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Abstract

Among the many mysteries of our Universe, one still unanswered question is how

globular clusters form. Globular clusters are very dense agglomerates of hundreds of

thousands of stars and they host some of the oldest known stars in our Universe. Since

they are luminous, old and found in all massive galaxies, they are a fundamental piece

of the puzzle to understand galaxy formation and evolution processes.

Traditionally, globular clusters were thought to be simple stellar systems, in which all

stars were born at the same time and have the same chemical composition. However, in

the last few decades, it has been shown that stars within a given globular cluster display

inhomogeneities in their chemistry. Every massive old globular cluster located in the

Milky Way, for which high precision and deep observations were obtained, was found

to host several different stellar populations, i.e. multiple populations. Each stellar

population is characterized by specific chemical patterns observed in the atmospheres

of individual stars. Knowing how such multiple populations form and how they impact

the evolution of globular clusters is crucial to understand the formation of stars and

clusters themselves and, more broadly, the formation and evolution of galaxies.

Many theoretical scenarios have been proposed to explain the origin of the chemical

anomalies in globular clusters. Most models treat the origin of this phenomenon as

multiple events of star formation. In such models, a first generation of stars forms

from the collapse of a giant molecular cloud which is homogeneous in its chemical

composition. The winds of the massive stars from this first generation sink in the centre

of the cluster to collapse and provide material for a second generation of stars, which

then forms with a different chemical composition. While theoretically straightforward,

such scenarios (which involve many types of massive stars) fail in reproducing many

of the observed properties of multiple populations in globular clusters. Hence, the

formation mechanism for the origin of multiple populations remains an open question.



Most studies of multiple populations focused only on ancient globular clusters, aged

up to ∼13 Gyr. However, many dense and massive younger star clusters are observed

in nearby galaxies. Is the multiple populations phenomenon limited to the ancient

globular clusters, i.e. could this be a cosmological effect?

The goal of this thesis has been expanding the search for multiple populations to star

clusters that are significantly younger than the old globular clusters, i.e. up to 10 times

younger. The first major result presented in this work is that multiple populations

are found also in the young clusters, down to ∼2 Gyr old objects, showing that the

phenomenon of multiple populations is not only restricted to the early Universe.

Another interesting result I report is that the extent of the multiple populations (in

chemical abundance spread) is a strong function of age, with older clusters having

larger chemical variations. Additionally, I show that there is no difference in age

between the populations in a young star cluster. Such results represent fundamental

constraints for the origin of multiple populations and might point towards a new and

fresh direction into the onset of this complex phenomenon.

An important and related question is whether the young massive star clusters are the

same type of stellar systems as the ancient globular clusters, just observed at a different

stage of their lifetimes. If confirmed, this could provide important constraints on star

cluster formation studies. Therefore, in this thesis I explored clusters at younger ages

in order to address the fundamental question whether the star (and cluster) formation

conditions were different in the early Universe.

The results presented here represent an important hint that ancient and young clusters

share the same origin and are only separated in age. I show that star clusters do not

require special conditions in which to form, so that they can be used as tracers for the

formation and evolution of galaxies.
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Chapter 1

Introduction

In this chapter I discuss the main open questions and motivation that led to my thesis

work. I describe the main observational properties of globular clusters and their im-

portance in a scientific context in Section §1.1. In Section §1.2 I report on the fairly

recent discovery of young massive clusters in the local Universe and how this remark-

ably impacted our approach to cluster formation theories. Section §1.3 describes the

main observational evidence of multiple stellar populations in globular clusters. In

Section §1.4 I outline the phenomena of the extended main sequence turnoff and split

main sequence in young massive clusters. In Section §1.5 I report on a few models

proposed to explain the origin of multiple populations, while Section §1.6 describes

which properties are keys for the onset of such a phenomenon. I finally summarise the

introduction in Section §1.7.

1.1 Globular clusters

Globular clusters (GCs) are agglomerates of hundreds of thousands of stars that are

gravitationally bound. They show a roughly spherical shape and are extremely dense

objects. Indeed, their typical half-light radius, i.e. the radius at which half the total

light of the cluster is enclosed, is of the order of a few parsecs (McLaughlin & van

der Marel, 2005) and their densities in the core reach about 104M�pc−3, with cluster

2
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masses spanning ∼ 104 − 106 M�.

GCs are among the oldest objects with ages similar to that of the Universe itself (Van-

denBerg et al., 2013). Before the precise age dating of the Universe through Planck

(Planck Collaboration et al., 2018), the GCs used to provide a quite strong lower

bound to the age of the Universe. Besides being among the oldest stellar systems,

GCs are also found to host stars with a chemical composition that has a much lower

heavy element content than that of our Sun. Indeed, their metallicity spans values of

−2.5 .[Fe/H]. 0, i.e. up to solar (Gratton, Carretta & Bragaglia, 2012).

It is well established that almost all galaxies have a GC system, if they are massive

enough (Brodie & Strader, 2006b). The MW hosts around 150 GCs (Harris, 1996),

which are mainly distributed within the inner halo, while M87 contains several thou-

sands of GCs (McLaughlin, Harris & Hanes, 1994). More generally, the more lumi-

nous the galaxy, the more GCs this hosts (Harris, 1991). However, a useful quantity

is the GC specific frequency, SN , i.e. the number of GCs present within a galaxy per

unit mass/luminosity (Harris & van den Bergh, 1981). This has been used to connect

GCs populations with galaxy formation mechanisms. Indeed, while early type mas-

sive galaxies have numerous GC populations, dwarf galaxies can have comparable or

higher GC number per unit luminosity/mass, i.e. higher values of SN (one example is

the Fornax dwarf spheroidal galaxy, Chapter 6).

The old ages and metal-poor chemical composition hint that GCs were born during the

early stages of the Galaxy’s formation. Additionally, the brightness and compactness

of GCs allow to trace galaxy structures up to very far galactocentric distances. GCs

can then be used to understand the build-up of our own and other galaxies (Brodie &

Strader, 2006b). This is being fostered by the discovery of scaling relations between

GC and the properties of their host galaxies. One of the most interesting has been

the observation of a bimodal colour distribution (i.e. metallicity distribution) of GC

systems within galaxies (e.g. Gebhardt & Kissler-Patig 1999; Forbes & Forte 2001),

which provides fundamental clues to understand how galaxies formed and assembled.

GCs are considered essential testbeds for a wide variety of astronomical problems. As
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they host stars in almost all stellar evolutionary stages, studying the properties of their

stellar populations is also crucial to validate stellar evolution theories (e.g. Ferraro

et al. 2000; Salaris et al. 2014). GCs are also systems where an important variety

of stellar exotica (e.g. white dwarfs, X-ray binaries, black holes, blue stragglers) is

present and this allows to investigate such fascinating objects in great details (e.g.

Göttgens et al. 2019). Moreover, their internal star motion is a benchmark for studies

of stellar dynamics, body encounters and mutual stellar interactions.

While significant progress has been recently made, still little is known about the for-

mation and evolution of GCs. Modern theories for GC formation (Forbes et al., 2018;

Kruijssen et al., 2019) envision that the process at the basis of the formation of clus-

ters is simply a star formation process occurring at extreme densities, i.e. they are the

extreme end of a continuous density distribution of star-formation in galaxies. Hence,

forming star clusters might provide major insights into open questions regarding the

formation of stars.

In the next Sections, I report on how traditional views of GCs have been completely

revolutionised in the past few decades as a result of new observational advances. The

latter have led many authors to thoroughly re-think globular clusters formation theories

and has opened up new intriguing avenues for the origin of GCs.

1.2 Young Massive Clusters

In the MW, another type of clusters is found preferentially in the disk of the Galaxy.

These are called open clusters (OCs) and are low mass (. 103M�), low densities (.

103M�pc−3) aggregates of stars spanning a wider range of ages than GCs (Mermilliod,

1995; Salaris, Weiss & Percival, 2004). Since their properties and location are very

different from GCs with little overlap between the two populations, it was thought

originally that OCs and GCs are simply different systems, implying that their formation

must also have undergone through separate channels. Due to their old age, it was

proposed that special conditions only present in the early Universe must be responsible
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for the formation of GCs (e.g. Peebles & Dicke 1968; Fall & Rees 1985).

Such a view was revolutionised with the discovery of many young massive clusters

(YMCs) in the local Universe, that was enabled by the high resolution and sensitiv-

ity offered by the Hubble Space Telescope (HST). Holtzman et al. (1992) found that

several compact “bright blue clusters” are forming in the starburst NGC 1275. Their

magnitudes and colours pointed towards young (<100 Myr) and massive (> 106 M�)

sources. Indeed, YMCs have very similar properties than that of GCs, e.g. high masses

and densities, which in a few cases exceed those of GCs (e.g. Portegies Zwart, McMil-

lan & Gieles 2010). This study was the first of many works that found YMCs in any

local galaxy. For instance, YMCs were found in other starbursts (e.g. the Antennae

colliding galaxies, Whitmore & Schweizer 1995), in nearby spirals (e.g. Larsen &

Richtler 2000) as well as in dwarf galaxies (e.g. Billett, Hunter & Elmegreen 2002).

Additionally, without going too far away, our nearest galaxy companions, the Large

and Small Magellanic Clouds (LMC/SMC) host a large number of such YMCs, which

also span a wide range of ages. Among these (see Fig. 1.1), we find the ∼2 Myr old

R136 (Crowther et al., 2016), the ∼100 Myr old NGC 1850 (Niederhofer et al., 2015),

NGC 1856 (∼300 Myr, Milone et al. 2015), NGC 1806 (∼1.5 Gyr, Goudfrooij et al.

2014) all belonging to the LMC and finally NGC 416 in the SMC (∼6 Gyr, Glatt et al.

2008b). Such clusters are all more massive than 105 M�, which is comparable to the

mass of the ancient GCs in the MW. Although less massive (∼ 104M�), a few young

star clusters are also observed in the MW, narrowing the gap between OCs and GCs

(e.g. Trumpler 14 and Westerlund 2, Portegies Zwart, McMillan & Gieles 2010).

Since YMCs are ubiquitous in nearby galaxies and have very similar properties to

those of GCs, it became quite natural to think that YMCs are just young counterparts

of GCs, i.e. they are the same objects but seen at different stages of their lifetimes

(e.g. Adamo & Bastian 2015). This bolsters the idea that GCs formation is viewed as a

star formation process at the extremes of the density distribution, rather than a special

mechanism that only occurred in the early Universe. Current models for GC forma-

tion are indeed based on a more global massive cluster formation approach, where the

formation and co-evolution of the GCs population and its host galaxy is built on ob-



1.2. Young Massive Clusters 6

(a) (b)

(c) (d)

(e) (f)

Figure 1.1: HST images of massive (> 105M�) star clusters in the Magellanic Clouds. Panel
(a) R136, ∼ 2Myr old, (b) NGC 1850, ∼100 Myr old, (c) NGC 1856 (∼300 Myr), (d) NGC
1806 (∼1.5 Gyr), (e) NGC 416 (∼6 Gyr), (f) NGC 121 (∼11 Gyr). References in the text.
Credits: HST/NASA/ESA.
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servations of YMCs properties in the local Universe (Kruijssen, 2015; Li et al., 2017;

Pfeffer et al., 2018). In support of this, recent works on star cluster populations found

that the efficiency of cluster formation is closely linked to the gas pressure in galaxies,

highlighting that the properties of clusters appear tightly correlated to those of the host

galaxy (e.g. Adamo et al. 2015; Messa et al. 2018).

By using gravitational lensing techniques, Vanzella et al. (2017, 2019) have discovered

compact objects (radii of 20-40 pc) at redshifts z = 2− 6, which most likely represent

forming proto-GCs. They also estimate their ages and masses and these are very sim-

ilar to those of YMCs observed in the local Universe. However, resolving individual

stars and stellar populations of such distant objects will not be possible in the near fu-

ture. Hence, if YMCs are indeed young globular clusters, their characterisation would

provide unprecedented insights into GC formation theories as we would be able to take

advantage of local observations to study physical processes that also occurred at high

redshifts.

The work of my thesis is focused around this first open question in GCs studies: are

young star clusters precursors to the ancient globular clusters? In order to reply to this

question, it is crucial to establish whether these two classes of objects have also similar

stellar populations. I discuss stellar populations in GCs in the next Section §1.3.

1.3 Chemical abundance variations in GCs

Traditionally, GCs were thought to be a good example of simple stellar populations

(SSPs), where all the stars within a given cluster have the same age and chemical

composition. Stars belonging to a SSP have then initial constant chemical abundances

(from He up to the heaviest metals) and masses distributed according to an initial stellar

mass function (IMF). In the colour-magnitude diagram (CMD), this translates into a

single isochrone (see the top panel of Fig. 1.2, where the CMD of the MW GC NGC

2808 is shown), which corresponds to the locus of stars with the same age and chemical

composition, but different masses. Each area of the CMD is then a different stage of
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the evolution of a star. This is shown in the bottom panel of Fig. 1.2, where a schematic

representation of a GC CMD highlights the different branches of stellar evolution.

The lifetime and evolution of the star depends on the initial mass, here we report the

typical evolution of a low mass star, i.e. 0.8−1 M�, which also represents the typical

mass range of stars in an old GC. Very briefly, in the Main Sequence (MS), stars

are burning hydrogen in their core, converting it into helium through nuclear fusion.

When the hydrogen in the core is exhausted, the core begins to contract while the outer

envelope expands and cools down. The star then leaves the MS moving through the

subgiant branch (SGB) to the red giant branch (RGB) phase, where H is burning in

a shell around the core, which is inert at this stage, as the central temperature is still

not high enough to reach He fusion. This is reached at the tip of the RGB with the

He-flash, after which the core of the star (after becoming electron degenerate) starts

converting He into carbon and oxygen. The so-called Horizontal Branch (HB) phase

starts, whose morphology depends on the initial He composition, which is exploited

later in Chapter 6. It also strongly depends on the metallicity of the population (more

metal rich stars show redder HBs than metal-poor ones) as well as the amount of mass

lost during the RGB phase. When also He is exhausted in the core, again the core

contracts and He starts burning in a shell. The envelope expands and the star, now in

its Asymptotic Giant Branch (AGB) phase, experiences heavy mass loss in the form of

stellar winds. This terminates in the star losing all its envelope and becoming a white

dwarf, ending up in the lower left corner of the CMD.

However, already in the late ’70s, it was clear that GCs are not SSPs (e.g. Kraft 1979).

Star-to-star variations in cyanogen (CN, mainly a proxy for the N abundance) and in the

CH molecule (proxy for the C abundance) were commonly observed in red giants and

main sequence stars belonging to Galactic GCs (e.g. Hesser & Bell 1980; Norris et al.

1981), additionally finding that CN and CH are anti-correlated. This means that stars

which show an enhanced N abundance also have a depleted C abundance, recalling the

by-products of stellar nucleosynthesis processes (i.e. hot H-burning through the CNO

cycle). For this reason, originally it was proposed that such chemical “anomalies”

were generated by evolutionary mixing in the interiors of stars. However, it was later
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Figure 1.2: Top Panel: HST WFPC2 Colour-magnitude diagram of NGC 2808, ancient GC
in the MW (Bedin et al., 2000). Bottom Panel: Schematic representation of a GC colour-
magnitude diagram with evolutionary stages highlighted, from http://www.astro.
caltech.edu/˜george/ay20/eaa-globcl.pdf.

http://www.astro.caltech.edu/~george/ay20/eaa-globcl.pdf
http://www.astro.caltech.edu/~george/ay20/eaa-globcl.pdf
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recognised that such C and N variations were instead due to stars born with different

initial chemical compositions (e.g. Cannon et al. 1998), as mixing could not explain

the presence of abundance anomalies in unevolved stars, such as main sequence turnoff

stars.

It is with the advent of the exquisite photometric accuracy provided by the HST that

a major breakthrough was made in this field. The chemical anomalies observed in

GCs with lower resolution spectroscopy in the ’80s were recognised as multiple stellar

populations (MPs), thanks to the CMDs of GCs showing multiple discrete sequences

in different evolutionary stages (e.g. Bedin et al. 2004; Piotto et al. 2007, see next

Section, §1.3.1 for a description of MPs from photometric signatures). At the same

time, in the late ’90s/early 2000s, the multi-object high resolution spectrographs on the

large ground based telescopes (such as VLT, Keck) enabled a massive spectroscopic

follow-up and characterisation of the discrete sequences that were mapped into MPs

with their respective chemical signatures.

Hence, GCs host subpopulations of stars with distinctive light element abundance pat-

tern (Gratton, Carretta & Bragaglia 2012). MPs manifest in the form of (anti-) cor-

related light element variations. While some GC stars have the same C, N, O, Na

abundances as field stars with the same metallicity (first population, FP), a significant

fraction of cluster members systematically display enhanced N, Na (and in a few cases

Al), along with depleted C and O (and sometimes Mg; Cannon et al. 1998; Carretta

et al. 2009b,a, second population, SP).

Helium is also observed to vary while, generally, the iron content (i.e. [Fe/H]) and Fe-

peak elements remain constant as well as the C+N+O sum, except for a few clusters.

Interestingly, it seems like such chemical anomalies are unique to GC systems, i.e.

dense stellar systems, since they are rarely found in the field (∼3% in the MW halo,

Martell et al. 2011) and not found in OCs (e.g. MacLean, De Silva & Lattanzio 2015).

It is beyond of the scope of this thesis to report a complete summary of all the observa-

tional evidence and theoretical efforts made so far, thus we refer the interested reader

to the most recent reviews on MPs for more details, e.g. Gratton, Carretta & Bragaglia
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Figure 1.3: Left panel: mF475W − mF814W vs. mF814W CMD of NGC 2808 from Pi-
otto et al. (2007). Middle panels: mF336W − mF410M vs. mF275W − mF336W plots
for MS (a) and RGB (b) stars in NGC 6752 from Milone et al. (2013). Right panel:
CF275W,F336W,F410M ≡(F275W-F336W)-(F336W-F410M) vs. mF814W CMD of NGC 6752
from Milone et al. (2013).

(2012); Bastian & Lardo (2018); Gratton et al. (2019).

1.3.1 Multiple populations from photometry

While spectroscopic techniques are fundamental to directly estimate the chemical

abundance spreads in GCs, it is only thanks to precision photometry that it was pos-

sible to access the most crowded regions in the center of clusters, allowing to study

the radial distributions of the different populations and estimate the fractions of the

anomalous stars. Additionally, photometric techniques allow to study 100s−1000s of

stars per cluster instead of just a few through traditional spectroscopy. One of the best

picture of MPs has indeed been provided by the HST UV Legacy Survey of Galac-

tic Globular Clusters (PI G. Piotto), where almost 60 Galactic globular clusters were

imaged in HST filters, allowing to analyse MPs features and correlations with global

properties of the clusters (e.g. Piotto et al. 2015; Milone et al. 2017; Nardiello et al.

2018).

Compared to Fig. 1.2, the CMDs of GCs are actually much more complex when

accurate photometry is employed. Two examples are reported in Fig. 1.3: the left

panel shows the HST Advanced Camera for Surveys (ACS) optical CMD of NGC
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2808 zoomed in the MS (Piotto et al. 2007). Note that this is the same cluster imaged

in Fig. 1.2 that instead was based on HST WFPC2 data. A first look already reveals

that there are at least three distinct sequences. The middle and right panels are from

Milone et al. (2013) and show colour-colour plots as well as the CMD of NGC 6752 in

UV colour combinations. As before, the CMD is not composed of a single sequence

as expected from an SSP, but multiple and discrete sequences are observed throughout

all the evolutionary stages (from MS up to the RGB, see panel c). Depending on the

photometric filters used (and the evolutionary stage of stars), the CMDs are sensitive

to different chemical elements.

Optical colours (like B,V ,I) trace structural changes in the stars (i.e. luminosity and

effective temperature), thus are sensitive to He variations (Salaris et al. 2006, see left

panel of Fig. 1.3). Filters in bandpasses with wavelengths <4500Å (i.e. UV) primarily

trace C, N, O variations in stars with cool atmospheres, as they encompass molecu-

lar features sensitive to such elements (NH, CH, CN, see middle and right panels of

Fig. 1.3, Sbordone et al. 2011; Piotto et al. 2015). This is shown in Figure 1.4, where

Sbordone et al. (2011) report the comparison between two synthetic spectra, one with

field-like (black curve) and one with anomalous (red curve) composition, i.e. enhanced

N, depleted C and O. Superimposed are the transmission curves of several photomet-

ric filters (more details in the caption). As a consequence, field-like and anomalous

stars follow distinct sequences when UV filters are used, i.e. colour spreads and splits

observed in UV CMDs clearly correlate with N variations (e.g., Marino et al. 2008).

Figure 1.5 (left panel) shows the CMD of the MW GC NGC 6752 in the CU,B,I ≡(U-

B)-(B-I) vs. B space. CU,B,I is a combination of colours which have been shown

to be very effective at separating MPs in the CMD (Monelli et al. 2013, see §1.3.1

and Chapter 2, §2.2.4). Indeed, a typical GC optical and near-ultraviolet (UV) CMD

shows discrete multiple sequences at almost every evolutionary stage, which indicate

the presence of MPs. RGB stars highlighted with different colours correspond to dif-

ferent chemical compositions. The right panels of Fig. 1.5 show the (anti-)correlations

among the stars for several light-elements.
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Figure 1.4: RGB UV/optical synthetic spectra with field-like (black) and anomalous (red) com-
position from Sbordone et al. (2011). Superimposed are the transmission curves of Johnson-
Cousins filters U, B, V, and I (thin grey lines from left to right) and for the Strömgren uvby
filters (grey-shaded areas).

Figure 1.5: Left panel: CMD of NGC 6752 in CU,B,I vs. B space from Bastian & Lardo
(2018). RGB stars highlighted with different colours (black, red, green) correspond to different
chemical compositions: pristine, moderate and enhanced Na content. Right panels: (anti-
)correlations for light element abundances.
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Figure 1.6: mF555W−mF814W vs. mF555W CMD of NGC 1846 from Mackey & Broby Nielsen
(2007).

1.4 The main sequence and turnoff of YMCs

Two other features detected in all CMDs of young star clusters which are not consistent

with the original view of clusters, i.e. SSPs, are the extended main sequence turnoff

(eMSTO) and split main sequences (MSs). The eMSTO feature was observed for

the first time by Bertelli et al. (2003) and Mackey & Broby Nielsen (2007) (see Fig.

1.6) and it consists of a broadening in the turnoff (TO) region in the CMDs of young

massive clusters. Such a feature is not consistent with a single isochrone and cannot

be explained either by photometric errors or stellar binarity. So far, it is detected in all

young (> 20 Myr, e.g. Milone et al. 2015; Bastian et al. 2016) and intermediate-age

(< 2 Gyr, e.g. Mackey et al. 2008; Milone et al. 2009) massive clusters, as well as in

many less massive open clusters (Bastian et al., 2018; Cordoni et al., 2019).
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Figure 1.7: Inferred age spreads (in eMSTO) versus age of the cluster from Niederhofer et al.
(2015). Symbols indicate values from different observational studies.The lines represent the
prediction of the SYCLIST models if rotation-induced MSTO spreads are assumed to be age
spreads.

It was originally thought that the eMSTO was due to age spreads of up to 700 Myr

caused by multiple star forming events (e.g. Milone et al. 2009; Goudfrooij et al.

2014). Such a scenario has been demonstrated to have several caveats. Among these,

massive clusters should be forming stars for the first 10s to 100s Myr of their lives,

while no clusters with ages of ∼ 10 Myr or older have been found to host current star

formation events (Bastian et al., 2013a; Cabrera-Ziri et al., 2016a). Additionally, a

clear correlation between the inferred age spread and the age of the cluster is observed,

thus suggesting a stellar evolutionary effect is the cause (Fig. 1.7, Niederhofer et al.

2015).

Indeed, recent works have shown that the eMSTO is likely due to a single age popula-

tion with a range of stellar rotation rates (Bastian & de Mink, 2009; Niederhofer et al.,

2015; Brandt & Huang, 2015; Kamann et al., 2018; Gossage et al., 2019; Kamann

et al., 2020). The relation from Niederhofer et al. (2015) shown in Fig. 1.7 is consis-

tent with predictions from such a scenario. Additionally, Brandt & Huang (2015) and
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Georgy et al. (2019) predict that by an age of ∼2 Gyr the eMSTO should disappear

according to the rotation scenario. In the stellar rotation paradigm, clusters older than

2 Gyr would not be expected to host eMSTOs, since stars on the TO in 2 Gyr old clus-

ters are able to develop convective envelopes, and subsequently host magnetic fields

which can brake the star, i.e. no rapid rotators would be expected. I report in Chapter

4 how the work presented in this thesis placed constraints on the origin of the eMSTO

phenomenon in young massive clusters.

Another feature observed in YMCs (in the MCs, where it is possible to resolve CMDs

down to the MS) is the presence of a split MS when these are imaged in UV or blue

filters (Milone et al., 2015, 2018). This is different from what is seen in optical CMD

in ancient GCs (Fig. 1.3), as stellar isochrones including chemical abundance spreads

are not able to reproduce the observed bi-modal MSs in YMCs (Milone et al., 2015).

Theoretical works have shown that stellar rotation could explain the split MSs if one

of the populations rotates at very slow velocities (ω <0.3) while the other rotates at

critical break-up speed (ω ∼0.9, e.g. D’Antona et al. 2015). The presence of stars ro-

tating at break-up velocities in YMCs has been demonstrated in Bastian et al. (2017),

Milone et al. (2018) where a large number of Be stars1 have been discovered. Addi-

tionally, in quite a number of recent works, the projected rotational velocities of stars

belonging to different branches of the MS and eMSTO was measured and a significant

difference in rotation rate has been reported (Dupree et al., 2017; Kamann et al., 2018;

Bastian et al., 2018; Marino et al., 2018; Kamann et al., 2020). These studies further

support a scenario where the split MSs and eMSTO features are caused by a bi-modal

distribution of rotational velocities. How these populations are formed is still an open

question.

Unfortunately, many authors also refer to the term “multiple populations” as the

presence of broadenings and/or splittings in the TO and MS regions in CMDs of

young/intermediate-age clusters. This has caused a lot of confusion in the field as

it equates what we see in the young clusters with the abundance spreads observed in

1Be stars rotate very rapidly and show decretion discs that emit in Hα due to the ionisation of the
disc by the star itself.



1.5. Models for the origin of multiple populations 17

the ancient clusters. However, no star-to-star chemical abundance variations appear

to be associated with this phenomenon (Mucciarelli et al. 2008, 2012, 2014, see also

Chapter 2, where no MPs are observed in the RGB of such young clusters). Thus, we

will use the term MPs to only refer to the features correlated to chemical abundance

spreads.

1.5 Models for the origin of multiple populations

Due to the type of elements involved in the variations, chemical anomalies were

thought to be caused by self-enrichment (i.e. the globular cluster enriches itself) in

elements that originate from high temperature H burning in the interiors of stars, i.e.

the CNO cycle, which modifies the abundances of C, N, O to convert H into He at a

temperature of 20 MK. Additionally, the observations of the discreteness between two

or more subpopulations (§1.3.1) brought models to require the presence of multiple

epochs of star formation within the same cluster.

The general picture is that a first population of stars (FP) forms and the gas not used

in star formation is expelled. This includes all the gas enriched by high mass stars and

Supernovae, which needs to be cleared out to avoid the presence of iron spreads within

the cluster, which are generally not observed. Next, massive stars from the FP generate

stellar winds which collect in the centre of the cluster and mix up with material with

“pristine” composition, i.e. the giant molecular cloud material from which the cluster

originally formed. Such pristine material needs to be re-accreted from the outskirts

of the cluster. This mixing is called “dilution” and currently it is one of the major

problems of such scenarios. A second population (SP, i.e. the anomalous population)

is eventually formed by a second burst of star formation from the mix of prisitine

and processed material from massive stars. Several types of massive stars have been

proposed as “polluters”, i.e. the stars whose stellar ejecta contribute to generate a

second star formation event within the cluster. These are: AGB stars (∼ 3− 8M�, e.g.

Cottrell & Da Costa 1981; D’Ercole et al. 2008; D’Antona et al. 2016), fast rotating

massive stars (FRMS, ∼ 15M�, Decressin et al. 2007), interacting massive binaries
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(20M�, de Mink et al. 2009), very massive stars (>5000M�, Denissenkov & Hartwick

2014; Gieles et al. 2018). Depending on which polluter is advocated, such multiple

generational theories predict age spreads between FP and SP from a few Myr (massive

and super-massive stars) to ∼30-200 Myr (AGB stars).

The self-enrichment models are based on the fact that the fundamental property reg-

ulating the existence of MPs in GCs is the mass of the cluster. Indeed, only clusters

that are massive enough have been able to retain the stellar ejecta (i.e. stellar winds)

from massive stars in order to generate a second burst of star formation. This was built

on the observation that basically all massive GCs show MPs while less massive, less

dense OCs do not (see §1.6).

However, multiple generations models suffer from many drawbacks. It is observed that

the fraction of SP stars outnumber that of FP stars (typical fractions of SP/FP are of the

order of∼ 60− 80%, e.g. Milone et al. 2017). Because only a small fraction of the FP

mass would be processed through massive stars, the FP would not be able to provide

enough mass to form the SP. For example, considering AGB stars as polluters, these

can only form 4−5% of the SP stars if one assumes a standard IMF and that 100% of

the mass of the AGB stars is used to form SP stars (Bastian & Lardo, 2018). This is

the so-called “mass-budget” problem.

To solve the mass-budget problem, a large amount of mass loss (from the FP) has

been invoked. The cluster, after forming the SP, needs to lose a very large fraction of

FP stars (∼90-95%), meaning that the FP has to be at least ∼10−30 times (the exact

factor depends on the employed polluter) more massive at birth (D’Ercole et al., 2008;

Conroy, 2012; Cabrera-Ziri et al., 2015). This concept is not only in contradiction with

mass loss estimations from simulations (Kruijssen, 2015; Baumgardt et al., 2019), but

also observationally. Larsen, Strader & Brodie (2012a) and Larsen et al. (2014a) put

an upper limit of ∼5 to the factor of mass lost by a GC by counting how many field

stars and GCs are observed in the Fornax, WLM and IKN galaxies, assuming that all

the stars in the field came from disrupted GCs. In the next Section §1.6, I also report

other key observations that are in disagreement with high mass loss considerations.
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Additionally, in the AGB and fast rotating massive stars scenarios, it is not clear how

the cluster is able to re-accrete the pristine material from the surroundings. The need

for dilution is invoked to explain some chemical patterns and especially the chemical

trend with lithium. Lithium is destroyed in p-capture processes, hence stars that are

enhanced in N through H burning should be depleted in Li. Some GCs do not show

Li variations between FP and SP stars (e.g. Mucciarelli et al. 2011). The explanation

of the Li trend is often result of ad-hoc assumptions and extreme fine tuning of the

scenarios.

If the polluters are FRMSs (Decressin et al., 2007), the rotationally induced mixing of

massive MS stars (∼15 M�) is used as enrichment mechanism, bringing up the ma-

terial from the core of the star, i.e. where hot hydrogen burning occurs, to the stellar

surface. This scenario still suffers from the dilution problem mentioned above. How-

ever, a more recent version of the model, developed by Krause et al. (2013), envisions a

case where the GC does not have time to expel the original gas (including SNe) before

∼20 Myr, thus reducing the dilution issue. Another way of bringing up material from

the core is via binary interactions. The interacting massive binaries (IBs) model (de

Mink et al., 2009) is very similar to the FRMS, except that the sources of enrichment

are massive binaries, of 20 and 15 M�. Nevertheless, both these scenarios, i.e. FRMSs

and IBs, still suffer from the mass budget problem as the other self-enrichment models.

An alternative scenario for the origin of MPs that is not based on multiple generations

is the one put forward by Bastian et al. (2013b). Interacting massive binaries and

FRMSs shed processed material onto low mass pre-main sequence stars generating

an accretion disc. Such low-mass stars then sweep up the processed material through

their accretion disc onto the young stars as they pass through the cluster core. This

model does not require clusters to be more massive at birth and it is consistent with

observations of YMCs being gas-free after the first few Myrs (i.e. no age spreads,

Cabrera-Ziri et al. 2015; Hollyhead et al. 2015). However, it has been shown that the

main drawback is that the process of sweeping up material with no angular momentum

causes the disc to rapidly dissolve and become accreted by the host star. Without an

accretion disc, the star is not able to accrete (or sweep up) the processed material as
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Bondi-Hoyle accretion is much too inefficient (Wijnen et al., 2016).

A recent scenario that is able to reproduce many MPs observational evidence is the one

that envisions super massive stars (SMSs, M > 103M�) as the polluter source for the

enrichment (Gieles et al., 2018). The authors show that, through adiabatic contraction,

the newly formed proto-cluster can undergo intense gas accretion to increase the stellar

collision rate and form a SMS. After less than∼3 Myr, a new generation of stars forms,

polluted from a mix of the SMS stellar wind and gas with pristine composition, i.e.

the same abundance as the initial stars that formed in the clusters. This is consistent

with observations from YMCs and it does not suffer from the mass budget problem.

Additionally, it predicts a linear relation between the mass of the SMS and the mass

of the cluster such that scaling relations among chemical spreads and cluster mass are

naturally reproduced (see next Section for more details on this §1.6). One of the main

drawbacks of such scenario is that the existence of such super massive stars is still

just speculation, and it is not clear if the model can reproduce the observed discrete

abundance patterns in GCs.

Many other different models have been proposed for the origin of MPs, thus we refer

the interested reader to e.g. Bastian & Lardo (2018) for more details. However, the

cause for their origin is still under debate (e.g., D’Antona et al. 2014; Bastian, Cabrera-

Ziri & Salaris 2015). This represents the second open question my thesis work focused

upon: how do chemical anomalies in GCs form? And how can we use young massive

clusters to place constraints on MPs scenarios?

1.6 What controls the origin of multiple populations?

A promising line of investigation so far has been to determine whether MPs are found

according to certain properties of the cluster.

The presence of MPs in GCs appears to be nearly ubiquitous in the most nearby galax-

ies in ancient and massive GCs (e.g. Renzini et al. 2015). Large numbers of MW

GCs have been studied (e.g. Gratton, Carretta & Bragaglia 2012) and basically all old
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(> 10 Gyr) clusters surveyed so far have been found to host MPs. The absence of

light-element variations was suggested in a handful of massive and old Galactic GCs

(e.g., Walker et al. 2011; Villanova et al. 2013). However, recent detailed studies have

demonstrated that MPs are indeed present also in these systems (see for example the

cases of IC 4499 and Rup 106; Dalessandro et al. 2018; Dotter et al. 2018).

Chemical anomalies are also found in ancient and massive clusters in the Fornax dwarf

galaxy (Larsen et al., 2014a), the Sagittarius dwarf galaxy (Carretta et al., 2014), the

WLM dwarf galaxy (Larsen et al., 2014b), M31 (e.g. Schiavon et al. 2013), and in

the Magellanic Clouds (MCs, e.g. Mucciarelli et al. 2009; Dalessandro et al. 2016;

Niederhofer et al. 2017b; Gilligan et al. 2019). Until recently, MPs were believed to

be found only in massive, old clusters, while none were present neither in clusters

of comparable age and lower masses (e.g., E3, Salinas & Strader 2015), nor in OCs

(e.g., Bragaglia et al. 2012). Such evidence led many to consider cluster mass as

the key cluster property controlling the presence of MPs. Cluster mass is indeed a

fundamental parameter in the onset of MPs: Carretta et al. (2010) found that the extent

of the Na spread in a GC correlates positively with the present-day mass of the cluster,

i.e. more massive clusters exhibit larger Na spreads. Strong positive correlations are

also observed between cluster mass and N spreads (Schiavon et al., 2013), He spreads

(Milone et al., 2018) and fraction of anomalous stars (Milone et al., 2017). These are

shown in Fig. 1.8. Such correlations are also another argument against high GC mass

loss, as more massive clusters, i.e. able to retain more stars, should have lost less FP

stars and showed lower fractions of anomalous SP stars (see §1.5).

The discovery of relatively young (∼ 1 − 2 Gyr old), but still massive (∼ 2 × 105

M�) clusters with no abundance spreads within them (Mucciarelli et al. 2008, 2014,

Colucci et al. 2012) challenged the idea that cluster mass was the key factor regulating

the appearance of MPs. In addition to this, Mucciarelli et al. (2011) analysed the

spectra of RGB stars in NGC 1866, a very young (∼ 200 Myr) and massive (∼ 1×105

M�) cluster, finding no evidence for MPs. These were complemented with integrated

light studies of YMCs younger than 100 Myr but very massive (∼ 106 M�), where no

chemical anomalies were found (Cabrera-Ziri et al., 2016b; Lardo et al., 2017). Such
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Figure 1.8: Correlation between cluster mass and Na spreads (top left, from Carretta et al.
2014), N spreads (top right, from Schiavon et al. 2013), He spreads (bottom left, Milone et al.
2018), fraction of SP stars over the total (bottom right, Bastian & Lardo 2018, after Milone
et al. 2017) for various samples of Galactic GCs.
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findings have opened a new question about whether cluster age could be considered

as a relevant factor for the existence of MPs, in addition to mass. It has even been

proposed that the ancient GCs are intrinsically different to the young clusters with

similar masses, as only ancient GCs had been found to host MPs (Carretta et al., 2010).

Studying MPs in young star clusters is fundamental to put fresh constraints on any

scenario proposed for the origin of MPs. Understanding whether these types of objects

share the same stellar populations is also crucial to establish whether we can consider

young star clusters as the same objects as ancient GCs. Without a working theory for

how MPs are created, GC formation theory is still incomplete, which also has conse-

quences for galactic formation theory as populations of stars with similar abundance

patterns have also been identified in the bulge of the Milky Way (Schiavon et al., 2017).

Throughout this thesis, I present the global results from our HST photometric survey,

which consists in HST UV observations of 13 star clusters in the Magellanic Clouds

(Chaper §2). All clusters have masses comparable to those of the old GCs where MPs

have been identified, but with significantly younger ages (spanning from ∼1.5 up to

∼11 Gyr). The main goal of the survey is to test whether MPs are exclusively found in

ancient GCs, and hence, to shed light on the physical property that controls the onset of

MPs. It is crucial to understand whether YMCs are the same type of stellar systems as

the ancient GCs, just observed at a different stage of their lifetimes. If confirmed, this

could provide important constraints on star cluster and MP formation studies. Further-

more, exploring clusters at younger ages is useful to address the fundamental question

whether the star (and cluster) formation conditions were different in the early Universe.

1.7 Summary

In this introductory chapter I reported the background and motivation that led to my

thesis work. One of the main open problem in astronomy is understanding how globu-

lar clusters form. Globular clusters are fascinating objects for many reasons (§1.1) and

uncovering clues on their formation and evolution is fundamental, especially as they
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represent a bridge connecting the small scale of star formation to the larger scale of

galaxy formation.

It is now well known that we do not observe only globular clusters (ancient, massive,

§1.1) in the local Universe. Young, massive clusters are found forming in every local

environment (§1.2), where the star formation rate is high enough. Such a discovery

led many to question whether such two classes of objects, that share similar properties,

are the same, only observed at different times of their lives. However, globular clusters

also show very specific stellar populations, i.e. chemical abundance variations, that

are not observed in field stars at the same metallicity (§1.3) nor in the open clusters,

less massive and less dense star clusters typically observed in the disk of the Milky

Way. The origin of such multiple stellar populations is still debated in the literature

(§1.5). The main open questions my thesis work focused upon are: (i) how do mul-

tiple populations form? what is the origin of multiple populations based on? and (ii)

are young massive clusters the same as ancient globular clusters? can we use young

massive clusters to set new constraints on the multiple populations phenomenon?

To attempt to answer to such questions, we searched for multiple populations in mas-

sive young and intermediate age clusters, through a joint photometric HST and spec-

troscopic ESO VLT/FORS2 survey. This allowed to explore and characterise the stel-

lar populations of star clusters that are significantly younger than the ancient globular

clusters. It also allowed us to investigate the role of cluster age in the onset of mul-

tiple populations for the first time (Chapters 3, 5). Additionally, thanks to the youth

of the clusters in our sample, it was possible to put the tightest constraints on multiple

populations models to date (see Chapter 4,5).



Chapter 2

No evidence for multiple populations

in the SMC cluster NGC 419

In this chapter I present the first results obtained on the massive star cluster NGC

419, aged ∼1.5 Gyr old and located in the SMC. First, I outline the HST photometric

survey in §2.1. Then, in §2.2, I report the details of the photometric data reduction

and observational techniques, as well as models for the chemical abundances that will

be used for comparison with the observations (§2.2.4). I present the results in §2.3

and discuss in §2.4. This Chapter is based on the work published in Martocchia et al.

(2017).

2.1 The HST survey

The photometric data presented in this thesis are from the Hubble Space Telescope sur-

vey GO-14069 and GO-15062 (P.I. N. Bastian, Niederhofer et al. 2017b; Martocchia

et al. 2019). The sample is composed by 13 star clusters both in the LMC and SMC.

The imaged clusters have masses greater than a few times 104 M�, such that they are

comparable to the masses of Galactic GCs that show MPs. Additionally, the clusters in

our sample span a wide range of ages, from ∼1.5 Gyr up to ∼11 Gyr. Indeed, the goal

of the survey is to answer the question whether there is an age limit on the presence of

25
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chemical variations in GCs. In Table 2.3 we list the name of the clusters, along with

their literature ages and masses.

New observations were provided in the narrow band UV filter F343N of the

WFC3/UVIS instrument, and in some cases the wide band UV and optical filters

F336W and F438W were added. We always complemented our analysis with

archival observations in the optical F555W and F814W filters of the ACS/WFC or

WFPC2/HST, while in a few cases the F336W and F438W images were also already

available in the archive. Tables 2.1 and 2.2 reports the log of the HST observations

used throughout this thesis.
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Figure 2.1: Upper Panel: Model spectra of a typical RGB star in a 10 Gyr old population,
with an effective temperature Teff= 5220 K, surface gravity log (g) = 2.71 dex, and metallicity
[Fe/H] = −1.5 dex. The blue solid curve represents a star with primordial composition; the
red dashed line indicates the spectrum of an anomalous star, enriched in N. Lower Panel:
Logarithmic ratio of the fluxes of the enriched and the primordial star (black solid line) along
with the transmission curves of the F336W (purple solid line), F343N (blue dashed line) and
F438W (green dash-dotted line) filters. Figure from Niederhofer et al. (2017b).

As discussed in §1.3.1, the UV/optical filters are extremely useful when searching

for MPs. The upper panel of Figure 2.1 shows model spectra of a typical RGB star
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in a 10 Gyr old population with a metallicity [Fe/H] of −1.5 dex from Niederhofer

et al. (2017b). The blue spectrum represents a FP star, i.e. with primordial abundance

composition. The red dashed curve indicates the spectrum of a SP star, i.e. enriched

in N and Na and depleted in C and O. The model spectra were obtained by using the

ATLAS12 and SYNTHE model atmosphere and spectral synthesis codes (Sbordone

et al., 2004; Kurucz, 2005).

The enriched model is enhanced in N by 1.8 dex and in Na by 0.8 dex and depleted in

O by 0.8 dex and in C by 0.6 dex, with respect to the primordial composition. This is a

typical enrichment found for Galactic GCs. The lower panel of Fig. 2.1 shows the flux

ratio of the second and first population star as a black line, along with the transmission

curves1 of the F336W , F343N , and F438W filters. Strong NH absorption lines,

namely at ∼3370Å are present inside the F336W and F343N filter bands, while the

F438W passband includes CH absorption features at ∼4300Å . This will result in a

drop and an increase of the flux ratio at these wavelengths, respectively. Therefore,

combinations of such filters will mark a clear distinction between FP stars (primordial)

and SP stars (N rich, C poor) in the CMD.

Niederhofer et al. (2017b,a) analysed the clusters in the age range 6−10 Gyr, namely

NGC 121, NGC 416, NGC 339, Lindsay 1. They found MPs in such clusters, by

looking at the width of the RGB in UV colours combination, which is a signature of N

enhancement. For the first time, MPs were found in massive star clusters down to an

age of ∼6 Gyr (which corresponds to a redshift of formation z = 0.75).

In the next Sections and Chapters, I report on the data reduction, analysis of the

younger clusters in the sample as well as results from the whole survey.

1http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/
Throughput_Tables

http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
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Table 2.1: Log of the HST observations (part 1).

Cluster Name GO Camera Filter N × exp. time P.I.
NGC 121 13435 WFC3/UVIS F336W 4×1061 s M. Monelli

13435 WFC3/UVIS F438W 4×200 s M. Monelli
13435 WFC3/UVIS F814W 2×100 s M. Monelli
14069 WFC3/UVIS F343N 1650, 800, 600 s N. Bastian
10396 ACS/WFC F555W 4×496 s, 2×20 s J. Gallagher
10396 ACS/WFC F814W 4×474 s, 2×10 s J. Gallagher

Lindsay 1 14069 WFC3/UVIS F336W 3×967 s N. Bastian
14069 WFC3/UVIS F343N 4×1200 s N. Bastian
14069 WFC3/UVIS F438W 3×347 s N. Bastian
10396 ACS/WFC F555W 4×496 s, 2×20 s J. Gallagher
10396 ACS/WFC F814W 4×474 s, 2×10 s J. Gallagher

NGC 416 14069 WFC3/UVIS F336W 3×1020 s N. Bastian
14069 WFC3/UVIS F343N 3×1535 s N. Bastian
14069 WFC3/UVIS F438W 3×375 s N. Bastian
10396 ACS/WFC F555W 4×1200 s, 2×70 s J. Gallagher
10396 ACS/WFC F814W 4×1036 s, 2×40 s J. Gallagher

NGC 339 14069 WFC3/UVIS F336W 3×1020 s N. Bastian
14069 WFC3/UVIS F343N 4×1055 s N. Bastian
14069 WFC3/UVIS F438W 4×380 s N. Bastian
10396 ACS/WFC F555W 4×1984 s, 2×40 s J. Gallagher
10396 ACS/WFC F814W 4×1896 s, 2×20 s J. Gallagher

NGC 1978 14069 WFC3/UVIS F336W 3×1580 s N. Bastian
14069 WFC3/UVIS F343N 6×3975 s N. Bastian
14069 WFC3/UVIS F438W 6×2475 s N. Bastian
9891 ACS/WFC F555W 300 s G. Gilmore
9891 ACS/WFC F814W 200 s G. Gilmore

NGC 419 12257 WFC3/UVIS F336W 5×3230 L. Girardi
14069 WFC3/UVIS F343N 4×4575 s N. Bastian
14069 WFC3/UVIS F438W 4×1120 s N. Bastian
10396 ACS/WFC F555W 4×1200 s, 2×70 s J. Gallagher
10396 ACS/WFC F814W 4×1036 s, 2×40 s J. Gallagher

NGC 1806 12257 WFC3/UVIS F336W 5×3580 L. Girardi
14069 WFC3/UVIS F343N 3×2945 s N. Bastian
10595 ACS/WFC F435W 2×680 s, 1×90 s P. Goudfrooij
10595 ACS/WFC F555W 2×680 s, 1×40 s P. Goudfrooij
10595 ACS/WFC F814W 2×680 s, 1×8 s P. Goudfrooij

NGC 1846 12219 WFC3/UVIS F336W 9×1017 s A. Milone
14069 WFC3/UVIS F343N 3×2945 s N. Bastian
10595 ACS/WFC F435W 2×680 s, 1×90 s P. Goudfrooij
10595 ACS/WFC F555W 2×680 s, 1×40 s P. Goudfrooij
10595 ACS/WFC F814W 2×680 s, 1×8 s P. Goudfrooij

NGC 1783 12257 WFC3/UVIS F336W 5×3580 L. Girardi
14069 WFC3/UVIS F343N 3×2945 s N. Bastian
10595 ACS/WFC F435W 2×680 s, 1×90 s P. Goudfrooij
10595 ACS/WFC F555W 2×680 s, 1×40 s P. Goudfrooij
10595 ACS/WFC F814W 2×680 s, 1×8 s P. Goudfrooij



2.1. The HST survey 29

Table 2.2: Log of the HST observations (part 2).

Cluster Name GO Camera Filter N × exp. time P.I.
NGC 2121 15062 WFC3/UVIS F336W 2×715 s, 270 s N. Bastian

15062 WFC3/UVIS F343N 2×1060 s, 540 s N. Bastian
15062 WFC3/UVIS F438W 2×550 s, 120 s N. Bastian
8141 WFPC2 F555W 4×400 s R. Rich
8141 WFPC2 F814W 4×400 s R. Rich

NGC 2155 15062 WFC3/UVIS F336W 2×705 s, 250 s N. Bastian
15062 WFC3/UVIS F343N 2×1060 s, 530 s N. Bastian
15062 WFC3/UVIS F438W 2×545 s, 120 s N. Bastian
5475 WFPC2 F450W 230 s M. Shara
5475 WFPC2 F555W 120 s M. Shara

Lindsay 38 15062 WFC3/UVIS F336W 2×710 s, 268 s N. Bastian
15062 WFC3/UVIS F343N 2×1057 s, 515 s N. Bastian
15062 WFC3/UVIS F438W 2×538 s, 123 s N. Bastian
10396 ACS/WFC F555W 4×485 s, 2×20 s J. Gallagher
10396 ACS/WFC F814W 4×463 s, 2×10 s J. Gallagher

Lindsay 113 15062 WFC3/UVIS F336W 2×720 s, 274 s N. Bastian
15062 WFC3/UVIS F343N 2×1065 s, 530 s N. Bastian
15062 WFC3/UVIS F438W 2×545 s, 128 s N. Bastian
9891 ACS/WFC F555W 480 s G. Gilmore
9891 ACS/WFC F814W 290 s G. Gilmore

Table 2.3: List of clusters in the HST survey with information on the galaxy, age and mass and
respective references.

Cluster Name Galaxy Age Ref. Mass Ref.
(Gyr) (×105 M�)

NGC 419 SMC 1.2-1.6 (1) 2.4 (2)
NGC 1783 LMC 1.75 (2) 2.6 (2)
NGC 1806 LMC 1.70 (2) 1.3 (2)
NGC 1846 LMC 1.75 (2) 1.7 (2)
NGC 1978 LMC 2 (3) 2-4 (6)
NGC 2121 LMC 2.5 (4) 1 (7)
NGC 2155 LMC 2.5 (4) 0.36 (7)
Lindsay 113 SMC 4.5 (4) 0.23 (8)
Lindsay 38 SMC 6.5 (4) 0.15 (9)
NGC 416 SMC 6.0 (1) 1.6 (7)
NGC 339 SMC 6.0 (1) 0.8 (7)
Lindsay 1 SMC 7.5 (1) 2.0 (9)
NGC 121 SMC 10.5 (5) 3.7 (7)

(1) Glatt et al. (2008b); (2) Goudfrooij et al. (2014); (3) Mucciarelli et al. (2007);
(4) Martocchia et al. (2019); (5) Glatt et al. (2008a); (6) Krause et al. (2016);

(7) McLaughlin & van der Marel (2005); (8) Chantereau et al. (2019); (9) Glatt et al.
(2011);
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2.2 Observational techniques and models

2.2.1 Observations and Data Reduction

The photometric analysis has been performed following the same strategy as in Da-

lessandro et al. (2014, 2018). Briefly, we used DAOPHOTIV (Stetson, 1987) inde-

pendently on each camera and each chip. We selected several hundreds of bright and

isolated stars in order to model the point-spread function (PSF). All available analytic

functions were considered for the PSF fitting (Gauss, Moffat, Lorentz and Penny func-

tions), leaving the PSF free to spatially vary to the first-order. In each image, we then

fit all the star-like sources detected at 3σ from the local background with the best-fit

PSF model by using ALLSTAR. We then created a master catalogue composed of stars

detected in (n/2 +1) images for each cluster2. At the corresponding positions of stars

in this final master-list, a fit was forced with DAOPHOT/ALLFRAME (Stetson, 1994)

in each frame. For each star thus recovered, multiple magnitude estimates obtained

in each chip were homogenised by using DAOMATCH and DAOMASTER, and their

weighted mean and standard deviation were finally adopted as star magnitude and pho-

tometric error. The final result consists in a catalogue for each camera3.

Instrumental magnitudes have been converted to the VEGAMAG photometric sys-

tem by using the prescriptions and zero-points reported on the dedicated HST web-

pages4. Instrumental coordinates were reported on the absolute image World Coordi-

nate System by using CataXcorr5. The WFC3 catalogue was combined with the ACS

(or WFPC2) by using the same CataXcorr and CataComb.

Each catalogue was field-star subtracted and corrected for differential reddening. I will

2Where the number of exposures in the same filter is equal to three, we used stars detected in 2
images to create the catalogues.

3As an additional check we repeated the photometric analysis by using a third-order spatial variation
for the PSF. However, we decided to perform the analysis on the catalogues where the PSF was left free
to spatially vary to the first-order. No significant changes were detected between the two catalogues.

4see http://www.stsci.edu/hst/wfc3/phot_zp_lbn and http://www.stsci.
edu/hst/acs/analysis/zeropoints

5Part of a package of astronomical softwares (CataPack) developed by P. Montegriffo at INAF-
OABo.

http://www.stsci.edu/hst/wfc3/phot_zp_lbn
http://www.stsci.edu/hst/acs/analysis/zeropoints
http://www.stsci.edu/hst/acs/analysis/zeropoints
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Figure 2.2: mF555W−mF814W vs. mF555W CMD of NGC 419 before (left) and after (right) the
field star subtraction. The red curve in the right panel indicates the MIST isochrone we adopted
for values of age (1.4 Gyr), metallicity [Fe/H]= −0.7; distance modulus M − m = 18.85;
extinction value E(B − V ) = 0.05.

generally report the methods used in §2.2.2 and §2.2.3, respectively. Particular cases

will be discussed throughout the manuscript.

2.2.2 Field stars subtraction

Member stars are selected according to a statistical method of field star subtraction.

First, a cluster region is defined. Then, we defined a background reference region

having the same area as the cluster region in order to statistically subtract field stars

from the cluster CMD inmF336W−mF438W vs. mF438W space. We removed the closest

star in colour-magnitude space in the cluster region, for each star in the background

region.

Fig. 2.2 shows the mF555W − mF814W vs. mF555W CMDs of NGC 419, before (left

panel) and after (right panel) the field star subtraction.
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2.2.3 Differential reddening correction

We also investigated possible effects of differential reddening (DR) on the CMDs. We

corrected the photometry of all the clusters for DR following the method described

in Milone et al. (2012) and using the extinction coefficients reported in Milone et al.

(2015). The DR method looks for systematic scatter of stars along the MS, i.e. if

neighbours stars in the Ra-Dec plane are systematically scattered along the extinction

vector in the CMD. A part of the MS, below the turn-off, is selected and the CMD

(mF555W−mF814W vsmF814W CMD in this case) is rotated along the extinction vector,

such that the final CMD is parallel to the extinction vector. Then, the selected part

of the MS is verticalised with a fiducial line and the horizontal displacement from

this line is computed for each star. For every star on the verticalised MS, the median

horizontal displacement of a certain number of its closest neighbours is calculated. The

Ra-Dec plane is divided into grid cells and the median displacement in the grid cells is

computed. Finally all the stars are corrected for the reddening value in their respective

grid cell.

The average change in colour due to differential extinction in both mF336W −

mF438W andmF343N−mF438W colours results to be very low for all clusters, i.e. < 0.01,

with a mean maximum AF336W ∼ 0.02. We conclude that reddening effects are negli-

gible and do not affect our results.

2.2.4 Models for the chemical anomalies

In this Section, I report on how stellar evolution models with different chemical com-

positions were calculated, in order to compare them with our observations. Models

were developed by C. Usher.

We compared MIST isochrones (Dotter, 2016; Choi et al., 2016) to our data to obtain

an estimate of age, metallicity, distance modulus (M −m) and extinction values and

thus to provide input parameters for the model atmospheres. We assumed a distance

modulus of M − m = 18.85 for NGC 419.Extinction values were computed via the
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following: AF336W = 1.64AV , AF343N = 1.64AV , AF438W = 1.35AV , AF555W =

1.055AV , AF814W = 0.586AV (Milone et al. 2015; Goudfrooij et al. 2009).

We calculated synthetic photometry from model atmospheres with different abundance

patterns. The 1-D MIST models include a range of physics including diffusion on the

MS, rotation in stars more massive than 1.2 M� convection including thermohaline

and rotational mixing. We used ATLAS12 (Kurucz, 1970, 2005) to calculate model

atmospheres and SYNTHE (Kurucz & Furenlid 1979; Kurucz & Avrett 1981) to syn-

thesize spectra. These models are one-dimensional, static and plane parallel and as-

sume local thermodynamic equilibrium. We used the same versions of the models used

by Sbordone et al. (2004) and line lists for the atomic data as Larsen, Strader & Brodie

(2012a) and Larsen et al. (2014a) who we refer to for further details of our stellar at-

mosphere calculations. We also used the same PYTHON wrappers to ATLAS12 and

SYNTHE as used by Larsen, Strader & Brodie (2012a). For our stellar atmosphere

calculations we adopted the Asplund et al. (2009) solar abundances which are the same

as adopted by the MIST models. For each set of models, we calculated 57 model spec-

tra between 0.7 M� on the MS and the tip of the RGB. We selected the input masses

to calculate model atmospheres by eye in logL-log Teff space with denser sampling

during stellar evolutionary phases such as the MSTO and the base of the RGB where

the isochrone displays greater curvature.

We calculated the models using several chemical mixtures. First, we calculated a set

of scaled solar models ([C/Fe] = [N/Fe] = [O/Fe] = 0). Next, we calculated a set of

intermediate N-enhancement models with [C/Fe] = [O/Fe] = −0.1 and [N/Fe] = +0.5.

Additionally, we calculated a set of enriched N-enhancement models with [C/Fe] =

[O/Fe] = −0.6 and [N/Fe] = +1.0. Lastly, we calculated a set of models with slightly

less degree of N-enhancement but with solar C and O abundances ([C/Fe] = [O/Fe]

= 0 and [N/Fe] = +0.3 dex), in order to check degeneracies between C depletion and

N enhancement. For the enhanced models, the C and O abundances were chosen to

keep the [(C+N+O)/Fe] the same between the models, according to what we observe

in standard GCs (Brown, Wallerstein & Oke 1991; Cohen & Meléndez 2005; Yong,

Grundahl & Norris 2015; Marino et al. 2016). For each of these chemical mixtures we



2.2. Observational techniques and models 34

kept the helium abundance (surface Y = 0.248) constant and all other abundances fixed

at solar. We assumed that the model atmospheres had the same chemical abundances

at all stellar evolutionary stages.

To produce synthetic magnitudes, we integrated our model spectra over the filter trans-

mission curves for WFC36 and ACS/WFC7. We then used the zeropoints provided on

each instrument’s website to calculate Vega magnitudes. We find very good agree-

ment (< 0.01 mag difference) between our scaled solar models and the photometry

calculated by Choi et al. (2016).

We then used the synthetic magnitudes to find a suitable combination of colours for

revealing the presence of chemical enhancement on the RGB of NGC 419 (and the

younger clusters). After trying several filters, we found out that using a filter combina-

tion of the form (F336W − F438W ) − (F438W − F814W ) = CF336W,F438W,F814W

≡ CUBI for the wide band F336W and (F343N − F438W ) − (F438W − F814W )

= CF343N,F438W,F814W ≡ CUnBI for the narrow band F343N, appeared to be the most

effective way to prove whether NGC 419 showed MPs. Monelli et al. (2013) used a

similar filter combination in order to detect the presence of MPs in a number of Galac-

tic GCs, the CU,B,I = (U − B) − (B − I) combination. They point out that this

pseudo-colour is effective at unveiling multiple sequences and spreads in the RGB.

The same colour (CUBI) has also recently been used by Dalessandro et al. (2016) to

efficiently detect MPs in NGC 121. Accordingly, when comparing the expected spread

in the RGB between the solar and intermediate models, as well as between the solar

and enriched models, we obtained that ∆(CUnBI) ' 2 × ∆(CUBI). This result is

directly comparable with the data.

We also investigated possible effects of an enhanced He abundance on the RGB. Since

the MIST isochrones are only available for one He abundance at a given metallic-

ity, we used Padova isochrones (Bertelli et al., 2008) to perform our stellar atmo-

sphere calculations. We assumed the same age and metallicity as obtained from MIST

6http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/
Throughput_Tables

7http://www.stsci.edu/hst/acs/analysis/throughputs

http:// www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http:// www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/acs/ analysis/throughputs
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Figure 2.3: Left panel: CMD of NGC 419 using mF438W −mF814W vs. ı. Green filled circles
mark the RGB stars selected in this colour and magnitude combination. Right Panel: mF555W−
mF814W vs. mF814W CMD of NGC 419. Black filled squares indicate the second selection of
RGB stars in this colour-magnitude space, while green filled circles represent the stars passing
the initial selection but not the second.

isochrones and two different He abundances, one with Y= 0.25 and one with an en-

hanced Y= 0.30. Synthetic photometry was calculated as above, adopting the same

solar and enriched chemical mixtures.

We obtained that the difference between the standard and enhanced He models in CUBI

and CUnBI colours resulted to be ∼ 0.01, in the same direction for both solar and

enriched mixtures. Hence, these colours are not sensitive to He variations in the RGB

and we did not account for enhanced He in our analysis.

2.3 Results

In order to search for the presence of multiple populations, we need to select a clean

sample of RGB cluster members. To be as conservative as possible, we selected RGB

stars in three different colour-magnitude spaces. This reduces the contamination by

SMC field stars with ages ∼ 1 Gyr, comparable to the age of NGC 419. The first se-

lection was made in mF438W − mF814W colours. Indeed, these colours are the best at

separating the RGB from the AGB and the HB. Optical colours are much less affected
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by sensitive star-to-star N variations than other colour combinations with a passband

encompassing the NH and CN molecular features, i.e. the F336W and F343N filters

(Sbordone et al. 2011). The left panel of Figure 2.3 shows the mF438W −mF814W vs.

mF814W CMD of NGC 419. Green filled circles mark the RGB stars selected in this

filter combination. To avoid contamination by AGB stars, a brightness cut was ap-

plied (mF814W > 18). We then plotted these RGB stars on the mF555W − mF814W vs.

mF814W CMD of NGC 419. We noticed that several objects were scattered off the

RGB or found to belong to the red clump, hence we made a second selection in

mF555W−mF814W colours. The right panel of Fig. 2.3 shows themF555W−mF814W vs.

mF814W CMD of NGC 419 with black filled squares indicating the second selection of

RGB stars. Green filled circles mark the stars passing the first selection criterion but

not the second.

We then plotted the second selection of RGB stars on the mF336W − mF438W vs.

mF438W CMD. Again, we found a very few objects which scattered off the RGB

or on the tip of the MS (5 out of > 100 stars). We made the final selection in

mF336W − mF438W colours and this is shown in the left panel of Fig. 2.4, where the

mF336W − mF438W vs. mF438W CMD of NGC 419 is displayed. The right panel of

Fig. 2.4 shows the CMD of NGC 419 using the narrow band filter F343N, in the

mF343N − mF438W vs. mF438W space. Red filled circles mark the final selected RGB

stars in both panels of Fig. 2.4. Black filled squares represent the stars that did not pass

the third selection. Interestingly, the RGB stars superimpose on the main sequence

(MS) in these filters, emphasizing the importance of a selection in other colours such

as mF438W −mF814W and mF555W −mF814W .

A first look at themF336W−mF438W andmF343N−mF438W vs. mF438W diagrams reveals

that no splitting is detected in the RGB. The presence of multiple sequences and/or

broadening in the RGB is a clear indication of the existence of two or more populations

of stars, one with a primordial chemical composition, the others with a certain level

of chemical enrichment (depleted in C and O and enhanced in N). Accordingly, we

performed an analysis in order to quantify the observed spread in the UV/optical CMDs

of NGC 419. More specifically, we analysed the differences between the spreads in the
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Figure 2.4: mF336W − mF438W vs. mF438W CMD (left panel) and mF343N − mF438W vs.
mF438W CMD (right panel) of NGC 419. Red filled circles indicate the final RGB selected
stars, while black filled squares represent the stars which did not pass the final selection.

two filters, F336W and F343N .

Then, we used CUBI and CUnBI to effectively unveil multiple sequences and spreads

in the RGB. The left panels of Figures 2.5 and 2.6 show the CMDs of NGC 419 us-

ingCF336W,F438W,F814W vs. mF438W andCF343N,F438W,F814W vs. mF438W , respectively.

Orange and green circles indicate the selected RGB stars in the two different CMDs.

No evidence of multiple sequences is seen in such filter combinations either. The right

panels of Figures 2.5 and 2.6 show the histograms of the distributions in CUBI and

CUnBI colours of the RGB stars in NGC 419, respectively.

We calculated the mean and standard deviation (σ) on unbinned colours (i.e.,

CF336W,F438W,F814W and CF343N,F438W,F814W ) and derived a Gaussian PDF, indicated

as a grey curve in the bottom panels of Fig. 2.5 and 2.6. The obtained σ values

are ' 0.04 for both filter combinations, with a difference of only ∼ 2 × 10−4. We

calculated the statistical error on σ. Using a bootstrap technique based on 10000 re-

alisations, we found that σCUBI = 0.043 ± 0.004 and σCUnBI = 0.043 ± 0.003. As

far as photometric errors are concerned, these are essentially the same in F336W

and F343N filters in this bright regime. Therefore, we can say that errors are the

same for both CF336W,F438W,F814W and CF343N,F438W,F814W . Hence, the observed

RGB widths in CF336W,F438W,F814W and CF343N,F438W,F814W colours are directly com-
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Figure 2.5: Left Panel: CF336W,F438W,F814W vs. mF438W CMD of NGC 419. Orange filled
circles mark the selected RGB stars. Right Panel: histogram of the distribution of RGB stars in
NGC 419, inCF336W,F438W,F814W colours. The grey solid curve represents the Gaussian prob-
ability density function (PDF) with mean and standard deviation (σ) calculated on unbinned
data, while the orange solid curve indicates the KDE. Superimposed on the plot is the WRGB

index, see text for more details.

parable. In addition to this, the photometric errors in CF336W,F438W,F814W and

CF343N,F438W,F814W colours are comparable to the observed spreads.

We derived the kernel density distribution (KDE) from a Gaussian kernel for both

CF336W,F438W,F814W and CF343N,F438W,F814W colours. The results are superimposed on

the histograms of data in the bottom panels of Fig. 2.5 and 2.6, as orange and green

solid curves respectively. By visual inspection, we were unable to detect any significant

difference between the gaussian and KDE distributions. The KDE did not reveal any

bimodality or peaks that the gaussian could have smoothed out. Indeed, the dip test for

unimodality (Hartigan & Hartigan 1985) confirms that there is no statistically signifi-

cant bimodality in either the CF336W,F438W,F814W or CF343N,F438W,F814W distribution.

We also provided a different estimate for the RGB width. We defined the WRGB index

as the colour extension of the KDE at 20% of the distribution maximum. The val-

ues of WRGB for CF336W,F438W,F814W and CF343N,F438W,F814W are given in the bottom

panels of Figs. 2.5 and 2.6, respectively. We estimated the error on the WRGB index

using a Monte Carlo simulator technique. We obtained WRGB= 0.139 ± 0.013 for

CF336W,F438W,F814W and WRGB= 0.157 ± 0.013 for CF343N,F438W,F814W . This con-
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Figure 2.6: Left Panel: CF343N,F438W,F814W vs. mF438W CMD of NGC 419. Green filled
circles mark the selected RGB stars. Right Panel: histogram of the distribution of RGB stars in
NGC 419, inCF343N,F438W,F814W colours. The grey solid curve represents the Gaussian prob-
ability density function (PDF) with mean and standard deviation (σ) calculated on unbinned
data, while the green solid curve indicates the KDE. Superimposed on the plot is the WRGB

index, see text for more details.

firms that the two widths are comparable, at ∼ 1σ confidence level.

Synthetic spectra which take into account the presence of multiple population, i.e.

the presence of enriched stars with respect to the primordial ones, predict a signifi-

cant difference in the observed RGB spread when using the wide-band F336W filter

with respect to the narrow-band F343N filter (see §2.2.4). More specifically, we ob-

serve that σCUnBI ' σCUBI ' 0.04 but we would have expected σCUnBI & 0.1 if

MPs were present. If the spreads are caused only by photometric errors, then we

would expect σCUBI ' σCUnBI, which is what we observe. No clear difference is

detected in the observed spreads and WRGB indices between CF336W,F438W,F814W and

CF343N,F438W,F814W colours, hence we do not detect multiple populations in the RGB

of NGC 419. We will discuss in detail these outcomes in the next Section, §2.3.1.

Finally, we also looked at observed spreads in the Red Clump (RC) and upper RGB

(URGB). We performed the same analysis as for the RGB. We obtained that the

widths are the same forCF336W,F438W,F814W andCF343N,F438W,F814W in the RC (WRC'

0.12). We observe a slightly larger spread for CF343N,F438W,F814W with respect to

CF336W,F438W,F814W in the URGB (WURGB(CUBI)= 0.105±0.012, WURGB(CUnBI)=
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0.129±0.016), although these are comparable at∼ 1σ level when taking the error into

account.

2.3.1 Comparison with stellar models

We then compared our model colours (§2.2.4) to the data. Figures 2.7 shows the

CF336W,F438W,F814W vs. mF438W and CF343N,F438W,F814W vs. mF438W CMDs of NGC

419, respectively, with three different models superimposed. The blue, green and red

curves indicate isochrones for solar, intermediate and enriched abundance variations,

respectively (see §2.2.4). Black circles indicate the selected RGB stars in both figures.

According to the models, a first look at Fig. 2.7 reveals that a difference in the

spreads is expected if a chemical variation is present, either intermediate or en-

riched, between CF336W,F438W,F814W and CF343N,F438W,F814W colours. More specif-

ically, we calculated the average spread between the solar and the enriched mod-

els in CF336W,F438W,F814W colours and this results to be ' 0.079, while the average

spread between these two models in CF343N,F438W,F814W colours is ' 0.1568. We

then calculated the predicted spread in the RGB from the intermediate enrichment

model. While the average spread in the RGB between the solar and the intermedi-

ate models in CF336W,F438W,F814W colours results to be ' 0.033, the average one in

CF343N,F438W,F814W colours is about ' 0.064. Thus, according to the models, the

colour spread of stars in the RGB in CF343N,F438W,F814W colours is expected to be

twice as broad as the spread in CF336W,F438W,F814W colours, if an abundance pattern

depleted in C and O and enhanced in N is present (either intermediate or enriched).

We compare here our predictions to the data. We have seen that the observed spread

of RGB stars in both CF336W,F438W,F814W and CF343N,F438W,F814W colours results in

σdata ∼ 0.04 (σCUBI = 0.043 ± 0.004 and σCUnBI = 0.043 ± 0.003. Indeed,

these spreads are consistent with that expected from the photometric errors alone.

We also provided another estimation for the RGB width, WRGB, and this results

8CF336W,F438W,F814W and CF343N,F438W,F814W spreads between the solar and enriched model
and between solar and intermediate models were calculated in the RGB in a magnitude range 20.2 ≤
mF438W ≤ 21.2.
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Figure 2.7: CF336W,F438W,F814W (left) and CF343N,F438W,F814W (right) vs. mF438W CMD of
NGC 419. Black circles indicate the selected RGB stars. The blue, green and red solid curves
represent stellar evolution models (log[age/Gyr] = 9.15, [Fe/H]= −0.7) for solar ([C/Fe] =
[N/Fe] = [O/Fe] = 0), intermediate ([C/Fe] = [O/Fe] = -0.1, [N/Fe] = +0.5) and enriched ([C/Fe]
= [O/Fe] = -0.6, [N/Fe] = +1.0) abundance variations, respectively.

in WRGB= 0.139 ± 0.013 for CF336W,F438W,F814W and WRGB= 0.157 ± 0.013 for

CF343N,F438W,F814W , Figures 2.5 and 2.6. This proves that we do not observe any

significant difference in the RGB spreads between the two colours. Hence, we do not

detect the presence of multiple populations either in the form of an enriched ([C/Fe] =

[O/Fe] = -0.6, [N/Fe] = +1.0) or intermediate ([C/Fe] = [O/Fe] = -0.1, [N/Fe] = +0.5)

chemical anomaly in NGC 419. If MPs were present in this cluster, a detection would

have been expected by simply comparing the observed width of the RGB in these two

colours and by finding a significantly broader σ and WRGB (about twice as much) in

the narrow-band F343N filter colour combination. We can then conclude that no MPs

are detected on the RGB of NGC 419. If MPs were present in the way they have been

detected in GCs or intermediate-age clusters, we would have been able to observe them

in NGC 419 as well. Our analysis can set a limit on [N/Fe] enhancement for NGC 419

to be <+0.5 dex, according to what we derive from the intermediate models. However,

it is crucial here to state that N enhancements previously observed in intermediate age

clusters showing MPs are far higher, e.g. [N/Fe]> +1.0 dex for Lindsay 1 (Hollyhead

et al., 2017).

Lastly, we compared the expected spreads from the models with the observed

spreads in the RC and URGB. The observed RC width in CF336W,F438W,F814W is as
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large as the one in CF343N,F438W,F814W . From the models we would expect the

CF336W,F438W,F814W spread to be as twice as much as the CF343N,F438W,F814W one,

if a intermediate or enriched chemical variation was present. Concerning the

URGB, despite the fact that the predicted spreads in the URGB are slightly smaller

than in the RGB, we still obtain a ratio between expected CF336W,F438W,F814W and

CF343N,F438W,F814W colour spreads of ∼ 2. We do observe a slightly larger WURGB

in CF343N,F438W,F814W than in CF336W,F438W,F814W , however they are comparable

within the errors, at ∼ 1σ confidence level (WURGB(CUBI)= 0.105 ± 0.012,

WURGB(CUnBI)= 0.129± 0.016).

2.4 Discussion

In this Chapter, we analysed new and archival HST images of the SMC cluster NGC

419. We selected RGB stars by using three different CMDs and colour combina-

tions (mF438W − mF814W , mF555W − mF814W , mF336W − mF438W ). We used the

pseudo-colour indices CF336W,F438W,F814W and CF343N,F438W,F814W in order to max-

imise the effects of multiple populations on the CMDs along the RGB. No split-

tings were detected, specifically in the lower RGB. Hence, we quantified the spreads

in CF336W,F438W,F814W and CF343N,F438W,F814W colours of RGB stars and compared

them: these have resulted to be almost equal for both filters (σdata = 0.043,

WRGB(CUBI)= 0.139± 0.013, WRGB(CUnBI)= 0.157± 0.013).

We generated MIST isochrones to have an estimate of the age and metallicity of NGC

419 and used these to develop models with different chemical anomalies. A solar,

intermediate and enriched levels of enhancement have been adopted for a comparison

with data. The predicted spread in CF336W,F438W,F814W between solar and enriched

isochrones was found to be half as broad as the CF343N,F438W,F814W spread. The same

outcome is seen in the spreads between solar and intermediate isochrones.

We would have expected a significant variation in the observed spreads between

CF336W,F438W,F814W and CF343N,F438W,F814W colours if MPs were present in NGC 419.
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We can firmly conclude that no MPs are detected in the RGB of this young (∼ 1.4 Gyr)

and massive (& 2× 105 M�) star cluster. According to our analysis, we can put a limit

on [N/Fe] enhancement for NGC 419 to be <+0.5 dex, which is much lower compared

to spreads observed in intermediate age clusters showing the presence of MPs (e.g.,

[N/Fe]>+1.0 dex, Lindsay 1, Hollyhead et al. 2017).

This is not the first work to find a lack of evidence for MPs in clusters younger than

∼ 6 Gyr. Mucciarelli et al. (2008), (2011), (2014) studied six intermediate/young

age clusters (namely: NGC 1651, 1783, 1978 and 2173; NGC 1866; NGC 1806) in

the LMC and found no significant abundance spreads within them, although for each

cluster this result is affected by the low number statistics of stars with spectroscopically

determined abundances.

However, it is worth stressing that NGC 419 is the first cluster in our HST photometric

survey which does not show evidence for MPs. Niederhofer et al. (2017b) detected

MPs in the SMC cluster NGC 121, while Niederhofer et al. (2017a) detected MPs in

3 additional SMC clusters, namely Lindsay 1, NGC 339, NGC 416. This has been

spectroscopically corroborated by the work by Hollyhead et al. (2017), which found

abundance variations in Lindsay 1, as well. All the GCs studied so far in our survey

reside in the SMC and they are massive, ranging between∼ 1−2×105 M�. Nonethe-

less, they span a wide range in ages from 1.5 to 10 Gyr. NGC 419 is the youngest,

while NGC 121 is the oldest one (∼ 10 Gyr). Lindsay 1, NGC 339, NGC 416 have

intermediate ages (from ∼ 6 up to ∼ 8 Gyr).

This result showed that GC mass can no longer be considered as the only key physical

property in order to regulate the presence of MPs (see also Cabrera-Ziri et al. 2016a).

Other factors might contribute, such as age, which could play a major role in the de-

velopment of MPs. Indeed, no massive GCs aged less than ∼ 6 Gyr have been found

with chemical spreads so far. However, this would not be universal, since many less

massive, Galactic open clusters older than 6 Gyr also do not host MPs (see the recent

compilation by Krause et al. 2016).

We can estimate the amount of mass loss that NGC 419 will undergo over the next
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4.5 Gyr (i.e. from its current age of ∼1.5 Gyr to an age of 6 Gyr, where clusters

are observed to host MPs - Hollyhead et al. 2017; Niederhofer et al. 2017a). In or-

der to estimate this we use the rotation curve of the SMC measured by Stanimirović,

Staveley-Smith & Jones (2004) and extrapolate the observations to the galactocentric

distance of NGC 419, namely ∼ 10 kpc (Glatt et al., 2008b), obtaining an estimate of

60 − 70 km/s. We also assume that the cluster is tidally filling (in order to maximise

the stellar mass loss). We apply equation 7 of Kruijssen & Mieske (2009) (see also

Baumgardt & Makino 2003, equation 10 and Lamers et al. 2005) to find the dissolu-

tion timescale normalisation, t0. Applying this normalisation to the mass of NGC 419

(∼ 2 × 105 M�) to find the dissolution timescale, tdis = t0 ∗Mγ (adopting γ = 0.62

- e.g., Kruijssen & Mieske 2009), we find a tdis,NGC419 = 152 Gyr. If we assume that

the cluster loses mass linearly (see the discussion in Lamers et al. 2005) we find that

over the next 4.5 Gyr the cluster will lose ∼ 3% of its mass9. Additionally, the cluster

is expected to lose of order 9% of its mass due to stellar evolution. NGC 419 is ex-

pected to lose, in total, roughly ∼ 12% of its current mass over the next 4.5 Gyr (this

is an upper limit as we assumed it was tidally limited). Hence, we conclude that NGC

419 (similarly to the other clusters in our sample in the SMC/LMC, with M & 105

M�) is not expected to undergo significant mass loss over the next few Gyr (see also

Cabrera-Ziri et al. 2016b).

In addition to this, in the same galaxy (i.e., the SMC), we have found both the presence

and absence of the MPs phenomenon. Glatt et al. (2008b) reported the distribution of

star clusters in the SMC, by using distances derived from isochrones fitting. We noticed

that our sample of clusters appears to be distributed over a large range of distances with

respect to the galaxy centroid. NGC 339 results to be the closest to the SMC centre

(∼ 0.7 ± 2.0 kpc), although with a relatively large uncertainty. This is followed by

NGC 416 with a distance of ∼ 4 kpc, Kron 3 (∼ 7 kpc) and NGC 121 (∼ 9 kpc). The

furthest cluster is Lindsay 1 (more than 13 kpc away), while our cluster, NGC 419,

is ∼ 10 kpc away from the SMC centre. Accordingly, it appears that the mechanism

responsible for enrichment does not depend strongly on the current environment which

9For this, we assumed a circular orbit around the SMC for NGC 419. If we assume a high eccentricity
orbit, the mass loss rate due to dissolution could be up to a factor of ∼2 higher.
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surrounds the cluster.

When this work was first published, the youngest GCs which show MPs are NGC 416

(Niederhofer et al., 2017a) and Kron 3 (Hollyhead et al., 2018). At this age (∼ 6 Gyr)

and metallicity ([Fe/H] ' −1) we are sampling RGB stars with masses of ∼ 1 M�,

while at the age of NGC 419 (∼ 1.5 Gyr) we search for MPs at stellar masses of 1.6

M�, in the RGB. Hence, our results might also imply that the MPs phenomenon could

manifest only below ∼ 1 M� and be also due to a stellar evolutionary effect.

NGC 419 shows one of the largest eMSTO, well noticeable in themF438W−m814W and

mF555W − m814W vs. m814W CMDs in Fig. 2.3 and also in CF336W,F438W,F814W and

CF343N,F438W,F814W colours (Fig. 2.5 and Fig. 2.6). Our results place limits on the

explanation of the eMSTO feature as an age spread (Goudfrooij et al., 2014). Indeed,

if multiple SF episodes due to gas processed by a first generation of stars occurred

within the cluster, this would lead to self-enrichment. We did not observe any chemical

spread in NGC 419, hence our data might lend support to alternative interpretations,

e.g. that the MS spread is caused by a distribution of rotational velocities (e.g., Bastian

& de Mink 2009; Brandt & Huang 2015; Niederhofer et al. 2015; Wu et al. 2016).

The results presented in this Chapter highlight that age could play a decisive role in de-

termining the presence of MPs. On the contrary, mass or environment can be excluded

as the only key factors in this scenario. However, a larger sample is needed in order

to confirm such trends. We continue our analysis of Magellanic Cloud clusters aged

. 1− 2 Gyr whose data are already in hand and present the results in the forthcoming

Chapter (§3).



Chapter 3

Age as a major factor in the onset of

multiple populations

In this Chapter I present the analysis of the LMC cluster NGC 1978, aged ∼2 Gyr old,

one of the youngest clusters showing MPs to date (§3.1). In §3.2 I report on the first

global results from the HST survey and I discuss about them in §3.3. This Chapter is

based on the work published in Martocchia et al. (2018a).

3.1 Analysis

In order to select cluster members, we defined an ellipse region centred in the centre

of the cluster with semimajor axis of 1200 pixels and ellipticity ε =0.251. It is indeed

well-known from previous studies (Geisler & Hodge, 1980; Mucciarelli et al., 2007)

that NGC 1978 shows a non-negligible ellipticity. 3.1 shows the mF555W−mF814W vs.

mF555W CMD of NGC 1978 before (left panel) and after (right panel) the field star

subtraction.
1We define the ellipticity as ε =

√
(a2 − b2)/a2, where a and b represent the semimajor and semimi-

nor axes, respectively.
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Figure 3.1: mF555W −mF814W vs. mF555W CMD of NGC 1978 before (left panel) and after
(right panel) the field star subtraction. The red curve in the right panel represents the MIST
isochrone we adopted for NGC 1978. The parameters used to derive it are: log(t/yr) = 9.35
(corresponding to∼ 2.2 Gyr); distance modulusM−m = 18.5; E(B−V ) = 0.07; metallicity
[Fe/H] = −0.5.
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Figure 3.2: mF336W − mF438W vs. mF438W (left panel) and mF343N − mF438W vs.
mF438W (right panel) CMD of NGC 1978. On the right side, the median of photometric er-
rors in colour and magnitude is reported as red filled circles in bins of ∼ 0.2 mag.
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Figure 3.3: Left Panel: CMD of NGC 1978 in mF343N −mF438W vs. mF438W space. Black
filled circles indicate the final selected RGB stars. The red solid line marks the fiducial line
defined on the blue edge of the RGB. Right Panel: Histogram of the distribution of RGB
stars in NGC 1978 (top), in ∆(mF343N − mF438W ) colours. The red thick curve represents
the KDE. The black vertical dashed line marks the adopted separation for FP and SP stars.
∆(mF343N−mF438W ) vs. mF438W is shown on the right bottom panel, where blue (red) filled
circles denotes FP (SP) stars and the red dashed line marks the verticalised fiducial line. On the
left side, the median of photometric errors in colour is reported as black filled circles in bins of
0.25 mag. The errors on mF438W magnitudes are smaller than the marker size.

3.1.1 The CMD in UV colours

Fig. 3.2 shows the CMD of NGC 1978 inmF336W−mF438W vs. mF438W (left panel) and

mF343N −mF438W vs. mF438W space (right panel). From a first inspection, the CMDs

show a visible splitting in the lower RGB, plus a broadened width of the RGB when

compared to the observational errors. The median of errors in colour and magnitude

is reported on the right side of both figures as red filled circles in bins of ∼ 0.2 mag.

We will discuss in the next Section (§3.1.2) how we carried out the analysis in order

to explain these features as chemical variations of C and N, i.e. as the presence of

a second stellar population in the young cluster NGC 1978. We stress here that the

observed red sequence in the RGB survived after decontamination from field stars.
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Figure 3.4: CMDs of NGC 1978 in mF343N − mF438W vs. mF438W (panel A), mF336W −
mF438W vs. mF438W (panel B), mF343N − mF555W vs. mF555W (panel C), mF336W −
mF555W vs. mF555W (panel D), mF343N − mF814W vs. mF814W (panel E), mF336W −
mF814W vs. mF814W (panel F). Blue (red) filled circles mark the selected FP (SP). The black
solid lines mark the defined fiducial lines. In the insets of the right panels, the histograms of
the distribution of the RGB FP (gray) and SP (black) stars is shown, in ∆(mF336W−mF438W )
(panel B), ∆(mF336W −mF555W ) (panel D), and ∆(mF336W −mF814W ) (panel F) colours.
The blue (red) thick curve represents the KDE for the FP (SP) stars. The dashed green line
represents the verticalised fiducial line.



3.1. Analysis 50

3.1.2 The Red Giant Branch

Our goal is to conservatively select RGB cluster members, in order to search for evi-

dence of MPs. While optical colours are not sensitive to star-to-star C, N, O abundance

variations, they can be extremely useful for selecting a clean sample of RGB stars. We

thus made the first selection in mF438W − mF814W vs. mF814W CMD and a second

one in mF555W − mF814W vs. mF814W CMD. Finally, we made a last selection in the

mF343N −mF438W vs. mF438W CMD, as a few objects were scattered far off the RGB.

Fig. 3.3 shows the mF343N − mF438W vs. mF438W CMD of NGC 1978 with the final

selected RGB stars marked as black filled circles.

We defined a fiducial line on the blue edge of the RGB in the mF343N − mF438W vs

mF438W CMD and this is displayed in the left panel of Fig. 3.3 as a solid red line.

Next, we calculated the distance in mF343N −mF438W colours of each RGB star from

the fiducial line, ∆(mF343N − mF438W). We show the histogram of the distribution

in ∆(mF343N − mF438W)colours in the top right panel of Fig. 3.3. We also derived

the kernel density distribution (KDE) from a Gaussian kernel. This is shown in the

top right panel of Fig. 3.3 as a thick red curve. The KDE reveals both broadening

and asymmetry in the distribution, along with the presence of a bump for ∆(mF343N −

mF438W)& 0.06. Hence, we adopted ∆(mF343N − mF438W)= 0.07 as the verticalised

colour to separate the first population of stars (FP) from the second population (SP).

This separation is represented with a black vertical dashed line in the top right panel

of Fig. 3.3. The bottom right panel of Fig. 3.3 shows the ∆(mF343N−mF438W)colours

vs. mF438W , where FP are represented with blue filled circles while SP are represented

in red. The red dashed vertical line marks the adopted fiducial line. We find that the

SP represents 18% of the total selected RGB stars.

In order to verify that this broadening is due to the presence of multiple populations

and not to photometric errors or field stars, we performed several tests.

We derived our final photometric catalogue by selecting stars based on photometric

quality indicators (chi and sharpness). We additionally checked the quality of our
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Figure 3.5: CMD of NGC 1978 in mF555W − mF814W vs. mF814W space. Symbols as in
Fig. 3.4. The black solid line marks the defined fiducial line. In the insets of the right pan-
els, the histogram of the distribution of the RGB FP (gray) and SP (black) stars is shown, in
∆(mF555W−mF814W ) colours. The blue (red) thick curve represents the KDE for the FP (SP)
stars. The dashed green line represents the verticalised fiducial line.

photometry by comparing the average errors of the two populations in mF343N −

mF438W colours, with both having a mean error of ∼ 0.025. Then, we investigated

whether a more severe selection based on photometric errors might invalidate our re-

sults. We selected bona-fide stars by applying a sigma-rejection in the error versus

magnitude diagrams (mF336W , mF343N and mF438W ) of our original catalogue. We de-

rived the median values in bins of 0.5 mag for each diagram and excluded stars in each

bin at more than 3σ from the median. We repeated the same analysis with 1σ and 2σ

cuts. Our results stay unchanged and the SP sequence never disappeared.

In Fig. 3.4 we plotted the FP (blue filled circles) and SP (red filled circles) in sev-

eral colour-magnitude spaces. Panel A shows the mF343N −mF438W vs. mF438W CMD

of NGC 1978. SP stars follow a red sequence on the RGB while FP stars follow

a blue sequence, as expected from their selection. Panel B shows the mF336W −

mF438W vs. mF438W CMD, panels C and D show the mF343N−mF555W vs. mF555W and

mF336W−mF555W vs. mF555W and, lastly, panels E and F show themF343N−mF814W vs.

mF814W and mF336W − mF814W vs. mF814W CMDs, respectively. We defined a fidu-
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cial line for the selected RGB stars in the mF336W − mF438W vs mF438W , mF336W −

mF555W vs mF555W and mF336W − mF814W vs mF814W CMDs. These are displayed

as black solid lines in panels B, D and F of Fig. 3.4. We then calculated the dis-

tance of each RGB star from the fiducial line to obtain the ∆(mF336W − mF438W ),

∆(mF336W − mF555W ) and ∆(mF336W − mF814W ) verticalised colours. In the insets

of panels B, D and F of Fig. 3.4, the histograms of the distribution in ∆(Colours)

of the FP (gray) and SP (black) stars is shown. The blue (red) thick curve represents

the KDE for the FP (SP) stars. Note that the FP and SP sequences were selected in

the mF343N−mF438W vs. mF438W CMD. In all panels, the distribution of FP presents a

clear offset from the SP, with the FP sequence bluer and the SP redder. In the right pan-

els, this was specifically highlighted by showing the ∆(Colors) distributions, where the

peak of the FP KDE is clearly shifted with respect to the peak of the SP KDE. To quan-

tify this, we performed the Kolmogorov-Smirnov (KS) test between the FP and SP stars

distributions in the three ∆(Colours), in order to understand if they are consistent with

having been sampled from the same parent distribution. We derived p-values < 10−10

for all three ∆(Colours), thus demonstrating that the distributions are indeed different.

This clearly points toward a chemical effect, as errors on mF438W (WFC3/UVIS) are

completely independent from errors onmF555W andmF814W (ACS/WFC). We note that

the selection of FP and SP stars was made in the mF343N −mF438W vs. mF438W CMD

so the mF336W − mF555W vs. mF555W and mF336W − mF814W vs. mF814W CMD are

completely independent measurements.

Fig. 3.5 shows the mF555W − mF814W vs. mF814W CMD of NGC 1978 with FP (SP)

superimposed as blue (red) filled circles. We performed the same analysis as in the

UV CMDs (see Fig. 3.4) and we show the histograms of the distribution for FP (in

gray, blue KDE) and SP (black, red KDE) stars in ∆(mF555W − mF814W ) colours in

the inset of Fig. 3.5. In this combination, as expected given the lack of sensitivity to

MP in these filters, the two sequences are well mixed, showing no signs of systematic

offsets. This is confirmed by the KS test, which returns a p-value = 0.73.

Finally, we report on how the two populations are distributed as a function of radial

distance from the centre of the cluster. Fig. 3.6 shows the normalized cumulative
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Figure 3.6: Cumulative distribution of FP (blue solid line) and SP (red dashed line) as a function
of the radial distance from the cluster centre.

Figure 3.7: mF555W − mF814W vs. mF814W CMDs for all the targeted clusters in our HST
survey. Blue filled circles indicate the selected RGB stars for each cluster. The maximum and
minimum values of the selection in mF814W magnitudes are superimposed in each panel.
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radial distribution of the primordial (blue solid line) and enriched (red dashed line)

populations. We found that the second population is more centrally concentrated than

the FP up to a distance of ∼ 50” from the cluster centre. We performed the KS test on

the two population radial distributions. The probability that they belong to the same

parent distribution is relatively low, being < 1%. This test statistically shows that the

two radial distributions are likely different. Additionally, the evidence for the SP to be

centrally concentrated reinforce the cluster membership of the red sequence stars. We

also corrected our photometric dataset for differential reddening (DR) and we repeated

the exact same analysis. All results stay unchanged. For more specific details on the

DR correction procedure, see Chapter 2, §2.2.3.

It might be argued that the SP sequence is composed of evolved binaries on the RGB,

due to the likely presence of a large number of blue stragglers in NGC 1978 (see

Fig. 3.1). However, evolved blue straggler stars (BSS) should instead be slightly

bluer in colour than the RGB, according to Sills, Karakas & Lattanzio (2009), where

they assumed that blue stragglers were formed through stellar collision. This is not

compatible to what we observe, as the SP distribution of stars is well overlapped to the

FP sequence in the mF555W −mF814W vs mF814W CMD (Fig. 3.5). Additionally, Tian

et al. (2006) looked at BSS formed via mass transfer rather than collision. As pointed

out by Sills, Karakas & Lattanzio (2009), their evolutionary tracks of the BSS are

comparable to normal stars after the mass transfer occurred. Thus, the same condition

mentioned above must apply.

All tests point towards the conclusion that MPs are detected in the RGB of NGC 1978.

This was the first cluster hosting chemical abundance anomalies at such a young age

(∼2 Gyr).

The same analysis reported in this Section was performed on the younger clusters in

our sample (namely, NGC 419, 1783, 1806 and 1846). On the contrary, we found no

clear evidence for MPs in their RGBs. I will report the global results from our HST

survey in the next Section (§3.2).
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3.2 Results

The CF336W,F438W,F814W pseudo-colour, defined as (mF336W −mF438W )−(mF438W −

mF814W ), has been shown to be very effective at unveiling multiple sequences on the

RGB (Monelli et al., 2013; Dalessandro et al., 2016). Here, we take advantage of a sim-

ilar pseudo-colour, known as CF343N,F438W,F814W ≡(mF343N −mF438W )−(mF438W −

mF814W ) ≡CUnBI, to provide a direct and quantifiable comparison between all the

clusters in our survey. Additionally, these pseudo-colours do not have a strong de-

pendence on the effective temperature of stars, such that the RGB is almost vertical

in the diagram, i.e. splittings are more easily discernible in this combination and are

also largely independent of potential spreads in He (see Chapter 2, §2.2.4, Martocchia

et al. 2017). We finally exploit CF343N,F438W,F814W to compare our data with stellar

atmosphere models in §3.2.1.

We adopted the same analysis for each cluster. RGB stars have been selected

in three CMDs of each cluster to establish membership. Figure 3.7 shows the

mF555W −mF814W vs. mF814W CMDs for all the targeted clusters in our survey. Blue

filled circles represent the RGB stars which passed all three selections. We defined the

selection by choosing stars in the lower RGB, which are fainter than the RGB bump

(to avoid chemical mixing due to stellar evolutionary effects). We verticalised our

selected RGB stars in CF343N,F438W,F814W vs mF438W CMD and we calculated the dis-

tance ∆CUnBI from the fiducial line for each star. The top left panel of Fig. 3.8 shows

the CF343N,F438W,F814W vs. mF438W CMD of NGC 1978, while the bottom left panel

shows the CF343N,F438W,F814W vs. mF438W CMD of NGC 1783, where MPs were not

detected. Symbols are as in Fig. 3.4. The black solid line marks the defined fiducial

line to derive the ∆CUnBI. As expected in this filter combination, for NGC 1978, FP

and SP stars show an unambiguous offset in colours, with the FP having bluer colours

and the SP redder. This is also evident in the right top panel of Fig. 3.8, where the

NGC 1978 histogram of the ∆CUnBI distributions for both FP and SP is shown. The

KDE distributions are also indicated, in blue for the FP and in red for the SP. The same

is shown on the bottom right panel of Fig. 3.8, but for NGC 1783, where there is no
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Figure 3.8: Top (bottom) left panels: CF343N,F438W,F814W (CUnBI) vs mF438W (mF435W)
CMD of NGC 1978 (NGC 1783), where symbols are as in Fig. 3.4. The black solid line indi-
cates the fiducial line. Top (bottom) right panels: histogram of the distributions in ∆(CUnBI)
colours for the FP (dashed) and SP (solid) for NGC 1978 (NGC 1783), with KDEs superim-
posed (blue for the FP and red for the SP).
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Figure 3.9: Histograms of the distribution of RGB stars in CUnBI colours for all clusters in
our survey. The GMM fit on unbinned data are marked in blue for the FP and red for the SP.
The means of the Gaussian distributions are labelled on top of the plots.

hint for asymmetry or broadening.

Next, we fit the unbinned verticalised ∆CUnBI data with Gaussian Mixture Models

(GMMs, see Fig. 3.9, where we also plot the binned ∆CUnBI distribution for vi-

sual representation) to identify the presence of multiple Gaussian components in the

colour distribution, hence two or more populations with different N abundance. We fit

the data with the SCIKIT-LEARN python package called MIXTURE2, which applies

the expectation-maximization algorithm for fitting mixture-of-Gaussian models. In or-

der to determine the number of Gaussians which best reproduce the data, we adopted

the Akaike Information Criterion (AIC, Akaike 1974). We found that the ∆CUnBI
2http://scikit-learn.org/stable/modules/mixture.html

http://scikit-learn.org/stable/modules/mixture.html
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distributions of NGC 1978, NGC 416, NGC 339, NGC 121 and Lindsay 1 are best

represented with 2 components, while only one component is found for NGC 419,

1783, 1806 and 1846 (see Fig. 3.9).

The final result is that all clusters older than 2 Gyr show multiple Gaussian compo-

nents in the fit, i.e. MPs are present, while all clusters younger do not. We then defined

δRGB(CUnBI) as the difference between the means of the two main Gaussian compo-

nents in the ∆CUnBI distribution. This gives a robust indication on the level of N en-

richment present in clusters which host MPs. Errors on δRGB(CUnBI) were calculated

with a bootstrap technique based on 5000 GMMs realizations. We set δRGB(CUnBI)

of clusters which do not show MPs to zero.

Although statistically less likely, to be as conservative as possible, we forced the GMM

procedure to fit the one-gaussian component data with two Gaussian distributions. For

NGC 1806 and NGC 1846 the fit yields two almost overlapped gaussians, resulting in

δRGB(CUnBI) < 0.01. In these two cases, we considered the standard deviation of the

single Gaussian as upper error on δRGB(CUnBI) . For NGC 419 and NGC 1783 the fit

finds a separated second Gaussian component, with δRGB(CUnBI) ∼ 0.04, which was

used as upper error on δRGB(CUnBI) . In order to establish the statistical significance

on the second Gaussian component for NGC 419 and NGC 1783, we calculated the

errors on the normalisation factor with 5000 bootstrap realisations. The normalisation

was found to be consistent with zero for both clusters. Finally, in Table 3.1, we also

report for each cluster the probability that a bimodal distribution is rejected, which is in

agreement with previous studies (Niederhofer et al., 2017b,a; Martocchia et al., 2017).

This was obtained with a parametric bootstrap technique by using the GMM code by

Muratov & Gnedin (2010).

It is worth noting that the GMM fitting method was not adopted in order to demonstrate

that MPs are detected or not in a given cluster. It was just used as a confirmation of our

findings. MPs are primarily detected by selecting samples in the mF343N−mF438W vs.

mF438W CMD and by examining where they order in the different filter combinations.

We plot δRGB(CUnBI) as a function of cluster age in Fig. 3.10 for all our targets. Devi-
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Figure 3.10: δRGB(CUnBI) as a function of age for the 9 clusters in our HST photometric
survey. Clusters which are found to host MPs are indicated with blue filled circles while clusters
which do not show MPs are marked with red open circles.

ations from zero, indicating N enrichment, are observed for all clusters older than ∼ 6

Gyr, confirming our earlier results (Niederhofer et al., 2017b,a; Hollyhead et al., 2017).

Conversely, the narrow RGB in the CF343N,F438W,F814W vs. mF438W CMD would ex-

clude the presence of significant nitrogen star-to-star variations in the youngest clusters

of our sample, namely NGC 419, 1783, 1806, 1846, with ages of ∼ 1.5− 1.7 Gyr (see

also Chapter 2, Martocchia et al. 2017). Finally, strong evidence for MPs is also found

for the first time in the ∼2 Gyr old cluster, NGC 1978. This finding suggests that age

is playing a pivotal role in controlling the presence of MPs, as chemical anomalies

are detected in all massive clusters older than 2 Gyr while they are lacking at younger

ages.

However, it is possible that a certain level of N enrichment (smaller compared to the

older clusters) is still present in the younger clusters, which cannot be seen due to

observational uncertainties and contamination from field stars (see §3.2.1). Despite

this, the main results from this work stay unchanged: we report an unexpected age

effect on the onset of MPs. We note that if N-spreads like those observed in the ancient

GCs (or those in the 2-8 Gyr old clusters) were present in the clusters younger than 2
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Table 3.1: Columns give the following information: (1) cluster name, (2) cluster age in Gyr,
(3) probability that a bimodal ∆CUnBI distribution is rejected for each cluster in the survey.
References for the ages from Table 2.3.

Cluster Name Age (Gyr) ∆CUnBI pvalue
(1) (2) (3)

NGC 121 10.50 <0.001
Lindsay 1 7.50 0.16
NGC 339 6.00 0.04
NGC 416 6.00 0.03

NGC 1978 2.00 <0.001
NGC 1783 1.75 0.58
NGC 1846 1.75 0.63
NGC 1806 1.70 0.51
NGC 419 1.2-1.6 0.47

Gyr, they would have been readily detected.

3.2.1 Comparison with stellar models

We compared MIST isochrones (Dotter, 2016; Choi et al., 2016) to our data to obtain

an estimate of age, metallicity, distance modulus (M −m) and extinction values. For

NGC 1978, we found that the MIST parameters which best match the data and the

isochrones are: (i) log(t/yr) = 9.35 (t ∼ 2.2 Gyr), (ii) [Fe/H] = −0.5, (iii) M −

m = 18.5, (iv) E(B − V ) = 0.07. The selected isochrone is superimposed on the

mF555W − mF814W vs. mF555W CMD of NGC 1978 in Fig. 3.1 as a red solid curve.

(Mucciarelli et al., 2007) report an age of t = 1.9 ± 0.1 Gyr for NGC 1978 by using

several sets of different isochrones (Padua, BaSTI, PEL). Our slightly different choice

of age might be due to the different set of isochrones used in this work, i.e. MIST

isochrones. However, with this work we do not aim at providing an improved estimate

of the age of NGC 1978. We rather need to obtain a reliable MIST isochrone fit to

our CMD data, as we will use these values as input for MIST models to develop our

synthetic photometry. However, as it is clear from Fig. 3.1, our isochrone does not

perfectly match data on the MS or the MSTO. Indeed, in adopting MIST isochrones,

we were not able to match perfectly data for all evolutionary stages with any parameters

combination. Nonetheless, this issue is somewhat irrelevant for our studies, since we
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will focus on the RGB stage.

We adopted three chemical mixtures in the models (see Chapter 2, §2.2.4). First, we

calculated a set of scaled solar models ([C/Fe] = [N/Fe] = [O/Fe] = 0). Next, we

calculated a set of N-enhanced models with [C/Fe] = [O/Fe] = −0.1 dex and [N/Fe]

= +0.5 dex. Lastly, we calculated a set of models with slightly less degree of N-

enhancement but with solar C and O abundances ([C/Fe] = [O/Fe] = 0 and [N/Fe]

= +0.3 dex), in order to check degeneracies between C depletion and N enhancement

in CUnBI colours.

The C and O abundances were chosen to keep the [(C+N+O)/Fe] constant between

the models, according to what we observe in standard GCs (Brown, Wallerstein &

Oke, 1991; Cohen & Meléndez, 2005; Yong, Grundahl & Norris, 2015; Marino et al.,

2016). For each of these chemical mixtures we kept the helium abundance (surface Y =

0.248) constant and all other abundances fixed at solar. We also assumed that the model

atmospheres had the same chemical abundances at all stellar evolutionary stages. We

then integrated our model spectra over the filter transmission curves for WFC33 and

ACS/WFC4 and used the zeropoints provided on each instruments website to calculate

Vega magnitudes. We directly compare our models to the data.

We exploited the CUnBI pseudo-colour to give an estimate of the level of nitrogen en-

richment for the SP stars when MPs are detected and to provide an upper limit where

MPs are not detected. Fig. 3.11 shows the CF343N,F438W,F814W vs. mF438W CMD of

NGC 1978, with a zoom in the RGB region. The black solid, dash-dotted, dashed

curves represent isochrones for the three chemical mixtures described above, respec-

tively. Blue (red) filled circles mark the selected FP (SP) RGB stars. Fig. 3.11 shows

that the [N/Fe]= +0.5 dex and [N/Fe]= +0.3 dex models are almost completely over-

lapped, with [C/Fe] and [O/Fe] abundances depleted in the former but kept solar in

the latter. This means that we expect the same spread on the RGB with a different

combination of C and N, i.e. there is a degeneracy between C and N abundances. Un-

3http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/
Throughput_Tables

4http://www.stsci.edu/hst/acs/analysis/throughputs

http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/wfc3/ins_performance/throughputs/Throughput_Tables
http://www.stsci.edu/hst/acs/analysis/throughputs
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Figure 3.11: CUnBI vs. B CMD of NGC 1978 zoomed in the RGB region. Blue (red) filled
circles indicate the FP (SP) stars. Black solid, dash-dotted, dashed curves represent stellar
isochrones for [C/Fe] = [N/Fe] = [O/Fe] = 0, [C/Fe] = [O/Fe] = −0.1 and [N/Fe] = +0.5,
and [C/Fe] = [O/Fe] = 0 and [N/Fe] = +0.3 chemical abundance mixtures, respectively.

fortunately, a reliable measure of N enrichment by comparing the observed CUnBI vs.

mF438W CMDs with the models cannot be given, as no spectroscopic measurements

of chemical abundances are currently available for this cluster. However, we can still

provide a rough estimate, by assuming that MPs in younger clusters are the same as

those of ancient GCs, i.e. an enhancement in N is associated with a depletion in C

(Cannon et al., 1998).

Accordingly, we report a N enrichment for NGC 1978 of [N/Fe]∼ +0.5 dex. Also, we

can make a differential comparison among NGC 1978 and the younger clusters. We do

not detect MPs in NGC 419, 1783, 1806 and 1846 but we cannot exclude the presence

of a slight N variation due to observational uncertainties and decontamination from

field stars (see §3.2). If we assume a [N/Fe] ∼ +0.5 dex for NGC 1978, then we can

set an upper limit to any enrichment in the younger clusters (NGC 419, 1783, 1806,

1846) of [N/Fe]< +0.3 dex.
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3.3 Discussion

In this Chapter, we reported the photometric analysis of new and archival HST images

for the LMC cluster NGC 1978 as well as the results from the remaining clusters in our

sample. For NGC 1978, the mF336W −mF438W vs. mF438W and mF343N −mF438W vs

mF438W CMDs revealed hints of a splitting in the lower RGB. Additionally, the RGB

showed a broadened width compared to the observational errors (Figs. 3.2 and 3.3).

We selected RGB stars in three different CMDs and used the mF343N − mF438W vs.

mF438W CMD to separate the FP from the SP stars. We plotted the FP and SP sequences

in several UV CMDs and in all of them, the distribution of FP shows an offset from

the SP, with the FP sequence bluer and the SP redder, on average (Fig. 3.4). This does

not occur when considering optical CMDs (Fig. 3.5). We also showed that the SP

stars present in NGC 1978 is more centrally concentrated than the FP stars (Fig. 3.6).

This strongly confirms cluster membership for the red-sequence stars, as well as the
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likelihood that they are indeed the product of separate chemical evolution from the FP

stars, as SP stars are almost always found to be more centrally concentrated than FP

stars.

We can then conclude that MPs are detected in the RGB of NGC 1978, which is∼2 Gyr

old and has a mass of 2− 4× 105 M�. This is the first cluster found to host star-to-star

abundance variations at such a young age. Future observations to determine if Na (and

Al, O, etc...) are necessary to further quantify the results presented here. However,

we note that in older GCs where MPs are confirmed to be present, the observed Na

spreads are much smaller than the N spreads, hence in NGC 1978 we may only expect

Na spreads of ∼ 0.2 dex or less. We also revealed that MPs are not instead detected in

the RGB of the younger clusters in our survey, namely NGC 1783, 1806, 1846.

We then presented the global results from our HST photometric survey. We took ad-

vantage of the CUnBI colour combination in order to compare all the clusters in our

survey(§3.2 and Figs. 3.9, 3.10). All clusters older than 2 Gyr host MPs, while chemi-

cal anomalies are not detected in those younger than this age. This firmly suggests that

there is an age effect in the onset of multiple populations.

We also developed stellar atmosphere models for the chemical anomalies. We ex-

ploited CUnBI≡CF343N,F438W,F814W to give a rough estimate of the level of N enrich-

ment for the SP stars when MPs are detected and to provide an upper limit where MPs

are not detected. We reported a N enrichment for NGC 1978 of [N/Fe] ∼ +0.5 dex.

Comparing NGC 1978 with the younger clusters, we can set an upper limit to any en-

richment in the younger clusters (NGC 419, 1783, 1806, 1846) of [N/Fe]< +0.3 dex

(§3.2.1).

In Fig. 3.12 we plot a summary of our HST survey as well as results taken from the

literature. We also add here the results for the ∼6.5 Gyr old SMC cluster Kron 3

(Hollyhead et al., 2018), where MPs have been spectroscopically identified. All of the

clusters in our HST survey have masses in excess of∼ 105 M�, e.g. the mass for which

MPs are almost always found in ancient GCs, but we detect MPs only in clusters older

than ∼2 Gyr.
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Taken at face value, this suggests that some mechanism operating only in stars less

massive than 1.5 M�(the mass of a RGB star at ∼2 Gyr) may be responsible for the

onset of MPs. Note in Fig. 3.12 that there is one cluster older than 2 Gyr where

MPs were not detected. This is Berkeley 39, which is a low-mass cluster (∼ 104

M�). Clearly, age is not the only controlling parameter, cluster mass must also come

into play, as well as environment might contribute. Future work will be needed to

consider the impact of environment on MPs, as a significant factor shaping the amount

of chemical anomalies in clusters. Conversely, Ruprecht 106 and IC 4499 are two old

clusters (> 12 Gyr) where the presence of MPs is still under debate, with preliminary

studies suggesting that MPs may not be present (Villanova et al., 2013; Walker et al.,

2011). Also, the presence of MPs is still unknown for other two relatively old clusters,

namely Terzan 7 and Pal 12 (7 − 9 Gyr), as only a few stars (less than 5) have light

element abundance measurements (e.g. Cohen 2004).

The dependence of light element variations on age is not predicted by any model that

has been proposed to explain the formation and evolution of MPs. All self-enrichment

models share the notion that a cluster will show MPs only if its mass is larger than a

given threshold, i.e. only the most massive clusters should be able to retain the enriched

ejecta of a first generation of stars (and accrete new material) to form a second gener-

ation. Hence, these models predict that clusters massive enough in the local universe

should be undergoing multiple epochs of star-formation, in contradiction with obser-

vations (Bastian et al., 2013a; Cabrera-Ziri et al., 2014). More recent versions have

attempted to address this issue by invoking special conditions in the early Universe,

at redshifts above zformation ∼ 2 (D’Ercole, D’Antona & Vesperini, 2016). However,

the discovery of chemical anomalies in NGC 1978 (zformation = 0.17) leads to the

conclusion that the onset of MPs cannot be limited to the high-z Universe.

The data presented here tentatively suggest that MPs may be due to a stellar evolu-

tionary effect not yet recognized in standard evolution models. This effect would need

to only efficiently operate in stars within massive/dense stellar clusters. NGC 1978 is

currently the youngest cluster for which detection of MPs have been reported. At this

age (∼2 Gyr), the sampled stellar mass in the lower part of the RGB is slightly lower
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than 1.5 M�while it is∼1.55 M� at 1.7 Gyr, i.e. the typical age of the young surveyed

clusters where MPs are not found. One potentially important change in this very nar-

row mass range is that stars above ∼1.5 M� do not typically possess strong magnetic

fields, whereas stars below this mass do. This can also be related with stellar rotational

properties, as stars with strong magnetic fields can be magnetically braked, leading to

slow rotation rates, whereas stars with weak magnetic fields can remain rapid rotators

(e.g. Cardini & Cassatella 2007). Additionally, we observe the eMSTO in the optical

CMD of clusters younger than 1.7 Gyr (NGC 419, 1783,1806, 1846), while we do not

observe such a feature in the ∼2 Gyr old NGC 1978 (see Fig. 3.7), where the mass

of the lower RGB and MSTO stars has decreased below 1.5 M�. If the phenomenon

is related to stellar rotation and/or magnetic fields, it is worth noting that the rates of

stellar rotation are linked to the cluster mass, i.e. rotation can cause environmentally

dependent stellar evolutionary effects5.

Another intriguing consequence of such an interpretation may be the expected presence

of chemical anomalies in stars with masses below 1.5 M� on the MS of the young

clusters. Furthermore, one immediate implication, to account for the rare objects with

M < 105 M� seen in Fig. 3.12 that have ages older than 2 Gyr but no MPs, is that

the global properties of a cluster (such as its mass, or initial angular momentum) can,

under certain circumstances, influence the properties of its individual stars (such as the

distribution of rotation speeds). Recent observations (Corsaro et al., 2017) suggest that

this is indeed plausible. However, this remains purely speculative at the moment. This

is a completely unexplored direction for the onset of MPs, and further tests need to be

carried out to confirm or refute such interpretations.

A major implication of our discovery of MPs in a young (2 Gyr) cluster, is that it lends

support to the view that the ancient GCs and young massive clusters (YMCs) share a

common formation process, as MPs have now been found in both classes of clusters.

While globular and young massive clusters overlap in many of their properties, such

as mass, size and stellar density, many models for the formation of GCs have adopted

5We note that the ∼ 1.3 Gyr lower mass open cluster, Trumpler 20, does not show signs of an
extended main sequence turnoff. However, it also does not appear to host rapidly rotating stars (Platais
et al., 2012).
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special conditions only present in the early Universe (Trenti, Padoan & Jimenez, 2015).

One line of support for such a distinction between the ancient globulars and YMCs was

that only globular clusters were thought to host MPs. The results presented here show

that the formation of MPs continued at least down to a redshift of z = 0.17, well past

the peak epoch of GC formation in the Universe (z = 2− 5, Brodie & Strader 2006a).

Instead, our results support models that explain GC and YMC formation/evolution

within a common framework (Kruijssen, 2015; Pfeffer et al., 2018).



Chapter 4

Coeval multiple stellar populations in

the young star clusters NGC 1978

As introduced in Chapter 1, depending on which polluter is employed, i.e. the source

of enrichment of the chemical anomalies, multiple generational theories predict age

spreads from a few Myr (massive and super-massive stars, e.g. Decressin et al. 2007;

de Mink et al. 2009, Denissenkov & Hartwick 2014, Gieles et al. 2018) to 30-200 Myr

(asymptotic giant branch, AGB stars, e.g. D’Ercole et al. 2008; Conroy & Spergel

2011).

An immediate test can be implemented to verify the nature of the polluters, by estimat-

ing the age difference among the subpopulations in a cluster. This has been attempted

in studies of ancient GCs (e.g., Marino et al. 2012; Nardiello et al. 2015) but due to the

old ages, only upper limits of ∼200 Myr between the populations have been achieved.

If such an experiment could be carried out on younger clusters, more stringent limits

could be placed.

One of the most remarkable results from our survey is that NGC 1978, a massive (2-

4 ×105 M�, Westerlund 1997) and relatively young (∼ 2 Gyr old, Mucciarelli et al.

2007) cluster in the Large Magellanic Cloud (LMC), shows evidence for MPs in its

RGB (Chapter 3, Martocchia et al. 2018a). This is one of the youngest cluster where

68
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the presence of chemical anomalies have been detected. This can be constrasted with

NGC 419 which has very similar properties (mass, radius), but it is∼ 500 Myr younger

and does not appear to host MPs.

In this Chapter, I take advantage of the unique characteristics of NGC 1978 to place

stringent limits on any internal age dispersion. First, I use the subgiant branch (SGB)

of NGC 1978 to search for age differences between the different populations in the

cluster. Then, we explore the morphology of the MSTO of NGC 1978, showing that

this is consistent with a single aged population. This Chapter is based on the work

published in Martocchia et al. (2018b).

4.1 Observations and Adopted isochrones

In order to translate observational quantities (in units of mag) into age differences in

Myr, we used the BaSTI models (“A Bag of Stellar Tracks and Isochrones”, Pietrinferni

et al. 2004). This choice allowed to properly account for the effects of core convective

overshooting during the central H-burning stage. We note that the overshooting effi-

ciency Λov is commonly parametrised as a fraction of the pressure scale height (HP ).

In case of the BaSTI database the following dependence of Λov as a function of the

mass: (i) Λov = 0.2Hp for masses larger than 1.7 M�, (ii) Λov = (M/M�−0.9)Hp/4

for stars between 1.1-1.7 M�, and (iii) Λov = 0Hp for stars less massive than 1.1 M�.

Stellar masses for a 2 Gyr old cluster are∼1.45 M� at the MSTO and∼ 1.47-1.49 M�

on the SGB. BaSTI isochrones spaced by 20 Myr in age were specifically calculated

for this work.

Figure 4.1 shows the mF555W−mF814W vs. mF814W CMD of NGC 1978 with a BaSTI

isochrone superimposed as a solid violet line. The chosen parameters are the following:

(i) age = 2 Gyr, (ii) metallicity [Fe/H] = −0.35 dex, and (iii) distance modulus DM

= 18.55 mag, (iv) extinction value AV = 0.16 mag. The isochrone in Fig. 4.1 nicely

reproduces the shape of the mF555W−mF814W vs. mF814W CMD in all its evolutionary

stages. The adopted metallicity is consistent with results by Ferraro et al. (2006), who
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Figure 4.1: mF555W −mF814W vs. mF814W CMD of NGC 1978. The violet curve indicates
the BaSTI isochrone for values of age = 2 Gyr and metallicity [Fe/H]= −0.35 dex. The
adopted distance modulus and extinction values are DM = 18.55 mag and AV = 0.16 mag,
respectively.

found an iron content of [Fe/H]= −0.38 dex by analysing 11 high-resolution FLAMES

spectra of giant stars in NGC 1978.

Additionally, Mucciarelli et al. (2007) performed an isochrone fitting of the ACS

mF555W − mF814W vs. mF555W CMD of NGC 1978 by adopting several sets of

isochrones. They measured the age of the cluster to be 1.9±0.1 Gyr, which is con-

sistent with the age we adopt.

4.1.1 Artificial stars test

We performed artificial star (AS) experiments following the method described in Da-

lessandro et al. (2015) (see also Bellazzini et al. 2002; Dalessandro et al. 2016) to

derive a reliable estimate of the photometric errors. AS were performed for the entire

data-set adopted in the present paper. In particular, we note that they are especially
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critical for both the F555W and F814W bands as only one image is available for these

filters.

We generated a catalog of simulated stars with an F814W-band input magnitude

(F814Win) extracted from a luminosity function (LF) modeled to reproduce the ob-

served LF in that band and extrapolated beyond the observed limiting magnitude. We

then assigned a F336Win, F343Nin, F438Win and F555Win magnitudes to each star

extracted from the luminosity function, by means of an interpolation along the ridge

mean lines that were obtained in different CMDs by averaging over 0.4 mag bins and

applying a 2σ clipping algorithm.

Artificial stars were added to real images (which include also real stars) by using the

software DAOPHOTII/ADDSTAR (Stetson, 1987). Then, the photometric analysis

was performed using the same reduction strategy and PSF models used for real images

(see Chapter 2, §2.2.1 for details) on both real and simulated stars. In this way, the

effect of radial variation of crowding on both completeness and photometric errors is

accounted for. Artificial crowding was minimized by placing stars into the images

following a regular grid composed by 25 × 25 pixel cells in which only one artificial

star for each run was allowed to lie at a random position within the cell. For each run,

we simulated in this way ∼ 14, 000 stars. The procedure was repeated several times

until a minimum number of 100,000 was added to each ACS (for F555W and F814W)

or WFC3 (for F343N, F336W and F438W) chip. At each run the positions of the

simulated stars are randomly changed. After a large number of experiments, stars are

uniformly distributed in coordinates. Stars recovered after the AS photometric analysis

have values of F336Wout, F343Nout, F438Wout, F555Wout and F814Wout.

The AS catalog was then used to derive photometric errors for SGB and MS stars,

applied in the following analysis (see Sections §4.2, §4.3, §4.4). Errors were derived

computing the r.m.s. of the distributions of simulated stars in the (magin,magin −

magout) diagrams for all available bands in different magnitude bins and after applying

the same selections in the photometry quality indicators (sharpness and chi) that were

originally applied to the data (§2.2.1, §3.1). The distribution of the average errors

as a function of the distance from the cluster centre for all the considered bands is



4.2. SGB stars selection 72

Distance (arcsec)

0.015

0.020

0.025

0.030
F3

36
W

 (m
ag

) 21<F336W<21.5
21.5<F336W<22
22<F336W<22.5

Distance (arcsec)

0.010

0.012

0.014

0.016

0.018

F5
55

W
 (m

ag
) 20.5<F555W<21

21<F555W<21.5
21.5<F555W<22

10 20 30 40 50 60
Distance (arcsec)

0.02

0.03

0.04

F3
43

N
 (m

ag
) 21<F343N<21.5

21.5<F343N<22
22<F343N<22.5

10 20 30 40 50 60
Distance (arcsec)

0.02

0.03

0.04

0.05

F8
14

W
 (m

ag
) 20<F814W<20.5

20.5<F814W<21
21<F814W<21.5

10 20 30 40 50 60
Distance (arcsec)

0.005

0.010

0.015

F4
38

W
 (m

ag
) 21<F438W<21.5

21.5<F438W<22
22<F438W<22.5

Figure 4.2: Photometric errors for the F336W, F343N, F438W, F555W, F814W filter bands as
a function of the distance from the cluster centre. This is shown for three bins of magnitude in
each panel. The red line indicates the magnitude bin corresponding to the SGB.

shown in Figure 4.2. As expected, in the optical images (F438W, F555W and F814W)

where crowding is stronger, errors progressively decrease moving towards the external

regions of the cluster as crowding becomes less and less severe. On the contrary we do

not observe any significant variation in the UV filters (F343N and F336W).

4.2 SGB stars selection

Firstly, we selected SGB stars in themF555W−mF814W vs. mF814W CMD of NGC 1978,

as the SGB and MS overlap in UV filters. Fig. 4.3 shows the mF555W − mF814W vs.

mF814W CMD of NGC 1978, with black filled circles marking the first selection of

SGB stars.

We plotted the first selection of SGB stars in the mF343N −mF438W vs. mF438W CMD

(left panel of Fig. 4.4). We then made the final selection along the relatively vertical

part of the SGB, where there is a visible split in the observed sequence. Red filled
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Figure 4.3: mF555W −mF814W vs. mF814W CMD of NGC 1978. The black box indicates the
locus of the initial selection of SGB stars which are marked by black filled circles.

circles mark the final selected SGB stars in the left panel of Fig. 4.4. Such a selection

was made since we expect a split in this region of the SGB, as we will show later on in

this Section (see Fig. 4.6).

According to the isochrone describing the shape of the SGB in UV filters (Fig. 4.6),

we defined a fiducial line on the blue part of the selected SGB stars in the mF343N −

mF438W vs mF438W CMD and this is displayed in the right panel of Fig. 4.4 as a solid

red line. Black filled circles represent the final selected SGB stars in this figure. Next,

we calculated the distance in mF343N − mF438W colours of each SGB star from the

fiducial line, ∆(mF343N−mF438W). Next, we fit the unbinned verticalised ∆(mF343N−

mF438W)data with two-component Gaussian Mixture Models (GMMs) to identify the

presence of multiple Gaussian components in the colour distribution. We fit the data

with the SCIKIT-LEARN python package called MIXTURE1(see Chapter 3, §3.2).

The result of the fit is shown as a solid black line in the top panel of Fig. 4.5 over

the histogram of the distribution in ∆(mF343N −mF438W)colours. For comparison, we

also show the non-parametric Kernel Density Estimate (KDE) to the unbinned data

as a green curve. The blue (red) dashed curve represents the first (second) Gaussian

component in the fit. We will refer to the blue component as representative of a first

1http://scikit-learn.org/stable/modules/mixture.html

http://scikit-learn.org/stable/modules/mixture.html
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Figure 4.4: mF343N −mF438W vs mF438W CMDs of NGC 1978. Left Panel: Red filled circles
indicate the final selected SGB stars, while black circles represent the stars that did not pass
the final selection. Right Panel: Black circles mark the final selected SGB stars. The red solid
line indicates the fiducial line defined on the edge of the SGB.

population (FP) in the cluster, and to the red component as representative of a second

population (SP).

For each star, we assigned a probability to belong to the FP and to the SP by using

the respective Gaussian function found by the GMM fit. The bottom panel of Fig. 4.5

shows the ∆(mF343N −mF438W)colours vs. mF438W , where the stars are colour coded

by the probability to belong to the SP. The black dashed vertical line marks the adopted

fiducial line.

The left panel of Fig. 4.6 shows the mF343N −mF438W vs. mF438W CMD of the SGB

stars in NGC 1978. Final SGB selected stars are indicated with black filled circles. We

compare our data with three isochrones superimposed. We extensively described how

our stellar N-enriched isochrones are built in Chapter 2, §2.2.4. The blue solid, green

dashed, red dotted curves represent theoretical isochrones, derived by using the 2.2

Gyr, [Fe/H]=-0.5 dex MIST isochrone (Dotter, 2016; Choi et al., 2016), for three dif-

ferent chemical abundance mixtures, denominated as solar ([C/Fe]=[O/Fe]=[N/Fe]=0

dex), intermediate ([C/Fe]=[O/Fe]= −0.1 dex, [N/Fe]= +0.5 dex) and enriched

([C/Fe]=[O/Fe]= −0.6 dex, [N/Fe]= +1.0 dex) models, respectively. For the N-

enhanced isochrones, the choice of C and O abundances were chosen to keep the

[(C+N+O)/Fe] constant between the models, according to what is observed in GCs

(e.g. Carretta et al. 2005).
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Figure 4.5: Top Panel: Histogram of the distribution of selected SGB stars in NGC 1978,
in ∆(mF343N − mF438W)colours. The black solid line represents the two-component GMM
best-fit function to the unbinned data. The blue (red) dashed curve represents the first (second)
Gaussian component in the fit. The green curve indicates the Kernel Density Estimator (KDE).
Bottom Panel: ∆(mF343N −mF438W)vs. mF438W is shown, where stars are colour coded by
the probability to belong to the SP. The black dashed vertical line marks the adopted fiducial
line. The black errorbar shown in the bottom panel represents the typical error in ∆(mF343N−
mF438W)colours andmF438W magnitudes. The error on themF438W magnitude is smaller than
the black filled circle.
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Figure 4.6: Left panel: SGB stars in the mF343N − mF438W vs. mF438W CMD for NGC
1978. The final SGB selected stars are marked with black filled circles. The solid blue,
dashed green and dotted red curves represent our stellar atmosphere models from the 2.2 Gyr,
[Fe/H]=-0.5 dex MIST isochrone by using solar ([C/Fe]=[O/Fe]=[N/Fe]=0 dex), intermediate
([C/Fe]=[O/Fe]= −0.1 dex, [N/Fe]= +0.5 dex) and enriched ([C/Fe]=[O/Fe]= −0.6 dex,
[N/Fe]= +1.0 dex) chemical abundance mixtures, respectively. Right panel: Two-component
GMM best-fit function to the unbinned ∆(mF343N −mF438W)colours. The red curve is calcu-
lated for the selected RGB stars (Chapter 3, §3.1.2), while the blue curve represents the fit to the
SGB stars which were selected in this work (see Fig. 4.5). A systematic offset has been applied
to the ∆(mF343N − mF438W)colours of the RGB such that the GMM’s main peak coincided
with the SGB GMM. The black errorbar shown in both panels represents the typical error in
∆(mF343N −mF438W)colours and mF438W magnitudes. The error on the mF438W magnitude
is smaller than the black filled circle The red (blue) dashed line represents the KDE for the
RGB (SGB) selected stars.

The observed split in the SGB of the mF343N − mF438W vs. mF438W CMD is consis-

tent with expectations from theoretical isochrones. Fig. 4.6 reveals that a clear split is

expected in mF343N − mF438W colours if chemical variations are present in the SGB,

which is consistent to what we observe in the data. Note that for mF438W . 21.5 the

split in the SGB is less evident and the isochrones tend to merge for smaller magni-

tudes, while for mF438W & 22.1 models with different abundance mixtures intersect.

This explains the adopted selection which includes only the relatively vertical part of

the SGB. Additionally, based on the RGB analysis (Chapter 3, §3.1.2), NGC 1978 is

expected to have an intermediate N-enrichment ([N/Fe] = +0.5 dex), which is the same

enrichment we obtain when comparing data to the isochrones with different chemical

mixtures in the SGB (Fig. 4.6).
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The right panel of Fig. 4.6 shows the two-component GMM best-fit function to the

unbinned ∆(mF343N−mF438W)colours for both RGB (red curve) and SGB (blue curve)

stars. Also, the comparison among the KDEs is shown. It is clear from this figure that

both SGB and RGB show the same broadness in ∆(mF343N−mF438W)colours and very

similar GMM best-fit distributions and KDEs.

4.3 SGB Analysis

As a first step, we plotted the SGB selected stars (see §4.2) on themF555W−mF814W vs.

mF814W CMD. This is shown in the left panel of Fig. 4.7, where stars are colour-coded

by the probability to belong to the SP. In this filter combination, no spreads or split are

expected due to the presence of MPs (e.g., Sbordone et al. 2011). In optical filters, the

SGB is expected not to be sensitive to MPs assuming that the CNO sum is constant,

however the magnitude of the SGB is a strong function of age, hence if there is an

age difference between the FP and SP, their SGB magnitudes should differ (e.g., Li, de

Grijs & Deng 2014). Star-to-star variations of He abundance might generate an offset

on the SGB as well. However, significant He spreads in standard GCs are usually

associated with a large N enrichment (e.g., Milone et al. 2015, Milone et al. 2017).

Assuming that young star clusters behave as old GCs, no remarkable He spreads are

to be expected in NGC 1978, as the N enhancement in NGC 1978 appears to be small

(Chapter 3, §3.2.1).

A first look at the left panel of Fig. 4.7 reveals that no clear and visible offset is

observed between the two populations. In order to better quantify the presence of a

possible offset, we defined a fiducial line on the 2 Gyr, [Fe/H]= −0.35 dex BaSTI

isochrone on the SGB (Fig. 4.1). This is shown as a black solid curve in both panels

of Fig. 4.7. We calculated the distance in mF814W magnitudes of each SGB star from

the fiducial line, ∆(m814W). Then, we calculated the weighted mean in ∆(m814W) for

the FP and SP by using the probability to belong to the FP and SP as weights. Our

observed age difference between the two populations, in units of magnitude, results to

be ∆MagOBS ≡< ∆ıFP > − < ∆ıSP >= 0.0027 mag for the mF555W −mF814W vs.



4.3. SGB Analysis 78

0.75 0.80 0.85 0.90 0.95
mF555W mF814W

20.00

20.05

20.10

20.15

20.20

20.25

20.30

20.35

20.40

m
F8

14
W

(m
ag

)
Data

Age = 2 Gyr, [Fe/H]= -0.35

0.0

0.2

0.4

0.6

0.8

SP
 P

ro
ba

bi
lit

y

0.75 0.80 0.85 0.90 0.95
mF555W mF814W

20.00

20.05

20.10

20.15

20.20

20.25

20.30

20.35

20.40

m
F8

14
W

(m
ag

)

Simulation
Age = 2 Gyr, [Fe/H]= -0.35

0.0

0.2

0.4

0.6

0.8

SP
 P

ro
ba

bi
lit

y

Figure 4.7: Left panel: SGB selected stars in the V − I vs. I CMD for NGC 1978 (left panel)
and MC simulation of our SGB data, where observational errors are taken into account (right
panel). Stars are colour-coded according to the probability of belonging to the SP. The black
solid line indicates the defined fiducial line on the 2 Gyr, [Fe/H]= −0.35 dex BaSTI isochrone
on the SGB (Fig. 4.1).

mF814W CMD.

Hence, we can compare the observed age difference in magnitude to isochrones in the

SGB to obtain the age difference in units of Myr. As discussed in §4.1, we used BaSTI

isochrones. The left panel of Fig. 4.8 shows the isochrones we used for the calculation,

from age = 1.94 Gyr up to 2.08 Gyr, spaced by 20 Myr. Two vertical dashed lines mark

the selected region of the SGB where we performed the calculation, corresponding to

the observed section of the SGB where the split is seen in UV colours. Firstly, we

used the 2 Gyr isochrone as an age reference for NGC 1978 (see Fig. 4.1). We then

calculated the mean difference inmF814W magnitudes between the 2 Gyr isochrone and

the other isochrones (displayed in Fig. 4.8), in the SGB. In this way, we can transform

the observed difference in magnitude to age differences (defined as ∆Age).

These values are reported in the right panel of Fig. 4.8. Next, we fit the values with a

linear relation and we found the following:

(∆Age/Myr) = 1801.37× (∆Mag/mag)− 3.46. (4.1)

The best-fit is shown as a red solid line in the right panel of Fig. 4.8. We then used

this relation to convert our observed (∆MagOBS) value into age differences in Myr

between the two populations.
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Figure 4.8: Left Panel: BaSTI isochrones in the mF555W − mF814W vs. mF814W CMD with
ages ranging from 1.94 up to 2.08 Gyr, spaced by 20 Myr ([Fe/H]= −0.35 dex). The vertical
black dashed lines highlight the SGB region used to calculate the expected and observed age
differences between the two populations. Right Panel: ∆Mag vs. ∆Age relation (red solid
line) for the SGB when the isochrones in the left panel are taken into account. See text for
more details.

We found that the age difference in the mF555W −mF814W vs. mF814W CMD between

the FP and SP is 1.4 Myr.

We used Monte Carlo (MC) simulations to estimate the uncertainty of this result. Ide-

ally, we would sample stars from two separate isochrones for the FP and SP and calcu-

late the inferred age difference with respect to the input age difference assuming that

the magnitude spread of each population is solely due to the photometry uncertainties.

However, the measured value of 1.4 Myr is much smaller than the age resolution of the

isochrone grid (20 Myr) and by all means consistent with null intrinsic spread. In this

situation we need to investigate the level of stochasticity introduced in this result due

to the limited number of available stars. Thus, we sampled from a single isochrone

model the same number of stars as the ones used in the fit, using their photometric er-

rors, assigned to them the same probability distribution of belonging to the FP and the

SP as in the real data, and repeated this process 100,000 times. The right panel of Fig.

4.7 shows an example of a simulation, which appears to well reproduce our observa-

tions. According to Fig. 4.2, we considered as photometric errors for the mF555W and

mF814W filters, the values of σ(mF555W ) and σ(ı) found for the inner centre of the clus-

ter (r < 10′′), which also correspond to the maximum values as a function of distance.

We found that the Monte Carlo distribution has a mean of 0 mag, as expected, and
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σ = 0.013 mag, that corresponds to an age difference of 19.9 Myr (by using Eq. 4.1).

We found that the age difference between the two populations in the SGB is then 1±20

Myr, which is consistent with zero. If different stellar isochrones are used, we obtain

similar constraints. When the MIST models are used (however with a resolution of

40 Myr), we find a measured difference of 5 ± 29 Myr. This is an extremely tight

constraint for the origin of MPs and it shows that the two populations have essentially

the same age. We will discuss this in detail in §4.5.

We repeated the analysis described above, using the mF438W − mF814W vs.

mF814W CMD. In this case, the observed age difference between the two populations,

in units of magnitude, is ∆MagOBS = 0.0017 mag. From the simulations, the ex-

pected magnitude difference between the two populations is a Gaussian with peak at

zero and a σ = 0.01 mag. By comparison with mF438W −mF814W vs. mF814W BaSTI

isochrones, we found that the age difference between FP and SP is consistent with

zero, being 0.5 ± 14.7 Myr when an age of 2 Gyr is considered as a reference for the

calculation.

One may argue that absolute cluster ages are not well-known due to the degeneracy

established by the numerous parameters involving the isochrone fitting. In this case, as

a further test for our results, we adopted two other ages as reference age. We did the

same isochrone comparison by using an age of 2.5 Gyr and 1.8 Gyr. We then calculated

the linear relations among ∆Mag and ∆Age and computed the age difference in Myr

between FP and SP by using these new best-fits. We still found that the age difference

is consistent with the results from our original experiment.

4.4 The Main Sequence Turnoff

In this Section, we will outline the analysis of the MSTO width of NGC 1978.

We selected MS stars in the mF555W −mF814W vs. mF814W CMD. Fig. 4.9 shows the

mF555W −mF814W vs. mF814W CMD of NGC 1978 with black filled circles indicating
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Figure 4.9: mF555W −mF814W vs. mF814W CMDs of NGC 1978. The black box indicates the
locus of the selection of MS stars, marked by black filled circles.

the MS selected stars. Next, we defined a fiducial line in the mF555W − mF814W vs.

mF814W space. We calculated the distance in mF555W − mF814W colours of each star

from the fiducial line, ∆(mF555W −mF814W ). The left panel of Fig. 4.10 displays the

histogram of the distribution of the selected MS stars in ∆(mF555W−mF814W ) colours.

The blue solid line indicates a Gaussian function centred at zero and with σ = 0.028,

which represents the error in ∆(mF555W − mF814W ) colours obtained from the AS

experiment by applying the same selection box that was used for the data (Fig. 4.9).

This comparison immediately shows that the observed spread in the MS mF555W −

mF814W colours can be entirely attributed to observational errors.

Next, we used mock samples from theoretical isochrones in order to compare the

MSTO width of the data with simulations. Thus, we can derive an upper limit on the

age spread hidden in the observational errors. We randomly sampled 10,000 stars from

the 2 Gyr BaSTI isochrone (Fig. 4.1) in the MSTO region2, by adding observational

errors both in magnitude and colours. We then applied to the simulation the same se-

lection cut applied to the data (Fig. 4.9). For this set of data, we estimated the distance

in mF555W −mF814W colours of each star from the isochrone, ∆(mF555W −mF814W );

finally, we calculated the standard deviations of stars in ∆(mF555W−mF814W ) colours,

2Random stars were sampled in the colour-magnitude space 0.42.(mF555W − mF814W ). 0.62,
20.4 .ı. 21.1.
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Figure 4.10: Left panel: Histogram of the distribution of the selected MS stars in ∆(mF555W−
mF814W ) colours. The blue solid line indicates a Gaussian function centred at zero and with
σ = 0.028, which represents the observational error obtained from the AS test. Right panel:
∆Age as a function of σsimulation for a population ratio of 1:1 (black solid line) and 1:2 (black
dotted line). The black dashed line indicates the value of σDATA, while the gray shaded area
marks the uncertainty on σDATA. See text for more details.

namely σsimulation. We then did this analysis by sampling 10,000 random stars from

the 2 Gyr BaSTI isochrone and 10,000 star from another isochrone simultaneously, im-

itating two populations separated in age by ∆(age). We repeated this with isochrones

spaced by 20, 40, 60, 80, 100 and 120 Myr. Each simulation was treated in exactly

the same way as the observations. We calculated σsimulation for each sample and we

show ∆Age as a function of σsimulation in the right panel of Fig. 4.10. We calculated

our σDATA from the ∆(mF555W−mF814W ) colours for a direct comparison. This value

is shown as a black dashed line in the right panel of Fig. 4.10. The gray shaded area

marks the uncertainty on σDATA, which was calculated on the unbinned data by using

a bootstrap technique (Efron & Tibshirani, 1993) based on 10,000 realizations.

By making a comparison between σDATA and σsimulation (right panel of Fig. 4.10), we

can put an upper limit of ∼65 Myr to an age spread on the MSTO of NGC 1978, at 2σ

confidence level. We discuss this result in detail in §4.5.

Additionally, based on the results by Goudfrooij et al. (2011), we repeated the same

simulations when considering a population ratio of 1:2, i.e. by sampling 10,000 ran-

dom stars for the younger population and 5,000 stars for the older population. This is

shown as a black dotted line in the right panel of Fig. 4.10 and it is consistent with

what we found with a 1:1 population ratio. However, we note that this scenario would

be inconsistent with the AGB scenario due to the mass-budget problem (e.g., Bastian
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& Lardo 2018).

4.5 Discussion

The aim of this Chapter was to exploit the unique characteristics of NGC 1978 to place

stringent constraints on the presence of a spread in age amongst its multiple constituent

stellar populations.

We took advantage of the structure of its SGB to estimate the age difference between

the two subpopulations present in NGC 1978. We find an age difference between the

two populations of 1± 20 Myr, when the mF555W−mF814W vs. mF814W CMD is taken

into account. If we repeat the same analysis by taking into account the mF438W −

mF814W vs. mF814W CMD we find an age difference of 0.5± 14.7 Myr (§4.3).

From this analysis, it emerges that the two populations present in NGC 1978 have the

same age, or at most their age difference is very little.

Such results establish very tight constraints on the onset of multiple populations and

provide limits on the nature of the polluters.

Models for the origin of multiple populations which adopt multiple generations of star-

formation using AGB stars as the source of polluting material, predict an age difference

of at least 30 Myr between the 1st and 2nd populations, potentially being as large as

200 Myr. Our results show instead that the FP and SP in NGC 1978 formed at the same

time or very close to each other, creating significant tension with predictions from this

family of models.

Currently all models put forward for the nature of multiple populations present serious

drawbacks in reproducing the very complicated details provided by the observations

(Bastian, Cabrera-Ziri & Salaris 2015, Renzini et al. 2015, Prantzos, Charbonnel &

Iliadis 2017, Bastian & Lardo 2018). However, the results presented here support a

scenario where no multiple bursts of star formation are invoked or that they happened

nearly concurrently, i.e. abundance anomalies are not originated by means of multiple
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generations created over a large time separation.

Additionally, we estimated the broadness of the MSTO of NGC 1978. While most

LMC and SMC clusters studied to date, aged less than 2 Gyr, clearly show an extended

MSTO (e.g. Chapter 1, §1.4,Mackey et al. 2008; Milone et al. 2009), we find that

NGC 1978 does not show a prominent eMSTO, i.e. the observed spread in the TO is

comparable with photometric errors (§4.4). We can put an upper limit of ∼65 Myr to

the age spread in the MSTO.

The origin of the eMSTO in young star clusters is strongly debated in the community.

However, NGC 1978 is a peculiar and interesting case which might lead to a major

breakthrough. The nature of the eMSTO was originally explained by the presence of

age spreads of the order of 200-700 Myr within a cluster. Such age spreads, perhaps

related to the cluster’s high escape velocity (Goudfrooij et al., 2014), require the occur-

rence of multiple bursts of star formation over an extended period within the cluster.

Bastian & de Mink (2009) proposed that alternatively the eMSTO may be caused by a

range of stellar rotation rates in a single-aged population. Predictions and comparisons

with observations for the stellar rotation scenario were made by studying eMSTO pop-

ulations of both intermediate age (Brandt & Huang, 2015) and young massive clusters

(YMCs, Niederhofer et al. 2015). The latter found the so-called ∆(Age) vs. Age rela-

tion, i.e. the expected/inferred age spread within a cluster is directly proportional to the

age of the cluster (Fig. 1.7). This trend was also corroborated at younger ages (Milone

et al., 2015; Bastian et al., 2016) and it is in good agreement with predictions of the

stellar rotation scenario. Such a relation and the results presented here are clearly at

odds with predictions of the age spread scenario as the origin of the eMSTO.

We find that chemical abundance variations are present in the RGB of NGC 1978,

whereas no MPs are detected in YMCs or intermediate age clusters that show promi-

nent eMSTOs(< 2 Gyr, e.g. Mucciarelli et al. 2014; Cabrera-Ziri et al. 2016b; Martoc-

chia et al. 2017, 2018a). Among these we can find the SMC cluster NGC 419, which

has very similar properties to NGC 1978 (mass, radius), but it is ∼500 Myr younger

and show one of the largest eMSTO.
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On the contrary, we do not expect the presence of an eMSTO in NGC 1978 according

to the stellar rotation scenario. Brandt & Huang (2015) explicitly predicted a turnover

in the distribution, so that by an age of ∼ 2 Gyr the eMSTO should disappear (in the

rotation scenario) which agrees with the results presented here. Stellar masses for TO

stars at this age (∼ 2 Gyr) drop below 1.5 M�, such that stars are magnetically braked

and become slow rotators. This is fully consistent with the observations, thus the work

reported in this Chapter support a scenario where the eMSTO is caused by a stellar

rotation effect.



Chapter 5

Correlation between cluster age and

abundance spreads

So far, our initial sample had a gap between 2 and 6 Gyr and it also focussed on

clusters with mass & 105M�. In the current Chapter, we present a photometric study

and search for MPs in four additional clusters in the MCs, namely NGC 2121, NGC

2155, Lindsay 38 and Lindsay 113, for which we obtained new HST UV observations.

For a list of the observations used, see Table 2.3. These clusters were chosen to sample

the parameter space missed in our previous observations: they have ages between∼2.5

and ∼6.5 Gyr and masses M . 105 M�. We constrained the presence and amplitude

of N abundance variations by analysing their RGB widths, consistently with what was

done in Chapter 2, 3. Results are compared with what was obtained for the other

clusters of the survey and for Galactic GCs (namely 47 Tuc, M15 and NGC 2419) in

Section §5.2. For the photometric data reduction and calculation of AS catalogues we

refer to Chapter 2, §2.2.1 and Chapter 4, §4.1.1, respectively. The results presented in

this Chapter are based on the work published in Martocchia et al. (2019).

86
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Figure 5.1: mF555W −mF814W vs. mF555W CMD of NGC 2121 before (left panel) and after
(right panel) the field star subtraction.

5.1 Analysis

For NGC 2121, NGC 2155 and Lindsay 113, the analysis presented in this Chapter was

performed in a circular region around the cluster centre (the “cluster region”). Stars

were selected within a radius of 40 arcsec from the centre of NGC 2121 and NGC

2155 and within a radius of 45 arcsec from the centre of Lindsay 1131. The centre of

each cluster was estimated by fitting a two-dimensional Gaussian to the distribution

of the stellar density. For NGC 2121 and NGC 2155, we performed a statistical de-

contamination analysis to use likely cluster members. For the background subtraction

technique we refer to Chapter 2, §2.2.2. Figure 5.1 shows the mF555W − mF814W vs.

mF555W CMD of NGC 2121 before (left panel) and after (right panel) the field star

subtraction, while Fig. 5.3 reports the mF336W −mF438W vs. mF438W CMDs of NGC

2121 and NGC 2155 before and after the decontamination.

Field stars were not subtracted in Lindsay 38 and Lindsay 113 since it was not possible

1The radii of the clusters were selected to maximise the areas of the background and cluster regions
at the same time, avoiding overlap between the two.
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Figure 5.2: ACS(grey) and WFC3(red) map for Lindsay 38 (top) and Lindsay 113 (bottom)
FOV.
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to define a background region that is extended enough. Figure 5.2 shows the RA vs.

Dec map for Lindsay 38 (top) and Lindsay 113 (bottom), where the FOV covered

by the ACS(WFC3) camera is indicated in grey(red). A first look reveals that the

mF555W −mF814W vs. mF555W CMDs of Lindsay 38 and Lindsay 113 are rather clean

from field stars contamination (see Fig. 5.4). In the current analysis, we considered all

the stars in common between the ACS and WFC3 catalogue for Lindsay 38.

We note that, for NGC 2155, the WFPC2 catalogue was only used to give an estimate

of the age of the cluster (see §5.1.1). The optical images (F450W and F555W/WFPC2)

only have one exposure per filter (Table 2.1) and we found that the addition of these

filters to the catalogue was not useful, instead it only added noise.

We also corrected our photometric catalogues for differential reddening (§2.2.3). We

found that our clusters are not significantly affected by differential reddening, with a

maximum δE(B − V ) of ∼0.003 mag for Lindsay 38 and ∼0.005 mag for Lindsay

113 and NGC 2121.

As in our previous analysis (Chapters 2,3), we first selected bona-fide RGB stars in the

mF555W−mF814W vsmF814W CMD and then in themF438W−mF814W vsmF814W CMD,

except for NGC 2155 where RGB stars were selected in the mF336W − mF438W vs

mF438W CMD. Stars were selected between the base of the lower RGB (∼ 0.5 magni-

tude above the main sequence turnoff) and the RGB bump, to avoid contamination by

SGB or AGB stars. Figure 5.4 shows the mF555W−mF814W vs mF814W CMDs of NGC

2121, Lindsay 113 and Lindsay 38, and the mF336W −mF438W vs. mF438W CMD for

NGC 2155. Black filled circles indicate the final selected RGB stars.

We used the pseudo-colour CF336W,F438W,F343N to look for a broadening in the RGB,

and to make a homogeneous comparison with the other clusters in our sample. This

colour is defined as CF336W,F438W,F343N =(F336W−F438W)−(F438W−F343N) and it

has already been proven to be very effective at separating populations with different N

abundances (Niederhofer et al., 2017b,a). Figure 5.5 shows the CF336W,F438W,F343N vs.

mF438W CMDs for all the clusters analysed in this Chapter, where black filled circles

represent the final selected RGB stars in each panel. At a first look, the UV CMDs
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Figure 5.4: mF555W −mF814W vs. mF814W CMDs for NGC 2121, Lindsay 113, Lindsay 38
and mF336W − mF438W vs. mF438W CMD for NGC 2155. Black circles indicate the final
selected RGB stars.
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Figure 5.5: CF336W,F438W,F343N vs. mF438W CMDs for the clusters analysed in this Chapter.
Black circles indicate the final selected RGB stars.
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reveal no clear evidence for splits in the RGB and the RGB looks quite narrow in

all cases, except for NGC 2121. To quantify the broadening of the RGB, we took

advantage of the AS experiments (§4.1.1).

We selected RGB stars in the CF336W,F438W,F343N vs. mF438W CMDs of the simulated

AS catalogues in the same range of magnitude and colours as for the selected observed

RGB stars. We then used fiducial lines to verticalise the RGB and obtain ∆(colours) for

both observed and simulated catalogues. Figure 5.6 shows the ∆(CF336W,F438W,F343N )

distributions for observed (black) and simulated (pink) RGB stars for the clusters anal-

ysed in this Chapter. We also calculated the standard deviations of each distribution

and these are also superimposed in each panel of Fig. 5.6. Errors on standard devia-

tions of the observed distributions were calculated with a bootstrap technique based on

5,000 realizations.

In all clusters, except for Lindsay 38, a significant broadening in the observed distri-

butions is present when comparing them to the simulated distributions. The observed

standard deviations are at least twice as large as the standard deviations of the simu-

lated single stellar population from the AS tests (see σs reported in Fig. 5.6).

The case of Lindsay 38 is dominated by poor statistics, as the RGB is composed by

∼20 stars. By looking at Fig. 5.6, there are no signs of evident broadening in the RGB

of Lindsay 38. The standard deviation of the observed distribution is comparable with

what we expect from the simulated AS distribution, within the errors.

Hence, the fact that the distributions of NGC 2121, NGC 2155 and Lindsay 113 are

broader than what is expected from a single stellar population, suggests that N varia-

tions are present in the RGB stars of such clusters. Based on the current dataset and

error estimation, no N variations are instead found in Lindsay 38. A comparison with

the other clusters in our HST survey will be made in the next Section (§5.2).

We then fit the discrete ∆(CF336W,F438W,F343N ) data with Gaussian Mixture Models

(GMM) to identify the presence of multiple Gaussian components in the colour dis-

tribution. We thus derived the probability that a bimodal distribution is rejected for

each cluster. Within our observational uncertainties, we find p-values larger than 25%
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Figure 5.6: Histograms of the distributions of observed (black) and simulated (pink) RGB stars
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for all clusters, which demonstrates that bimodality is unlikely in all cases. This was

obtained with a parametric bootstrap technique by using the GMM code by Muratov

& Gnedin (2010).

When comparing observations to AS catalogues we should note that the errors ob-

tained from AS experiments are systematically underestimated. The main reason is

that all AS experiments are simplified to some extent and they are not able to account

for all the instrumental sources of noise. The main factor responsible for the error un-

derestimation is likely that the PSF used to fit the artificial stars is also the one used

to create them, at odds with what happens with the real stars. The typical difference

between errors from AS and true observational uncertainties has been estimated in pre-

vious studies and is of the order of 30 − 40% (see Fig. 4 of Dalessandro et al. 2011a

and related text and Fig. 21 of Milone et al. 2012). In all clusters, except for Lindsay

38, we observe that the width of the observed distributions is &50% of the width of

the AS distributions, thus we can safely say that a broadening (which is not due to

photometric errors) is present in NGC 2121, NGC 2155 and Lindsay 113. Our results

for NGC 2121 agree with the conclusions of Li & de Grijs (2019).

5.1.1 Age Determination

To estimate the age of the clusters in our sample, we superimposed BaSTI isochrones

(Pietrinferni et al. 2004) on the optical CMDs of the clusters analysed in this Chapter.

We decided to assume average and fixed distance moduli for the LMC and SMC to

minimize the number of free parameters involved in the age determination. We assume

(m−M)LMC = 18.477 (Pietrzyński et al., 2019) and (m−M)SMC = 18.965 (Graczyk

et al., 2019).

Several isochrones with different metallicities have been used for the fitting of each

cluster. The metallicity was chosen to best match simultaneously the RGB and MS.

Figure 5.7 shows themF555W−mF814W vs. mF555W CMDs for NGC 2121 and Lindsay

38 and the mF450W −mF555W vs. mF555W CMD for NGC 2155. Superimposed on the

data are three isochrones at different ages, where certain values of metallicity [Fe/H]
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and extinction E(B − V ) were adopted. For NGC 2121, we found that the best fit

parameters reproducing the shape of the CMD in all its evolutionary stages are: age

' 2.5 Gyr, metallicity [Fe/H] = −0.35 dex, and extinction value E(B − V ) = 0.08

mag. We find a similar best fit age for NGC 2155 (∼ 2.5 Gyr) along with a metallicity

of [Fe/H] = −0.66 dex and E(B − V ) = 0.03 mag. For these clusters, we used

BaSTI isochrones that account for the effects of core convective overshooting during

the central H-burning stage.

For Lindsay 38, the best fit parameters we found by fitting canonical BaSTI isochrones

are the following: age ' 6.5 Gyr, [Fe/H] = −1.5 dex, E(B − V ) = 0.02 mag.

BaSTI isochrones on Lindsay 113 could not fit well both MS, RGB and the horizontal

branch (HB) at the same time, thus we also explored MIST isochrones (Dotter 2016;

Choi et al. 2016). Figure 5.8 shows the mF555W − mF814W vs. mF555W CMDs for

Lindsay 113, where BaSTI (left) and MIST (right) isochrones at different ages are

superimposed. By adopting the same extinction, we find that there is no considerable

difference between the results we get either with BaSTI or MIST. Thus, we found that

the best isochrones reproducing the CMD are the 4-4.5 Gyr MIST isochrones with

[Fe/H] = −1.3 dex and E(B − V ) = 0.01 mag (respectively blue and orange curves

in Fig. 5.8). We also note that for NGC 2155 and Lindsay 38, the HB is not matched

perfectly. A better fit could be reached by slightly changing the cluster distance moduli.

However, we conservatively decided to keep them fixed as the required changes have

only a small impact on the derived ages.

Table 6.1 provides information about the parameters adopted for the clusters analysed

in this Chapter. Values of cluster masses from the literature are also reported.

The results shown here are fairly consistent with the literature. Glatt et al. (2008b)

report an age of 6.5±0.5 Gyr and a metallicity [Fe/H]=-1.5 dex for Lindsay 38 by using

the Dartmouth isochrones. Also, Rich, Shara & Zurek (2001) report an age of 3.2±0.5

Gyr for both NGC 2121 and NGC 2155 by using the Padova isochrones, slightly older

than what we found, assuming [Fe/H]=-0.68 dex and using Girardi isochrones. Finally,

Mighell, Sarajedini & French (1998) report an age of 4− 5 Gyr for Lindsay 113, with
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Figure 5.7: mF555W−mF814W vs. mF555W CMDs for NGC 2121, NGC 2155 and Lindsay 38,
respectively from left to right. The blue, orange and green curves represent BaSTI isochrones
at different ages (see legend). The metallicity adopted for each cluster is reported in the legend.
Finally, the values of the extinction E(B − V ) and distance modulus (m −M) are shown in
the upper left part of the plots.
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Figure 5.8: mF555W − mF814W vs. mF555W CMDs for Lindsay 113. The blue, orange and
green curves represent BaSTI (left) or MIST (right) isochrones at different ages. The adopted
metallicity is reported in the legend for each panel. Finally, the values of the extinction E(B−
V ) and distance modulus (m−M) are shown in the upper left part of the plots.

Table 5.1: Adopted values of age, metallicity, distance modulus and reddening for the clusters
analysed in this Chapter. The reported cluster masses are taken from the literature.

Cluster Name Age [Fe/H] (m−M) E(B − V ) Mass Mass Ref.
(Gyr) (dex) (mag) (mag) (×105 M�)

NGC 2121 2.5 -0.35 18.477∗ 0.08 1 (1)
NGC 2155 2.5 -0.66 18.477∗ 0.03 0.36 (1)

Lindsay 113 4.5 -1.3 18.965† 0.01 0.23 (2)
Lindsay 38 6.5 -1.5 18.965† 0.02 0.15 (3)

(1) McLaughlin & van der Marel (2005); (2) Chantereau et al. (2019); (3) Glatt et al.
(2011). ∗: fixed value from Pietrzyński et al. (2019) (LMC) †: fixed value from

Graczyk et al. (2019) (SMC).
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a [Fe/H]=-1.2 dex.

From spectroscopy of red giant stars, Grocholski et al. (2006) find a [Fe/H]=-0.5 dex

for NGC 2121 and NGC 2155. We find that NGC 2121 is slighlty more metal rich

([Fe/H]=-0.35 dex, see Table 6.1), although errors due to the employment of different

methods and isochrones need to be taken into account. Slightly different values have

been reported in the literature for Lindsay 113, from [Fe/H]=-1.2 dex (Da Costa &

Hatzidimitriou, 1998) to [Fe/H]=-1.03 dex (Parisi et al., 2015), which are also fairly

consistent to what we find ([Fe/H]=-1.3 dex, see Table 6.1). Finally, no spectroscopic

estimates for the metallicity of Lindsay 38 is reported in the literature so far, to the best

of our knowledge.

5.2 Results

We combined the results obtained for the clusters analysed in this Chapter (namely

NGC 2121, NGC 2155, Lindsay 113 and Lindsay 38) with those from Chapters 2, 3

(i.e. NGC 419, 1783, 1806, 1846, 1978, 416, 339, 121, Lindsay 1). Finally, we added

three ancient clusters (& 12 Gyr) located in the MW, namely NGC 2419, M15 and 47

Tuc.

We calculated the standard deviation of the verticalised distribution of bona-fide RGB

stars selected as described in Section 5.1 in CF336W,F438W,F343N colours for the entire

sample. The left panel of Figure 5.9 reports the standard deviation as a function of

cluster age. Circles indicate clusters with MPs, while squares represent clusters with

no significant detection of MPs. Data are colour-coded by cluster mass. Errors on

standard deviations were calculated with a bootstrap technique based on 5,000 realiza-

tions.

It is interesting to observe that older clusters show much wider RGBs with respect to

the younger ones, representative of more extreme populations. We find that the stan-

dard deviations in CF336W,F438W,F343N of the sample analysed in this Chapter (namely

NGC 2121, NGC 2155, Lindsay 113 and Lindsay 38) are comparable, within the er-
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rors, with the standard deviations of the clusters that are aged . 2 Gyr. Note that

to establish whether chemical anomalies are present in the clusters of our sample, we

compare the RGB width (σ) with expectations from photometric errors. However, it is

also likely that clusters younger than 2 Gyr might potentially hide smaller N variations

that are not detectable by current photometric studies. Future spectroscopic observa-

tions or higher precision photometry will be crucial to understand if this may be the

case or not.

Furthermore, it appears that there is not a continuous trend between σ and cluster age,

as clusters in the age range 2.5−4 Gyr have narrower widths of the RGB with respect to

NGC 1978, for instance. Nonetheless, other parameters need to be taken into account.

Cluster mass (at the present day) has been already established to play a fundamental

role in the chemical anomalies picture (e.g., Milone et al. 2017, §1.6), with the exten-

sion of the abundance variations becoming larger with increasing stellar mass. Masses

for the MCs clusters are taken from Table 2.3, while masses for the galactic GCs are

from Baumgardt & Hilker (2018). We note that the cluster mass of our sample is no

longer relatively constant. The galactic GCs are 5-10 times more massive than our

previous sample, while the new MCs sample reported in this Chapter is lower mass,

by factors of 2-5.

Lindsay 38 is old enough (∼6.5 Gyr) that one would expect a broader RGB, if age

would be the only parameter correlated to abundance variations. However, this cluster

also has a lower mass compared to NGC 339 or NGC 416, by almost one order of

magnitude.

We also explored the behaviour of the RGB by using the pseudo colour

CF343N,F438W,F814W ≡ (F343N −F438W )− (F438W −F814W ) which was used in

our previous HST survey study (Chapters 2,3). The right panel of Figure 5.9 reports the

standard deviation of the RGB distributions in verticalised CF343N,F438W,F814W colours

as a function of cluster age, colour-coded by cluster mass. However, we did not include

two clusters of our sample in this plot, namely NGC 2121 and NGC 2155. For the for-

mer, we analysed the errors in the WFPC2 F555W and F814W filters and we noticed
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Figure 5.9: Standard deviation of the RGB observed distribution in CF336W,F438W,F343N (left)
and CF343N,F438W,F814W (right) colours as a function of cluster age for all the clusters in our
HST survey plus 47 Tuc, NGC 2419 and M15. Circles represent cluster with MPs, while
squares indicate clusters with no MPs. Data are colour-coded by cluster mass.
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that these are more than twice as much compared to the ACS optical filter errors for

Lindsay 38 and Lindsay 113. For this reason, we decided not to show the results for

NGC 2121 in theCF343N,F438W,F814W plots. Regarding NGC 2155, we do not have the

necessary filters, as only WFPC2 observations in F450W and F555W bands are avail-

able (see Table 2.1). New optical observations are clearly needed to fully characterise

those two clusters. The σ(CF343N,F438W,F814W ) vs. age plot is consistent with what we

found in CF336W,F438W,F343N colours. This contributes to strengthen the result that a

correlation between N spread and cluster age is present.

Cabrera-Ziri et al. (in preparation) will present a detailed modelling of the effect of

age (i.e., the effective temperature of the RGB) and metallicity on the measured widths

of CF336W,F438W,F343N and CF343N,F438W,F814W . However, for the purposes of this

work, the models confirm that CF343N,F438W,F814W is essentially independent of age

and also of [Fe/H] down to the regime of metal-poor Galactic GCs. Any observed vari-

ation/relationship betweenCF343N,F438W,F814W and cluster age can then be attributed to

a signature of N enrichment. There is a small effect of [Fe/H] on CF336W,F438W,F343N ,

in the sense that lower [Fe/H] values result in smaller ∆(CF336W,F438W,F343N ) values,

but as the two Galactic GCs M15 and NGC 2419 have much lower [Fe/H] but larger

σ(CF336W,F438W,F343N ) values, it is clear that N variations are the driver with age in

that diagram as well.

5.3 Discussion

The origin of the unusual chemical patterns typically found in GC stars has remained

an unsolved puzzle so far. Although much effort has been put into developing new

scenarios (e.g. Gieles et al. 2018; Breen 2018; Howard et al. 2018), no consensus

has been reached and many observational results remain unexplained (see Bastian &

Lardo 2018). The exploration of whether a star cluster hosts MPs based on certain

cluster properties has been an important avenue of investigation. It is now estab-

lished that (present day) cluster mass is a fundamental property controlling the extent

of which MPs are present, with the star-to-star abundance variations becoming more
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severe with increasing cluster mass (e.g., Bragaglia et al. 2012; Schiavon et al. 2013;

Milone et al. 2017). On the other hand, we also know that mass cannot be the only pa-

rameter which comes into play, as many massive star clusters, although much younger

than ancient GCs, do not show evidence for the chemical anomalies (Mucciarelli et al.,

2008; Cabrera-Ziri et al., 2016b; Lardo et al., 2017; Martocchia et al., 2017, 2018a).

To shed light onto this, we planned a photometric survey to target star clusters that

are as massive as old GCs, but significantly younger. In this Chapter, we reported on

the photometric analysis of new HST UV images for four clusters in the MCs, namely

NGC 2121, NGC 2155, Lindsay 113 and Lindsay 38, These clusters have a mass a few

times 104M� except for NGC 2121 which is ∼ 105M�(see Table 6.1) and they are

aged between ∼2.5 and ∼6 Gyr.

The UV CMDs of each cluster (see Fig. 5.5 for the CF336W,F438W,F343N vs.

mF438W CMDs) reveal no presence of splits in the RGBs. We quantified the broad-

ening of the RGB by comparing the observed verticalised distributions of RGB stars

with artificial RGB stars (§5.1). Three out of four clusters in the sample show a signif-

icant broadening with respect to photometric errors in CF336W,F438W,F343N colours, i.e.

colours that are sensitive to N variations; Lindsay 38 is the only cluster of the sample

whose RGB width is compatible with the errors. Thus, we add three intermediate-age

clusters to our HST survey that show MPs in the form of N spread, namely Lindsay

113, NGC 2121 and NGC 2155.

In Chapter 3, we reported a correlation between cluster age and N enhancement as in-

ferred from photometry, for 9 clusters in the sample. Here we expand our sample to 16

clusters by adding also three GCs (age & 12 Gyr) from the MW, namely NGC 2419,

M15 and 47 Tuc. We calculate the standard deviation of the verticalised RGB distribu-

tion in CF336W,F438W,F343N and CF343N,F438W,F814W colours and we plot this quantity as

a function of cluster age. Our results are shown in Fig. 5.9. We find that older clusters

show larger widths of the RGB, thus larger N enhancement. The addition of 7 clusters

to the previous sample strengthens the idea that cluster age plays a role in shaping the

properties of MPs in GCs.
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However, the exact role of age is currently unknown. It could be suggested that the

onset of MPs is due to an evolutionary effect. In our sample we are comparing stars of

different masses along the RGB. Some unidentified process operating only in stars less

massive than 1.5 M�(the mass of a RGB star at ∼2 Gyr) may be responsible for the

formation of the chemical anomalies. Accordingly, we tentatively argue that chemical

anomalies could be expected to be found in stars with masses below 1.5 M� on the

main sequence of young clusters (< 2 Gyr, c.f. §5 point iv, Cabrera-Ziri et al. 2016b).

We note however that our observations are effectively probing N variations among

RGB stars within our sample of clusters. An alternative explanation might therefore

be linked to stellar evolutionary processes where the observed surface abundance of N

in RGB stars may be affected. If this is the case, we may expect to find N-spreads on

the main sequence of clusters that do not correspond to the spreads observed along the

RGB. This can also be tested by looking at elements less likely to be affected by stellar

evolution, e.g., Na or Al.

It is interesting to note that cluster age and cluster mass seem to work simultaneously.

We find that a difference in cluster mass also has an impact at younger ages. As already

argued in §5.2, we observe that Lindsay 38 has a similar age to NGC 339 and NGC

416 but its RGB is less than half as wide. The mass of Lindsay 38 is estimated to be

∼ 104 M�(Glatt et al., 2011), an order of magnitude smaller than those of NGC 339

and NGC 416.

However, since all of the clusters in our sample belong to the MCs, it is also possible

that the appearance of MPs at 2 Gyr could be due to an unknown environmental effect.

It would be extremely interesting to test the presence of MPs in clusters beyond the

MW and its satellites, but this remains difficult, and new techniques based on integrated

light will likely be necessary.



Chapter 6

Is Fornax 4 the nuclear star cluster of

the Fornax dwarf spheroidal galaxy?

Fornax 4 is the most distinctive globular cluster in the Fornax dwarf spheroidal. Lo-

cated close to the centre of the galaxy, more metal-rich and potentially younger than its

four companions (namely, Fornax clusters number 1, 2, 3 and 5), it has been suggested

to have experienced a different formation than the other clusters in the galaxy.

In this Chapter we use HST/WFC3 photometry to characterize the stellar population

content of this system and shed new light on its nature. By means of a detailed compar-

ison of synthetic HB and RGB with the observed colour-magnitude diagrams, we find

that this system likely hosts stellar sub-populations characterized by significant iron

spread up to ∆[Fe/H]∼0.4 dex and possibly by also some degree of He abundance

variations ∆Y∼ 0.03. We argue that this purely observational evidence, combined

with the other peculiarities characterizing this system, supports the possibility that

Fornax 4 is the nuclear star cluster of the Fornax dwarf spheroidal galaxy. A spectro-

scopic follow-up for a large number of resolved member stars is needed to confirm this

interesting result and to study in detail the formation and early evolution of this system

and more in general the process of galaxy nucleation. This Chapter is based on the

work by Martocchia et al. (2020).

105
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6.1 Introduction

Fornax and Sagittarius are the only known dwarf spheroidals (dSphs) in the Local

Group that host a GC system. Interestingly, despite having a relatively small stellar

mass of a few times 107M�(McConnachie, 2012), the Fornax dSph hosts at least five

GCs, with the existence of a sixth one announced recently (Wang et al., 2019).

The Fornax GC system is interesting in many aspects: its GC specific frequency, i.e.

the number of clusters normalised to the total visual magnitude of the galaxy, is among

the largest observed (Georgiev et al., 2010), and even more intriguing is the observed

difference in the peak metallicity of its GCs compared to the underlying stellar metal-

licity (Larsen, Strader & Brodie, 2012b). These properties of the Fornax GC system

provide important constraints for GC formation efficiency as well as mass-loss and

self-enrichment (Larsen, Strader & Brodie, 2012b; Lamers et al., 2017).

Similarly to what is observed in ancient GCs in the MW, the Fornax clusters show

light-element chemical abundance variations among their stars (multiple populations,

MPs, Chapter 1, §1.3). To constrain the presence of MPs in Fornax clusters, Larsen

et al. (2014a) analysed the width of the RGB of Fornax 1, 2, 3 and 5 by using HST

filters sensitive to N variations finding that all four clusters host MPs in the form of N

spreads. Additionally, D’Antona et al. (2013) examined the morphology of the HB of

the same GCs concluding that such systems must host a large fraction of He-rich stars.

To date, no investigation of MPs in the cluster Fornax 4 has been performed. This clus-

ter was likely excluded from previous studies due to the high contamination from field

stars as this system is located very close to the galaxy center. The first and only hint

that Fornax 4 might host chemical variations was given by Larsen, Strader & Brodie

(2012a). They calculated the [Mg/Fe] from the integrated light spectra of Fornax 3, 4

and 5, finding it to be significantly lower than the [Ca/Fe] and [Ti/Fe] ratios, contrary to

what is generally observed in field stars in the Galaxy and in dSphs. They interpreted

this as a potential signature of MPs.

By using optical HST photometry, Buonanno et al. (1999) found that Fornax 4 has a
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much redder HB and brighter SGB than the other GCs in Fornax. They concluded that

Fornax 4 is ∼3 Gyr younger than the other clusters, which are on average ∼12 Gyr

old. They derived a metallicity of [Fe/H]< −2 dex for Fornax 4, which is significantly

lower than what obtained by Strader et al. (2003) based on integrated spectroscopy

([Fe/H]= −1.5 dex) and by Larsen, Strader & Brodie (2012a) ([Fe/H]= −1.4 dex).

The other GCs in the Fornax dSph are more metal-poor, with metallicities ranging

from [Fe/H]= −1.8 dex to [Fe/H]= −2.3 dex (Larsen, Strader & Brodie, 2012a).

These results have been recently confirmed by de Boer & Fraser (2016) who studied

the star formation history of Fornax 4 and found that it is indeed younger and more

metal-rich compared to the other clusters in the galaxy.

The position, higher metallicity and younger age of Fornax 4 led many authors (e.g.

Hardy 2002; Strader et al. 2003) to consider it as the nuclear star cluster (NSC) of the

Fornax dSph. A NSC is a very dense and massive star cluster which resides in the

innermost region of a given galaxy (Böker et al., 2002; Neumayer et al., 2011). If this

is the case for Fornax 4, it should be expected to show a significant iron spread, as is

typically observed in such systems (e.g. Walcher et al. 2006; Lyubenova et al. 2013;

Kacharov et al. 2018). However, at the moment there is no consensus about the real

nature of Fornax 4 and whether or not it is a genuine GC or a NSC is still an open

question (see the discussion in Hendricks et al. 2016 for more details).

By using HST/WFC3 archival observations, we study in detail the stellar population

properties of Fornax 4 with the aim of providing new clues on its nature and formation.

This Chapter is structured as follows: in Section §6.2 we report on the photometric

reduction procedures, while we outline the calculation of the structural parameters in

Section §6.3. We estimate the age of Fornax 4 in Section §6.4. In Section §6.5 we

characterize the stellar population properties in the system. Finally, we discuss and

conclude in §6.6.
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6.2 Observations and data reduction

We used HST/WFC3 images obtained trough filters F438W and F814W (GO-13435,

P.I. M. Monelli). The dataset consists of: i) 12 exposures of 200s each for the F438W,

ii) 6 exposures of 150s each for the F814W.

The same photometric method reported in Chapter 2 has been applied to the Fornax 4

data.

6.2.1 Artificial Stars Test

We performed AS experiments following the method described in Dalessandro et al.

(2011a, see also Bellazzini et al. 2002; Dalessandro et al. 2015, 2016) to derive a

reliable estimate of the photometric errors. Briefly, we generated a catalog of simu-

lated stars with a F814W-band input magnitude (F814Win) extracted from a luminos-

ity function (LF) modeled to reproduce the observed LF in that band and extrapolated

beyond the observed limiting magnitude. We then assigned a F438Win magnitude to

each star extracted form the luminosity function, by means of an interpolation along the

mean ridge line obtained from the observedmF438W−mF814W vsmF814W CMD. Arti-

ficial stars were added to real images by using the software DAOPHOTIV/ADDSTAR.

We minimized “artificial crowding”, placing stars into the images following a regular

grid composed by 15× 15 pixel cells (roughly corresponding to 10 FWHM) in which

only one artificial star for each run was allowed to lie. More than 100,000 stars have

been simulated in each WFC3 chip. AS experiments have adopted the same reduction

strategy and models for PSF that are used for real images on both real and simulated

stars. In such a way, the effect of radial variation of crowding on both completeness

and photometric errors is accounted for. The AS catalog was then used to derive pho-

tometric errors for HB and RGB stars, which will be used in the following analysis

(see §6.5). The analysis of the AS stars was carried out applying the same cuts in pho-

tometric quality indicators (sharpness – sharp) that have been applied in the data (see

Section 6.3). The method reported here is very similar to the one performed in Chapter
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Figure 6.1: Top panel: Stellar density of Fornax 4 as a function of radius. The open circles
indicate the observed density profile while the black filled circles represent the background
subtracted stellar density profile. The black solid line represents the best fit of the King profile.
The dashed line indicates the estimation of the background. Bottom panel: the residuals of the
fit are shown. See the text for more details.

4, §4.1.1.

6.3 Structural Parameters

To derive the structural parameters of Fornax 4, we built the cluster number density

profile by using stars with sharpness |sharp| <0.1. As a first step we derived the centre

of gravity of the cluster by using the same approach described in Dalessandro et al.

(2013a). A first estimate of the cluster center was performed by eye, then the center

was measured through an iterative procedure that averages the absolute positions of the

stars lying within four different concentric radial regions ranging from 10” to 25” with

a step of 5”. Only stars with with mF438W < 25 were selected. The adopted cluster

center is the mean of the different derived values, Cgrav=(02:40:07.737,−34:32:10.96),
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Figure 6.2: Distortion-corrected X vs Y map for the WFC3 field. The red cross indicates
the centre of the cluster while black circles represent stars that are within a radius of 30 arcsec
from the centre of the cluster. The purple region represents the area defined for the background,
where stars used for the decontamination are indicated as red circles.

with uncertainties σR.A. = 0.4” and σDec = 0.3”. The density profile analysis was

performed following the procedure fully described in Miocchi et al. (2013).

We used the AS catalogue to calculate the photometric completeness as a function

of the distance from the cluster centre and magnitude. We assigned a completeness

value C to every star in the real catalogue. We split the WFC3 FoV in 19 concentric

annuli centered on Cgrav, each one divided into two, three, or four sub-sectors. In

each sub-sector, we estimated the total number of stars with mF438W < 24 normalized

to their completeness, i.e. Σ(1/C). The projected stellar density in each annulus

is then the mean of the values measured in each sub-sector and the uncertainty has

been estimated from the variance among the sub-sectors. The derived density profile

is shown in Figure 6.1 as open circles. The dashed line indicates the background,

which was determined from stars at Log(r/arcsec) > 1.4. The black filled circles

represent the background subtracted stellar density profile. We then derived the cluster

structural parameters by fitting the observed density profile with a spherical, isotropic,
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Figure 6.3: mF438W − mF814W vs. mF438W CMD of Fornax 4 before (left panel) and after
(right panel) the field star subtraction.



6.3. Structural Parameters 112

single-mass King (1966) model. The best-fit model results in a cluster with a King

dimensionless potential W0 = 5.0, corresponding to a concentration parameter of c =

0.9, a core radius of rc = (3.4± 0.7)” and a tidal radius rt = (31.5± 4.8)”.

The structural parameters of the Fornax clusters were previously studied by Webbink

(1985) and more recently by Mackey & Gilmore (2003). The latter determined the

surface brightness profile of Fornax 4 by using WFPC2 observations in F555W and

F814W bands. They find a core radius of (2.64 ± 0.27)” which is compatible within

the errors with the value obtained in this work, although slightly lower.

Based on the obtained structural parameters, we then selected stars within a radius of

30” from the centre of Fornax 4, as “cluster region”. Figure 6.2 shows the instrumental

coordinates (X,Y) map for Fornax 4 in the WFC3 field. Black points represent the

selected stars in the cluster region while the red cross indicates Cgrav. We performed

a statistical decontamination analysis to get a clean CMD, following the method by

Niederhofer et al. (2017a). We defined a background reference region with the same

area as the cluster region in order to statistically subtract field stars from the cluster

CMD in the mF438W − mF814W vs. mF438W space. For every star in the background

region, the closest star in colour-magnitude space in the cluster region is removed.

Since the contamination in the field of Fornax 4 is large, we performed the field stars

subtraction by using 3 different areas for the background region: one at the bottom of

chip 2 (see Fig. 6.2, the purple area), one at the centre of chip 2 and a final one on

the top. No significant differences were detected between the cleaned CMDs in the

three cases. Hence, for the following analysis we decided to use the catalogue where

the cluster and background regions are defined as in Fig. 6.2. Fig. 6.3 shows the

mF438W − mF814W vs. mF438W CMD of Fornax 4, before (left panel) and after (right

panel) the field star subtraction. While statistical decontamination may be prone to

non-negligible uncertainties (e.g. Dalessandro et al. 2019), it is possible to note how

both the main sequence and red clump (mF438W−mF814W∼1.5 mag andmF438W∼ 22

mag) of the young population of stars in the Fornax dSph disappear after the correction.
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Figure 6.4: Differential reddening map for Fornax 4 in the cluster region. See text for more
details.

6.3.1 Differential extinction

We corrected our photometric catalogue for differential reddening (DR) by using the

same method reported in Dalessandro et al. (2018) and Saracino et al. (2018). We

used our field stars subtracted catalogue for the estimation of the DR (see §6.3). We

selected RGB stars in the magnitude range 22.5 .mF438W . 24.5 and we defined

a fiducial line in the mF438W − mF814W vs. mF438W CMD for these stars. We then

calculated the geometric distance (∆D) from stars in this magnitude range that are 2σ

away from the line, where σ represents the difference in colour between the stars and

the fiducial line. For each star in the catalogue, the DR correction is then estimated by

computing the mean of the ∆D values of the 20 nearest (in space) selected stars. By

changing the number of neighbour stars (from 10 to 30), we obtain very similar results.

The δE(B − V ) is obtained through the following equation:

δE(B − V ) =
∆D√

2R2
F438W +R2

F814W − 2RF438WRF814W

, (6.1)
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Figure 6.5: Field stars subtracted mF438W −mF814W vs. mF438W CMDs of Fornax 4 before
(left panel) and after (right panel) the differential reddening correction.

where RF438W = 4.18 and RF814W = 1.86 are the adopted extinction coefficients.

Fig. 6.4 shows the DR map for Fornax 4 in the cluster region (see §6.3), while Fig. 6.5

shows the mF438W − mF814W vs. mF438W CMDs of Fornax 4 before (left panel) and

after (right panel) the DR correction. We find a maximum δE(B−V ) of∼0.013 mag,

thus our catalogue is not significantly affected by differential extinction. Hereafter, we

will use the DR corrected photometric catalogue.

6.4 Age and metallicity of Fornax 4

We used BaSTI isochrones (“A Bag of Stellar Tracks and Isochrones”, Pietrinferni

et al. 2004) in themF438W−mF814W vs. mF438W CMD to obtain estimates of the [Fe/H]
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Figure 6.6: mF438W − mF814W vs. mF438W CMDs for Fornax 4. The blue curve represents
best fit solar (left panel) and α−enhanced (right panel) BaSTI isochrone with the ages and
metallicities shown in each panel. These are displayed with values of the extinction E(B −
V ) = 0.04 mag and distance modulus (m−M)0 = 20.94 mag.

and age of the cluster. For the absolute distance modulus we adopt the value (m −

M )0 =20.94 mag obtained from the HB modelling (see discussion in §6.5.2), while for

the extinction we used E(B − V ) =0.04, which is in the range between 0.02 and 0.08

mag found in the literature (see §6.1). The extinction ratios employed to determine

the extinction in the WFC3 filters have been calculated as described in Girardi et al.

(2008), using the spectral energy distributions employed in BaSTI (Pietrinferni et al.,

2004).

The best matching solar-scaled isochrone has [Fe/H]= −1.5 dex, and an age t = 11

Gyr, whilst with α−enhanced ([α/Fe]=+0.4 dex, the only α enhancement available)

isochrones we get [Fe/H]= −1.6 dex and t = 10 Gyr (Fig. 6.6). We are assuming that

there is no chemical variation (in He and/or Fe) when estimating the age of the cluster.

In §6.5.2 we will discuss the presence of an initial He abundance and/or [Fe/H] spreads,

using synthetic HB modelling and colour spread of the RGB. The derived distance

modulus can change by a few 0.01 mag compared to (m −M)0=20.94, when these



6.5. Stellar population characterization 116

Table 6.1: Properties of Fornax 4 derived in this work.

Cluster Fornax 4
Age 10−11 Gyr

[Fe/H] -1.5 − -1.6 dex
(m−M)0 20.94 mag
E(B − V ) 0.04 mag

rc 3.4 arcsec
rt 31.5 arcsec

abundance spreads are included, but this does not affect substantially (less than 1 Gyr)

the age estimates.

The [Fe/H] values determined from Fig. 6.6 are in disagreement with Buonanno et al.

(1999), who find [Fe/H]< −2. However, our results agree well with the integrated light

spectroscopy analyses by Strader et al. (2003) and Larsen, Strader & Brodie (2012a).

Also, our solar-scaled age and metallicity are consistent with the work of Hendricks

et al. (2016). They used WFPC2 optical photometry and Dartmouth isochrones, finding

a best fit of t =10 Gyr and [Fe/H]= −1.5 dex, assuming no α-enhancement.

Regarding the α elements, Larsen, Strader & Brodie (2012a) report a small alpha-

enhancement ([α/Fe]∼ +0.13 dex) using integrated light spectroscopy, while Hen-

dricks et al. (2016) report [α/Fe]= −0.19 dex, although this result is based on a single

member star, the only resolved star that has been studied so far in Fornax 4 spectro-

scopically. Given the current lack of consensus regarding the level of α-enhancement

present in Fornax 4 stars, we consider both isochrones in Figure 6.6 as best fits.

Table 6.1 displays the information on Fornax 4 derived in this study.

6.5 Stellar population characterization

In this Section we perform a detailed analysis of the RGB and HB population width

and morphology to constrain the possible presence of sub-populations with different

metallicity and/or He abundance.
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6.5.1 The RGB width analysis

We focused our analysis on observed RGB stars in the mF438W − mF814W vs.

mF438W CMD, in the magnitude range 22.6 <mF438W < 24.3, i.e. the lower RGB,

which is the more populated. We estimated an average error in this magnitude range

from our AS tests (see §6.2.1) and we obtained e(mF438W )'0.018 mag and e(ı)'0.012

mag1. We find that observed RGB width in the selected magnitude range is ∼ 0.042

mag, hence it is significantly larger than what expected from photometric errors.

Since both He and Fe abundance variations affect stellar temperatures during the RGB

phase, they are both expected to produce a broadening of the RGB.

First, we quantitatively estimated the value of ∆[Fe/H] needed to reproduce the width

of the cluster RGB. We generated 500 isochrones with a uniform distribution in metal-

licity, by interpolating between the α-enhanced BaSTI isochrone from [Fe/H]= −1.6

dex up to [Fe/H]= −1.0 dex (see Fig. 6.6 and Table 6.1). We kept ∆Y=0. We

populated each isochrone of the distribution in such a way that the LF in F438W mag-

nitudes of the observed RGB is reproduced. We then added Gaussian noise to each

isochrone according to the photometric uncertainties listed above, in order to simulate

the RGB with a range of metallicities. We let the spread ∆[Fe/H] vary. We compared

the observed versus the simulated width of the RGB for spreads ∆[Fe/H]=+0.2, +0.3,

+0.4 and +0.5 dex. We verticalised the observed and simulated RGBs by defining two

different fiducial lines in the mF438W −mF814W vs. mF438W space. This is done to ac-

count for the different slope of the RGB between the observations and the theoretical

isochrones. We then calculated the distance in mF438W −mF814W colours of each star

from the respective fiducial line, ∆(mF438W −mF814W ).

The results are shown in the top panels of Fig. 6.7, where we plot the histogram of the

distribution of the verticalised mF438W −mF814W colours vs. mF438W magnitudes for

1Errors were derived computing the r.m.s. of the distributions of simulated stars in the (magin, magin

− magout) diagrams for the available bands in different magnitude bins (the RGB in this case) and after
applying the same selections that were originally applied to the data. We calculated the distribution of
the errors as a function of the distance from the cluster centre. To be conservative, the values we adopted
for the errors are the maximum in each band, measured close to the cluster centre.
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Figure 6.7: Histograms of verticalised mF438W − mF814W colours vs. mF438W magnitudes
for observed (red) and simulated (blue filled) RGB stars for ∆Y=0, ∆[Fe/H]= +0.4 dex (top
panels) and ∆Y=0.154, ∆[Fe/H]= 0 dex (bottom panels). See text for more details.
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observed (red) and simulated (blue filled) RGB stars. The histograms are normalised

to the maximum of the distributions. The left panel shows the comparison between the

data and the simulations when no photometric errors are included. For each spread we

performed a KS test to compare the data and simulated distributions. We obtained the

highest p-value (∼ 65%) when a spread ∆[Fe/H]=+0.4 dex is employed.

We repeated the same analysis on the RGB assuming now that there is no variation

in Fe and investigating the possible presence of a He spread. Therefore we used

isochrones at fixed metallicity ([Fe/H]= −1.6 dex) with different He content. We

generated 500 isochrones with a uniform distribution in He, ranging from Y=0.246 to

Y=0.4. We repeated exactly the same steps described above and we show the results in

the bottom panels of Fig. 6.7. To reproduce the observed width of the RGB, at least a

∆Y=0.154 is needed. While probably an even larger He variation would allow a better

match with the observed RGB width, this is the maximum spread we can obtain with

the available set of models.

It is important to stress that, when comparing observations to simulations that include

errors estimated from the AS, such errors may be underestimated, thus the values we

report for ∆[Fe/H]and ∆Y are upper limits. The main reason is that all AS exper-

iments are simplified to some extent and they are not able to account for all the in-

strumental sources of noise. The typical difference between errors from AS and true

observational uncertainties has been estimated in previous studies and is of the order

of 30 − 40% (see Fig. 4 of Dalessandro et al. 2011a and related text and Fig. 21 of

Milone et al. 2012). We repeated the same analysis above by using errors that are 30%

larger. According to the KS test, we still found that the simulated distributions that

best reproduce the observations are the ones having ∆[Fe/H]=+0.4 dex (∆Y=0), and

∆Y=0.154 (∆[Fe/H]=0).

We can therefore safely conclude that either Fornax 4 hosts stars with significantly

different metallicity, with a total iron abundance spread of ∆[Fe/H]=+0.4 dex, or stellar

sub-populations with large He variations for a total ∆Y=0.154. A combination of sub-

populations with smaller variations of Fe and He can also match the observed RGB

colour distribution. For instance, we reproduced the width of the RGB by making a
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simulation that includes a spread in He ∆Y =0.03 (which will be constrained in the

next Section §6.5.2) and a slightly lower iron spread ∆[Fe/H]=+0.3 dex.

6.5.2 The Horizontal Branch analysis

To try and constrain better the range of Y and/or [Fe/H] spanned by the cluster ini-

tial chemical composition, we performed a detailed analysis of the horizontal branch,

whose morphology is also affected by variations of the initial helium and metal content.

To this aim we used the same approach described in Dalessandro et al. (2011b, 2013b)

which is based on the comparison between observations and synthetic HB models.

Fornax 4 hosts a relatively large number of variable stars (Greco et al., 2007), for

which we have only observations at a random phase. Thus, before analysing the HB

with stellar models, we needed to identify these stars in our catalogue, and remove

them from the comparison.

The first identification of variable stars in the Fornax clusters was performed by Greco

et al. (2007). By taking B and V time series photometry with MagIC on the Mag-

ellan Clay Telescope, they found 29 variable stars (out of which, 27 are identified

as RR Lyrae), in a 2.4’×2.4’ area centred on Fornax 4. They claimed that the 22

stars located within the innermost 30” are likely cluster members. Since we have sev-

eral exposures in each filter in our dataset (§6.2), we used the variability index (VI)

yielded by DAOPHOT to check for variable stars. We marked as “variable” all stars

having VI> 2 both in the F438W and F814W band. Figure 6.8 shows a zoomed-in

mF438W − mF814W vs. mF438W CMD around the HB region. Magenta squares repre-

sent the stars that are found to be variable in both bands simultaneously. In total we

find 28 variable stars.

We matched our whole Fornax 4 photometric catalogue with the Greco et al. (2007)

variable stars catalogue, in order to identify variable stars independently from our

method (i.e. the VI index). We find 25 out of 29 stars in common. Of the remain-

ing four, three stars are not in our WFC3 field of view while one star from the Greco
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Figure 6.8: Zoomed in mF438W −mF814W vs. mF438W CMDs for Fornax 4. Magenta squares
represent variable stars identified in this work.

et al. (2007) catalogue is not identified in the match. Out of these 25 stars in com-

mon, we were able to identify 19 stars as variables according to the VI index. We then

removed all our 28 variable stars (pink squares in Fig. 6.8) from the following analysis.

To assess the impact of He and Fe abundance spreads on the cluster HB we compared

the observed mF438W − mF814W vs mF438W CMD with synthetic HB models. This

technique has been already applied to several Galactic GCs (e.g., Dalessandro et al.

2011b, 2013b) and also Magellanic Clouds’ clusters (e.g. Niederhofer et al. 2017b,

Chantereau et al. 2019). For the synthetic HB calculations we used the BaSTI α-

enhanced HB models (Pietrinferni et al., 2004, 2006) with metallicity [Fe/H]= −1.6

dex, and employed the code described in Dalessandro et al. (2013b). In our simulations

with a [Fe/H] spread we have replaced the interpolation in Y with an interpolation in

[Fe/H], keeping the structure of the code unchanged. After assuming a reference age

t =10 Gyr (that fixes the initial value of the mass currently evolving at the tip of

the RGB), the only remaining parameters that determine the mass distribution (hence
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Figure 6.9: mF438W − mF814W vs. mF438W CMD of HB stars in Fornax 4. Black circles
denote observations while red circles represent synthetic HB stars. The left panel displays
a synthetic HB calculated with ∆Y =0, ∆M=0.165M�(with Gaussian σ=0.001 M�spread)
and (m − M)0=20.94 mag. The right panel shows a synthetic HB calculated with ∆Y =0,
∆M between 0.165 and 0.225 M�(uniform distribution), (m − M)0=20.94 mag. Average
photometric errors are reported in the lower left corner. See text for more details.
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magnitudes and colours) along the synthetic HB are the total mass lost by the RGB

progenitors ∆M , the range of initial Y (∆Y) or [Fe/H] (∆[Fe/H]) values, and their

statistical distribution. In our simulations we also input the 1σ photometric errors as

obtained from the AS test (see §6.2.1). We notice that in terms of the mass distribution

along the synthetic HB a variation of the cluster age can be compensated by changing

∆M . For example, an age increase by 1 Gyr is compensated by a ∼0.02M� decrease

of ∆M .

As a first test, we checked whether a match of the observed HB morphology with the-

oretical models requires a spread of initial chemical composition. To this purpose, we

have first calculated a synthetic HB with a small RGB mass loss, ∆M=0.165M�(and

a Gaussian σ spread equal to 0.001M�). We assumed the same E(B − V )=0.04 mag

employed in the isochrone fitting, and determined a cluster distance modulus by match-

ing the peak of the number distribution of synthetic stars’ magnitudes, to the observed

one in the mF438W −mF814W colour range between 1.25 and 1.45 mag (the well popu-

lated red end of the observed HB distribution). In this way we have fixed the distance

modulus also for the other simulations that follow. From the left panel of Fig. 6.9, it

is obvious that this simulation is not able to reproduce the full colour and magnitude

extension of the observed HB. Hence, the right panel of Fig. 6.9 shows another syn-

thetic HB, this time calculated with ∆M uniformly distributed between 0.165M�and

0.225M�, e.g. with a much larger mass loss spread. The colour extension is now

well reproduced, but the synthetic HB is too faint to match the stars observed between

mF438W −mF814W =0.25 and 0.50. In these simulations and the ones that follow, the

observed star count distribution as a function of colour is different from the synthetic

ones. This is however not essential for our purposes, as we are not trying to perform

a best fit of the HB. This would be impossible given that the instability strip of the

observed HB is depopulated, because we removed RR Lyrae variables for which we

lack average magnitude measurements. The goal of this analysis is to test whether the

initial chemical composition scenarios inferred from the RGB are broadly consistent

with the observed HB morphology.

As a second step we have examined whether the cluster HB can be reproduced by
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Figure 6.10: As Fig. 6.9, but the synthetic model is calculated with a spread in iron
∆[Fe/H]=+0.4 dex (uniform distribution), ∆Y =0, ∆M=0.23+0.06([Fe/H]+1.62)M�, (m −
M)0=20.86 mag. See text for more details.

models with constant Y (Y =0.246) and ∆[Fe/H]∼ +0.4 dex, as derived from the RGB

colour distribution. To this aim we have calculated a synthetic HB with a uniform

probability [Fe/H] distribution between [Fe/H]=−1.62 dex and [Fe/H]=−1.22 dex, and

a mass loss that increases linearly with [Fe/H] as ∆M=0.23+0.06([Fe/H]=+1.62)M�,

and a 1σ Gaussian dispersion of 0.005M� around this mean relationship. This com-

parison is shown in Figure 6.10. A constant mass loss irrespective of [Fe/H] produces

a HB too extended in colour compared to the observations. Notice that in case of a

[Fe/H] spread the metal poor component is located at the blue end of the synthetic HB.

We have then checked whether models with a range of initial He abundances ∆Y (at

constant [Fe/H]) compatible with the RGB constraint can also match the observed HB

of Fornax 4. Figure 6.11 compares the observed HB with a synthetic one calculated in-

cluding a He spread ∆Y =0.03 (uniform probability distribution), and ∆M=0.160M�

and Gaussian distribution with σ=0.003M�. The observed HB is overall well matched

with this small value of ∆Y , totally incompatible with the large ∆Y (at fixed [Fe/H])

inferred from the RGB. To make this point even clearer, the same figure shows for com-

parison also the zero age horizontal branch (ZAHB) for both Y =0.246 and Y =0.40.

The Y =0.40 ZAHB is extremely overluminous compared to the data.

From this simple analysis, we are able to establish that a small spread of initial He
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Figure 6.11: As Fig. 6.9, but the synthetic HB stars are calculated with ∆Y =0.03 (uniform
distribution), ∆M=0.160 M�(Gaussian distribution with σ=0.003M�), and (m−M)0=20.98
mag. The solid blue and dashed orange curves represent the ZAHB for Y =0.246 and Y =0.4
at [Fe/H]= −1.6 dex, respectively. See text for more details.

abundances (up to ∆Y =0.03) can also reproduce the shape of the HB of Fornax 4,

but this spread is much lower than what derived from the RGB, assuming a constant

[Fe/H].

The only way to achieve consistency between the RGB width and the HB morphology

of Fornax 4 is to invoke either an initial spread of [Fe/H] (of about 0.4 dex) at constant

Y , or both a small spread of Y (∆Y up to ∼0.03) and a spread of [Fe/H] of less than

∼0.4 dex. As an example, in Sect. §6.5.1 we have also reported that the width of the

RGB can be reproduced by a combination of a spread in He ∆Y =0.03 and slightly less

iron spread ∆[Fe/H]=+0.3 dex.

6.6 Discussion

In this Chapter we investigated the nature of Fornax 4 by characterizing its stellar

population properties. Indeed, because of its position, metallicity and age, this system

has been suggested to be the nucleus of the Fornax dSph galaxy (e.g. Hardy 2002;

Strader et al. 2003).

By using archival HST/WFC3 observations, we confirm that Fornax 4 is younger than
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the other clusters in the galaxy. In fact, we find the age of Fornax 4 is of the order of

t = 11 Gyr (or t = 10 Gyr if α-enhancement is present within the cluster). We also

find that Fornax 4 is more metal-rich than what previously found by Buonanno et al.

(1999) ([Fe/H]= −1.5/−1.6 dex) using optical CMDs, and in agreement with previous

integrated light spectroscopic studies (Strader et al., 2003; Larsen, Strader & Brodie,

2012a).

We performed a detailed analysis of both the RGB and HB of Fornax 4 by means of

a comparison between observations and synthetic CMDs. We find that the RGB and

HB morphology can be simultaneously reproduced either by assuming the presence

of sub-populations with a spread in iron ∆[Fe/H]∼ 0.4 dex or a combination of a

slightly milder Fe spread and a variation of He abundance of ∆Y∼0.03 (see §6.5.1,

§6.5.2). While the exact amount of these variations may depend on model assumptions

and the exact modeling of the photometric errors, this analysis clearly shows that a

non-negligible iron spread is needed to reproduce the stellar population properties of

Fornax 4. This is a key information to assess the nature of this system. In fact, this

result, in combination with its metallicity, position and age, provides support to the

possibility that Fornax 4 is the NSC of the Fornax dSph.

The most common scenarios invoke that NSCs form in-situ from the galaxy’s cen-

tral gas reservoir (e.g. Bekki 2007; Antonini, Barausse & Silk 2015; Fahrion et al.

2019), or through GCs merging (e.g. Tremaine, Ostriker & Spitzer 1975; Agarwal &

Milosavljević 2011; Arca-Sedda & Capuzzo-Dolcetta 2014), or through a combina-

tion of these (e.g. Hartmann et al. 2011; Antonini, Barausse & Silk 2015; Guillard,

Emsellem & Renaud 2016). While the exact formation of NSCs is still debated (see

Neumayer, Seth & Boeker 2020 for a recent review), the general expected outcome is

a system located at the center of the host galaxy which is characterized by the presence

of sub-populations differing in terms of their iron abundances (e.g. Bekki & Freeman

2003; Bellazzini et al. 2008). Additionally, typical NSCs have a more extended star

formation history and some contribution from younger stars (e.g. Walcher et al. 2005;

Kacharov et al. 2018). This seems not to be the case for Fornax 4, however it is cur-

rently not possible to establish this with the current data available. Indeed, the star
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formation history of Fornax was recently derived by Rusakov et al. (2020) showing

predominant intermediate age and old population (5 − 10 Gyr). If Fornax 4 sank in

the centre of the galaxy less than ∼5 Gyr ago, it would not have had much chance to

accrete a substantial amount of gas and thus form additional stars.

Interestingly, it seems that Fornax 4 does not reside exactly in the kinematic centre

of the galaxy, contrary to what it is found for M54, for instance. Hendricks et al.

(2014) calculated the radial velocity (RV) of the Fornax dSph and this results to be

∼9 km/s higher than the RV of Fornax 4 (see Hendricks et al. 2016 for a more detailed

discussion). Nonetheless, if the infalling of GCs is the dominant formation mechanism,

finding a kinematic misalignment between the NSC and the center of the galaxy is

expected (e.g. Capuzzo-Dolcetta & Miocchi 2008; Feldmeier et al. 2014).

While the interpretative scenario of Fornax 4 as the nucleus of the dwarf galaxy is

extremely fascinating, it is necessary to confirm this result by performing a detailed

spectroscopic and kinematic study of resolved member stars within the GC. It is im-

portant to note, in fact, that only one likely member star in the cluster has been analysed

spectroscopically (Hendricks et al., 2016) so far. This would provide a quantitative and

reliable measurement of its stellar population chemical and kinematical patterns thus

allowing a critical assessment of its formation and early evolution (see e.g. Sills et al.

2019; Alfaro-Cuello et al. 2019), and more in general on the process on NSC forma-

tion and galaxy nucleation, being the second closest case after M54 (Bellazzini et al.,

2008).



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main goal of this thesis has been to place fresh and new constraints on theories

for the origin of multiple populations in star clusters. This has been performed by

expanding the parameter space where MPs are found, especially focussing on cluster

age and mass. Since most of the previous MPs studies were performed on old clusters

(> 10 Gyr), the natural question to ask is: are chemical anomalies only restricted to

the ancient GCs?

In the previous chapters, I presented the results from two joint surveys. Our HST

photometric survey is composed of 13 star clusters both in the LMC and SMC. They

are massive (> a few times 104M�) and they span a very wide range of ages (from

∼1.5 up to ∼10 Gyr). This is combined with a spectroscopic survey, which is com-

posed by ESO-VLT FORS2 observations of four star clusters in the Magellanic Clouds,

spanning ages from ∼2 up to ∼8 Gyr. Three new clusters were also just observed in

September 2019 (age= 1.5 − 2 Gyr) with FORS2 (see next Section §7.2). The goal

of the survey is to search for a potential dependence on the onset of multiple popula-

tion on cluster age, by looking at clusters that are as massive as the ancient GCs, but

significantly younger. Our photometric technique consisted in studying the RGB stars
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in filters that are sensitive to N variations, as they encompass the NH molecular band

(namely the HST F336W and F343N filters, see Chapter 2). Expanding the search

for MPs towards different cluster ages is of extreme importance in order to potentially

obtain new constraints for the formation mechanisms, aiming at explaining the origin

of chemical anomalies.

The first important result we obtained is the discovery of chemical anomalies as N

variations in intermediate age clusters, i.e. aged ∼ 6 − 7.5 Gyr, both photometrically

and spectroscopically. This corresponds to a redshift of formation for the MPs of

z = 0.75.

We then looked at the younger clusters. We did not find photometric evidence for MPs

in clusters that are younger than 2 Gyr (∼ 1.5− 1.7 Gyr). However, we finally looked

at MPs in star clusters in the age gap between 2 and 6 Gyr: two ∼2 Gyr old clusters,

two aged ∼2.5 Gyr, and a 4 Gyr old one. We found MPs in the form of N variations

in all of these clusters. We did not find evidence for chemical anomalies in Lindsay 38

though, a ∼ 6.5 Gyr old, but quite low mass cluster (. 2× 104M�).

The main results from our surveys are shown in Fig. 7.1, where an updated version of

the cluster mass versus cluster age diagram is shown.

The main results are summarised and commented below:

• MPs in the form of N spreads were observed in intermediate age stars clus-

ters down to ∼2 Gyr, which corresponds to a redshift of formation for MPs

zform=0.17. We found MPs in nearly all the intermediate age clusters down to an

age of∼2 Gyr, implying that MPs in the form of N spreads are not only restricted

to the ancient GCs. This means that the mechanism responsible for the onset of

MPs must have acted at least down to a redshift of ∼0.17, hence it is unlikely

that special conditions only present in the early Universe are the main drivers for

the formation of MPs (see §3.3,D’Ercole, D’Antona & Vesperini 2016). How-

ever, it does not seem to be the case for clusters that are younger than 2 Gyr, as

they do not show MPs in the form of N spreads. The reason for this is still under
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Figure 7.1: Final cluster mass versus cluster age diagram. The clusters from our sample are
labeled. Blue filled (red open) circles represent sources with (without) multiple populations.
See the compilation by Krause et al. (2016) and references therein.

investigation. By looking at RGB stars at different ages, we are also sampling

stars with different stellar masses. RGB stars in a ∼ 2 Gyr old population are

less massive than 1.5M�, while they become more massive than 1.5M� for pop-

ulations younger than 2 Gyr. It would then be interesting to investigate whether

this threshold is connected to other phenomena; indeed, stars below this mass

threshold can be magnetically braked (Cardini & Cassatella, 2007). Also, the

extended main sequence turnoff feature appears below this age threshold (∼2

Gyr) in star clusters, but there are no hints of a correlation between this phe-

nomenon and chemical anomalies to date. Another interesting implication from

these results is that for the first time multiple stellar populations are detected in

intermediate age clusters down to such a young age (∼2 Gyr). As described in

Chapter 1, ancient GCs and YMCs overlap in all their global properties, such as

cluster masses, sizes and densities. However, the lack of the distinctive chemical
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abundance variations in the younger clusters led many to consider the formation

of old GCs unique to the special conditions found in the early Universe (e.g.

Trenti, Padoan & Jimenez 2015). The results presented in this thesis suggest

that the formation and evolution of YMCs and ancient GCs might instead hap-

pen through the same channel (Kruijssen, 2015; Pfeffer et al., 2018; Kruijssen

et al., 2019).

• No age difference is observed between the MPs of young star clusters. Dis-

covering and studying MPs in younger clusters allowed to place very stringent

limits on any age spread between the different populations present in such ob-

jects (see Chapter 4). Indeed, works focused on ancient GCs were only able to

put upper limits of ∼200 Myr (Marino et al., 2012; Nardiello et al., 2015). By

taking advantage of the youth of NGC 1978, we find that the two populations

present in this cluster are coeval, i.e. they were formed at the same time or their

age difference is very small. In a more recent work, we also confirm this result in

another intermediate-age cluster in our HST sample, namely NGC 2121 (Sara-

cino et al., 2020). These results are crucial for models that aim at explaining the

formation of MPs, as they predict a range of expected age differences among the

constituent populations within a cluster. For instance, self-enrichment models

that advocate AGB stars as polluters are not consistent with the contraints found

in this work. AGB stars need at least 30 Myr to evolve and potentially more

time is needed to form a second generation within the cluster. On the other hand,

models that invoke very massive and/or fast rotating massive stars (>15 M�),

are still consistent with these new constraints.

• We observe a correlation between N spread and age of the clusters (Chapter

5), which is not predicted by any scenario proposed for the formation of MPs.

We examined how the width of the RGB in the clusters varies as a function

of cluster age and we found that older clusters show larger abundance spreads

compared to the younger clusters. The role of age is currently unknown and un-

der investigation, but the observations might point towards a stellar evolutionary

effect. I expand more on this in the next Section 7.2.



7.2. Avenues for Future Study 132

• We find a very tight TO in NGC 1978 (see Chapter 4). This finding lends

support to the stellar rotation scenario for the origin of the eMSTO (see Bastian

& de Mink 2009). Indeed, stars at the TO in ∼ 2 Gyr old populations are below

∼1.5M�. Below this mass, stars become magnetically braked and slow down.

This is what is predicted by Brandt & Huang (2015) and Georgy et al. (2019),

i.e. after an age of ∼ 2 Gyr star clusters are not expected to show an eMSTO

feature.

7.2 Avenues for Future Study

Through the study presented in this thesis, I have demonstrated that intermediate age

clusters host MPs in the form of N spreads within their RGB stars. Nevertheless,

open questions remain whether such objects might have the exact same stellar popula-

tions present in the ancient GCs. Indeed, old GCs exhibit specific chemical abundance

patterns still not observed in their younger counterparts, i.e. Na-O (possibly Mg-Al)

anti-correlations. Future steps definitely involve the full chemical characterisation of

young star clusters, as so far we have explored only N variations (and He to a certain

extent, Chantereau et al. 2019; Lagioia et al. 2019).

However, Na and O abundances in intermediate age star clusters in the LMC were

estimated by Mucciarelli et al. (2008, 2014) and they found no spread both in Na and

O, although their sample was based on a relatively small number of stars. Most of their

targets are younger than ∼2 Gyr, where we also do not observe N spreads. However,

they also find no Na-O anti-correlation in the ∼2 Gyr cluster NGC 1978, which does

show N spreads (Chapter 3). Additionally, there have been quite a few studies based

on integrated light techniques. Cabrera-Ziri et al. (2016b); Lardo et al. (2017) looked

for Na and Al anomalies but did not find any in very young clusters (<40 Myr). Very

recently, Bastian et al. (2019) found chemical anomalies in the form of Na spreads in

G114, a very massive (> 107 M�) star cluster in the NGC 1316 galaxy. They also did

not find Na spreads in NGC 1978. Additionally, no Na spreads are reported for two

young star clusters (∼600 Myr old) in the merger remnant NGC 7252, even though



7.2. Avenues for Future Study 133

they are very massive (∼ 107 − 108 M�, Bastian et al. 2020).

Integrated light techniques are very powerful as they allow us to analyse the chemical

composition of stars in distant clusters. However, they cannot tell us all the details,

e.g. how the different populations are spatially segregated or the fraction of anomalous

stars with respect to the field-like ones.

Our group has recently obtained ESO VLT/MUSE (Bacon et al., 2010) time to study 5

massive, intermediate age clusters in the MCs. MUSE data will allow a very promis-

ing and innovative way of studying MPs in star clusters (e.g. Latour et al. 2019).

The studies mentioned above by Mucciarelli et al. 2014 that searched for Na and Al

spreads in MCs intermediate age clusters were based on high resolution spectroscopy

with GIRAFFE and UVES at the VLT (Pasquini et al., 2002). However, this limited

the observations to the outer regions of clusters due to crowding in the inner regions,

and to bright RGB stars, due to the higher spectral resolution. MUSE opens the possi-

bility to (i) estimate the abundance of stars located in the most crowded regions of the

cluster, thanks to the sensitivity of AO assisted observations combined with the power

of PampelMuse spectra extraction software (Kamann, Wisotzki & Roth, 2013), (ii) ob-

tain such estimates for hundreds to thousands of stars instead of a few 10s. This will

allow us to study chemical patterns in young clusters for many elements that have not

been yet explored at such a young age (e.g., Na, Mg and many other alpha and iron-

peak elements). While the lower resolution of MUSE makes it challenging to measure

individual abundances of stars, it has recently been demonstrated that with high S/N

data it is possible, see Latour et al. (2019). Additionally, MUSE will also give hints on

the kinematic difference between the populations present in a given cluster (Hénault-

Brunet et al., 2015), which will provide fundamental insights into distinguishing dif-

ferent formation scenarios for MPs.

The second main result from this thesis is the correlation between N spreads and age

of the cluster (Chapter 5), which deserves further investigation. This dependence on

age is not predicted by any model that has been proposed to explain the formation and

evolution of MPs. Hence, converting the photometrically determined correlation be-

tween cluster age and N spread into a spectroscopic counterpart is a crucial constraint
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for the developments of new quantitative scenarios for the origin of MPs. We already

have VLT/FORS2 spectroscopic data for three intermediate age (2-8 Gyr old) clusters

(Hollyhead et al., 2017, 2018, 2019) and I just obtained data for other 3 clusters which

are between 1.5 and 2 Gyr old. Furthermore, FORS observations of RGB stars in old

(>9 Gyr) Milky Way clusters are available in the ESO archive (Pancino et al., 2010),

for which C and N abundances can be measured as well. For these ancient clusters,

the [N/Fe] spread is expected to be large, of the order of ∼1.5-2 dex, as seen from

already available measurements carried out by using different instruments (e.g., Lardo

et al. 2012). This sample will also be used to investigate dependencies of the relation

on factors such as metallicity and cluster mass. The combination of these datasets will

enable a systematic and homogeneous study and will allow us to obtain the first spec-

troscopic counterpart of the N vs. age correlation, covering a very wide range of ages

(from ∼1.5 up to > 10 Gyr).

Interestingly, in a recent work, Salaris et al. (2020) explored the effect of the first-

dredge up (FDU) on the widths of the RGB of star clusters showing MPs, in typical

photometric pseudo-colours sensitive to N-variations also presented in this thesis (e.g.

CF336W,F438W,F343N , CF343N,F438W,F814W ). The FDU involves the dredge up to the

stellar surface of matter burnt in the core by H fusion, due to the convective zone

penetrating deeper and deeper towards the core. The corresponding change of surface

N abundance depends on the initial N abundance but also on the mass of the star,

hence its age (Salaris et al., 2015). Salaris et al. (2020) found that the FDU reduces the

widths of the RGB (for a given amount of initial abundance differences between the

populations) and that this is a strong function of age. This is crucial as it means that

what we are estimating from the RGB widths of star clusters is a N spread that has been

modified by the FDU and would lead to an underestimation of the initial N abundance

variation. This might also explain why MPs are not observed in clusters younger than

2 Gyr, although the FDU cannot account for the total extent of the correlation between

N spreads and cluster age (Chapter 5). Hence, the observed correlation between cluster

age and N spread is a combination of initial N spreads and the effect of the FDU.

It would then be critical to estimate the initial N abundances, i.e. not affected by the
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FDU and evolutionary effects, as a function of cluster age. A pilot study has recently

been performed by Cabrera-Ziri et al., submitted. We looked for abundance variations

in the MS of the ∼1.5 Gyr old, massive (∼ 105M�) cluster NGC 419 (see Chapter 2),

making a comparison with Galactic GCs such as 47 Tuc, NGC 6352 and NGC 6637

which have similar metallicities ([Fe/H]= −0.7 dex). We used HST photometry to

analyse MS stars that have the same range in stellar masses of stars where MPs are

found in old GCs, i.e. ∼ 0.75 − 1.05M�. We found that the colour distributions of

NGC 419 in the lower MS are consistent with what is expected from a cluster with

homogeneous abundances. However, the sensitivity of the current dataset cannot ex-

clude small initial abundance variations. It is thus necessary to probe a dependency on

mass and age by expanding the sample to other clusters. The HST or the upcoming

James Webb Space Telescope will be the facilities necessary for such future follow-up

studies.
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Pietrzyński G. et al., 2019, Nat, 567, 200

Piotto G. et al., 2007, ApJL, 661, L53

Piotto G. et al., 2015, AJ, 149, 91

Planck Collaboration et al., 2018, arXiv e-prints, arXiv:1807.06205

Platais I. et al., 2012, ApJL, 751, L8



Bibliography 148

Portegies Zwart S. F., McMillan S. L. W., Gieles M., 2010, ARA&A, 48, 431

Prantzos N., Charbonnel C., Iliadis C., 2017, ArXiv e-prints, 1709.05819

Renzini A. et al., 2015, MNRAS, 454, 4197

Rich R. M., Shara M. M., Zurek D., 2001, AJ, 122, 842

Rusakov V., Monelli M., Gallart C., Fritz T. K., Ruiz-Lara T., Bernard E. J., Cassisi S.,

2020, arXiv e-prints, arXiv:2002.09714

Salaris M., Pietrinferni A., Piersimoni A. M., Cassisi S., 2015, A&A, 583, A87

Salaris M. et al., 2020, MNRAS, 492, 3459

Salaris M., Weiss A., Cassarà L. P., Piovan L., Chiosi C., 2014, A&A, 565, A9

Salaris M., Weiss A., Ferguson J. W., Fusilier D. J., 2006, ApJ, 645, 1131

Salaris M., Weiss A., Percival S. M., 2004, A&A, 414, 163

Salinas R., Strader J., 2015, ApJ, 809, 169

Saracino S. et al., 2018, ApJ, 860, 95

Saracino S. et al., 2020, arXiv e-prints, arXiv:2003.01780

Sbordone L., Bonifacio P., Castelli F., Kurucz R. L., 2004, Memorie della Societa

Astronomica Italiana Supplementi, 5, 93

Sbordone L., Salaris M., Weiss A., Cassisi S., 2011, A&A, 534, A9

Schiavon R. P., Caldwell N., Conroy C., Graves G. J., Strader J., MacArthur L. A.,

Courteau S., Harding P., 2013, ApJL, 776, L7

Schiavon R. P. et al., 2017, MNRAS, 465, 501

Sills A., Dalessandro E., Cadelano M., Alfaro-Cuello M., Kruijssen J. M. D., 2019,

MNRAS, 490, L67

Sills A., Karakas A., Lattanzio J., 2009, ApJ, 692, 1411



Bibliography 149
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