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Abstract 

There is a growing body of research indicating that drones can disturb animals. However, it is usually unclear whether 

the disturbance is due to visual or auditory cues. Here, we examined the effect of drone flights on the behaviour of great 

dusky swifts Cypseloides senex and white-collared swifts Streptoprocne zonaris in two breeding sites where drone 

noise was obscured by environmental noise from waterfalls and any disturbance must be largely visual. We performed 

12 experimental flights with a multirotor drone at different vertical, horizontal and diagonal distances from the colonies. 

From all flights, 17% caused <1% of birds to temporarily abandon the breeding site, 50% caused half to abandon and 

33% caused more than half to abandon. We showed that the diagonal distance explained 98.9% of the variability of the 

disturbance percentage and while at distances greater than 50 m the disturbance percentage does not exceed 20%, at less 

than 40 m the disturbance percentage increase to above 60%. We recommend that flights with a multirotor drone during 

the breeding period should be conducted at a distance of > 50 m and that recreational flights should be discouraged or 

conducted at larger distances (e.g. 100 m) in nesting birds areas such as waterfalls, canyons and caves.  

Keywords: Drones, Disturbance, Cypseloides senex, Streptoprocne zonaris, Multi-rotors, Unmanned Aircraft Systems   

 

Multirotor drones are one of the most widely used drone platforms in the civilian environment and with the greatest 

commercial growth in recent years (Droneii 2019). The main growth factors for scientific, commercial and recreational 

drone use are associated with a diversity of models relatively easy-to-use, vertical take-off / landing and easy transport. 

The high maneuverability of multirotor drone and its ability to hover in the air make this type of drone the preferred 

option for filming and data collection in hard-to- access places (Bakó et al. 2014; Chabot et al. 2015). For these reasons, 

along with the affordability of commercial models, they are currently the most popular choice for recreational flyers 

(Rebolo-Ifrán et al. 2019), commercial services (Droneii 2019) and scientists (Chabot and Bird 2015; Jiménez and 

Mulero-Pázmány 2019). 

© The Author (2020). Published by Oxford University Press on behalf of Editorial Office, Current Zoology. 
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Within the scientific environment, the integration of drones as data-collection platforms has significantly facilitated 

vertebrate studies, mainly focused on birds and mammals (Wich and Koh 2018) to address a wide variety of topics, 

such as species monitoring (Rey et al. 2017; Hodgson et al. 2018); behavioral analysis (Canal et al. 2016; Mulero-

Pázmány et al. 2017; Cliff et al. 2018); management (Mulero-Pázmány et al. 2014); habitat mapping (Castellanos-

Galindo 2019); and spatial ecology  and wildlife diseases (Barasona et al. 2014; Mulero-Pázmány et al. 2015; Laguna et 

al. 2018). Some of the main advantages of using drones to study wildlife are the reduction of logistical difficulties; costs; 

risks; and disturbance on wildlife if compared to conventional methods such as manned aircraft surveys or researchers 

on the ground (Dulava et al. 2015; Christie et al. 2016). Because of this advantage and with the growing appearance of 

new commercial and recreational models the multirotor drone use has been increasing in research and conservation. 

The increase in drone use has raised concerns about the potential disturbance these systems can cause on wildlife 

(Weston et al. 2020; Bennitt et al. 2019; Bevan et al. 2018). There are a number of factors associated with drone 

characteristics (drone size, motor type, and flight pattern) and animals (species, life-history stage and level of 

aggregation) that can be related to the level of disturbance caused by these systems (Mulero-Pázmány et al. 2017). The 

threshold of disturbance caused by a drone in a given species is often formed by a set of interconnected factors: the 

sound signature of the drone, the environmental noise level, the visual ability of the species and the association degree 

of the drone with a threatening stimulus of the species (Bevan et al. 2018). Although all these factors are connected, in 

the case of birds that in general have worse auditory sensitivity than humans (Dooling and Popper, 2007) and more 

acute visual perception, the visual stimuli generated by the drone can have a greater effect. Even though some studies 

that assessed drone disturbance in birds relating flight patterns and distances to the sound and visual aspects of the 

drone (McEvoy et al. 2016; Rümmler et al. 2016; Brisson-Curadeau et al. 2017; Reintsma et al. 2018), so far it has not 

been possible to analyze separately the disturbances caused by the visual stimuli of the sound stimuli coming from the 

drones. 

Here, we describe an experiment in which we investigate responses from two species of swifts, great dusky swift 

Cypseloides senex and white-collared swift Streptoprocne zonaris, to drone flights in a scenario where noise is mainly 

masked by the background noise of waterfalls and the visual stimulus the main disturbance factor. We measure the 

disturbance caused by a multirotor drone at varying distances from swift colonies located in wet rocks walls next or 

behind waterfalls where the environmental noise is louder than the drone noise. Our aims were 1) bring a new 

perspective of visual disturbance analysis caused by multirotor drones disassociated from the drone noise; 2) facilitate 

establishing guidelines that allow minimizing disturbance to bird colonies that use places such as rocks walls next or 

behind waterfalls, canyons and caves around the world as resting and nesting sites, places with high probability of 

drone-bird interaction due to the increased recreational drone use and the tourist interest of such places. 

 

Material and Methods 

Study area and species 

This study was conducted in Chapada das Mesas National Park, Maranhão, Brazil, in October, 2018. The park covers a 

total area of 1,600 km2 within the Cerrado biome, that has various vegetation types, from “cerradão”, which is a type of 

seasonal forest with dense tree vegetation to "campos limpos” that are open fields as savannas with few trees (Marques 

and Amorim 2014). The two breeding areas of the study species were: Cachoeira do Prata (6°59'36"S, 47°9'55"W) and 

Cachoeira de São Romão (7°1'11"S, 47°2'26"W). Both are located in the North of the park along different stretches of 

the "Farinha" river, a tributary of Araguaia / Tocantins basin, and are approximately 14 km away from each other in a 

straight line. The breeding areas are the two most voluminous waterfalls present within the park. The Cachoeira do 

D
ow

nloaded from
 https://academ

ic.oup.com
/cz/article-abstract/doi/10.1093/cz/zoaa038/5871922 by guest on 16 July 2020



MESQUITA  et al.: Drones can disturb animals 

3 
 

Prata is formed by a set of falls that reach up to 18 m in height, and the Cachoeira de São Romão has falls of up to 25 m 

in height (Figure 1). The region has a humid tropical climate characterized by two well-defined seasons: dry, which 

runs from May to October and wet from November to April, with an annual temperature varying between 24° and 26°C 

and an annual rainfall varying between 1200 and 1600 mm (IMESC 2008). The waterfalls are accessible to tourists but 

the number of visitors is low because the access is currently limited to 50 km of dirt road that can only be accessed by 4 

× 4 vehicle. 

The two study species were the great dusky and white-collared swifts. These are globally considered of least 

concern according to the Red List (IUCN 2020) with stable population for the great dusky swift and declining 

population for the white-collared swift population. The great dusky swift distribution is restricted to Argentina, Bolivia, 

Brazil, and Paraguay (Stopiglia and Raposo 2007) and the white-collared swift is distributed from the USA to Argentina 

(Chantler 1999). In Brazil, data for both species are sparse, leading to an inaccurate distribution map. Both species are 

strongly associated to areas with wet rocks walls next or behind waterfalls, canyons and caves. These sites are used with 

great fidelity for breeding and nesting that occurs between October and November (Whitacre 1989; Stopiglia and 

Raposo 2007). The two species often share nesting sites (Pearman et al. 2010). In this study most of the individuals 

identified in the nesting sites were the great dusky swift and few individuals of the white-collared swift. 

 

Drone and experimental flights 

The drone model used was a DJI Mavic Pro quad-copter, black color, with diagonal size of 335 mm, 743 g weight, ± 77 

dBA noise level, maximum flight speed of 65 km / h, and 20 min average flight autonomy, that carried a camera with a 

1/2.3” (CMOS) and sensor with 12.35 effective megapixels. In each of the two swift breeding sites we performed six 

experimental flights at varying heights above the ground and distances to the breeding rocks walls (Table 1).  

All the swift nests were located in the rock wall at 10 m ± 1 m above the ground in the Cachoeiras do Prata and 15 

m ± 1 m in the Cachoeiras de São Romão (Figure 2). Flights were conducted between 15-18h local time. The drone was 

launched at a minimum distance of 100 m from the breeding site. During a pilot study conducted a week before the 

actual experiments we checked that at this distance the drone did not lead to any noticeable reaction from the birds. 

Between the launch sites and the breeding areas there was vegetation that prevented birds from viewing the drone’s 

take-off. We approached the nesting sites horizontally at a speed between 14 and 21 km / h which in a previous study 

on birds did not seem to influence bird behaviour (Vas et al. 2015) and allows for good control of the drone. Once the 

drone reached the set point, which corresponds to the diagonal distance of each flight according to Table 1, it remained 

hovering stationary for a maximum time of 10 min or until we detected any swifts’ behavioural reaction (flying away or 

mobbing). Once detected any reaction we kept the flight time no more than 5 min to minimize negative effects on the 

species. An experienced observer using a binocular (10 ×  50) counted the number of birds that were present at the 

breeding site 5 min before the take-off of each flight and after the drone was landed. At both field sites the observer was 

positioned between the nesting rocks walls and the drone, with free view to both. Due to the difficulty of approaching 

the nesting rocks walls and to avoid possible disturbance to the colony, the observer was positioned at a horizontal 

distance of 15 to 20 m from the base of the rocks walls, hidden from the colony's line of sight. Because of the large 

number of individuals of the two-species agglomerated and the low luminosity at the waterfalls, we could not determine 

the number of individuals of each of the two species at the breeding sites and therefore recorded the total number of 

birds. We established a minimum interval of 30 minutes after landing of each flight or until the birds regrouped in the 

breeding sites, and a maximum of 2 daily flights, to avoid major disturbances in the species during the same day. 
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The visual analysis included an assessment of the spots size on the walls, which were  agglomerations of the birds, 

and were used to define whether the birds had regrouped. This is, if the spot size returned to its original size, we 

assumed that the individuals had returned. For the visual analysis of spot sizes, we compare the spot sizes with rock 

wall features as atypical marks, deformations or some plants. Due to the high environmental noise caused by the 

waterfalls, in all the experimental flights in the two studied places it was not possible to hear the drone noise by the 

observer who was positioned between the drone and the rock walls at a horizontal distance of 15 to 20 m from the base 

of the rocks walls. 

 

Statistical analysis 

As drone disturbance we considered the change in swifts’ behaviour (flying away or mobbing). We calculated this 

disturbance for each experimental flight as the percentage of birds present in the breeding colony 5 minutes before 

drone exposure minus the percentage of birds present after drone landing. Following Chabot et al. 2015, we classified 

the drone disturbance level in three categories based on the percentage of birds reacting: 1) noticeable disturbance, 

when the percentage does not exceed 1%; 2) moderate disturbance, when the percentage does not exceed 50%; and 3) 

high disturbance, when the percentage is greater than 50%. For vertical distance we considered the difference in height 

between the nest and the drone on each flight. The horizontal was measured from the projection of the drone to the 

ground to the colony and the diagonal distance (hereafter distance) was obtained through the Pythagorean theorem. We 

also calculated the return time of the individuals to the breeding sites after the drone had landed on each flight, and the 

average time for each of the three categories of disturbance. 

A previous descriptive scatter plot showed the possibility of a non-linear association between variables in the two 

ran models. The first model with diagonal distance as a predictor variable and the disturbance percentage as a 

dependent variable, and the second model with the disturbance percentage as a predictor variable and the return time as 

a dependent variable. To choose the best models we initially consider the nature of the variables and Akaike’s 

information criterion (AIC). For model validation we tested for normality test (Shapiro-Wilk), heteroscedasticity 

(Breusch – Pagan) and set the significance level at 0.05. All analyses and charts were made using “car” (Fox 2016), 

“drc” (Ritz et al. 2015), “investr” (Greenwell and Schubert 2014) packages in R 3.6.2 with RStudio 1.2.5033 (R Core 

Team 2019). 

 

Results 

Twelve drone flights were performed at different distances from two swift breeding colonies. A maximum disturbance 

of 93.3% was recorded when the drone flew at 25.5 m distance from a bird’s colony, and a minimum of 0.7% 

disturbance when the flight was conducted at 64.0 m distance (Table 2). During the six flights that produced moderate 

disturbance initially, a few swifts, ranging from 5 to 40 individuals, showed a mobbing behaviour against the drone. 

However, the majority of other individuals who showed reactions just left the breeding sites and began to perform 

circular flights at a distance 20 m ± 5 m above the drone. Flights performed at less than 29 m produced high disturbance, 

causing the departure of most of the colony of the breeding sites with just an average of 15.8% of the individuals 

remaining. In flights with high disturbance we also recorded a larger number of individuals performing mobbing 

behaviour towards the drone. In each of these flights, we landed as fast as possible. 

The nonlinear Gompertz model is the one that presents a lower AIC, 80.16, and the distance from the drone to the 

colony explained 98.9% of the variability of disturbance percentage. Thus, while at distances greater than 50 m the 
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percentage of disturbances does not exceed 20%, at less than 40 m the disturbance percentage increase to above 60% 

(Figure 3). The relationship between the disturbance percentage and the return time, that is, the time it takes for the 

swifts to return to the colonies is better fitted to a nonlinear power model that explains 97.3% of the variability of return 

time, and it was the one that presents a lower AIC, 54.5 (Figure 4). On the four flights classified as high disturbance it 

took an average of 23.5 ± 2.4 minutes for all individuals in the colony to return to the breeding sites after the drone had 

landed. On flights classified as moderate disturbance this time was reduced to 12 ± 2.9 minutes, whereas on flights with 

just noticeable disturbance the individuals returned almost immediately after the drone landing. 

 

Discussion 

For the first time, we measured the drone visual disturbance separate from the drone noise disturbance in birds breeding 

colonies from a quasi-experiment where the drone's noise is masked by environment noise, and we found that the 

response of birds to drone use follows a sigmoidal distribution with the diagonal distance from the drone to the colonies. 

Although our results are similar to studies that indicate that drone disturbance on birds increases as flight height 

decreases under different conditions and with different bird species (Rümmler et al. 2016, Mulero-Pázmány et al. 2017, 

Vliet et al. 2019), we found that the recommended minimum distance must be greater than 50 m to avoid moderate and 

high disturbance in breeding sites, which is different from other studies, that were 15 m by common gulls and other 

species in the bird reserve island Langenwerder in the Baltic Sea (Grenzdörffer 2013) and at least 20 m with drones to 

survey cliff-nesting seabirds as murres (Brisson-Curadeau et al. 2017). However, unlike all the studies mentioned above, 

our results show that this reaction to the drone at a greater distance from the colony could be due to the idiosyncrasy of 

these species but it could also be a consequence of the fact that the drone, without any apparent sound, is more similar 

to a natural situation of approach of a winged predator to the colony and trigger the defensive reaction earlier. The 

drone's sound could initially prevent the colony's reaction by being an artificial stimulus not associated with a winged 

predator, and only when the drone is close enough then triggers this defensive reaction. 

The median bird hearing thresholds from 49 bird species suggest that the birds hear best at frequency between about 

2 and 3 kHz, while humans generally have better auditory sensitivity with lower auditory thresholds and with wider 

bandwidth than typical birds (Dooling and Popper, 2007). Therefore, if an observer was unable to hear the drone at 15 

m, supressed or muffled by waterfalls in this experiment, it is assumed that the swifts could not hear the drone at 25 m 

in the flight closest to the colony. This suggests that the drone noise may lose importance for the disturbance, while the 

visual aspects such as the shape or the flight pattern can be determinant for the swift’s behaviour change. Indeed, the 

drone visual stimulation was one of the possible causes of disturbances in colonies of greater crested tern Thalasseus 

bergii in a study that suggested that the noise emitted by multirotor drones may not be audible to colonies of this 

species (Bevan et al. 2018). However, the drone shape of our study eschews the classic "hawk / goose" rule (Schleidt et 

al. 2011) because a multirotor does not look like any potential swift predator. The new multirotor shape was one of the 

explanations for the lack of flight response in waterfowl at low flight altitudes in other studies (McEvoy et al. 2016). In 

contrast, we found that swifts showed mobbing behaviour in flights near the nesting sites and may have recognized the 

multirotor drone as a potential predator. In the case of the great dusky swift and white-collared swift, the only known 

aerial predator is the peregrine falcon Falco peregrinus which has been observed near the others colony sites awaiting 

to catch swifts as they enter or leave the colony to feed and collect nest materials (Whitacre 1989). So even though the 

multirotor does not have a "hawk" shape it is possible that the mobbing behaviour of the swifts facing the drone can be 

elicited due to the drone being perceived as an unknown potential predator. 
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The time that swifts took to return to the colony after multirotor flights considered of high disturbance was about 2 

times longer than flights considered of moderate disturbance and about 20 times longer than flights considered of low 

disturbance. This time between departure and return to the original location after the disturbance is also considered a 

way to measure an animal's response to a disturbance (Vliet et al. 2019). These types of responses can have a negative 

impact on the reproductive process in the case of birds in their breeding season, since it causes the individual to spend 

more energy, alters the incubation cycle and the care of altricial nestlings and exposes them to possible predators. This 

negative impact caused by the return time to the nests was different from others bird studies that measured this time 

after drone disturbance in breeding colonies: ranging from 1 min to common terns Sterna hirundo (Reintsma et al. 

2018), 1 to 3 min for Iceland gulls Larus glaucoides and 5 to 10 min for thick-billed murres Uria lomvia (Brisson-

Curadeau et al. 2017), while our experiment demonstrated much longer return time, whether on high disturbance flights, 

ranging from 20 to 25 min , or moderate disturbance flights, 9 to 16 min. This variability in return time suggests the 

need to carry out specific tests to know this effect in different species. Our experiment shows that this delay time in 

returning to the nesting site can cause very negative impacts on the reproductive process if the presence of these drones 

is intense over time.  

Understanding the minimum operating distance at which drones can cause disturbance, which factors can cause 

them, and for which species each distance can be tolerated is critical, whether for the preparation of flight missions in 

scientific studies or to regulate the growing recreational use of drones in such environments. Despite the great diversity 

of responses to the drone use from different bird species due to the different types of ecological contexts in which they 

are found, almost always the greater the frequency and intensity of the disturbance, the greater the negative impacts on 

breeding bird populations. In this sense, the drone use, which is expanding in sites as bird nesting areas, such as this 

study, should be considered as a possible source of negative effects in certain colony bird. Therefore, we suggest the 

flight distance with multirotor drone to avoid high disturbance in the great dusky and white-collared swifts during the 

breeding period in nesting areas should be done > 50 m. We also recommend that recreational flights are generally 

discouraged or conducted at larger distances (e.g. 100 m) in areas where swifts occur such as waterfalls, canyons and 

caves. This study serves as a basis both for the elaboration of new protocols for the use of drones with birds by 

researchers in conservation studies and for possible regulations for the recreational use of drones in protected areas or 

not with the presence of these species. 
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Table 1.Experimental flights parameters. Distances are in meters. 

Flight Date Time Study Site 
Height 
nests 

Flight 
Altitude 

Vertical 
Distance 

Horizontal 
Distance 

Diagonal 
Distance 

1 22/10/2018 16:00 Cachoeira do Prata 10 50 40 50 64.03 

2 22/10/2018 17:30 Cachoeira do Prata 10 25 15 50 52.20 

3 23/10/2018 16:00 
Cachoeira de São 

Romão 
15 50 35 50 61.03 

4 23/10/2018 17:30 
Cachoeira de São 

Romão 
15 25 10 50 50.99 

5 24/10/2018 16:00 Cachoeira do Prata 10 10 0 50 50.00 

6 24/10/2018 17:30 Cachoeira do Prata 10 50 40 25 47.17 

7 25/10/2018 16:00 
Cachoeira de São 

Romão 
15 10 -5 50 50.25 

8 25/10/2018 17:30 
Cachoeira de São 

Romão 
15 50 35 25 43.01 

9 26/10/2018 16:00 Cachoeira do Prata 10 25 15 25 29.15 

10 26/10/2018 17:30 
Cachoeira de São 

Romão 
15 25 10 25 26.93 

11 27/10/2018 16:00 Cachoeira do Prata 10.00 10 0 25 25.00 

12 27/10/2018 17:30 
Cachoeira de São 

Romão 
15.00 10.00 -5 25 25.50 
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Table 2. Percentage disturbed and classification of experimental flights. 1 (noticeable disturbance), 2 (moderate disturbance) and 3 

(high disturbance).  

Classification Flight Date Time Study Site
Diagonal 

Distance (m)
Total 
Swifts 

 Disturbed 
(%) 

Return 
Time 
(min) 

1  1 
22/10/2

018 
16:00 

Cachoeira do 
Prata 

64.03 3000 0.7 1 

1  3 
23/10/2

018 
16:00 

Cachoeira de 
São Romão

61.03 1000 1.0 1 

2  2 
22/10/2

018 
17:30 

Cachoeira do 
Prata 

52.20 1000 5.0 9 

2  4 
23/10/2

018 
17:30 

Cachoeira de 
São Romão

50.99 3000 10.0 9 

2  5 
24/10/2

018 
16:00 

Cachoeira do 
Prata 

50.00 1000 15.0 12 

2  6 
24/10/2

018 
17:30 

Cachoeira do 
Prata 

47.17 2500 32.0 15 

2  7 
25/10/2

018 
16:00 

Cachoeira de 
São Romão

50.25 2500 20.0 12 

2  8 
25/10/2

018 
17:30 

Cachoeira de 
São Romão

43.01 1500 46.7 16 

3  9 
26/10/2

018 
16:00 

Cachoeira do 
Prata 

29.15 1000 70.0 20 

3  10 
26/10/2

018 
17:30 

Cachoeira de 
São Romão

26.93 3000 83.3 22 

3  11 
27/10/2

018 
16:00 

Cachoeira do 
Prata 

25.00 1000 90.0 25 

3  12 
27/10/2

018 
17:30 

Cachoeira de 
São Romão

25.50 3000 93.3 25 
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Figure 1. Localization of the studied swift breeding sites in Chapada das Mesas National Park at Brazil. Cachoeira do Prata (white 

square), Cachoeira de São Romão (white circle). 
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Figure 2. Design of experimental flights. Breeding group from “Cachoeira do Prata” and “Cachoeira de São Romão”. Classification 

(circle, noticeable disturbance; triangle, moderate disturbance; square, high disturbance), Diagonal distance (meters) and disturbance 

(%) for each drone flight. 
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Figure 3. Nonlinear gompertz regression between diagonal distance and % disturbed of swifts. In blue 95% confidence band and 

green prediction band. 

 

Figure 4. Nonlinear power regression between % disturbed od swifts and return time. In blue 95% confidence band and green 

prediction band. 
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