6 Lipedosides A-II OH OH H H Rha H Cou 

7 NDa OH OCH3 H Ara Glc H Van Veronica undulata NDa 14 

8 
2-O-acetyl-3‴-O- 

methylverbascoside 
OH OH H Ace Rha Van H 

Penstemon crandallii NDa 15 

9 
2,4″-di-O-acetyl-3‴- 

O-methylverbascoside 
OH OH H Ace B Van H 

10 Betonyosides A OH OH OH H Rha Fer H 

Stachys officinalis NDa 16 
11 Betonyosides D OH OCH3 H H Rha 

cis-

Fer 
Api 

12 Betonyosides E OH OH H H Rha Fer Api 

13 Betonyosides F OH OCH3 H H Rha cis-

Fer 

H 

14 

2-(3-hydroxy-4-methoxy-phenyl)- 

ethyl-O-(α-l-rhamnosyl)-(1→3)-O-

(α-l-rhamnosyl)-(1→6)-4-O-E-

feruloyl-β-d-glucopyranoside 

OH OCH3 H H Rha Fer Glc 
Digitalispurpurea and 

Penstemonlinarioides 
PKCα-Inhibitory 17 

15 Scrosides B OH OCH3 H H Glc H Fer 
Picrorhiza 

scrophulariiflora 
NDa 18 

16 Scrosides C OH OCH3 H H Glc Fer H 
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17 NDa H H H H Rha Caff Cou Globularia alypum NDa 19 

18 Lophanthoside A OH OCH3 H Ace Rha H H Rabdosia lophanthoides NDa 20 

19 NDa OH OH H H Rha Caf D1 
Jacaranda caucana NDa 21 

20 NDa OH OH H H Rha Caf D2 

21 Isoilicifolioside A OH OH 
OCH2 

CH3 
H Rha H Caf Paulownia tomentosa Anticomplement 22 

22 Tazettosides D H OCH3 H H H H Glc Narcissus tazetta 
Inhibiting 

melanogenesis 
23 

23 Digicilisides A OCH3 OH H H Glc Fer Rha 

Digitalis ciliata NDa 24 24 Digicilisides B OH OH H Ara Glc Fer Rha 

25 Digicilisides C OH OH H H Glc Caf E1 

26 

α-L-rhamnopyranosyl-(1↔2)-β- 

D- [4″-(8E)-7-(3,4-dihydroxyphenyl)- 

8-propenoate,1″-O-(7S)-7- 

(3,4-dihydroxyphenyl)-7-

methoxyethyl]- glucopyranoside 

OH OH OCH3 Rha H Caf H Gynura cusimbua Antiangiogenic 25 

27 Digiviridifloroside OH OH H H H Caf E2 Digitalis viridiflora Antibacterial 26 

28 

2-(4-hydroxyphenyl)ethanol-O-β-D- 

glucopyranosyl-(1→2)-O-β-D- 

glucopyranoside 

H OH H Glu H H H Sambucus williamsii Hepatoprotective 27 

29 Forsythoside M H OH H H H H Van 

Forsythia suspensa Hepatoprotective 28 30 Forsythoside N H OH H H H H D4 

31 Forsythoside P H OH H H H Caf Rha 
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32 Hodgsonialloside A OH OCH3 H H H H H 

Magnolia hodgsonii NDa 29 33 HodgsoniallosideB OH OCH3 H H H Glc H 

34 Hodgsonialloside C OCH3 OH H H H H H 

35 

1-β-p-hydroxyphenyl-ethyl-2-O-

acetyl-3,6-di-α-L-rhamnopyranosyl-

β-D-glucopyranoside 

H OH H Ace Rha H Rha 

Cistanche phelypaea 

Inhibiting  

Monoacylglycerol 

Lipase 

30 

36 

1-β-p-hydroxyphenyl-ethyl-3,6-O-di-

α-L-rhamnopyranosyl-β-D- 

glucopyranoside 

H OH H H Rha H Rha 

37 

1-β-p-hydroxyphenyl-ethyl-2-O- 

acetyl-3,6-di-α-L-rhamnopyranosyl-

4-p-coumaroyl-β-D-glucopyranoside 

H OH H Ace Rha Cou Rha 

38 

1-β-p-hydroxyphenyl-ethyl-3,6- 

di-α-L-rhamnopyranosyl-4- 

p-coumaroyl-β-D-glucopyranoside 

H OH H H Rha Cou Rha 

39 Ternifoliusoside F OH OCH3 H Ace G1 Fer H 

Isodon ternifolius Antiinflammatory 31 40 Ternifoliusoside G OH OCH3 H Ace G1 H Fer 

41 Ternifoliusoside H OH OCH3 H Ace Rha H Fer 

42 Lippiarubelloside A OH OH H H G2 Caf H 
Lippia rubella Antifungal 32 

43 Lippiarubelloside B OH OH H H G3 Cou H 

44 Digidavisoside A OH OCH3 H H Glc Caf Glc 

Digitalis davisiana Cytotoxic 33 45 Digidavisoside B OH OCH3 H H Glc Fer Glc 

46 Davisoside OH OH H H Glc Fer Rha 
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47 

3,4-dihydroxyphenyl)ethyl 2-O- 

[5-O-(4-hydroxy-3,5-

dimethoxybenzoyl)-β-D-

apiofuranosyl]-β-D glucopyranoside 

OH OH H A3 H H H 

Arrabidaea brachypoda Gastroprotective 34 
48 

3,4-dihydroxyphenyl)ethyl 2-O- 

[5-O- (3,4-dihydroxybenzoyl)-β-D- 

apiofuranosyl]-β-D-glucopyranoside 

OH OH H A4 H H H 

49 

2-(3,4-dihydroxyphenyl)-ethyl 1-O- 

[4-O-feruloyl-2-O-a-L-

rhamnopyranosyl- 

3-O-a-L-rhamnopyranosyl]- β-D- 

glucopyranoside 

OH OH H Rha Rha Fer H 

50 

2-(3,4-dihydroxyphenyl)-ethyl1-O- 

[4-O-coumaroyl-2-O-a-L-

rhamnopyranosyl- 

3-O-a-L-rhamnopyranosyl]-β-D- 

glucopyranoside 

OH OH H Rha Rha Cou H Euphrasia rostkoviana NDa 35 

51 Steviophethanoside H OH H H H H Ara Stevia rebaudiana Antidiabetic 36 

52 NDa H H H H Glc Caf H Plantago depressa Antiradical 37 

53 Terngymnosides A OH OH H D3 H H D4 

Ternstroemia 

gymnanthera 
Analgesic 38 

54 Terngymnosides B OH OH H D5 H H D4 

55 Terngymnosides C OH OH H H H H D4 

56 Terngymnosides D OH OH H F1 H H D3 

57 Nepetifosides D OH OH OCH3 H Rha Fer Api 

Schnabelia nepetifolia 
Osteoblast 

proliferation 
39 

58 Nepetifosides F OH OH 
O(CH2)3

CH3 
H Rha Caf Api 
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59 Flavaioside OCH3 OH H H E3 Fer Rha Scrophularia flava Antidiabetic 40 

60 Ramoside A OH OH H H Rha Cou Rha 
Orobanche 

caryophyllacea 
Antioxidant 41 

61 2′-acetylramoside A OH OH H Ace Rha Cou Rha 

62 Rostkovianoside OH OH H Rha Rha H H 
Euphrasia rostkoviana NDa 42 

63 6′-O-acetylcrassifolioside OH OH H Rha Rha Caf Ace 

64 Macrophylloside E H H H H Rha H Caf 
 NDa 43 

65 Macrophylloside F OH OH OH OH Rha H Caf 

66 Ginkgoside C OH OH H Glc H H H 
Ginkgo biloba 

Tyrosinase 

inhibitory 
44 

67 Ginkgoside D OH OH H H Glc H H 

68 Sanangoside OH OH H H Caf H H Sanango racemosum NDa 45 

69 

2-(3,4-dihydroxyphenyl)ethyl O- 

Α-L-rhamnopyranosyl-(1→2)- 

β-D-allopyranoside 

OH OH H Rha H H H 

Marchantia polymorpha NDa 46 

70 

2-(3,4-dihydroxyphenyl)ethyl O- 

β-D-xylopyranosyl-(1→6)-β- 

D-allopyranoside 

OH OH H H H H Xyl 

71 

8'-(3,4-Dihydroxyphenyl)ethyl-O- 

α-L-rhamnopyranosyl-(1-4)-2-O- 

(E)-caffeoyl-α-L-arabinopyranoside 

OH OH H cis-Caf H Rha Rha Forsythia koreana Neuroprotective 47 

72 2‴,3‴-diacetyl-O-betonyoside D OH OCH3 Fer H Rha Ace H 

Phlomis umbrosa NDa 48 

73 3‴,4‴-diacetyl-O-betonyoside D OH OCH3 Fer H H Ace Ace 
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74 Ligupurpurosides C H OH H Cou H H Rha 

Ligustrum purpurascens Antioxidant 49 
75 Ligupurpurosides D H OH H Caf H H Rha 

76 Barlerinoside OH OH Caf Glc H Rha H Barleria prionitis Antioxidant 50 

77 Nepetifosides B OH OCH3 Caf Api H H H 

Schnabelia nepetifolia 
Osteoblast 

proliferation 
39 

78 nepetifosides C OH OCH3 Caf Api H H Xyl 

79 Nepetifosides E OH OH Caf Api H H Xyl 

80 Nepetifosides G H H Caf Api H H H 

81 Nepetifosides H OH OCH3 Cou Api H H H 

82 Nepetifosides K OH OH H Caf H H Xyl 

83 Nepetifosides L OH OH Caf Rha H H Xyl 

84 Lagotiside C OH OH H Caf H H Glc Lagotis brachystachya 
Inhibiting 

Xanthione Oxidase 
51 

85 Scrosides A OH OCH3 H H Fer Glc H 
Picrorhiza 

scrophulariiflora 
NDa 18 

86 Tazettosides A F1 H H  

Narcissus tazetta 
Inhibiting 

melanogenesis 
23 87 Tazettosides B F2 H H  

88 Tazettosides C F2 H Glc  

89 

2-(4-hydroxyphenyl)ethanol-3-O-β-

D-glucopyranosyl-(1→6)-O-β-D- 

glucopyranoside 

F3 H Glc  Sambucus williamsii Hepatoprotective 27 
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90 Forsythoside O F4 H Fer  

Forsythia suspensa Hepatoprotective 28 

91 Forsythenside M F5 H D6  

92 Forsythenside N F5 H Van  

93 Rengyoside D F6 H Van  

94 Rengyoside E F6 H Cou  

95 3′-O-methyl isocrenatoside Rha H Fer  Orobanche cernua Cytotoxic 52 

96 Forsyoxasides A H Caf Rha  

Forsythia suspensa Neuroprotective 53 

97 Forsyoxasides B H cis-Caf Rha  

98 Forsyoxasides C H Cou Rha  

99 Forsyoxasides D H Caf Xyl  

100 Forsyoxasides E Caf H Xyl  

101 Forsyoxasides F H Caf H  

Abbreviations: NDa: Not determined, Glc=β-D-glucopyranose, Ara=α-L-arabinopyranose, Rha=α-L-rhamnopyranose, Xyl=β-D-xylopyranose, Api=β-D-apiofuranose, 

Cou=Coumaroyl, Caf=Caffeoyl, cis-Caf=cis-Caffeoyl, Ace=Acetyl, Van=Vanilloyl, Fer=Feruloyl, and cis-Fer=cis-Feruloyl.  
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Table 2. Ten of the 111 PhGs that have not been summarized before 

No. Compounds Source Bioactivity Ref 

102 Betonyosides B  
Stachys officinalis NDa 16 

103 Betonyosides C  

104 Nepetifosides I  
Schnabelia nepetifolia Osteoblast proliferation 39 

105 Nepetifosides J 

106 (7R) -campneoside I 
Magnolia sirindhorniae NDa 54 

107 (7S)-campneoside I 

108 Nepetifosides A  Schnabelia nepetifolia Osteoblast proliferation 39 

109 Glucooleoacteoside  Osmanthus fragrans Inhibit human dermal fibroblasts  55 

110 Forsythenethosides A  
Forsythia suspensa Neuroprotective 56 

111 Forsythenethosides B  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 102 and 103, 

and compound 104 and 105 

are two pairs of isomers. 

Compound 106 and 107 are 

a pair of diastereomers. 

110: R=H 

111:R=OCH3 

 

106 R1=H, R2=CH3 

107 R1=CH3, R2=H 

102, 103 
104,105 

108 

109 
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Table 3 Pharmacokinetic parameters of several PhGs 

Compound 
Dose 

mg/kg 
Model 

Cmax 

ng/mL 

Tmax 

min 

T1/2 

h 

AUC0→t 

ng×h/mL 

AUC0→∞ 

ng×h/mL 

MRT0→t 

h 

F 

% 
References 

Verbascoside 100 p.o. Rats 130±30 ND 1.54±0.5 ND ND ND 0.12 70 

Verbascoside 

20 p.o 

Rats 

162±52.6 10.2±4.8 1.49±0.28 165±21.2 181.13±20.55 1.41±0.13 1.11 

189 40 p.o 312.5±44.4 17.4±10.2 1.05±0.23 364.7±76.1 378.92±75.56 1.36±0.07 1.23 

80 p.o 624.2±187.2 13.2±9 1.45±0.43 577.6±156.9 625.67±179.03 1.32±0.10 0.98 

Verbascoside 

10 p.o 

Dogs 

420±100 ND 1.48±0.16 788±145.7 802.83±147.83 1.93±0.15 4.12 

71 20 p.o 720±140 ND 1.55±0.36 1464.3±131.3 1491.7±219.17 1.86±0.21 3.84 

40 p.o 1440±240 ND 1.44±0.49 3052.3±478.2 3146.1±498.83 2.05±0.49 4.00 

Verbascoside 26 p.o. 

Rats 

33.2±25.8 16.7±0.23 6.08±1.25 101.29±43.85 150.38±45.14 3.34±0.76 

ND 190 Forsythoside B 200 p.o. 224.6±99.2 16.4±0.28 5.00±1.21 0.19±0.08 1020.1±526.1 3.08±0.88 

Poliumoside 360 p.o. 653.5±311.9 15.8± 0.24 3.41±0.81 1211.3±926.2 1518.65±914.9 3.05±0.15 

Verbascoside 

1000 p.o Rats 

1476.7±15.3 30 1.89±0.42 3.711×106 3710.9±173.81 2.51±0.21 

ND 76 Isoacteoside 296±7 20 3.67±0.58 0.767×106 766.73±54.77 4.89±0.771 

Savaside A 288.3±56.1 60 1.33±0.74 0.323×106 322.63±135.12 1.65±0.808 

Echinacoside 100 p.o Rats 612.2±320.4 15 1.24 1011.75 ND ND 0.83 72 

Echinacoside 10 p.o Rats 779.2±211.7 60.0±30.0 1.1±0.3 1931.0±412.5 1982.0±420 2.1±0.4 ND 191 

Salidroside 25 p.o Rats 6493±1768 66±4.2 ND ND 8486±2441 1.1±0.2 98 192  

Salidroside 12 p.o Rats 4300±1100 ND ND 3376.7±1286 3416.6±1316.6 0.7±0.3 ND 193 

Salidroside 46.2 p.o Rats 3386±2138 33.6±12.6 7.91±4.42 16146±6558 18599±6529 ND ND 194 

Salidroside 100 i.g. Rats 3716.7±860 18± 6 1.32±0.22 7552.9±549 7724.5±446.6 2.07±0.51 51.9 78 

Forsythiaside 100 p.o Rats 122.2±45.4 20.0±0.0 1.25±0.22 9508.3±1156 9513.3±1153.3 ND 0.5 73 

Poliumoside 200 p.o Rats 561.5±100.3 29.7±13.9 0.85±0.19 2433.3±164.7 5422.2±1162.2 0.74±0.29 0.69 74 

Angoroside C 100 p.o Rats 473.5±77.6 7.5±0.00 1.26±0.18 812.0±216.1 842.4±230.6 1.61±0.27 2.1 75 
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Abbreviations: ND, not detected; Cmax, maximum concentration; Tmax, time maximum concentration; T1/2, elimination half-life; AUC0−t, area under the 

concentration-time curve calculated from zero up to the last measured concentration; AUC0−∞, area under the concentration-time curve extrapolated from zero 

up to infinity; MRT, mean residence time; F, bioavailability; p.o., oral administration, i.g., intragastric gavage. 
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Figure legends 

 

Figure 1. Distribution of the 572 phenylethanoid glycosides in the plant kingdom. 

 

Figure 2. The representative chemical structure of monosaccharidic PhGs, dissaccharidic PhGs, 

trisaccharidic PhGs, tetrasaccharidic PhGs, and pentasaccharidic PhGs (sugar moiety in red, 

hydroxyphenylethyl moiety in blue and hydroxycinnamic acid moiety in green).   

 

Figure 3. A: Number of papers indexed in Web of Science related to “Phenylethanoid 

Glycosides” B: Times Cited of papers related to “Phenylethanoid Glycosides” by papers 

indexed in Web of Science. C: The number of papers published on specific phenylethanoid 

glycosides compound. D: The number of papers cited on specific phenylethanoid glycosides 

compound. 

 

Figure 4. A summary of the potential health benefits of phenylethanoid glycosides. 

 

Figure 5. Various phenylethanoid glycosides based products and medicines. 

 

Figure 6. Main metabolic pathways of PhGs in vivo (1: hydrolysis, 2: hydroxylation, 3: sulfation, 

4: glucuronidation, 5: acetylation, 6: methylation, 7: hydration, 8: deglycosylation, 9: 

hydrogenation, 10: dehydroxylation). 

 

Figure 7. Different strategies to improve the bioavailability of phenylethanoid glycosides. 

 


