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Abstract

Recent climate change has had a major impact on biodiversity and has altered the geo-

graphical distribution of vascular plant species. This trend is visible globally; however, more

local and regional scale research is needed to improve understanding of the patterns of

change and to develop appropriate conservation strategies that can minimise cultural,

health, and economic losses at finer scales. Here we describe a method to manually geo-

reference botanical records from a historical herbarium to track changes in the geographical

distributions of plant species in West Cornwall (South West England) using both historical

(pre-1900) and contemporary (post-1900) distribution records. We also assess the use of

Ellenberg and climate indicator values as markers of responses to climate and environmen-

tal change. Using these techniques we detect a loss in 19 plant species, with 6 species los-

ing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light,

moisture, nitrogen) and climate indicator values (mean January temperature, mean July

temperature and mean precipitation) could be used as environmental change indicators.

Significantly higher percentages of area lost were detected in species with lower January

temperatures, July temperatures, light, and nitrogen values, as well as higher annual precip-

itation and moisture values. This study highlights the importance of historical records in

examining the changes in plant species’ geographical distributions. We present a method

for manual geo-referencing of such records, and demonstrate how using Ellenberg and cli-

mate indicator values as environmental and climate change indicators can contribute

towards directing appropriate conservation strategies.

Introduction

Recent climate change has become one of the main drivers of shifts in the geographical distri-

butions of plant species [1, 2]. There are several ways in which species can respond to climate

change: adapt, move in different directions in order to track suitable climates, (i.e. towards

PLOS ONE | https://doi.org/10.1371/journal.pone.0191021 February 5, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kosanic A, Anderson K, Harrison S,

Turkington T, Bennie J (2018) Changes in the

geographical distribution of plant species and

climatic variables on the West Cornwall peninsula

(South West UK). PLoS ONE 13(2): e0191021.

https://doi.org/10.1371/journal.pone.0191021

Editor: Andy J Green, Consejo Superior de

Investigaciones Cientificas, SPAIN

Received: August 11, 2016

Accepted: December 27, 2017

Published: February 5, 2018

Copyright: © 2018 Kosanic et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All vegetation data

files are available from the NBN- Vascular Plants

Database (https://data.nbn.org.uk/) and from “The

Flora of Cornwall” by Davey 1909. For the post-

1900 dataset data are available at the NBN

Homesite. Please go to /Record share and explore

data/NBN Atlas/Location/Spatial Search/Customise

filters for Occurrence records. Other relevant data

are within the paper and its Supporting Information

files. The authors confirm that others would be able

to access these data in the same manner as the

https://doi.org/10.1371/journal.pone.0191021
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191021&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191021&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191021&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191021&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191021&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191021&domain=pdf&date_stamp=2018-02-05
https://doi.org/10.1371/journal.pone.0191021
http://creativecommons.org/licenses/by/4.0/
https://data.nbn.org.uk/


higher latitudes and elevations, or to the east and west) [3, 4], and go extinct locally, regionally,

or, in a worst case scenario, globally [5–8]. Projections show that the increase of the global

mean temperature by the year 2100 is very likely to be between 1.5˚C and 4.0˚C (depending on

emission scenarios) and the impact on ecosystems will be unprecedented [9, 10]. Responses of

plant species will depend on their genetic diversity and ability to adapt to the magnitude and

rate of climate change, as well as availability of space for species to move into local microcli-

mates [11–13]. Nevertheless, it has been shown that not all plant species will be equally sensi-

tive to climatic change [2, 8, 14]. However, temperature is not the only aspect of the climate

that is changing. Precipitation and the frequency of extreme events will also have an impact on

vegetation, and the rate and magnitude of these climatic effects will differ regionally and locally

[10, 15–17]. Changes in geographical distributions of vegetation at the local and regional scales

can impact community composition, ecosystem function, and genetic diversity, which can

make plants even more vulnerable to on-going environmental change [18–21]. Furthermore,

changes in the distribution of vegetation on such scales could also affect regional identity and

ecosystem services provision [22–24]. Therefore, there is a need for more research to focus on

vegetation responses to climate change at local and regional scales [25, 26], particularly in

order to identify vulnerable plant species. This can help to secure in situ management and pre-

vent regional and local vegetation loss that could drive economic, social and environmental

losses [2, 27]. Attribution of vegetation responses to climate change at local and regional scales,

and identification of vulnerable species is nonetheless a difficult challenge in ecology; mainly

because decadal patterns could be related to non-climatic factors, not least factors such as land

use change [1, 28]. Hence, we need a better understanding of species’ individualistic responses

to environmental change [8].

To track species’ responses to climate or environmental change, historical records (e.g. her-

barium collections) represent exceptional sources of scientific and conservation data because

they offer a means of tracking changes in species’ geographical distributions over time. So far,

historical vegetation records have been used to analyse climatic effects on vegetation phenol-

ogy [29–32], to predict changes in species’ distributions, to analyse patterns of plant species

invasion, and to identify threatened species [33–35]; however, there is still a lack of regional

and local scale studies. The major reason for the limited number of studies at the regional and

local scales is not only a lack of multiple historical records (e.g. climatic and vegetation data)

but also the lack of historical vegetation records in a precise geo-referenced form (i.e. geo-

graphical latitude and longitude) [36–38]. Therefore, a major task for scientists, museums, and

archives is to deal with location uncertainties of historical records and to make such databases

available in an accurate geo-referenced form [39–42]. This need has led to the design of web-

based automated or semi-automated mapping applications such as BioGeomancer, MaNIS,

MaPSTeDI [40, 43]; however, these applications are not available for all countries or regions,

and in such instances geo-referencing needs to be performed manually. Manual geo-refere-

ncing, particularly on a specimen by specimen basis, is generally avoided as it has been charac-

terised as time consuming [40, 44] and lacking detailed methodological guidance in the

literature.

In this manuscript we present a method describing the process of manual geo-referencing

of historical records (i.e. herbarium collections), in order to examine changes in the geographi-

cal distribution of plant species, using West Cornwall (South West England) as a study site

with good availability of historical vegetation records [24]. We also assess whether Ellenberg

values (EV) and climate indicator values (CV), both developed to characterise plant species

ecology (i.e. species’ individual sensitivity to abiotic change) [45–47], can be used as tools to

track climate and environmental change, and to show which species will be more sensitive to

the change. For example, EV have been used previously to detect environmental change [48–
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50] and to document habitat quality [51]; however, there have been few studies examining if

EV reflect a local or regional climate change signal [52–54]. Additionally EV can serve as a tool

for detecting those plant species that are most vulnerable to climate change [52] and, poten-

tially, for informing successful conservation strategies at local and regional scales. This study

aims to address two key questions: 1) Can historical (herbarium) plant species data be used to

evaluate changes in geographical distribution? 2) Is there a correlation between EV and CV of

plant species and their distribution patterns?

Data and methodology

Contemporary plant species data (post-1900)

Contemporary spatial records (referred to in this paper as “post-1900”) of plant distribution in

West Cornwall (South West England) were obtained from the online “Vascular Plants Data-

base” of the National Biodiversity Network (NBN) [55]. The NBN database contains the distri-

butions of 6669 taxa of flowering plants and ferns and contains mostly records from the “New

Atlas of the British and Irish Flora” [56] and records collected by volunteer members of the

Botanical Society of the British Isles (BSBI). NBN Vascular Plant records were validated by

BSBI members and obtained at a 10x10 km grid resolution for this study.

Historical plant species data (pre-1900)

Cornwall has a long history of botanical records that date back to Victorian times, which was

encouraged by Natural History Societies at the time, in order to construct regional scientific

knowledge [57]. In this study, historical records (referred to as “pre-1900”) were used from

“The Flora of Cornwall” [58], a collection of all known herbarium data in the county of Corn-

wall and the Scilly Isles from the 18th and 19th centuries. In these records Cornwall is divided

into eight botanical districts based on river basins [58]. Geo-referencing was undertaken for

the 5th, 6th, 7th and 8th districts that cover the area of West Cornwall (Fig 1). Records contained

both native and non-native species. Such historical data contain textual descriptions of locali-

ties where plant specimens were found (e.g. “Achillea ptarmica, first record: 1769; district 7:

Porkellis Moor, Wendron, Coverack, Emyln” page 247), [58], rather than explicit definitions of

longitude and latitude. We therefore acknowledge several uncertainties in the geo-referencing

process: taxonomical inaccuracy; spatial error; bias associated with frequency; and time spent

on data collection (i.e. some areas or species that could be poorly sampled). The latter uncer-

tainty provides particular challenges [36] and details of our methods for dealing with these

uncertainties are given below.

Handling and spatial analysis of plant species records in ArcGIS

Manual geo-referencing of historical plant species data posed a methodological challenge [40]

due to textual descriptions of specimen localities. Specifically, “The Flora of Cornwall” [58]

contains descriptions of species (genus and specific epithet) and textual descriptions of geo-

graphic localities (i.e. places where specimens had been collected). In order to manually geo-

reference these data and import into GIS software (ArcGIS) for subsequent spatial and tempo-

ral analysis, the following three steps were undertaken:

1) As it would be impractical to geo-reference all plant specimens in West Cornwall as

recorded in the Flora of Cornwall [58], we created a baseline dataset using the “New Atlas of

the British and Irish Flora” [56]. For this baseline dataset, 380 plant species were selected fol-

lowing two rules: a) they were detected in Cornwall pre-1970 by Preston et al. [56] and b) their

geographical distribution (calculated as a change in areal extent) increased or decreased by
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more than 50% in the period from 1970 to 2002, also by Preston et al [56]. An electronic data-

base was constructed from these data.

2) Species were then searched for in the herbarium collection “The Flora of Cornwall” [58],

and those specimens found to be recorded in West Cornwall pre-1900 were geo-referenced as

accurately as possible using ArcGIS. We used Google Earth at the initial stage of geo-referenc-

ing process to confirm textually described localities. Google Earth has been previously used in

the geo-referencing process of historic herbaria and proved to be a useful tool as it allows

quick detection of plant species localities from textual descriptions [44]. The accuracy of geo-

referenced locations was cross-checked using online Ordnance survey archive maps for West

Cornwall at a scale of 1:2500 [59]. Specimens that were found to have very ambiguous locality

descriptions (e.g. “West Penwith area”) were excluded from the study.

Species without published Ellenberg values (see below) [47], synonyms, or species with

incorrect taxonomy were also excluded from the database and subsequent analysis, following

suggestions of Lavoie [60]. Taxonomic inaccuracy and possible synonyms were checked in

The Plant List, the most extensive online database of all known plant species [61]. In total,

1187 plant specimens (comprising 120 plant species) from West Cornwall were included in

the final spatial analysis database.
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Fig 1. Botanical districts of historical herbarium data in Cornwall. Showing study area and botanical districts that

were used in this research. Figure adapted from Davey [58].

https://doi.org/10.1371/journal.pone.0191021.g001

Changes in geographical distribution of plant species in West Cornwall

PLOS ONE | https://doi.org/10.1371/journal.pone.0191021 February 5, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0191021.g001
https://doi.org/10.1371/journal.pone.0191021


3) Information on specimen localities was imported from Google Earth into ArcGIS to

complete the geo-referencing process and create distributional maps for the pre-1900 dataset.

The extent of spatiotemporal uncertainty was then determined to create uncertainty ‘buffers’

for the pre-1900 data, which were applied to every record. This was done using a point radius

method developed by Wieczorek et al. [39], which has been shown to be reliable [62, 63] when

used as a part of automated or semi-automated geo-referencing programs. In this instance of

manual geo-referencing, however, the point radius method was adapted as it would be imprac-

tical and time consuming to create an individual uncertainty buffer for each of the 1187 manu-

ally geo-referenced specimens. To determine a suitable radius for the buffers, we followed

guidelines by Wieczorek et al. [64]: (1) for the ‘named places with a bounded area’ (e.g. towns

or farms) we measured a maximum distance from the centre of a species’ named place to its

furthest extent border; (2) for specimens between two ‘named places’ the buffer was calculated

as half the distance between the centres of both named places; (3) for the specimens with a

locality within ‘named places with undefined areas’ (i.e. places without a clear spatial bound-

ary), for the extent measure we used half of the distance from the specimens’ locality coordi-

nates to the centre of the nearest named place. Some specimens from Davey’s herbarium

collection [58] had the names of geographic features as a location (e.g. Kennall river) or ‘offset

localities’ with direction only, and without recorded distance or vice versa (e.g. North of Fal-

mouth or 5 miles from Falmouth). Therefore, to create uncertainty buffers for all geo-refer-

enced specimens we chose 50 random geo-referenced species’ localities (with bounded or

undefined areas, and localities between the places), and their extent was calculated using the

Ruler tool in Google Earth and Measure tool in ArcGIS. The upper quartile of all 50 extent dis-

tances was calculated to be 1.5 km, which was then applied as the uncertainty buffer around

each specimen within ArcGIS (Fig 2). As historical maps from the same period as specimen

collections were not available in digitised form, and clearly the extent of places have changed

throughout history [39, 44], our calculated uncertainty buffers are most likely an overestimate

rather than an underestimate.

Upon creation, the uncertainty buffers in ArcGIS were attributed to the 10 km grid cells in

West Cornwall using the Spatial join tool [65]. Contemporary data (post-1900) were also

imported to ArcGIS and spatially joined to the 10 km grid cells. Both datasets were clipped to

the shapefile of West Cornwall. Furthermore, for both datasets, polygons of species’ geographi-

cal distributions were then created using the Dissolve tool allowing the subsequent calculation

of area loss. This step was necessary due to the geographical nature of West Cornwall as a pen-

insula, resulting in a proportion of many grid cells being taken up by ocean, and therefore

analysis on a grid cell basis could create additional bias. To characterise changes in geographi-

cal coverage of plant species between pre-1900 and post-1900, spatial analysis was performed

using the Intersect tool to identify species overlap. The local range loss of species between two

the periods was also calculated using the Symmetrical difference tool (Fig 3), and actual loss was

calculated by the function Calculate geometry in ArcGIS [65]. The difference in area covered in

post-1900 records as a proportion of the original territory (i.e. species that occupied West

Cornwall pre-1900) was also calculated.

Analysis of plant species EV and CV and geographical distribution change

Ellenberg values were developed for each individual plant species in Central Europe by Ellen-

berg et al. [45] based on field observations showing plant species’ sensitivity to abiotic factors

such as T-temperature, L-light, M-moisture of soil, R-reaction, S-salt concentration, K-conti-

nentality and N-nitrogen (soil fertility) [67, 68]. Each factor is measured on a nine to twelve

rank scale depending on the region that they were calculated for [46]. Ellenberg values are
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related to a species’ synecological optimum (species interactions with the environment) rather

than ecological ones [52]. The values used in this study were calibrated for UK plant species

and scaled between 1–9 or 1–12 for each species (e.g. M = 1 indicates extreme dryness whereas

Fig 2. Geo-referencing of pre-1900 plant species data. Showing geo-referenced herbarium data with 1.5 km uncertainty

buffers [66].

https://doi.org/10.1371/journal.pone.0191021.g002
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M = 12 indicates almost constant submersion) [46, 47]. Hill et al. [47] omitted the calibration

of the original EV for K-continentality and T-temperature as they were not applicable for the

UK oceanic climate. Therefore, here we focus on EV for light (L), moisture (M) and nitrogen

(N). Furthermore, instead of K-continentality and T-temperature EV, we used three CV from

previously derived mean climatic data for the species range within 10 km grid cells for the Brit-

ish Isles [47]: (i) mean January temperature (Tjan), (ii) mean July temperature (Tjul), and (iii)

mean precipitation (RR). To match the ordinal values of the three EV, temperature and precip-

itation indicators (Tjan, Tjul, and RR) were subdivided based on the values in Table 1, with

lower values indicating the coldest/driest conditions and higher values indicating the warmest/

wettest conditions (see S1 Table). The subdivisions were selected to have an even spread of spe-

cies between the indicator values, while maintaining regular spacing and minimising the num-

ber of species more than 0.5˚C and 100mm from the extreme indicator threshold values for

temperature and precipitation CV, respectively. The maximum, minimum and median mean

temperature and precipitation values are in Table 2.

Finally, the percentage of the pre-1900 area of each species that had no records in the

post-1900 records was determined as a measure of area loss. We tested whether losses were

more pronounced for species traits (EV and CV). The analysis compared each pair of indicator

values, to detect any non-montonic relationships that could be missed by the Pearson’s
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Fig 3. Example of pre-1900 and post-1900 changes in geographical distributions of plant species in West Cornwall. Showing present (only present) and
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https://doi.org/10.1371/journal.pone.0191021.g003
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correlation coefficient or Kendall’s Tau. The non-parametric Mann-Whitney U test was used to

determine whether the percentage of area lost was statistically different (p value< 0.05) between

two indicator values. The Mann-Whitney U test (also referred to as Mann-Whitney-Wilcoxon)

has been used in other studies to determine the significant difference between two independent

groups of data [69]. The test was necessary to test both EV and CV and determine which species

with their associated values experienced a higher loss and were thus potentially more vulnerable

to environmental change (see S1 Table). As an additional test, we also developed a Generalized

Linear Model (GLM) in R-3.3.2 [70], in order to test the relation between percentage of area

lost (response variable) and climatic values (explanatory variables) that were used in creating a

substitute for the original EV [47]. The area lost were transformed using an arc-sine transforma-

tion since the data was proportional and bounded between zero and one.

Results

Spatial analysis of change in plant species geographical distribution

Of the 120-plant species analysed, spatial overlap between the pre-1900 and post-1900 datasets

was found for 116 species, whereas 5 species appeared only in either post-1900 or pre-1900 data-

sets or without an intersect (Fig 3). A decrease in geographical extent was found for 19 species

(the decrease was larger than 50% for 6 species), and no change in geographical distribution was

found for 10 species. Species with the highest losses across West Cornwall are shown in Table 3.

Ellenberg values and climate indicator values

The ranges of CV and EV for the 120-species analysed are presented in Table 1B. For EV,

Moisture (M) had the widest range (1–12) followed by Nitrogen (N) (1–9), and the narrowest

Table 2. The minimum, median and maximum value for each Ellenberg value (EV), light (L), moisture (M), nitro-

gen (N) and climate indictor value (CV), mean January temperature (Tjan), mean July temperature (Tjul), and

mean precipitation (RR).

Variable Minimum Median Maximum

(Tjan) 1.9˚C 3.8˚C 6.8˚C

(Tjul) 13.0˚C 15.6˚C 16.6˚C

(RR) 604mm 900mm 1483mm

(L) 4 7 9

(M) 2 5 12

(N) 1 5 9

https://doi.org/10.1371/journal.pone.0191021.t002

Table 1. Classifications for three climate indicator values (CV): Mean January temperature (Tjan), mean July

temperature (Tjul), and mean precipitation (RR).

Indicator value Tjan (˚C) Tjul

(˚C)

RR

(mm)

1 <2.5 < 13.5 < 700

2 2.5–3.0 13.5–14.0 700–800

3 3.0–3.5 14.0–14.5 800–900

4 3.5–4.0 14.5–15.0 900–1000

5 4.0–4.5 15.0–15.5 1000–1100

6 4.5–5.0 15.5–16.0 1100–1200

7 5.0–5.5 16.0–16.5 1200–1300

8 �5.5 �16.5 �1300

https://doi.org/10.1371/journal.pone.0191021.t001
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range was for Light (L) (4–9). Based on the CV criteria, all three indicators span the same

range (1–8).

The percentage area losses between post- and pre-1900 calculated in relation to CV are

shown in Fig 4 (top row). For Tjan, species with cold temperatures (Tjan = 2) had the highest

percentage area loss, which was significantly greater than those with a value of 3, 4, 5, 7 and 8.

Species with Tjan indicator values of 4 and 5 also showed a significantly lower reduction in

extent than species for Tjan = 6 (Table 4). Therefore, except for Tjan = 6, species with colder

winter temperatures generally show greater losses than those with warmer temperatures. For

summer temperatures (Tjul), species with the lowest temperatures (Tjul = 1) lost a significantly

higher percentage of the pre-1900 area than those with values of 4 and 5, with no significant

differences between the other indicator values (Table 4). Based on the annual precipitation,

species with RR = 8 showed significantly greater losses in area relative to pre-1900 than those

with an indicator values of 2, 3, 4, 5, and 7. Species for which RR = 1 also had a higher median

value of percentage area lost, but this was not significantly different to the other categories due

to few species in this group (Table 4). Overall, CV indicate that species with cooler winter and

summer temperatures, and higher annual rainfall had a greater percentage loss in area between

pre- and post-1900.

The GLM results are somewhat consistent with the findings above. Based on the GLM, the

probability of losing species increases for species with higher RR values (Table 5). Further-

more, there are indications that the loss will be greater for species with lower January tempera-

ture and higher July temperature, however, these findings are short of statistical significance

(Table 5).

The percentage of area lost in relation to EV is shown in Fig 4 (bottom row). Indicator val-

ues observed by only one species are shown as a single red line in Fig 4. For light (L) there was

no clear pattern; losses for species with L = 4 were significantly higher than those with L = 6,

while species with L = 8 or 9 showed significantly greater losses than those with L = 6 or 7

(Table 4). For moisture (M), excluding indicator values applicable to only one species (M = 2

and 12), species with moderate values (M = 4 to 8) had lower median losses than those with

moderate-extreme values (M = 3, 9, 10) (Table 4). However, when considering all species for

an indicator value, only species with M = 9 showed significantly greater losses than those with

a value of 5 or 6 (Table 4). For nitrogen (N), species with lower indicator values had a higher

percentage of area lost, with those having N = 1 showing significantly greater loss than those

with N = 6, and those with N = 3 showing significantly greater loss than those with N = 4 to 8

(Table 4).

Table 3. Species with the largest change in geographical distribution (in terms of the lost area) in West Cornwall.

Species Km2

Anagallis arvensis subsp. foemina 484

Anthemis cotula 452

Campanula rotundifolia 325

Clinopodium acinos 929

Cystopteris fragilis 611

Genista anglica 217

Juncus maritimus 257

Lavatera cretica 210

Linum usitatissimum 212

Medicago sativa subsp. falcata 469

Scilla autumnalis 327

https://doi.org/10.1371/journal.pone.0191021.t003
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Discussion

We have framed the discussion according to the two initial questions posed at the beginning of

the manuscript:

1) Can historical (herbarium) plant species data be used to evaluate changes in geographical

distribution?

Historical biodiversity collections are often associated with uncertainties and limitations

[71], yet they still offer an enormous source of information on past geographical distributions,

and their value is recognised in a context of evaluating present and future anthropogenic

impacts on biodiversity [29, 72, 73]. Although such collections can be used in research, projec-

tions for future biodiversity responses, conservation purposes, and education [71, 74], most of

Fig 4. Pre-1900 area loss for Ellenberg values (EV) and climate indicator values (CV). Showing percentage of the pre-1900 area that was lost post-1900 for CV (top),

and EV (bottom). Climate indicator values are ranked based on temperature (Tjan and Tjul) and precipitation (RR), with a value of 1 representing coldest/driest

conditions and a value of 8 representing the warmest/wettest conditions. Three EV are included: light (L); moisture (M); and nitrogen (N). Median values shown in red

and blue rectangles outline the 25th to 75th percentiles. EV relevant for only one species are shown as a single line (i.e. M = 2 and 12 and N = 9).

https://doi.org/10.1371/journal.pone.0191021.g004
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the collections are still inaccessible as they are locked in a form of descriptive locality informa-

tion. Recently museums and herbaria associations worldwide are making an enormous effort

for: “(i) the building, sharing, and preservation of digital collections; (ii) creation of tools (particu-
larly, identification tools) and services; (iii) influencing and supporting innovation in communi-
cation between users; and (iv) the development of strategic partnerships for further digital library
development” [75] (page 44), however, surprisingly manual geo-referencing is often omitted as

it has been perceived as time consuming, requires additional searching for resources such as

archive maps or gazetteers [40, 76], and it poses a question of how to deal with the spatial

uncertainty of textually-described localities manually.

In the past 15 years much more emphasis has been placed on automated and semi-auto-

mated geo-referencing tools [43], yet such tools are not the solution for all “locked” historical

records as they are not applicable for all regions. Therefore, here we presented a method and

demonstrated that historical records from regional and local herbarium collections can be

manually geo-referenced with an assessment of spatial error, and integrated into a spatial

assessment of distribution change across landscapes and can be used to understand potential

drivers of that change. Still, one of the main criticisms of using historical plant records to track

distributional change is that variation in collection methods could result in biased data [77–

80]. Historical vegetation records were rarely collected systematically with equal effort across

geographic space, so the absence of a record from locality does not mean that a species was

absent. Therefore, we agree with Elith and Leathwick [74] that analysis of changes in species in

geographical distributions using historical (e.g. herbarium) records should concentrate on loss

Table 4. Mann-Whitney U test U and p values for pairs of environmental and climate indictor values (EV and CV, respectively). Only the significant results are

shown (p value< 0.05).

CV Indicator values U p value EV Indicator values U p value

Tjan 2 3 41.0 0.010 L 4 6 84.0 0.045

2 4 216.5 0.002 6 8 359.5 0.009

2 5 105.5 0.004 6 9 179.5 0.012

2 7 16.0 0.029 7 8 981.5 0.008

2 8 32.5 0.022 7 9 494.5 0.015

3 6 55.0 0.025 M 5 9 135.5 0.015

4 6 303.0 0.001 6 9 57.0 0.043

5 6 139.0 0.011 N 1 6 108.0 0.032

Tjul 1 5 88.0 0.029 3 4 178.0 0.023

1 6 111.5 0.034 3 5 412.0 0.011

RR 2 8 125.0 0.029 3 6 308.5 0.003

3 8 203.5 0.005 3 7 190.0 0.027

4 8 145.5 0.006 3 8 80.5 0.040

5 8 86.0 0.005

7 8 31.0 0.030

https://doi.org/10.1371/journal.pone.0191021.t004

Table 5. GLM analysis with area lost as response and climatic values as explanatory variable (p< 0.05).

Estimate Std. Error t t value Pr (>|t|)

(Intercept) -5.84 3.43 -1.700 0.092

Tjan -0.16 0.09 -1.704 0.091

Tjul 0.35 0.20 1.766 0.080

RR 0.002 0.001 2.031 0.045

https://doi.org/10.1371/journal.pone.0191021.t005
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and not gain. Furthermore, uncertainties in historical records could also be related to the qual-

ity of local and regional records, and a more cautious approach is needed if records are from

regions where national biodiversity monitoring is scarce, affected by war or political instability,

and regions with undeveloped transportation infrastructure [81, 82]. Nevertheless, in such

regions even contemporary (i.e. 20th and 21st century) biodiversity records can be affected by

collection bias [81] so we suggest that a detailed inspection of historical/contemporary biodi-

versity records (e.g. locality, date of collection, field notes) is required before assessing changes

in local/regional distributions. To summarise, and answering the initial question directly, her-

barium data can be used to evaluate vegetation change but users must acknowledge uncertain-

ties in historical records to overcome a challenging process of manual geo-referencing.

2) Is there a correlation between EV and CV of plant species and their distribution

patterns?

Only a few studies have looked at whether changes in geographical distributions of plant

species and their associated Ellenberg indicator values follow regional climate variability [52,

83], and this has shown to be true to a certain extent due to microclimatic variations [84]

showing we need more local and regional climate change analysis. Our results showed that

species with colder average temperature Tjan values had a greater percentage loss of area than

other species between pre-1900 and post-1900 datasets. These findings are consistent with

results by Maclean et al. [26] who detected losses in the region (West Cornwall) for grassland

species with low temperature requirements. The changes found in plant species geographical

distributions and their associated CV also follow previous findings on climate change in the

region [85]. For example, the results for plant species change and associated Tjul, are also con-

sistent with previous results on climate variability in West Cornwall that show a positive trend

in summer temperatures in the 20th and 21st centuries [85].

We found that changes in species’ geographical distributions correlated with rainfall (RR)

and moisture (M) indicator values. Climate indicator values for RR and EV for M showed the

greatest losses in pre-1900 area for species with the highest and lowest precipitation require-

ments, and for those with moderately extreme M values. GLM results also showed that the loss

will be larger for the species with the higher RR values. Although these results do not follow

the previous findings by Kosanic et al. [85], as no positive trends in annual or seasonal precipi-

tation were detected, they are in line with Maclean et al. [26] who detected a shift in plant com-

munities towards species with lower moisture requirements over the Lizard Peninsula. These

results confirm high spatial variability of both temperature and precipitation effects, suggesting

that more research on local vegetation response and microclimate is needed [13, 84, 86]. More

local scale research will bring not only a clearer understanding of vegetation-climate change

relationships but will also help to identify new microclimates that could buffer climate change

effects and offer opportunities for targeted in situ conservation strategies [26, 87]. On the other

hand, our result showing a smaller loss of moderately wetter species could also reflect land use

changes, as specialist wetland or drought-tolerant species are expected to be lost as wetter and/

or drier habitats become scarce or degraded. These results demonstrate that we need reliable

information on local climate variability in the post-industrial era and that we need a better

understanding of how plant species react to extreme climatic events.

Significant differences were also found for the non-climatic indicator values. A few signifi-

cant differences were found for the light (L) EV showing a greater loss for specialist species

(i.e. ones that require low light and high light environments), which may be linked to environ-

mental change and with changes in species composition [49, 88].

Changes in the geographical distribution of plant species associated with nitrogen (N)

showed a larger loss of area coverage for those with a lower N requirement. Higher nutrient

availability as a result of changed and intensified agricultural practices may cause the
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prevalence of highly-competitive species and low-nutrient species are being out-competed

[89]. Both changes in a plant species distributions with high or low L and N requirements

could reflect a greater importance of non-climatic drivers such as changes in land use and

increased urbanisation in the region during 20th and 21st centuries [90].

Conclusion

This study demonstrates a novel method for incorporating spatial uncertainty in the manual

geo-referencing of herbarium records and shows how to tackle the limitations of historical rec-

ords [71]. We successfully use this approach to track changes in the geographical distributions

of plant species at a local/regional scale. Historical records have a tremendous importance for

analysing past changes in vegetation distribution that offer insight into responses to future as

well as past environmental change. Our results show that the distributions of plant species

with different EV and CV have also changed through time, and that they reflect the climatic

variability of West Cornwall to some extent.

This approach can contribute towards identification of more sensitive and therefore more

vulnerable plant species at the regional scale and should support more targeted in situ conser-

vation strategies [27]. We argue that further research should be conducted on microclimates

[13, 26, 84, 91], land use change, and species distribution changes, providing a firmer link

between EV and CV, and changes in plant species geographical distributions. More research

on EV and CV could lead not only towards clearer attribution of plant species’ responses to

environmental change but also towards the detection of microrefugia sites and, therefore,

could be used as a tool to preserve species in the region. To preserve species locally and region-

ally is important not only from the perspective of ecosystem services, regional identity, and

human well-being, but also in a context of genetic diversity, an important component of spe-

cies’ resilience in the face of future climate change [9, 24, 92, 93].
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21. Matthies D, Bräuer I, Maibom W, Tscharntke T. Population size and the risk of local extinction: empirical

evidence from rare plants. Oikos. 2004; 105(3):481–8. https://doi.org/10.1111/j.0030-1299.2004.

12800.x

22. Balvanera P, Siddique I, Dee L, Paquette A, Isbell F, Gonzalez A, et al. Linking Biodiversity and Ecosys-

tem Services: Current Uncertainties and the Necessary Next Steps. BioScience. 2013:1–9. https://doi.

org/10.1093/biosci/bit003

23. de Oliveira LEC, Berkes F. What value São Pedro’s procession? Ecosystem services from local peo-

ple’s perceptions. Ecological Economics. 2014; 107(0):114–21.

24. Kosanic A, Anderson K, Frère CH, Harrison S. Regional vegetation change and implications for local

conservation: An example from West Cornwall (United Kingdom). Global Ecology and Conservation.

2015; 4:405–13.

25. Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, et al. Refugia: identifying

and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeogra-

phy. 2012; 21(4):393–404. https://doi.org/10.1111/j.1466-8238.2011.00686.x

26. Maclean IMD, Hopkins JJ, Bennie J, Lawson CR, Wilson RJ. Microclimates buffer the responses of

plant communities to climate change. Global Ecology and Biogeography. 2015:n/a-n/a. https://doi.org/

10.1111/geb.12359

27. Greenwood O, Mossman HL, Suggitt AJ, Curtis RJ, Maclean IMD. Review: Using in situ management

to conserve biodiversity under climate change. Journal of Applied Ecology. 2016; 53(3):885–94. https://

doi.org/10.1111/1365-2664.12602 PMID: 27609987

28. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems.

Nature. 2003; 421(6918):37–42. https://doi.org/10.1038/nature01286 PMID: 12511946

29. Calinger KM, Queenborough S, Curtis PS. Herbarium specimens reveal the footprint of climate change

on flowering trends across north-central North America. Ecology letters. 2013; 16(8):1037–44. doi: 10.

1111/ele.12135. PMC3806244. PMID: 23786499

30. Panchen ZA, Primack RB, Aniśko T, Lyons RE. Herbarium specimens, photographs, and field observa-

tions show Philadelphia area plants are responding to climate change. American Journal of Botany.

2012; 99(4):751–6. https://doi.org/10.3732/ajb.1100198 PMID: 22447982

31. Gallagher RV, Hughes L, Leishman MR. Phenological trends among Australian alpine species: using

herbarium records to identify climate-change indicators. Australian Journal of Botany. 2009; 57(1):1–9.

https://doi.org/10.1071/BT08051

32. Matthews ER, Mazer SJ. Historical changes in flowering phenology are governed by temperature × pre-

cipitation interactions in a widespread perennial herb in western North America. New Phytologist. 2016;

210(1):157–67. https://doi.org/10.1111/nph.13751 PMID: 26595165

33. Lienert J, Fischer M, Diemer M. Local extinctions of the wetland specialist Swertia perennis L. (Gentia-

naceae) in Switzerland: a revisitation study based on herbarium records. Biological Conservation.

2002; 103(1):65–76.

34. Van den Eynden V, Oatham MP, Johnson W. How free access internet resources benefit biodiversity

and conservation research: Trinidad and Tobago’s endemic plants and their conservation status. Oryx.

2008; 42(03):400–7. https://doi.org/10.1017/S0030605308007321

35. Rivers MC, Taylor L, Brummitt NA, Meagher TR, Roberts DL, Lughadha EN. How many herbarium

specimens are needed to detect threatened species? Biological Conservation. 2011; 144(10):2541–7.

https://doi.org/10.1016/j.biocon.2011.07.014

36. Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT. New developments in museum-based infor-

matics and applications in biodiversity analysis. Trends in Ecology & Evolution. 2004; 19(9):497–503.

https://doi.org/10.1016/j.tree.2004.07.006 PMID: 16701313

37. Soberon J, Peterson T. Biodiversity informatics: managing and applying primary biodiversity data. Phil-

osophical Transactions of the Royal Society of London Series B: Biological Sciences. 2004; 359

(1444):689–98. https://doi.org/10.1098/rstb.2003.1439 PMID: 15253354

38. Feeley KJ, Silman MR. Modelling the responses of Andean and Amazonian plant species to climate

change: the effects of georeferencing errors and the importance of data filtering. Journal of Biogeogra-

phy. 2010; 37(4):733–40. https://doi.org/10.1111/j.1365-2699.2009.02240.x

39. Wieczorek J, Guo Q, Hijmans R. The point-radius method for georeferencing locality descriptions and

calculating associated uncertainty. International Journal of Geographical Information Science. 2004; 18

(8):745–67. https://doi.org/10.1080/13658810412331280211

Changes in geographical distribution of plant species in West Cornwall

PLOS ONE | https://doi.org/10.1371/journal.pone.0191021 February 5, 2018 15 / 18

https://doi.org/10.1007/s10980-011-9585-3
https://doi.org/10.1007/s10980-011-9585-3
https://doi.org/10.1111/j.0030-1299.2004.12800.x
https://doi.org/10.1111/j.0030-1299.2004.12800.x
https://doi.org/10.1093/biosci/bit003
https://doi.org/10.1093/biosci/bit003
https://doi.org/10.1111/j.1466-8238.2011.00686.x
https://doi.org/10.1111/geb.12359
https://doi.org/10.1111/geb.12359
https://doi.org/10.1111/1365-2664.12602
https://doi.org/10.1111/1365-2664.12602
http://www.ncbi.nlm.nih.gov/pubmed/27609987
https://doi.org/10.1038/nature01286
http://www.ncbi.nlm.nih.gov/pubmed/12511946
https://doi.org/10.1111/ele.12135
https://doi.org/10.1111/ele.12135
http://www.ncbi.nlm.nih.gov/pubmed/23786499
https://doi.org/10.3732/ajb.1100198
http://www.ncbi.nlm.nih.gov/pubmed/22447982
https://doi.org/10.1071/BT08051
https://doi.org/10.1111/nph.13751
http://www.ncbi.nlm.nih.gov/pubmed/26595165
https://doi.org/10.1017/S0030605308007321
https://doi.org/10.1016/j.biocon.2011.07.014
https://doi.org/10.1016/j.tree.2004.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16701313
https://doi.org/10.1098/rstb.2003.1439
http://www.ncbi.nlm.nih.gov/pubmed/15253354
https://doi.org/10.1111/j.1365-2699.2009.02240.x
https://doi.org/10.1080/13658810412331280211
https://doi.org/10.1371/journal.pone.0191021


40. Guralnick RP, Wieczorek J, Beaman R, Hijmans RJ, the BioGeomancer Working G. BioGeomancer:

Automated Georeferencing to Map the World’s Biodiversity Data. PLoS biology. 2006; 4(11):e381.

https://doi.org/10.1371/journal.pbio.0040381 PMID: 17105347

41. Graham CH, Elith J, Hijmans RJ, Guisan A, Townsend Peterson A, Loiselle BA, et al. The influence of

spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology. 2008;

45(1):239–47. https://doi.org/10.1111/j.1365-2664.2007.01408.x

42. Elith J, Graham C H., Anderson R P., Dudı́k M, Ferrier S, Guisan A, et al. Novel methods improve pre-

diction of species’ distributions from occurrence data. Ecography. 2006; 29(2):129–51. https://doi.org/

10.1111/j.2006.0906–7590.04596.x

43. Auer T, MacEachren AM, McCabe C, Pezanowski S, Stryker M. HerbariaViz: A web-based client–

server interface for mapping and exploring flora observation data. Ecological Informatics. 2011; 6

(2):93–110.

44. Garcia-Milagros E, Funk VA. data: Improving the use of information from museum specimens: Using

Google Earth to georeference Guiana Shield specimens in the US National Herbarium. Frontiers of Bio-

geography. 2010; 2(3).
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