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Three-dimensional (3D) models of fossil bones are increasingly available, thus opening
a novel frontier in the study of organismal size and shape evolution. We provide an
example of how photogrammetry can be combined with Geometric Morphometrics
(GMM) techniques to study patterns of morphological convergence in the mammalian
group of Xenarthra. Xenarthrans are currently represented by armadillos, sloths, and
anteaters. However, this clade shows an incredibly diverse array of species and
ecomorphotypes in the fossil record, including gigantic ground sloths and glyptodonts.
Since the humerus is a weight-bearing bone in quadrupedal mammals and its
morphology correlates with locomotor behavior, it provides an ideal bone to gain insight
into adaptations of fossil species. A 3D sample of humerii belonging to extant and
fossil Xenarthra allowed us to identify a significant phylogenetic signal and a strong
allometric component in the humerus shape. Although no rate shift in the evolution of
the humerus shape was recorded for any clade, fossorial and arboreal species humerii
did evolve at significantly slower and faster paces, respectively, than the rest of the
Xenarthran species. Significant evidence for morphological convergence found among
the fossorial species and between the two tree sloth genera explains these patterns.
These results suggest that the highly specialized morphologies of digging taxa and tree
sloths represent major deviations from the plesiomorphic Xenarthran body plan, evolved
several times during the history of the group.

Keywords: photogrammetry, Xenarthra, morphological convergence, geometric morphometrics, RRphylo

INTRODUCTION

Species morphology varies in size and shape. These two components can be strongly correlated
to each other (Shingleton et al., 2007; Figueirido et al., 2011; Voje et al., 2014; Klingenberg, 2016)
and somewhat limited by the existence of evolutionary constraints (Gould, 1989; Brakefield, 2006;
Arnold, 2015; Meloro et al., 2015a). In this regard, the vertebrate skeleton has been intensively
investigated, because the shape of its components is greatly influenced by body size and by the
constraints impinging on specific adaptations linked to body support and other essential organismal
functions (e.g., locomotion, feeding). The skeleton also allows sampling ancient diversity that
in many clades can greatly overcome variation of extant taxa. In fact, the appreciation of fossil
diversity provides strong support for the existence of size-induced shape changes (allometry) across
different taxonomic scales and several components of the skeleton (Speed and Arbuckle, 2016).
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The combined effects of such size-related shape changes and the
evolutionary pressure originated by adaptation might generate
patterns of morphological convergence in distantly related clades
(Harmon et al., 2005; Mahler et al., 2010; Losos, 2011; Meloro
et al., 2015b). Convergence is more likely to take place when
adaptation is at the most extreme, and it can be identified in both
extant and fossil taxa (i.e., the skulls of marsupial and placental
carnivores including sabertooth morphologies, Wroe and Milne,
2007; Goswami et al., 2011).

Extant Xenarthra are currently limited to 31 species falling
within the two clades Cingulata (armadillos) and Pilosa (sloths
and anteaters; Simpson, 1980; Engelmann, 1985; Springer et al.,
2003; Delsuc et al., 2004). Yet, in the past they showed much
greater phenotypic and taxonomic diversity, encompassing some
700 species overall, including the gigantic late Pleistocene
ground sloths and armadillos (Prothero, 2016).1 Although recent
advances in proteomics and genomics provide new insights into
Xenarthra phylogenetic history, their position within Placental
mammals is still a matter of controversy (Gibb et al., 2016).

Previous morphological work provided insights into the
ecology and behavior of fossil Xenathrans. Most of it was based
on the study of body proportions (Bargo et al., 2000; Vizcaíno
et al., 2006; Toledo et al., 2017), limb elements (Fariña et al.,
2003; Milne et al., 2009; Toledo et al., 2015; Mielke et al., 2018),
and the skull (Vizcaíno et al., 1998; De Iuliis et al., 2001; Bargo
and Vizcaíno, 2008; Billet et al., 2011). For a full revision, see
Bargo (2003); Vizcaíno et al. (2008), Amson and Nyakatura
(2017), and Bargo and Nyakatura (2018).

Thanks to 3D modeling, it is currently possible to build
precise replicas of fossil bones and investigate their size and
shape variation with better accuracy than ever before. Applying
such 3D modeling on Xenarthran limb elements is particularly
welcome, given the great diversity of size and lifestyle the group
experienced in its recent past (Amson and Nyakatura, 2017).

Here, we combine multiple methods for the 3D analysis and
interpretation of Xenarthra humerus shape variation within a
phylogenetic comparative framework. The humerus is a load-
bearing postcranial element in quadrupedal mammals (Bertram
and Biewener, 1992) and correlates quite strongly with body
mass, locomotory, and habitat adaptations (Gingerich, 1990; Egi,
2001; Elton, 2002; Polly, 2007; Walmsley et al., 2012; Meloro et al.,
2013; Elton et al., 2016; Botton-Divet et al., 2017). In Xenarthrans,
the broad locomotory diversity well correlates with humerus
functional morphology (Fariña and Vizcaíno, 1997; Toledo et al.,
2012; de Oliveira and Santos, 2018).

We take advantage of the newly developed photogrammetry
technique (Falkingham, 2012) to build a dataset of 51 Xenarthran
humerus 3D models belonging to 29 species (16 extant plus 13
extinct). The advantage of photogrammetry is that it minimizes
specimen handling (which is convenient for their fragile status)
and allows a relatively quick data collection based on museum
specimens (taking pictures for photogrammetry models might
take between 5 and 10 min; Giacomini et al., 2019). On the
other side, software post-processing time can still be quite
long, although the development of professional software (e.g.,

1https://paleobiodb.org/#/

Agisoft) and novel open access sources are making the process
increasingly quicker.2 There has been a lot of research focusing
on the adequacy and the accuracy of photogrammetry method for
GMM analyses (see Giacomini et al., 2019, for a recent overview).
Particularly for long bones, Fau et al. (2016) demonstrated that
photogrammetry provides a good level of accuracy compared
to other laser scanners (e.g., structured light Artec laser or
Breukmann) on relatively medium-sized vertebrate long bones.

We explored Xenarthran humerus 3D morphology using
GMM within a comparative framework. This technique is now
well established with a long record of research applications
also on fossil mammals (Adams et al., 2004, 2013). The use
of homologous points (landmarks) facilitates a comparison
between species belonging to the same clade and additionally
provides a powerful tool for separating and visualizing size and
shape variations. GMM application to the study of Xenarthran
functional morphology includes works from Monteiro and Abe
(1999) focusing on the scapula or Milne et al. (2009, 2012) on
humerus and femur shape.

Interestingly, the implementation of the comparative methods
into GMM datasets is a relatively more recent phenomenon.
Comparative methods were first introduced by Felsenstein in
his seminal paper on the independent contrasts (Felsenstein,
1985). This method explores the assumption that interspecific
data are not independent, since species might share a different
degree of common ancestry in any macroevolutionary dataset.
The effect of shared inheritance can be assessed by estimating
the “phylogenetic signal” in the data. When fossil species are
concerned, two major limitations occur: fossil phylogenies are
morphology based, so that testing morphological hypotheses
using these trees might generate a circular argument (in the
majority of cases fossil dataset might exhibit higher phylogenetic
signal); fossil phylogenies are generally incomplete with
taxonomic confirmation generally scattered between different
publications. In spite of this, early attempts demonstrated that
fossil phylogenies can be incorporated to test macroevolutionary
hypotheses, and their inclusion provides stronger statistical
power (for early examples see: Finarelli and Flynn, 2006; Meloro
et al., 2008). We provided on several occasions examples on how
comparative methods can be implemented in macroevolutionary
studies incorporating fossils and GMM (Meloro and Raia, 2010;
Raia et al., 2010; Meloro and Slater, 2012; Piras et al., 2012).
More recently, the development of new R packages (including
geomorph Adams et al., 2019; and RRphylo Raia et al., 2020)
allows to detect evolutionary rates with a high degree of accuracy
(in spite of phylogenetic fossil uncertainty, e.g., Smaers et al.,
2016; Castiglione et al., 2018).

We take advantage of the most recently published phylogenies
for fossil sloths and armadillos in order to test hypotheses
about the influence of size and locomotor behavior on humerus
shape and rate of its morphological change in Xenarthra.
Since behavioral and morphological convergence has been
proposed for extant sloths, as well as fossil Megatherium and
extant armadillos (Nyakatura, 2012; Billet et al., 2015), we
explicitly tested convergence in humerus morphology using a

2https://peterfalkingham.com/tag/photogrammetry/
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novel approach that can well be applied to multivariate shape
data and phylogenies inclusive of extant and fossil species
(Castiglione et al., 2019).

MATERIALS AND METHODS

Studied Specimens
We built 3D models of Xenarthra humerii belonging to 29
species housed at the following museum institutions: the Natural
History Museum (NHLM, London) and the Muséum National
d’Histoire Naturelle (MNHN, Paris, see Supplementary Table
S1 for details).

For each specimen, we took about 200 photos based on
dorsal, ventral, and lateral views using a dark background
and a standard digital SLR (Nikon D5300, lens 18–140 mm).
Most of the pictures were taken with the 55 mm lens setting
on a fixed focus (see Giacomini et al., 2019). The software
Agisoft Metashape was then employed to build 3D models, while
MeshLab software (v1.3.3, 2014) was used for scaling them.
The scaling was based on one single measurement (generally
the maximum bone length), as recommended by Falkingham
(2012). Sensitivity analyses testing relative bone proportion were
performed on selected specimens of similar-sized mammalian
humerii, generally providing a difference smaller than 5% when
comparing measurements taken with digital caliper and those
with the MeshLab software (v1.3.3, 2014).

Landmarking
The software Landmark (v. 3.0) was employed to identify on
each specimen 28 landmarks (Figure 1). The landmarks were
designed to cover main anatomical regions of the Xenarthran
humerus including proximal and distal epiphyses as possible.
The Landmark descriptions are in Table 1 following anatomical
nomenclature (Figure 1). Most of the landmarks were type 2,
since humerus epiphyses do not allow to identify type 1 points.
However, these were previously evaluated in Milne et al. (2009),
which we followed as a baseline for our configuration (see Table 1
and Figure 1). Landmarking was performed twice on a subsample
of 20 specimens to detect the level of error in size and shape using
Procrustes ANOVA, which in all cases turned out to be non-
significant explaining less than 5% of inter-individual variation.

GMM and Comparative Methods
The 3D landmarked coordinates of the scaled models were
subject to GPA (Generalized Procrustes Analysis, Rohlf and
Slice, 1990). This technique removes the non-shape information
related to size, position, and orientation of the specimens. GPA
returns a new set of coordinates subsequently subjected to
Principal Component Analysis (PCA, Rohlf and Slice, 1990).
PCA decomposes the shape variation into orthogonal axes of
maximum variation named PCs (Principal Components). PC
vectors are used as variables in subsequent analyses. Species
mean shapes were calculated before performing analyses so
that our shape data represented inter-specific variation only.
Humerus size was quantified using the natural logarithm (Ln)
of the centroid size (=the square root of the sum of the

FIGURE 1 | Humerus model of Thallassocnus littoralis built using the
photogrammetry method. Dots represent digitised anatomical landmarks. (A)
frontal view, (B) posterior view.

squared distances from each landmark to the centroid of
each configuration).

We assembled two different phylogenetic trees. The first was
based on molecular data following Presslee et al. (2019) and
Raia et al. (2013; Supplementary Data S1). The second tree was
based on purely morphological evidence and assembled on a
backbone published in Delsuc et al. (2019); Varela et al. (2019),
Boscaini et al. (2019); Fernicola et al. (2017), Herrera et al. (2017),
and Gaudin and Wible (2006; Supplementary Data S2). We
decided to use two different phylogenies because molecular vs.
morphological trees may be conflicting (Cohen, 2018). For the
phylogenetic position of species for both trees and references see
Supplementary Table S2. The phylogenetic trees were calibrated
by using the scaleTree function in the RRphylo package (Raia
et al., 2020, species last appearance and internal node ages used
for calibration are in Supplementary Table S2).

By using plotGMPhyloMorphoSpace function in the geomorph
package (Adams et al., 2019), the trees were mapped into PCA in
order to generate a phylomorphospace. Phylogenetic signals were
quantified by using the K (for size) and the Kmultiv (for shape)
statistic (Adams, 2014).

Phylogenetic Generalized Least Squares (PGLS) regression
was employed assuming Brownian motion as the mode of
evolution to test for macroevolutionary allometry and differences
among locomotory categories. We partitioned species into
discrete stance categories as proposed by Amson et al. (2017)
based on the main lifestyle of extant taxa. Tree sloths were
considered as fully “arboreal.” The anteaters, capable of both
climbing and having a unique digging style, were classified
as “intermediate” (Hildebrand, 1985; Kley and Kearney, 2007),
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TABLE 1 | Landmark descriptions.

Landmark Anatomical definitions

1 Point of maximum curvature of the medial epicondyle

2 Point of minimum curvature of the medial epicondyle

3 Trochlea bottom point

4 Point of maximum curvature in the trochlea, lower section

5 Most distal portion of the capitulum, lower section

6 Most proximal portion of the capitulum, lower section

7 Point of maximum projection of the lateral epicondyle

8 Most proximal portion of the capitulum, upper section

9 Most distal portion of the capitulum, upper section

10 Point of maximum curvature of trochlea, upper section

11 Highest point on the interior edge of the trochlea

12 Lateral point (sx) of olecranon fossa

13 Deepest point of olecranon fossa

14 Lateral point (dx) of olecranon fossa

15 Point of intersection between epicondylar ridge and deltoid crest

16 Point of maximum lateral projection of the deltoid crest

17 Proximal limit of the greater tubercle

18 Highest proximal point of the greater tubercle

19 Distal limit of the greater tubercle

20 Point of intersection between lesser tubercle and humeral head

21 Most proximal limit of the humerus head epiphyseal surface

22 Edge of the lesser tubercle intersecting the humerus head

23 Proximal limit of the lesser tubercle

24 Distal limit of the lesser tubercle

25 Bicipital sulcus

26 Point of intersection between greater tubercle and humeral head

27 Highest projection on the humerus head articular surface

28 Point of intersection between lesser tubercle and humeral neck

whereas armadillos were divided into fully “terrestrial” and
“fossorial.” For fossil species, we carried out an extensive revision
of the literature (see Supplementary Table S3). Extant members
of Cingulata are specialized diggers as inferred by their limb
morphology (Vizcaíno and Milne, 2002; Milne et al., 2009;
Marshall, 2018; Mielke et al., 2018). Other specialized diggers
can be found also among Pilosa. Glossotherium robustum was
demonstrated to be a specialized digger (Bargo et al., 2000;
Vizcaíno et al., 2001; de Oliveira and Santos, 2018). On the
contrary, other ground sloths were best adapted to a terrestrial
lifestyle (Bargo et al., 2000; Vizcaíno et al., 2001; de Oliveira and
Santos, 2018). Extant sloths (Bradypus and Choloepus) are known
as tree sloths for their strictly arboreal lifestyle (Montgomery,
1985; Chiarello, 2008; Toledo et al., 2012), as well as the
anteaters (White, 2010), but the latter are capable of above
branch locomotion (Nyakatura, 2011). Locomotor categories
were equally employed to test for convergence.

We assessed the rate of humerus size and shape evolution by
using the RRphylo function (Castiglione et al., 2018). RRphylo
returns a vector of evolutionary rates for all branches in the tree
and a vector (or a matrix if the phenotype is multivariate, i.e.,
with the shape data) of ancestral states estimated for each node.
We applied RRphylo on both size (log-transformed) and shape (as
PC scores and by using size as covariate).

To search for possible shifts in the evolutionary rates between
clades or locomotory categories we used the function search.shift
(Castiglione et al., 2018). First, we applied search.shift on shape
and size under the “clade” condition. In this case, the function
compares the average absolute evolutionary rate of a specific
clade with the rest of the tree. The significance level is assessed
by randomizations. Then, we applied search.shift on shape
and size under the “sparse” condition to test for differences
in evolutionary rates among locomotor categories. Under this
condition, the function tests if species having the same state
evolve differently from the others.

Eventually, we applied the new function search.conv
(Castiglione et al., 2019) to test for morphological convergence.
This function tests morphological convergence by assessing the
angle between phenotypic vectors (vectors of PC scores) between
species and comparing this angle to a random expectation. Given
two phenotypic vectors (here PC scores), the cosine of angle θ

between them represents the correlation coefficient (Zelditch
et al., 2012). Under the Brownian Motion, θ is expected to be
proportionally related to phylogenetic distance. Yet, convergence
violates this assumption. The new method search.conv, calculates
the θ angles between entire clades (“automatic”) or species under
the same state (“state”). It tests whether the mean θ between
the species evolving under a specific state or belonging to a
single clade is smaller than expected by chance, and whether θ

divided by the mean phylogenetic distance among convergent
tips is smaller than expected. We applied search.conv to test for
morphological convergence between fully arboreal sloths and
the intermediate anteaters, and species evolving under fossorial
lifestyles. Then, we tested convergence between the two tree
sloths: Bradypus and Choloepus.

To test the robustness of our results to phylogenetic
uncertainty and sampling effects, we applied the new
implemented function overfitRR (Serio et al., 2019; Melchionna
et al., 2020) in the RRphylo package (Raia et al., 2020). Under
this function, the original tree is trimmed of a predetermined
number of species (here 5%) and the position of tips is changed
randomly by up to two nodes away from its original placement.
For instance, a simple phylogenetic tree [(A, B), C], would be
changed in [(C, B), A] or [(A, C), B] tree topology. In addition,
the function changes the node age, randomly, within a range
between the age of the focal node immediate ancestor node and
the age of its older daughter node. We ran overfitRR with 100
iterations. At each iteration, the function swapped 5% of the tree
size of tips and changed in age 5% of the tree size of tree nodes,
then used a new phylogenetic tree to perform search.conv to
either confirm or reject any instance of significant morphological
convergence. All the analyses were performed both with the
molecular and the morphological phylogenies.

RESULTS

Geometric Morphometric Results
GMM returned 28 PCs (Supplementary Table S4), of which the
first 13 explained up to 95.80% of the shape variation. More in
detail, PC1 and PC2 explained 53.58% and 15.72%, respectively,
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and they show a degree of separation in humerus shape between
Cingulata and Folivora, while Vermilingua clade overlap with the
latter (Figure 2).

Deformations described by PC1 are related to the relative
elongation of the humerus. Arboreal species occupy positive
scores of PC1 and are characterized by a relatively longer
and slender humerus morphology. Both proximal and distal
epiphyses are reduced. This configuration is typical of the
suspensory tree sloths (genera Bradypus and Choloepus). On the
contrary, PC1 negative scores describe short and stocky humerus
shape. The head and both the greater and lesser tuberosities
are more expanded, as well as the trochlea, capitulum, and
epicondyles (Figure 2).

Changes along PC2 axis described differences among
Xenarthra clades. Folivora and Vermilingua occupy positive PC2
scores. In these clades, the humerus head is slender, the curvature
between the deltoid crest and the distal part is wider and
developed backward. On the negative scores of PC2, Cingulata
shows distinct humerus head components with the distal part
longer and slender (Figure 2).

Comparative Methods
When applying the molecular tree, the phylogenetic signal for
both shape and size was statistically significant. The observed K

(size) and Kmultiv (shape) are 0.997 and 0.453 (p value = 0.001),
respectively. Very similar results were obtained when the
morphological tree was used (K size = 0.939; p value = 0.001,
Kmultiv shape = 0.497, p value = 0.001).

Differences in shape were explained by differences in size, as
resulted by using Procrustes ANOVA without (Table 2A) and
with the addition of the phylogenetic effect of the morphological
tree (Table 2C). The allometric effect remained significant in
Folivora and Cingulata when the phylogenetic relationship was
accounted for (Table 3 and Figure 3). Procrustes ANOVA
showed a significant impact of locomotor categories on shape,
either without considering phylogenetic effects or by using the
molecular tree (Table 2). However, locomotion had no impact on
humerus size variation (Table 2).

By applying search.shift to the humerus size, we found a
significant increase in evolutionary rates in the clade, including
Mylodontidae and Choloepus (average rate difference = 0.080,
p = 0.001; Figure 4A), and a significant decrease in the
clade, including Panoctus, Doedicurus, Neosclerocalyptus,
and Hoplophorus (average rate difference = −0.025,
p = 0.006; Figure 4A). This same negative shift applied
when the morphological tree was considered (average rate
difference = −0.020, p < 0.001; Figure 4B), whereas a positive
rate shift was found for the clade including Euphractinae and

FIGURE 2 | Phylomorphospaces of PC1 vs. PC2 mapping molecular (A) and morphological tree (B). Gray lines connect species with their reconstructed ancestral
node. (C) Deformation grids and warping model (by using as reference T. littoralis).
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TABLE 2 | Xenarthra summary statistics for different Procrustes ANOVA models
without (A) and with (B, C) accounting for the phylogenetic effect.

Model SS MS R2 F p values

(A) Proc ANOVA without phylogeny

Shape∼size 0.069 0.069 0.160 5.156 0.008

Shape∼loc 0.102 0.026 0.238 1.870 0.044

Size∼loc 1.894 0.473 0.077 0.503 0.736

(B) Proc ANOVA with molecular tree

Shape∼size + phy 0.001 0.001 0.068 1.960 0.097

Shape∼loc + phy 0.006 0.001 0.269 2.210 0.016

Size∼loc + phy 0.109 0.027 0.196 1.464 0.256

(C) Proc ANOVA with morphological tree

Shape∼size + phy 0.002 0.002 0.104 3.146 0.022

Shape∼loc + phy 0.002 0.001 0.147 1.034 0.408

Size∼loc + phy 0.022 0.005 0.042 0.264 0.881

SS, the Sums of Squares; MS, Mean squares; R2, the coefficient of determination
for each model term; F, The F values for each model term; p values,
probability computed for each model, significance (<0.05) is highlighted in bold;
loc = locomotion.

TABLE 3 | Folivora and Cingulata summary statistics for different Procrustes
ANOVA models without (A) and with (B, C) accounting for phylogenetic effect.

Group Model SS MS R2 p values

(A) Proc ANOVA without phylogeny

Folivora shape∼size 0.125 0.125 0.562 0.003

Cingulata 0.037 0.037 0.345 0.003

(B) Proc ANOVA with molecular tree

Folivora shape∼size + phy 0.004 0.001 0.258 0.008

Cingulata 0.000 0.000 0.091 0.333

(C) Proc ANOVA with morphological tree

Folivora shape∼size + phy 0.004 0.004 0.439 0.001

Cingulata 0.002 0.002 0.342 0.024

SS, the Sums of Squares; MS, Mean squares; R2, the coefficient of determination
for each model term; F, The F values for each model term; p values,
probability computed for each model, significance (<0.05) is highlighted in bold;
loc = locomotion.

Chlamyphorus (average rate difference = 0.047, p < 0.001;
Figure 4B) by using this tree. We did not find significant shifts in
the rate of humerus shape evolution with either tree.

By testing for rate shifts in humerus size per locomotory state,
we found a positive and significant difference in rates pertaining
to strictly arboreal species (tree sloths) by using molecular trees
(rate difference = 0.123, p value = 0.001, Table 4). Similarly,
tree sloths showed significantly higher rates of shape evolution
as compared to the rest of the taxa (rate difference = 11.259,
p value <0.001, Table 4). With this same molecular tree,
fossorial species had slower rates of humerus shape evolution
as compared to the species falling in different locomotory states
(rate difference =−2.040, p = 0.002, Table 4). When applying the
morphological tree, these differences were less apparent although
fossorial species still showed slower, and arboreal species higher
rates as compared to the rest of the taxa, either by analyzing
humerus size or shape (Table 4).

By using search.conv, we tested the convergence in humerus
shape between species living on tree branches although ascribed
to different categories (intermediate and arboreal). search.conv
returned a non-significant angle of 98.253◦ (p value = 0.867)
between the species under the two states, the same applied
when the angle was tested per unit time (p value = 0.099;
Table 5A). A strong evidence for convergence appears within
the strictly arboreal species, that is the Bradypus and Choloepus
clades (θreal = 0.235, pθreal = 0.010; (θreal+θace)/time = 0.383,
p(θreal+θace)/time = 0.001; Table 5B and Figures 5B,D).
Morphological convergence was additionally found for species
evolving in the “fossorial” category (mean angle among fossorial
species = 68.148◦; p angle state = 0.002, Table 5A and Figure 5C).
This notion is confirmed when the time distance between species
is accounted for (θtime = 0.786, pθtime = 0.001, Table 5A).

overfitRR returned 0% of significant simulations when
convergence between the arboreal and intermediate states
is tested for both phylogenies. This is in agreement with
search.conv results.

For the issue of convergence between Bradypus and Choloepus
overfitRR returned 100% (for both θreal and θreal+θace)/time)
instances of significance by using molecular tree. When the same
analysis is performed by using morphological tree, overfitRR
returned 71% for θreal and 74% for θreal+θace)/time instance of
significant convergence.

For the issue of convergence between fossorial species,
overfitRR returned 100% (p.θstate) and 99% (p.θtime) of significant
p values when molecular tree is used. The same figures for the
morphological tree were 100% (p.θstate) and 98% (p.θtime).

DISCUSSION

The taxonomic and phenotypic diversity of extant Xenarthrans
represents only a small fraction of their past variations. Perhaps
unsurprisingly, giant extinct glyptodonts (Doedicurus, Glyptodon,
and their allies) experienced a shift toward a slow rate of size
evolution, in keeping with their uniformly large body size. This
stands true irrespective of whether molecular or morphological
trees are used. In contrast, a significant positive shift in
the rate of humerus size evolution appears in Euphractinae
plus Chlamyrophus by using the morphological tree only,
with Eutatus placed outside the clade of Glyptodontinae plus
Euphractinae (Figure 4B). This probably related with a decrease
in size of Euphractinae plus Chlamyrophus in contrast with the
plesiomorphic condition of Eutatus, whose estimated body size is
supposed to range between 36.8 and 71.7 kg (Vizcaíno and Bargo,
2003). On the contrary, extant Euphractine plus Chlamyrophus
are only 2 kg in body size on average.

We found no significant instance of shape evolutionary
shifts pertaining to the Xenarthran trees, meaning that major
shape differences were channelled through phylogeny as further
supported by GMM results. Phylomorphospace showed a neat
separation between the two clades Cingulata and Pilosa along
PC2 (Figure 2).

However, the humerus changed significantly relative to
locomotory styles. The rate of shape evolution in fossorial
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FIGURE 3 | Ln Centroid Size vs. PC1 scatter plot. Regression for Cingulata is represented by the light blue line. Regression for Folivora is represented by the pink
line. At the extreme of PC1 for both groups are present the grids showing shape deformations and warping models (by using as reference T. littoralis).

FIGURE 4 | Evolutionary rates (color coded) for the Xenarthra humerus size along the molecular (A) and morphological (B) tree. Species names are coded according
to locomotor categories. Large dots at nodes represent clade shifting (blue = low, orange = high).
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TABLE 4 | search.shift results for size showing shift in evolutionary rate.

Molecular tree Morphological tree

Size Shape Size Shape

Rate difference p values Rate difference p values Rate difference p values Rate difference p values

arboreal – aquatic 0.134 0.002 11.99 <0.001 −0.001 0.372 −1.457 0.158
fossorial – aquatic 0.004 0.367 0.045 0.311 0.017 0.636 −2.604 0.049
intermediate – aquatic 0.017 0.543 0.725 0.476 0.003 0.403 −3.021 0.041
terrestrial – aquatic 0.014 0.464 1.159 0.469 0.017 0.595 −1.107 0.179
fossorial – arboreal −0.129 0.003 −11.945 0.001 0.018 0.777 −1.148 0.166
intermediate – arboreal −0.117 0.005 −11.265 0.001 0.004 0.528 −1.564 0.127
terrestrial – arboreal −0.12 0.004 −10.832 0.001 0.018 0.811 0.349 0.601
intermediate – fossorial 0.012 0.673 0.68 0.604 −0.015 0.247 −0.416 0.421
terrestrial – fossorial 0.009 0.565 1.114 0.702 0.000 0.481 1.497 0.969
terrestrial – intermediate −0.003 0.373 0.433 0.501 0.015 0.762 1.913 0.015
terrestrial −0.026 0.162 −2.04 0.081 0.009 0.758 1.151 0.957
fossorial −0.031 0.086 −2.952 0.008 0.007 0.691 −1.136 0.054
intermediate −0.013 0.473 −1.808 0.286 −0.011 0.319 −1.482 0.045
aquatic −0.029 0.425 −2.366 0.188 −0.015 0.251 0.332 0.742
arboreal 0.123 0.001 11.259 <0.001 −0.013 0.492 1.805 0.918

Rate difference is computed as the average rate for all species evolving under the same state minus the average for each other state (for group comparison) or the rest
of the tree (for the single state). p values is assessed by means of randomization.

Xenarthrans is significantly smaller than in other species.
Such fossorial habitus characterizes most Cingulata and
is possibly plesiomorphic to the group (Vizcaíno and
Milne, 2002; Milne et al., 2009; Marshall, 2018), although
it is surprisingly present among giant ground sloths like
Glossotherium (Bargo et al., 2000; Vizcaíno et al., 2001;
de Oliveira and Santos, 2018).

Conversely, arboreal species evolved at faster rates than
in any other Xenarthra. Tree sloths were noted for their
highly derived and convergent morphologies, canalizing change
from a plesiomorphic, fossorial condition (Nyakatura, 2011;
Nyakatura and Fischer, 2011), although it must be emphasized
that scansorial species (which were not included in the analyses

TABLE 5 | Convergence results.

(A) search.conv results under “state” condition

state θstate p.θstate θtime p.θtime

Arboreal – intermediate 98.253 0.867 0.945 0.099

Fossorial 68.148 0.002 0.786 0.001

(B) search.conv results under “automatic” condition

node θreal p θreal (θ real+θace)/time p(θreal+θace)/time

Bradypus – Choloepus 0.235 0.01 0.383 0.001

(A) Results as returned by search.conv. θstate: mean angle between species within
a within a single state; p.θstate: p value computed for θstate. (B) Results as returned
by search.conv for clade subtending Bradypus and Choloepus.θreal: the mean
angle between Bradypus and Choloepus divided by the time distance; p θreal:
the p-value computed for θreal; (θreal+θace)/time: the mean theta angle between
Bradypus and Choloepus plus the angle between aces, divided by the time
distance; p(θreal+θace)/time: the p-value computed for (θreal+θace)/time. Significant
p values (<0.05) are highlighted in bold.

here) were present since the Miocene (Pujos et al., 2012;
Toledo et al., 2017).

Overall, our results suggest that the acquisition of arboreal
and fossorial lifestyles are loaded with great functional demands,
leading to constrained, little variable morphologies (fossorial) or
to significant changes in shape toward a particular configuration
(from the ancestral conditions) to match a demanding lifestyle
(arboreal sloths). These challenging adaptations present ideal
cases to test convergence. We provided this test for both
fossorial species and tree sloths, separately, and confirmed
they do represent significant instances of morphological
convergence (Figure 5). The same applies if phylogenetic
uncertainty is accounted for. The results further support
the observation that phylogenetic signal in humerus shape
is as much high as for humerus size (Vizcaíno et al.,
1999; Vizcaíno and Bargo, 2003), but also suggest that
tree-living is the room for morphological change among
Xenarthran taxa.

Limb proportions in fossil Eutatus were similar to extant
Euphractine (Vizcaíno and Bargo, 2003). These species present
limbs specialized in building borrows rather than in gathering
food (Vizcaíno and Bargo, 2003). Thus, the high size evolutionary
rates can be related with more robust humerii specialized for
digging. It was demonstrated that Miocene glyptodonts weighed
about 100 kg, but Pleistocene species may have weighed up to
1 ton (Vizcaíno et al., 2010; Milne et al., 2012). Our results
indicate that the lowest evolutionary rate in humerus size occurs
in Panoctus, Doedicurus, Neosclerocalyptus, and Hoplophorus
suggesting humerus size in these taxa was linked to their large
but uniform body size.

Xenarthra originated in South America about 62.5 million
years ago (Presslee et al., 2019). During the Great Biotic
Interchange in late Pliocene (Marshall et al., 1979; Webb, 2006)
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FIGURE 5 | (A,C) PC1 vs. PC2 scatter plot. Convex hulls are colored according to different states. Circular plots represent the mean angle between states, the gray
area is the random angle range. (B,D) Traitgram plot with colored branched representing convergent clade. PC1 vs. PC2 scatter plot are produced, convergent
clades are color coded. In both, traitgram and PC1 vs. PC2 scatter plot asterisks represent the ancestral phenotypes of the individual clades.

several species migrated to the North (Bocherens et al.,
2017). Studies of fossil species have demonstrated that none
of the known fossil sloths had arboreal lifestyle (White,
2010; Nyakatura, 2011). The last common ancestor of
sloths probably was terrestrial or semi-arboreal (White,
2010; Nyakatura, 2012). Indeed, fossil sloths appear
morphologically closer to extant Vermilingua (i.e., Tamandua
and Myrmecophaga, herein classified as “intermediate”)
rather than to extant tree sloths (Toledo et al., 2012). We
did not find instance of convergence among intermediate
and arboreal species (Figure 5). This supports the idea
that modern tree sloths acquired the suspensory habitus

secondarily, which explains their higher shape evolutionary
rates as compared to the humerii of species ascribed to
different locomotor categories. Similarly, the long branch
separating the extant tree sloth genera (Presslee et al., 2019)
are suggestive of secondary adaptation. Extant sloths present
a forelimb-dominated locomotion. Bradypus moves up to
10 m only using his forelimbs, and Choloepus hind limbs
lost their primarily propulsive elements (Mendel, 1985;
Nyakatura et al., 2010).

Similarly, since digging kinematics is one of the most
demanding behaviors the mammalian skeleton could be designed
for Sansalone et al. (2019), the pervasive call for convergence
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to a functionally optimal design linked to digging was expected
(Sansalone et al., 2020).

One obvious caveat we urge to consider is that, although nearly
one-half of the species we considered in our tree are extinct,
the history of Xenarthra cautions against giving too much faith
to phylogenetic analyses using a tree devoid or otherwise scarce
in terms of fossil species representation. The inclusion of fossil
phenotypes is, and must carefully be, considered in trait evolution
inference, especially when major patterns such as morphological
convergence are sought after.
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