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Abstract 

The capacity to navigate and identify individuals and other devices is becoming increasingly 

common and more essential in the era of the Internet of Things and the blooming of Wireless 

Sensor Networks. Outdoor positioning has been shown very well and is commonly used in 

everyday life thanks to the well-known GPS scheme. However, owing to the unique problems 

and distinctive requirements in the indoor environment, indoor positioning is still undergrowth 

and has attracted a lot of research and development in recent times. It can be said that finding 

an extensive solution like GPS in outdoor positioning will be nearly impossible. We need to 

evaluate the demands of the application and system so that we can determine the appropriate 

technology for the navigation system. Not only diversified in demands and technology, but the 

range of appliances engaged in the system also affects indoor positioning. This heterogeneity 

covers different kinds of operating systems and communication protocols. Besides, the 

problems recognised for indoor conditions such as the fading impact, signal attenuation, signal 

blocking, noise, and interference still cause the navigation system many problems. 

As a prospective technology candidate for indoor navigation devices, the Bluetooth Low 

Energy and iBeacon have appeared. The outstanding properties of Bluetooth Low Energy such 

as low consumption of energy, simplicity and elevated market penetration draw the attention 

of scientists. In this thesis, I develop an indoor positioning system using Bluetooth Low Energy 

technology. My scheme is based on a range-based technique that requires knowledge of 

beacons before positioning. Users with Bluetooth-enabled devices situated in the system region 

can be positioned by gathering RSSI signals. Then the information gathered will be filtered and 

processed through the proposed algorithm. Experiments demonstrate that my system achieves 

auspicious results with the error margin under half a metre for static devices. In addition, a 

mobile device sensor is used to measure inertial information. Applying pedestrian dead 

reckoning technique, direction and target position are estimated after that. Combining this 

outcome with my algorithms, the tracking results of my system achieved an error of about 

0.2m. 
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Chapter 1 Introduction 

The expansion of electronic mobile devices and wireless communication has been witnessed 

in the last decade. Wireless connection has become a fundamental characteristic of billions of 

computing devices ranging from low complexity ones such as Bluetooth beacons to high 

computational capability appliances such as laptops or smartphones. These devices are 

connected and communicated within a system or the coverage of any network. Also, they are 

carried by users while moving or travelling. This makes mobility one of the critical features of 

wireless communication and mobile computing. Besides that, mobility combined with 

localisation have been applied to a wide scale of applications in transportation, healthcare, 

guiding, homecare, logistics and much more. Hence, there is a high demand for effective 

location awareness in the wireless network. This chapter will provide an overview of indoor 

wireless networks – the Ad-Hoc network and indoor localisation, challenges, motivation as 

well as the objectives of the project. 

1.1 Overview 

In recent years, we have observed a large amount of wireless communication-related research. 

It is widely accepted that mobile wireless networks can be divided into two types: infrastructure 

network called Mobile IP and Ad-Hoc network. The Mobile IP enables a mobile device moving 

from one network to another without losing its IP addresses and connectivity. Ad-Hoc 

Networks (Sarkar et al., 2013) refer to infrastructure-less networks which do not require any 

base stations. This network contains two or more nodes with the wired or wireless interface to 

communicate with others. These devices can be either in a fixed location or moving around 

inside/outside the network. Hence, this characteristic creates a dynamic environment where a 

node might be shown up or disappear suddenly. Another requirement of an Ad-Hoc Network 

is that all the nodes should be able to contact each other anywhere and anytime within the 

network.  
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There are two types of Ad-Hoc Networks. The first one is the homogeneous network where all 

devices in the network have identical roles and capabilities, for example, two mobile phones 

transmit data to each other. The second one is the heterogeneous network. In this network, each 

device has different roles and capabilities like in the master-slave model (Conti et al., 2003). 

Both types are massively deployed nowadays due to their advantages (Ismail and Ja'afar, 2007) 

including cheap cost, simple to design, decentralised and robustness. 

Moreover, in this age of mobile devices more than 2 billion smartphones and 1.20 billion tablets 

(Smart Insights, 2016) are being used all over the world, and hence the terminology MANETs. 

The mobile nodes in the MANET are designed to be self-configuring and self-organising in 

forming the network. The main tasks of each node in a MANET are to store, locate, retrieve 

and exchange data. MANET is currently deployed in the military battlefield, commercial 

sector, local level, and personal area network (PAN) (Bang and Ramteke, 2013). Body Area 

Networks (BANs) and PANs are rapidly expanding to include millions of electronic devices 

widely ranging in size, characteristics and capabilities.  

One of the most recognised and vital BANs and PANs structures is the indoor localisation 

system. In fact, the term indoor positioning has become very popular in recent years. 

Localisation is the ability to determine the location information of users or an object in a closed 

environment. At present, the well-established positioning systems, such as Global Navigation 

Satellite System (GNSS) and the famous Global Positioning System (GPS) can only provide 

good performance in outdoor environments. The signal from satellites is blocked by walls, 

people and other objects. Moreover, the acceptable error range for outdoor positioning might 

be larger than for an indoor environment. This means that the available GPS chips on the 

market cannot adapt to the requirements of indoor positioning. 

In terms of the commercial aspects, there are four main tasks offered by the indoor positioning 

in the market: proximity marketing, wayfinding and navigation, search and requesting help, 

asset or people tracking. Concerning the nature of these services, high accuracy symbolic 

position with a flexible frame of reference might be suitable for indoor mobile communication. 

In this regard, many wireless location technologies have been considered such as Visual Light 

Communication (VLC), Infrared (IR), Ultrasound, GPS, Simultaneous Localisation and 

Mapping (SLAM) and Radio Frequency (RF) Based (WLAN, Bluetooth, Zigbee, RFID). Each 
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technology has its own advantages and disadvantages. Besides, the merging of devices’ 

platforms, communication environments and systems components will introduce new concerns 

for accuracy, stability, compatibility and scalability in all infrastructures and services. 

Therefore, having a focus on developing and optimising system design as well as location 

algorithms could be an effective way to utilise positioning results and control system errors. 

1.2 Problem statements 

The general problem of this thesis is to answer the following question: 

“What is the effective positioning solution to achieve high accuracy and low energy 

consumption in the noisy indoor environment?” 

To answer this question, challenges in designing the indoor localisation have been defined. 

Such difficulties are also common problems faced in the design of MANETs. 

A wireless network consists of various types of devices ranging from mobile phones, tablets, 

and smartwatches to small tags and sensors. They are mostly battery powered and operated by 

different operating systems. The rapid expansion in the divergence of devices being used 

causes many challenges in designing a MANET. In fact, those challenges depend on the actual 

application of a MANET, but there are some major challenges which are highlighted below: 

• Limited power source: devices in the network are powered by batteries. 

Unfortunately, progress in battery technology is plodding compared to the development 

of mobile devices. This limitation of power source is a big issue in MANETs as some 

or all nodes might act as routers and end devices at the same time. The communication 

process including receiving and forwarding packets needed to be designed with the 

focus on energy conservation. Moreover, there is a trade-off between reducing a 

system’s power consumption and optimising a system’s performance. An optimisation 

based on unnecessary or irrelevant evaluation and features may lead to insufficient 

battery life. 
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• Multi-hop routing protocol: there is no default router, every node can act as a router 

to receive and forward data. This will make the routing process much more complicated 

than in the case of a single hop. Moreover, the dynamic topology may cause routing 

between two nodes to become challenging and consume more energy than usual.  

• Delay and time responding: the mobility function may lead to a delay in the network 

in recognising the existence of the node and establishing nodes’ communication. This 

will result in the challenge of the route selection. 

• Cross-platform issues: each electronic device has a different hardware/software 

configuration, and they might have several radio interfaces available to them at the 

same time. This increases the complexity of network protocols and algorithms, 

especially in adapting to the dynamically changing conditions. 

Other issues can be named, such as Quality of Service (QoS), Security, Scalability, Interference 

and Multicast. 

• In MANETs, together with the mobility, indoor location-based services will enhance 

the user experience, improve business and increase sales in the retail, transportation or 

healthcare domains. Despite the need for indoor localisation, there does not exist any 

standard solution because of two major questions: “What is the ubiquitous technology 

for indoor positioning system?” and “How is the data collected and analysed?” 

Referring to the first problem, the currently well-established positioning systems, 

Global Navigation Satellite System (GNSS) and the famous Global Positioning System 

(GPS) can only provide excellent performance for outdoor environments. There is no 

such thing as a ubiquitous technology that identifies the indoor positioning. In fact, 

there are some options that can be used as a standard technology such as Wi-Fi-based 

positioning, RFID based positioning or Bluetooth based positioning due to their wide 

availability. However, there are some limitations such as huge power consumption, 

unique hardware installation or manual calibration. These need to be minimised in order 

to make any technology become feasible for standardisation. The second question is 

the huge and complex data obtained from numerous resources resulting in the 

uncertainty and complicated information processing. Moreover, data extraction and 

analysis are needed to meet some essential requirements: 
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• Precision/Accuracy: the requirements for accuracy and precision is much higher 

compared to that required in the outdoor scenario. Ideally, it should range from 2-3 

metres to only a few centimetres depending on the application. 

• Coverage: in theory, the most effective system is the one that has the widest coverage 

area. However, this term is strongly linked to energy efficiency. A sufficient system 

could provide a range of up to about 50-60 metres. 

• Interference: the indoor environment consists of a mixture of radio wave signals such 

as the internet, mobile cellular, Bluetooth. They might operate at the same frequency. 

This leads to interference in the buildings. 

• Attenuation: The propagation model for busy indoor environments is complicated. 

This is the result of multipath and Non-Line-of-Sight (NLOS) conditions and the 

presence of continuously moving objects/people within the area. On the other hand, it 

also depends on the material of building or subjects. Below is Table 1.1 of obstacle 

attenuation (Mautz, 2009) 

Table 1.1  Object attenuation levels (Mautz, 2009) 

Material Attenuation [dB] 

Dry Wall 1 

Plywood 1 – 3  

Glass 1 – 4 

Human 3 

Painted Glass 10 

Wood 2 – 9 

Iron Mat 2 – 11  

Bricks 5 – 31 

Concrete 12 – 43 

Ferro-Concrete 29 – 33 
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• Reflection, Diffraction, Scattering: the signal within a building will experience these 

phenomena. This makes the modelling for indoor positioning systems much more 

complex and sensitive. 

• Energy consumption: in the indoor environment, most devices are mobile or 

handhelds which are powered by limited batteries. Preserving energy consumption 

while maintaining the overall performance is one of the most challenging tasks for an 

indoor positioning system. 

1.3 Research motivation 

The research is motivated by the significant challenges of designing an indoor positioning in 

MANETs. First is the diversity in the requirements of an indoor positioning system. There is 

no specific standard for this system. This is very difficult for analysis and finding a solution. 

Thus, the first motivation is to propose a concept of an indoor positioning system framework 

in MANETs that can minimise difficulties posed by the diversity of devices and applications 

in MANETS. This study more focuses on the application in a large and busy indoor building. 

In fact, researchers had been trying to solve the indoor positioning issue in a variety of ways. 

The leading GNSS technology performs poorly indoors. Some of the research and some 

commercialised products proposed some positioning systems using Wi-Fi, Bluetooth or RFID 

technology. Some authors such as Wu và Liu (2013) or Gu et al. (2019) use Wi-Fi and 

fingerprinting algorithms to solve the problem but this solution requires a lot of power usage 

and complex offline computation. Bluetooth solutions were also suggested by some authors 

(Basiri et al., 2017, Teran, Carrillo and Parra, 2018) and positive results achieved. However, 

the accuracy for small objects remains inadequate and the system may have problems with 

scalability. Additionally, RFID or Zigbee solutions are more suitable for locating sensors or 

very small items. It also has very short-range which is a problem even for indoor environments. 

Hence, there is no universal agreed solution. 

Also, the motivation comes from the high demand for efficient indoor positioning in 

commercial use. According to the research of Nokia (Kalliola, 2011), 80% - 90% of human 

activities occurring inside a building and indoor communication accounts for 70% - 80% of the 
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phone calls and data connection. Billions of handheld devices expect an intuitive, reliable and 

accurate location-based service. Moreover, customers will demand that great experience and 

service even when they change devices or enter any large and busy indoor facilities such as a 

hospital or underground station. Hence, the indoor positioning system should not only 

overcome the technical problem but also overcome non-technical issues such as low cost and 

low complexity in order to be widely implemented. 

1.4 Aim and research objectives 

The main aim of this research is to develop/design a high accuracy and energy-efficient indoor 

localisation system for MANET. The application to track both static and dynamic devices are 

considered in this research work. 

The objectives of this research are summarised below: 

• Review of existing technology at both MANETs and indoor localisation 

To conduct an in-depth review of existing technologies, the accuracy aspects were focused. 

Details of properties and requirements of an indoor localisation were evaluated. In addition, 

there was a focus on energy-efficient. 

• Evaluate the capability of the potential technology and design an efficient 

hardware setup for the technology 

Indoor positioning has very unique characteristics. Thus this objective has a two-pronged 

purpose. First is to analyse the performance of the potential technology and technique in the 

indoor environment. The second phase is to design a recommended hardware setup for such 

situation following the evaluation and understanding of the potential technology 

• Design of an optimum localisation technique for indoor positioning for static 

device 

This is the main focus of this work. The technique was proved to achieve high accuracy with 

low energy consumption for tracking static devices. 
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• Design a fusion system for indoor tracking based on the proposed technique 

Monitoring a static device might be not enough in the real-life application. Tracking an object 

or people is one of the most attractive topics in the recent market. Based on the developed 

approach for the static device, a system and algorithm for indoor tracking were proposed and 

evaluated. 

• Performance Evaluation of the system using experiment  

A testbed of different platforms and hardware was developed currently within my research 

group. Data was collected and analysed had been done using MATLAB software. 

1.5 Contributions of the research to state of the art 

There are three key contributions of this work. The first contribution is a comprehensive study 

of the indoor positioning system. There are comparisons between indoor positioning 

technologies and the different algorithms used. Besides, the review outlines the specific criteria 

and requirements of the indoor positioning system, paying particular attention to positioning in 

large building applications. More specifically, these are energy efficiency requirements for the 

system. There is also a conceptual model proposed for commercial indoor positioning systems 

This allows other researcher and engineer to understand which technology system should be 

exploited in their indoor positioning.  

The second contribution is to demonstrate the suitability of Bluetooth Low Energy and iBeacon 

for indoor positioning systems. Experiments are performed with different conditions and 

configurations and evaluated thoroughly. Thereby showing that the ability of this technology 

is not only be demonstrated in theory but also, in reality, using correct setup topologies. 

The third contribution of this study proposes a novel localisation algorithm call “Improve Least 

Square Estimation” that achieves high positioning accuracy with cross-platform capability. 

This algorithm is based on BLE technology and the iBeacon device has been shown to be 

effective. Evaluation and comparison have been made between our algorithm and other 

Bluetooth-based algorithms as well as other forms of technology. The findings show that with 
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static devices, the algorithm works very well. Not just this, the algorithm proved to improve in 

real-time tracking capabilities the performance of the classical PDR. The overall results 

indicate the ability of the algorithm to achieve a high accuracy positioning while retaining 

relatively low power consumption. This experiment has been performed in the laboratory 

environment and in real-life (office) condition. 

1.6 Methodologies 

The methodology of the research process will be described in this section. It will clarify the 

methods used in the analysis, and discuss why this approach was selected. In general, the 

methodology was conducted to allow a detailed understanding of the problem posed as well as 

the objectives. The strategy to meet the aim is therefore drawn up. My research is based on 

experimenting and analysing studies and it uses the waterfall model system development life 

cycle (SDLC) (Vivek. 2015). It is made up of the following steps.  

The first step is to identify the field of research that needs to be addressed. This study focuses 

on a highly accurate, indoor positioning system and energy conservation. By identifying this 

problem, an in-depth study was conducted to better understand both the system requirements 

and the solution being developed. From here, the remaining issues have also been identified. 

The questions are as follows: 

• What are the requirements of an indoor positioning system and what are the key 

criteria? 

• What are potential technologies which must fulfil the following points: energy efficient, 

high availability, cost-effective and relatively simple to exploit. 

• Technology and solution should be easily implemented in reality. 

Based on these questions, technologies that could be potential candidates were identified. The 

limitations of each technology were also addressed and discussed in further detail. A standard 

novel system had been designed to allow for the use of various types of technology where 

appropriate. This system will be described in chapter 5 of this thesis. With a careful analysis 

of each technology's advantages and disadvantages, focusing on large buildings such as 
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hospitals and stations, Bluetooth Low Energy is chosen for its characteristics: low energy 

consumption, moderate coverage range, high compatibility and low-cost implementation. 

The third step, after identifying potential technology which is BLE. We then approached the 

manufacturers: Bluecat, Locly and Estimote and discussed with them about the requirements 

of the research as well as the current market. Experiments were then carried out with a range 

of BLE devices. Real-life data were collected and carefully studied. Hence, the pros and cons 

of each device could be observed and evaluated. 

After that, experiments were continuously organised to evaluate the capabilities of technology 

and algorithms. After that, experiments were continuously organised to evaluate the 

capabilities of technology and algorithms. Real information was collected and observed by 

different formats. The data collected then be filtered and added to the algorithm. The findings 

then studied and evaluated with other technologies and algorithms. Figure 1.1 demonstrates 

our methodology: 

 

Figure 1.1 Thesis methodology – Waterfall model SDLC 

1.7 Thesis structure 

The thesis contains seven chapters. The present chapter gives an overview of this thesis, states 

challenges and difficulties. It also describes the aims and objectives, along with the 

contributions and outlines the structure of the document. 
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Chapter 2 introduces the essential background of MANET and indoor positioning. It provides 

foundation knowledge of this research. There is also a comparison between terms and metrics 

of an indoor positioning system. 

Chapter 3 gives an in-depth literature review of state-of-the-art research of existing wireless 

technologies and indoor positioning systems. This chapter will compare these systems and 

technologies to analyse their advantages and disadvantages. Also, the gap between market and 

research is discussed.  

Chapter 4 presents an evaluation of iBeacon and Bluetooth characteristics. Based on that a 

recommended Beacon setup topology is proposed 

Chapter 5 proposes the “improved Least Square Estimation” for static devices. It describes 

the mathematical models and calculation. Then there will be an experiment and evaluation. 

Detailed discussion and results are also presented. 

Chapter 6 is dedicated to the indoor tracking application. This suggests a hybrid model of the 

traditional PDR approach and my proposed solution. The system information will be given. An 

experiment was conducted to see evaluate the performance of this fusion system. 

Chapter 7 concludes this study. It includes the summary of how this thesis answers the 

problem statements, limitations and recommend of potential future work. 
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Chapter 2 Background 

In this chapter, the background of the study will be presented. The chapter begins with the 

knowledge and concepts of MANETs in Section 2.1. Later, in Sections 2.2 and 2.3, the 

technologies and metrics used in the indoor positioning system were covered and compared. 

Sections 2.4 and 2.5 will cover common methods and data filter used for the localisation 

purpose. Finally, there is an introduction to the technology chosen for this study: BLE and 

iBeacon. 

2.1 Background of MANETs 

MANETs stands for Mobile ad hoc network which is a network consisting of a set of mobile 

devices that is formed dynamically and randomly. It does not require any physical 

infrastructure configuration. Due to this nature, there are several notable characteristics of a 

MANET. First, it contains autonomous nodes, so the ad hoc network is decentralised. Hence, 

each node in the network behaves as a router that interconnects with its intermediate neighbours 

to forward the data packets. Intuitively, MANETs use the multi-hop routing process and have 

the self-configuring ability. Second, mobility nodes create a dynamic topology for MANETs. 

Nodes are free to join and leave the network at any time and any boundary, making the network 

topology unpredictable over time. Third, these networks have low capacity, low bandwidth 

link, high bit error rates and shorter communication due to the operation on the bandwidth-

constrained variable capacity link. This leads to the fourth characteristic which is unreliable 

communication in terms of stability, high packet loss and re-routing instability. Fifth, the 

unreliable links and device heterogeneity make the network more vulnerable to physical 

attacks. It is prone to many types of physical threats varying from device damaged, device lost, 

device stolen to denial-of-service, interception or routing attacks. Final, nodes are small and 

handheld, so they are powered by batteries and other exhaustible sources. Therefore, energy 

efficiency and power conservation are crucial optimisation criteria of MANETs.  
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In order to design a sufficient MANET system, a general and simple architecture of a MANET 

network is shown in Figure 2.1 (Conti, 2003): 

 

Figure 2.1 General MANET architecture (Conti, 2003) 

As can be seen, there are three major areas to be considered in a MANET. The following 

sections will review each area separately. As the technologies are mainly based on wireless 

medium access, the discussion will be based on wireless technologies. 

Enabling technologies 

The enabling wireless technologies for MANETs were discussed by Conti (2003) and classified 

based on the network coverage area: Body (WBAN), Personal (WPAN), Local (WLAN), 

Metropolitan (WMAN) and Wide (WWAN) area networks. The author states that WAN and 

MAN are extremely complex in terms of addressing, routing, location management, security, 

etc. so their feasibility is not on the immediate horizon. Hence, this research will focus on three 

main application areas: WBAN, WPAN and WLAN including IEEE 802.15.1, IEEE 802.15.4, 

IEEE 802.15.3, IEEE 802.15.6 and IEEE 802.11 
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MAC protocol 

As stated, the MAC protocol plays a vital role in designing a MANET. There are several points 

to be noted when choosing a suitable MAC protocol. First, wireless channels are unreliable 

with the path loss, fading and suffering interference. Secondly, as the nodes in MANETs are 

moving around, the network topology will change continuously. Thirdly, there is no central 

management in a MANET, each node can work as a router and can have its own view of the 

network. Lastly, energy management across multiple layers will play a pivotal role to achieve 

the desired energy conservation. Chlamtac et al., (2003) described the collisions/interference 

due to the hidden terminal as one of the main challenges of designing MAC protocols for 

MANETs. This will waste energy and cause delay by using too much unnecessary 

retransmission. 

It is known that CSMA/CA is the most widely used choice for MAC protocol in MANETs as 

it is the standard used in both ZigBee and 802.11. CSMA/CA tries to avoid collisions with the 

RTS/CTS method before transmission. However, Chlamtac and his co-authors claim that the 

transmissions from a node out of range (this node may be moving into the network or have just 

gone out of the network) cannot be detected. Therefore, several types of MAC protocols have 

been proposed. In fact, Bluetooth and BLE use TDMA which allows collision-free medium 

access because it uses a reserved time slot for each node. However, this mechanism will cause 

delay, especially in a bursty traffic environment. Bharghavan et al. (1994) proposed MACAW, 

a mechanism that uses a four-way handshake method. This includes an ACK message from the 

receiver so the hidden terminals problem might be avoided but will make a trade-off with the 

delay time and may increase the energy consumption. Another MAC protocol proposed was 

Power Control MAC (PCM) (Jung and Vaidya, 2005). Basically, it uses the four-way 

handshake method but with the controlling of power. Each message is transmitted from a lower 

power level and periodically is increased up to a max power level. However, PCM’s 

implementation is complex and costly at the moment. 
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Networking 

In this domain, the main focus is on the routing protocol performance. The routing protocol for 

MANETs is classified into two main groups: proactive and reactive protocols. 

Proactive routing protocols 

In proactive protocols, each node maintains the routing information to every other node or the 

nodes within its area in the form of routing tables. These tables are updated periodically; hence, 

this type of routing protocol is also called table-driven protocol. Because of this feature, this 

protocol is unsuitable for an extensive network. Some well-known candidates from this type 

are Destination-Sequenced Distance-Vector (DSDV), Optimized Link State Routing (OLSR) 

and Hierarchical State Routing (HSR). 

DSDV 

DSDV protocol (Perkins and Bhagwat, 1994) is a distance-vector protocol. Each node has a 

routing table with a single route to the destination using the shortest path routing algorithm. A 

destination sequence number is used to avoid looping. This destination sequence is incremented 

by a node whenever there is a change to its neighbours. The greater destination sequence means 

the node has more recent information. Thus, nodes always choose the route with the most 

significant number. However, due to this frequent updating, there is a large amount of overhead 

to the network. Therefore, DSDV is not suitable for a large network. 

OLSR 

OLSR protocol (Jacquet et al., 2001) is a point-to-point routing protocol and is an optimisation 

of the traditional link-state algorithms. Each node maintains the routing information by 

exchanging the link state information among its neighbours. By using the multipoint relay 

(MPR) technique, OLSR can minimise the size of each control message and the number of 

rebroadcasting nodes. However, as DSDV, the limitation of OLSR is the high bandwidth 

consumption as a result of the periodic updating of the network topology. 
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HSR 

HSR protocol (Pei et al., 1999) is another modified version of the link-sate algorithm. It 

maintains a hierarchical addressing and topology network. The network is divided into different 

clusters and each cluster has its own leader. The cluster leader exchanges the hierarchical 

topology with its peers. Then each node has this information stored in an HSR table. By using 

this method, the routing table size is much reduced, however, this also increases the complexity 

making it quite a challenge to implement. 

Reactive routing protocols 

In reactive routing protocols, each node discovers the routing information only when it is 

requested. This means the node maintains the routing information for active routes only. The 

route usually is discovered by flooding a route request throughout the network. When the 

message reaches the destination, a route reply will be sent back to the source node. 

Representatives for this type of protocol are Ad-Hoc On-Demand Distance Vector (AODV), 

Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA). 

DSR 

DSR protocol is a source-based routing protocol and was proposed by Johnson B.D and his 

colleagues in 1999. If the source does not have the route information to the destination, then 

the discovery process will be started by sending out the REQUEST packets (RREQ) to its 

neighbours. Then the packet will be forwarded until it reaches the destination which will send 

back the REPLY message (RREP). In the case that the next-hop link is broken, an ERROR 

message (RERR) will be sent back to the source node. One important thing is that in the 

packets, the full route information to the destination is included. This leads to a large amount 

of overhead when the network gets bigger (Sharma and Lobiyal, 2015). Sharma also proved 

that in small size networks, the DSR protocol might perform better over the AODV and TORA. 

One advantage of this protocol is that a node can store multiple routes in the route cache, and 

if the source can find a suitable route to the destination then there is no need for the route 

discovery. In general, DSR performs best for low bandwidth and low power network. 
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AODV 

AODV protocol (Perkins and Royer, 1999) is one of the most popular routing protocols in 

MANET. It is based on DSDV and DSR protocol. AODV uses the sequence numbering feature 

of DSDV while the route discovery is similar to that in DSR. There are a number of advantages 

with AODV, making it a popular choice in designing MANET. Firstly, each packet in AODV 

does not carry the full route information as in DSR, it only carries the destination address. 

Secondly, AODV is highly adapted to the dynamic topology of MANET. However, AODV 

requires more time for setting up. Using HELLO messages repeatedly may lead to the waste 

of bandwidth and it still has massive overhead in the big MANET. Therefore, several modified 

versions of AODV (MAODV) have been proposed to overcome these challenges. Zonghua et 

al. (2011) introduced a MAODV by changing the RREQ message to reduce the route overhead. 

Their results showed that the MAODV outperforms the traditional AODV under the conditions 

of increasing node mobility and traffic load. Rana. Y et al. (2015) proposed another version of 

AODV. Their approach uses the energy level on each node to decide whether to discard the 

RREQ or not. The results showed that their MAODV improves link stability as well as 

increasing the network lifetime. 

TORA 

TORA was invented by Park and Corson in 2001. It was designed for highly dynamic mobile 

and multi-hop wireless network. TORA includes three major tasks: route creation, route 

maintenance and route erasure. Several studied proved that TORA performs best in a large 

network, with a high-speed high mobility node. However, TORA has more delay and it creates 

more overhead issues.  

Application 

There is a wide range of applications using MANET ranging from transportation, military or, 

commercial, to entertainment or sensor networks. These are lists of some application examples: 

• Military sector: battlefield communication, enhanced equipment… 
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• Emergency service: first responder, disaster discovery and recovery, hospital aiding and 

guiding… 

• Sensor networks: smart sensors for body and home application, data tracking, 

movement tracking, machine-to-machine communication... 

• Commercial application: e-commerce, e-payment, business database, airports and 

station aiding… 

In this proposed research, the aim is to develop a communication supportive system in the area 

of transportation and healthcare. This system will automatically provide personalised guidance 

to the user, advertisement or notification in crowded places such as stations or hospitals. This 

is especially useful for people with health problems or marketing purposes. However, as 

mentioned earlier, the diversity of mobile devices’ hardware and software makes the 

communication process between devices complex. It also raises a difficult task for optimising 

energy consumption across all aspects of communication. From the application perspective, 

there might be a need to develop different interfaces allowing the application to talk to different 

hardware and software effectively. 

Cross-layer issues 

De Felice (2008) stated that cross-layer design in MANET is very important to get the desired 

performance. The author proposed three integrations between MAC and clustering design and 

two joint designs for MAC and routing schemes. The result shows that these integrations reduce 

the overall overhead and may reduce the packet latency. 

Varshavsky et al. (2005) introduced the cross-layer service discovery in MANETs. Their 

approach is to integrate the application layer and routing layer to improve energy efficiency. 

Authors state that by this integration, the node can know about the available services and 

choose the routing path in a more efficient way. Thus, it can reduce the overhead as well as 

energy wastage. 

Ahmed et al. (2015) used the averaging Received Signal Strength (RSS) value method to find 

an effective route between source and destination. This benefits from allowing access to 

information between the MAC layer and the routing layer. The simulation shows that their 
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method outperforms AODV in terms of packet delivery, routing overhead, end-to-end delay 

and energy efficiency. 

2.2 Indoor positioning technologies 

There are numbers of wireless-based technologies for positioning systems. Some of them are 

suitable for outdoor environments such as Cellular network or GPS; whereas some 

technologies are being considered for indoor areas. Figure 2.2 describes the outline of the 

current wireless technologies used for positioning. 

 

Figure 2.2 Available wireless-based positioning system (Liu. H et. al, 2007) 

As the primary focus of my research is on the indoor positioning system with the scope of 

guiding and routing, this chapter will introduce and discuss well-known technologies that are 

available and most active for indoor positioning solutions. They are Infrared, Ultrasound, 

WLAN, Bluetooth, ZigBee, Visual Light Communication (VLC) and Radio Frequency 

Identification (RFID). 
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2.2.1 Infrared 

Infrared (IR) is a type of radiant energy that is invisible to the human eye in most standard life 

environments, but it can produce heat. IR waves occur from 3GHz to about 400 THz in 

frequency and IR wavelengths range approximately from 700 nanometres (nm) to 1 millimetre 

(mm) which is longer than those of visible light but short than those of microwaves. In the 

context of positioning, IR and its invisibility can provide a less disruptive solution compared 

to other visible light sources.  

Based on methods that use IR signals, there are two types of IR based indoor positioning 

classified: use of active beacons and use of passive infrared. 

2.2.1.1 Active Beacons 

An active beacon is an approach using pre-configuration beacons set up at pre-known positions 

in a room or building. These beacons are fixed and attached with the infrared emitter(s). The 

unknown mobile nodes moving around within the defined space will be scanned and located. 

The unknown node’s data is collected, and its position is calculated by triangulation or angle 

of arrival algorithms. One of the most well-known and early indoor localisation system is the 

Active Badge System (Want et al. 1992). Want and his co-authors proposed a novel positioning 

system that locates people at room level. Individuals wear “Active Badges” which transmit IR 

pulses with a unique code periodically. Pre-set-up network sensors collect these signals and 

process appropriately. They showed their system to provide an accuracy within 6 metres which 

is also the operating range of the IR emitter. In order to gain a high level of precision, more IR 

receptors were required to deploy in the area and the biggest prototype consists of around 200 

badges and 300 sensors.  

2.2.1.2 Passive Infrared Positioning 

Passive infrared (PIR) positioning is the method to locate humans based on their thermal 

radiation. The PIR sensors operate in the long-wavelength (8 μm to 15 μm). They can detect 

the radiation emitted from other objects in the form of heat but do not transfer any signal. The 

collected heat radiation will be mapped into a passive image. It is not necessary for people or 
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objects to wear any tags or emitters. Thus, one significant advantage of this method is the 

privacy due to the non-identification sensors. However, sun and other ambient heat sources 

will affect the system performance. One example of the Passive Infrared Positioning system 

was introduced by Kemper and Hauschildt (2010). They proposed a PIR system that allows 

simultaneous localisation and tracking multiple people. Authors presented a Sequential Monte 

Carlo (SMC) implementation of the Probability Hypothesis Density (PHD) filter. Four sensors 

were placed in four corners of a room in their testbed. Each sensor contained two thermophiles 

that can enable a field of view (FoV) of 90 degrees. Then the targets’ heat data were collected, 

and their positions were estimated using the principle of AoA and Finite Set Statistics. The 

results showed that, with up to 3 people moving in the room, the mean error is less than 30cm 

and the update rate of more than 50Hz is achievable. 

2.2.2 Ultrasound 

Like the IR positioning system, the ultrasound/ultrasonic positioning system can provide 

accuracy at room level. There are some important properties of ultrasound. First, the ultrasound 

signal requires the line of sight between transceivers. Its signal is blocked by solid walls, 

obstacles or even humans. These signals will be reflected so if this reflection can be learned or 

predicted, and ultrasounds could be used to detect and monitor objects. Second, ultrasound has 

a short communication range (up to 10m). Third, the ultrasound signal can work in critical 

conditions such as high humidity or dusty conditions. However, these kinds of environmental 

conditions can affect the response of the ultrasound receiver. Fourth, ultrasonic waves do not 

interfere with other electromagnetic waves.  

Based on these characteristics, ultrasound can be exploited for range location and indoor 

positioning systems. In nature, bats, whales and many other animals are famous for using 

echolocation to communicate, navigate and hunt. Using similar ideas, many research projects 

use ultrasound for proximity sensing. In brief, the ultrasonic positioning system estimates the 

location by measuring the time of flight of the signal from transmitters to receivers. This is 

actually very effective for applications only needing room-scale accuracy as the ultrasound 

does not penetrate walls. To achieve better accuracy, trilateration and multilateration are used 
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with a more significant number of transceivers. This will increase the cost and complexity of 

systems. 

Cricket indoor location (Balakrishnan. H and Priyantha. N, 2001) is one of the most well-

known ultrasound-based positioning systems. It was designed with four aims which are 

privacy, decentralisation, low cost and room-level accuracy. The implementation involved pre-

configured beacons and listeners. They transmitted a 40 kHz US pulse of 150 µs and the 

message contained the beacon’s coordinate, temperature and identifier.  Cricket provided 

space, position and orientation of target devices. Authors showed that their system can reach 

the accuracy of 10-15 cm.   

2.2.3 WLAN 

The most well-known and accessible technologies for WLAN is the IEEE 802.11 standard 

(IEEE, 2020). This standard has long dominated the market and is being supported by almost 

every mobile device. It is designed to achieve high data rates and for high-bandwidth 

customers. There are five commonly used specifications for the 802.11 PHY layers in MANET 

system. 

IEEE 802.11a – was introduced in 1999. It uses the 5 GHz radio band and the maximum data 

link rate per channel is 54 Mbps. The range is up to 40m indoor. 

IEEE 802.11b – was introduced together with the IEE 802.11a in 1999. It can achieve 11Mbps 

of maximum link rate in the 2.4 GHz radio band which is very similar specification to the 

traditional Ethernet. The power consumption is about 30mW and it can achieve up to 100m 

range outdoor. 

IEEE 802.11g - was introduced in 2003. It is a combination of 802.11a and 802.11b. It uses 

2.4 GHz and the maximum link rate is 54 Mbps. The range is about 50m. 

IEEE 802.11n – was introduced in 2009 with the aim to improve the 802.11g standard by using 

MIMO technology and a wider radio channel. The maximum link rate can be 100 Mbps and it 

works on both 2.4 GHz and 5 GHz. It can reach up to 70m. 
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IEEE 802.11ac – was introduced in 2013 and is considered as the most popular used standard 

in the market nowadays. It is an extended version of 802.11n. The maximum throughput is 

1Gpbs on 5 GHz band and 500 Mbps on 2.4 GHz band. The coverage indoor range is about 

35m-40m. 

The IEEE 802.11ac, also called Wi-Fi is currently leading the industry for MANET and indoor 

positioning. One of the main advantages of the Wi-Fi technology is that the Wi-Fi access points 

are widely deployed in almost all the business venues at present. The method called 

“Fingerprinting” is considered to be the most effective approach for a Wi-Fi signal to locate 

indoor objects and devices (Van Haute et al., 2016). Recent research has shown that despite 

being significant in terms of signal strength, the accuracy of this technology is relatively low. 

The resolution ranges from 5 to 15 metres. In order to resolve the positioning within 5 metres, 

many access points need to be installed. This is overkill because the Wi-Fi access point 

originally was designed to broadcast the Wi-Fi signal rather than for locating users. The 

processing is also more complicated which leads to higher latency compared to other 

technologies (Van Haute et al., 2016). This will lead to interferences and deployment cost 

problems. Moreover, most access points need to be plugged into an electrical outlet. Even with 

the latest technology Power over Ethernet (POE) for an access point, this still consumes a 

considerable amount of energy for a medium to large area such as train stations or hospitals 

compared to other technology like BLE or Zigbee. 

2.2.4 Bluetooth 

Originally invented by Ericsson in 1994, Bluetooth is a low tier wireless standard 

communication approach for low cost and short-range radio link. It is designed for small and 

mobile devices with low power consumption at approximately 100mW. Bluetooth signal 

operates at 2.4 GHz (Briere, Ferris and Hurley, 2006) and it can reach up to 10 metres at the 

standard 0dBm settings. At a much higher radio power of about 20dBm, Bluetooth radio can 

work in a range of 100 metres in theory. It supports both voice and data and is widely used in 

the market. It was estimated in 2016 that there would be around 10 billion Bluetooth enabled 

devices worldwide in 2018 (Smart Insights, 2016).  
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In 2010, Nokia proposed Wibree (Chavda et al., 2012) which is a radio technology based on 

traditional Bluetooth but with the lowest possible power consumption, low cost and low 

complexity. The technology operates in the same spectrum range of 2.4 GHz as Classic 

Bluetooth technology but uses a different set of channels. Then it is standardised by The 

Bluetooth Special Interest Group (SIG) and became Bluetooth Low Energy (BLE) (Townsend, 

2014) in the market. The term BLE will be used to refer to this technology in this thesis. The 

most important features of BLE is that it has very low power consumption up to microwatts 

compared to the 1W (as reference threshold) of traditional Bluetooth. Thus, it poses much-

decreased energy consumption of the Bluetooth system as well as offering a simple 

communication process based on the master/slave model. The operation range for this new 

Bluetooth varies between 10 and 100 metres distances and it has 1 Mbps data rate. As a result, 

the technology is not optimised for transferring files over a node, except for sending small 

chunks of data (exposed state). BLE is backwards compatible with the classic Bluetooth using 

dual-mode configuration according to Townsend. This allows the BLE to be implemented and 

join the market immediately thanks to the predominance of the Bluetooth device.  

The operation of BLE consists of two main activities: advertising and connection, as shown in 

Figure 2.3 and Figure 2.4 (Townsend, 2014). In the advertising phase, broadcaster device sends 

advertising packets periodically to any device willing to receive them. These devices are called 

observers which keep scanning for advertisements. In the connection phase, after identifying 

the broadcaster device it wants to communicate with, the observer initiates and establishes the 

connection. The total connection time can take up to 15 seconds, but the connection link is 

often established within 5 seconds. It then becomes the central (master) device whereas the 

broadcaster becomes the peripheral (slave) device. A device can be either a slave or a master 

and can have multiple connections at the same time. In detail, a master can contact 7 slaves in 

real-time or be called “active slave” and up 255 “idling slave”. In idling mode, slaves are less 

sensitive but they still maintain the synchronisation between themselves and the master. This 

operation forms a piconet. In a defined area, if multiple piconets are overlapping, a scatter net 

will be formed. This kind of BLE scatters net offers a flexible and energy-efficient approach 

to dealing with the dynamic nature and the mobility of multiple devices. This simple operation 

makes BLE easy to set up, robust and reliable in such a complicated environment as inside a 

busy building.  



25 

 

 

Figure 2.3 BLE Broadcast topology (Townsend, 2014) 

 

Figure 2.4 BLE Connection topology (Townsend, 2014) 

Using Bluetooth in indoor positioning is not a recent approach. It had been introduced by Bruno 

and Delmastro (2003) and Muñoz-Organero et al, (2012). However, due to the limitations of 

the classic Bluetooth (Kriz, Maly and Kozel, 2016) devices, which has a long delay and 

unsatisfactory accuracy, this idea was not widely used. This has changed since Nokia 

announced their new Bluetooth based technology, Wibree (G. Chavda et al., 2012). Bluetooth 

or Bluetooth Low Energy are proximity networking. As mentioned, the master and slaves 

together create a cell, i.e. Pico-cell network. When a cell is formed, the position of these master 

and slave devices can be estimated within the given communicating cell. This is the basic idea 

of positioning using Bluetooth signal.  
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2.2.5 ZigBee 

IEEE 802.15.4 (Bhaskar and Mallick, 2015) is a low cost, low rate communication standard 

for sensor and actuator device. This standard only defines lower layer protocol stacks which 

are the MAC layer and the PHY layer. 

ZigBee (Ramya et al., 2011) is an enhanced version of IEEE 802.15.4 with the definition of 

upper layers: Network, Security, Application framework and Application Software. ZigBee 

was proposed in 1998 and then developed by the ZigBee Alliance which is an organisation 

consisting of hundreds of companies such as Ember, Freescale, Mitsubishi, AMI 

Semiconductors, ENQ Semiconductors etc. It then became a standard on December 14, 2004. 

The working range of ZigBee is about 20m to 50m in the indoor environment  

In a ZigBee network, there are three supported topologies namely star, mesh and tree network 

and two types of devices as described in Ramya et al., (2011). Full-function device (FFD) is a 

device that can work in any topology and can perform all available operations within the 

network such as routing, coordination and management. The second type is the reduced 

function device (RFD). This kind of device can only work in a star topology and could perform 

only a simple task: talking to its coordinator. In each ZigBee network, it requires at least one 

FFD as the network coordinator. This one working as a master will control its connected 

nodes/children. 

ZigBee offers many advantages for its purposes such as scalability, ease of deployment, very 

low power consumption, low cost and flexibility. However, this standard can only provide its 

best benefits for industrial applications. So, ZigBee is quite slow to be a popular choice in the 

market for commercial use compared to its competitor, the BLE. 

2.2.6 IEEE 802.15.3, IEEE 802.15.6 – Ultra Wide Band 

IEEE 802.15.3 is a standard for high data rate WPAN designed to provide the real-time 

distribution of content. It was described as a low-cost solution of moderate power consumption 

with very high data rate and QoS (Xin Wang et al., 2004). Whereas Bluetooth and ZigBee are 

end-to-end communication standards including a definition of how data is transmitted, 
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received, managed, formatted; IEEE 802.15.3 at the moment defines only MAC and PHY 

layers that can be used as part of an overall standard. On the other hand, IEEE 802.15.3 was 

designed for multimedia wireless such as video streaming which requires very high data rates 

and low latency with the fair trade-off between bandwidth and energy.  

IEEE 802.15.6 is a standard for a communication process designed for devices on, in or around 

the human body (Kwak et al., 2010). In general, it offers QoS, low power and security function 

but the ultimate purpose of this standard is for health monitoring application. IEEE 802.15.6 

defines three PHY layers: Narrowband, Ultra-Wideband and Human Body Communications 

layers. On top of that, depending on the actual application, an appropriate MAC protocol can 

be chosen ranging from random access mechanism (CSMA/CA), unscheduled access or 

scheduled access. This is a promising standard for research and development in the area of real-

time health monitoring and ambient living environment (Kwak et al. 2010). 

As mentioned, UWB is under the IEEE 802.15.6 standard. It is an extremely short duration 

burst of the radio signal. Its frequency is defined at greater than 500Mhz. UWB is designed to 

transmit extensive data in short-range and low power consumption. These characteristics make 

UWB very promising for 3D and real-time indoor tracking. Zhang and his co-authors (2006) 

developed a UWB indoor positioning system that used a ToA method for position estimation. 

The mean error in 1D, 2D and 3D were 1.49mm, 2.61mm and 3.32mm respectively. However, 

note that the displacement in their experiment ranged from 0 to 50cm. Chu and Ganz (2005) 

carried out similar research. They took advantage of UWB properties such as multi-path fading 

robustness and multiple simultaneous transmission to propose a 3D indoor positioning that 

covered a larger indoor space, about 10m. 

2.2.7 Visible Light Communication (VLC) 

VLC is a new and interesting area of research on the positioning. It uses visible light signals 

for determining the location of objects. A VLC system consists of three main components (De 

Lausnay et al., 2016) namely, the LED (transmitter), the mobile device (receiver) and the 

optical channel (environment). The VLC is transmitted from an LED to a receiver which can 

be a photodiode and/or an image sensor. This receiver should contain the ID or any other 

geographical information useful for the positioning process. The light travel can be in a direct 
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path (LOS) or reflected by walls or floors (NLOS). Figure 2.5 (Do and Yoo, 2016) shows how 

the system works. They stated that a VLC system could perform well in a range of 8 metres 

and strictly in the Line of Sight (LOS) condition. Authors also proved that an accuracy of up 

to 5 centimetres could be achieved using the VLC positioning.   

Medina (2015) recommended VLC technology for hospitals as specific medical equipment 

requires isolation from EMI and RFI. Patients are also more vulnerable to the radio frequency 

signal. Also, VLC outperforms RF-based technology in underwater communications (Arnon, 

2010) (Uema et al., 2015). However, this solution is still far from commercialisation. Firstly, 

it has not been fully standardised.  Secondly, the set-up cost for this method is also very high 

at the moment while there are so many unsolved challenges such as modulation bandwidth, 

interference, nonlinearity, strictly LOS, multipath etc. Thirdly, it is only appropriate for certain 

scenarios and environments such as underwater, or hospitals where it has to operate within 

certain specific challenging conditions. 

 

Figure 2.5 VLC technology (Do and Yoo, 2016) 
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2.2.8 Radio Frequency Identification (RFID) 

RFID is a form of wireless communication that uses radio waves to identify and track objects. 

It was initially invented during World War II to identify whether a plane was a friend or a foe. 

RFID was introduced in the context of indoor positioning by Ahuja and Potti in 2010. An RFID 

system consists of tags, readers and a host or computer. They are classified into two main types: 

active and passive systems (Berthiaume, Donahue and Romme, 2017). The principle for both 

types is that the mobile device can estimate its location if it can notice the RFID tag whose 

location is pre-setup. 

A passive tag does not require a power source as it is powered by the reader. When a tag enters 

the signal range of a reader, it will be turned on by this signal. Then the reader can collect 

information from the tag. This data will be sent to the host for processing. After processing, 

the output will be sent back to the reader and then the tag. Figure 2.6 (Ahuja and Potti, 2010) 

shows the communication methods for the passive tag RFID system.  

 

Figure 2.6 Passive tag working mechanism (Ahuja and Potti, 2010) 

On the other hand, an active tag, powered by batteries, will periodically transmit information 

such as ID, location etc. Then the reader can scan this data and transmit it to the host. One main 

advantage of the active tag is that the reader can simultaneously scan the data from several tags 

at a time. Figure 2.7 shows this process. 
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Figure 2.7 Active tag working mechanism (Ahuja and Potti, 2010) 

The RFID system operates in one of three frequency bands (Lighthouse.io, 2017): Low 

Frequency (LF): 30 kHz – 300 kHz; High Frequency (HF): 3 – 30 MHz and Ultra High 

Frequency (UHF): 300 MHz – 3 GHz depending on the range and its application. RFID indoor 

positioning can achieve very high accuracy in theory (Lighthouse.io, 2017). However, it can 

only provide a static position, not real-time tracking or navigation. Moreover, the cost can be 

extremely expensive if a high-end reader and high-frequency active tag are required. A well-

known form of the passive UHF RFID system in use today is NFC (Want, 2011). This method 

is expensive, accurate and highly energy efficient. Nonetheless, it can only work within a range 

of 10-20 cm and is not suitable for indoor positioning purposes. 

2.3 Indoor positioning parameters 

2.3.1 Absolute and Relative Position 

The location awareness can be classified as physical position (or absolute location) and 

symbolic position (or relative location). The absolute location provides a coordinate-based 

position; for example, 53.4121° N, 2.9814° W is the location of the James Parson Building, 

LJMU. The relative location refers to a position relative to other objects; for example, a user is 

inside a building or next to a chair. Consequently, the resolution and accuracy requirement for 

indoor localisation are varied depending on each system. The application requiring absolute 
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location demands a more definite position whereas the one requiring relative location only 

needs a coarser position.   

2.3.2 Type of nodes 

There are two types of nodes in the positioning system: known nodes and unknown nodes. 

Known positions are defined as anchor nodes, beacons, access points or reference nodes. These 

points are physically known and typically fixed in a specific location with an exact 

coordination. In some rare cases, these nodes can move in a fixed pattern at a certain speed so 

that, the position of the node is defined. 

On the other hand, unknown nodes are blind devices or mobile stations. These are the target 

whose coordinates needs to be determined by the system. Unknown nodes can be static or 

dynamic devices or tag. They are carried by humans or robots. 

2.3.3 Line of Sight (LOS) and Non-Line of Sight (NLOS) 

Line of Sight is the propagation when the transmitter can observe the receiver directly. It means 

the signal has a direct straight path between transceivers.  

In contrast, Non-Line of Sight propagation describes the radio transmission that is obscured by 

obstacles such as walls, furniture or humans. This is very common in indoor environments and 

causes interference, reflection, deflection to the signals 

2.3.4 Received Signal Strength Indicator (RSSI) 

The received signal strength indicator (RSSI) refers to the measurement of the power level of 

a radio signal that a receiver is receiving from the emitter. Its unit is dBm and 1dBm = 1.3 

milliwatt. In general terms, at a further distance, the signal is weaker and suffers through 

attenuation and other propagation. This makes the RSSI lower. In contrast, in the closer 

distance, the RSSI gets higher. 

The RSSI has one vital downside, which is, that it is vulnerable to other parameters such as 

environmental conditions, radio frequency interference or noise. This leads to the RSSI being 
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quite unstable over time. Nevertheless, it is still a widely chosen metric for an indoor 

positioning system. RSSI is very cost-effective, low complexity and can be used for many 

different pieces of equipment with various technologies. In order to achieve a satisfying 

accuracy, it requires suitable calibrations and filtering for RSSI in a given environment. 

2.3.5 Time of Arrival (ToA) 

Arrival time (ToA), or Time of Flight, is one of the most common range- metrics. It is used 

for outdoor positioning inside the popular GPS network. Parameters are determined based on 

the transmission speed, the exact time the transmission was transmitted and the exact time the 

signal was received. The distance is thus easily determined by the Formula (2.1) (Zafari, 

Gkelias and Leung, 2019):  

 𝑑 = c × (𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡) (2.1) 

Where c is the transmission speed, typically determined by the light speed, 𝑡 is the absolute 

time the signal is being emitted and received and 𝑑 is the distance between the transmitter 

and the receiver. The equation above can be transformed and used to measure the distance 

between two points by knowing the point's coordinates (Zafari, Gkelias and Leung, 2019). 

Formula (2.2) suggests this to us: 

 𝑑 = √(𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 − 𝑥𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟)2 + (𝑦𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 − 𝑦𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟)2 (2.2) 

The TOA method requires a very precise synchronized clock between the transmitter and the 

receiver since the exact time is used to calculate the distance. Many TOA-based indoor 

positioning systems have been developed and can achieve the accuracy from a few centimetres 

to 40 m (Li, Han, Zhu and Sun, 2016) 

2.3.6 Angle of Arrival (AoA) 

Angle of Arrival (AoA) or sometimes referred to as Direction of Arrival (DoA) is also a popular 

method used to determine the location of an object. This approach offers two ways to 

accomplish the position. The first method is to use antenna arrays at the receiver side to 
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measure the time the signal is transmitted from the source to each antenna, and then to estimate 

the source angle. The second method is more straightforward, the direction of each antenna at 

the receiving ends are pre-set, then adjust them incorporate with the source and measure the 

arrival angle. The strength of this method is that finding unknown objects only requires 1 or 2 

nodes compared to at least 3 nodes like other methods. This approach, however, is best applied 

only under LOS conditions. And when the signal is reflected and diffraction the measuring 

angles can be hard to assess. Additionally, suitable equipment must be installed to determine 

the most precise measuring angle.  AoA is often used in VLC indoor positioning systems. 

2.3.7 Summary 

In this study we want to identify with high accuracy the position of unknown objects in a simple 

way, requiring minimal hardware and low energy consumption. LOS and NLOS conditions 

also appear in complex indoor environments. ToA provides poor accuracy in such complex 

indoor environments since many obstacles and objects hit the signal (Mier et al. 2019). That is 

also the weakness of AoA. In addition to this, sufficient hardware is expected to be integrated 

into the sensor in order to obtain the AoA and ToA reliables. It is a conflict with the objectives 

of the project as well as beyond the study budget. As a result, RSSI with its advantages is very 

simple, can perform in the indoor environment and does not require additional hardware. This 

parameter is mostly used for indoor and BLE and Wi-Fi applications while AoA and ToA are 

best suited for outdoor use (F. Zafari, A. Gkelias and K. K. Leung, 2019). BLE has therefore 

been chosen as our focus in this study. In the next chapters, RSSI-based approaches and 

solutions for overcoming their drawbacks will be discussed. Table 2.1 shows key points of each 

metric. 

Table 2.1  Metrics for indoor positioning summary  

Method Hardware Minimum 

reference points 

Synchronisation Complexity Disadvantages 

AoA Array of 

antennas 

2 

 

Required only at 

transmitter 

High Required precise hardware to 

calculate the angle 

Expensive antennas 
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NLOS communication 

ToA Precise 

clock 

3 Required at both 

transmitter and 

receiver 

Medium Clock synchronization among 

transmitter and receiver 

Multipath effect 

RSSI Low 3 No need Low Vulnerable to the environment  

NLOS communication 

2.4 RSSI-based indoor localisation approaches 

2.4.1 Fingerprinting 

As mentioned earlier, fingerprinting is one of the most common methods for Wi-Fi indoor 

positioning. It includes two phases. First, is the offline calibration phase and mapping. A 

fingerprint map needs to be established. The strength of signals is measured, and the MAC 

address of a known access point is collected.  These data will be used to locate the position of 

other access points or users’ devices in the online phase by comparing with the object’s signal 

strength. Hence, in order to achieve the best performance in fingerprinting, forming a very 

accurate and up-to-date fingerprinting map is the essential key. Figure 2.8 shows how 

Fingerprinting works (Ma et al., 2015).  

One of the best algorithms according to Kriz, Maly and Kozel (2016) to compare between a 

subset of measurement in fingerprinting is k-NN. The authors describe that: “This method tries 

to find k of the nearest fingerprints from the database by means of Euclidean distance. In this 

way, we get locations and by their combinations we estimate the position of the device to be 

localised”. For example, the Euclidean distance between 𝑟𝑖 = (𝑟1, 𝑟2, … , 𝑟𝑁) measurements 

received from 𝑁 different access points and the 𝑗𝑡ℎ  predefined measurement value 𝑐𝑖 =

(𝑐𝑗1, 𝑐𝑗2, … , 𝑐𝑗𝑁) in the fingerprint database can be expressed as Equation (2.3): 
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𝑑𝑗 = √∑(𝑟𝑖 − 𝑐𝑗𝑖)
2

𝑁

𝑖=1

 (2.3) 

where N is the number of access points. The first set of k neighbours are chosen. Then the 

weighted mean for a position 𝑥 is estimated based on the known position 𝑥𝑗: 

 

𝑥 = [∑
1

𝑑𝑖

𝑘

𝑗=𝑖

]

−1

∑
𝑥𝑖

𝑑𝑖

𝑘

𝑖=1

 (2.4) 

After that, by adding the weighted mean and calculating 𝑑min = 𝑚𝑖𝑛(𝑑𝑗), the estimated 

position is calculated. 

The accuracy of the resolution of this approach can reach up to a metre depending on the 

number of access points per area.  

 

Figure 2.8 WiFi – Fingerprinting (Ma et al., 2015) 
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2.4.2 Trilateration 

Trilateration will estimate the position from at least three anchor points (Anuradha et al., 2016). 

Three anchors could be beacons or access points each with a specific range 𝑑, which is 

represented as a circle with radius 𝑑. The actual position will be where the three circles 

intersect, which can be calculated by solving the three-circle Equations (2.5) (Anuradha et al., 

2016): 

 

{

𝑑1
2 = (𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2

𝑑2
2 = (𝑥 − 𝑥2)

2 + (𝑦 − 𝑦2)
2

𝑑3
2 = (𝑥 − 𝑥3)

2 + (𝑦 − 𝑦3)
2

 (2.5) 

Where 𝑑1, 𝑑2, 𝑑3 are the distance from anchors to the user’s device, (𝑥, 𝑦) is the coordinates of 

the user’s location and (𝑥1, 𝑦1),(𝑥2, 𝑦2), (𝑥3, 𝑦3) are the coordinates of three anchors points 

respectively. Figure 2.9 describes how the trilateration scheme works. 

 

Figure 2.9 Trilateration scheme 
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2.4.3 Centroid 

In real-life, the measurements from beacons or access point might vary and be randomly 

distributed, and therefore, the three circles might not intersect at a single point. To address this 

issue, two simple scenarios can be used to estimate the approximate location. The first method 

is increasing the number of anchors to narrow down the estimated area. However, this method 

will greatly increase the complexity of the whole system. The second method is to estimate the 

position by finding the centroid of the area. Figure 2.10 shows this situation. One way to do 

that is by taking the mean value of the polygon as given in Equation (2.6) (Anuradha et al., 

2016): 

 (𝑥, 𝑦) = (
𝑥𝐷1

+ 𝑥𝐷2
+ 𝑥𝐷3

+ 𝑥𝐷4

4
,
𝑦𝐷1

+ 𝑦𝐷2
+ 𝑦𝐷3

+ 𝑦𝐷4

4
) (2.6) 

Where, (𝑥, 𝑦) is the coordinates of estimated position, (𝑥𝐷𝑖
, 𝑦𝐷𝑖

) are the coordinates of 

intersecting points between two anchors working range. 

 

Figure 2.10 Centroid scheme 
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2.4.4 Least Square Estimation 

Least Square Estimation (LSE) is a well-known method to solve the lack of GPS for positioning 

objects (Sharp and Yu, 2013). It is based on the following Equation (2.7) (Sharp and Yu, 2013): 

 𝑦 = 𝐴𝑥 + 𝑤 (2.7) 

where 𝑥 is the object’s estimated position, 𝑦 is the measured position, 𝑤 is the error or noise, 

𝑖th row of A characterises 𝑖th measurement. The approach is to choose an appropriate value 

for estimated �̂� so that the norm value ‖𝐴�̂� − 𝑦‖is minimum. Cheung et al. (2004) proposed a 

4-anchor system to solve this issue shown in Figure 2.11.  

 

Figure 2.11 LSE scheme (Cheung et al., 2004) 

Below, the Equation (2.8) is used to determine the coordinates of users (Cheung et al., 2004): 

 𝐴𝑥 ≈ 𝑏 (2.8) 

where 𝑥 = (𝑥𝐷 − 𝑥𝐷0
, 𝑦𝐷 − 𝑦𝐷0

) with 𝑥𝐷0
 and 𝑦𝐷0

 are the initial position of users; 𝑏 is a 𝑖𝑥1 

matrix and 𝐴 is 𝑖𝑥2 matrix with Equation (2.9), (2.10) and (2.11) : (Cheung et al., 2004) 
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𝑏𝑖 = 𝑑𝑖 − √(𝑥𝐷0
− 𝑥𝑖)

2
+ (𝑦𝐷0

− 𝑦𝑖)
2
 (2.9) 

 
𝑎𝑖1 =

𝑥𝐷0
− 𝑥𝑖

√(𝑥𝐷0
− 𝑥𝑖)

2
+ (𝑦𝐷0

− 𝑦𝑖)
2
 

(2.10) 

 
𝑎𝑖2 =

𝑦𝐷0
− 𝑦𝑖

√(𝑥𝐷0
− 𝑥𝑖)

2
+ (𝑦𝐷0

− 𝑦𝑖)
2
      

(2.11) 

Where 𝑖 is the number of anchors, (𝑥𝑖, 𝑦𝑖) is the coordinates of each anchor and 𝑑𝑖 is the 

distance between the user and the 𝑖𝑡ℎ anchor. 

2.4.5 Dead Reckoning 

Dead reckoning is a technique that calculates the current positioning by knowing the previous 

position, its velocity and direction. Begin with the starting point, after a short period of time, a 

change will be added and track. This change can be the coordinate or velocity. This process is 

repeated for real-time tracking. However, because of this change and track process, the 

possibility of causing errors will increase after each interval. Therefore, it requires a suitable 

adjustment to reduce the error and improve the accuracy after each turn. In this project, dead 

reckoning and the proposed method are combined to provide a real-time tracking application. 

This method will be detailed discussed in cooperate with the proposed algorithm in Chapter 6 

of this thesis. 

2.4.6 Summary 

In this subsection, 5 methods have been introduced for using RSSI to predict the location of 

unknown objects. They can be divided into 2 groups in particular: offline approach and online 

approach. Fingerprinting is a typical offline-method. It is often used in conjunction with Wi-Fi 

and gives a high level of accuracy. However, this method requires extensive offline calibration, 

and it is highly vulnerable if the indoor environment layout is changed. Within the context of 
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this study, we focus on online approaches such as trilateration, centroid, LSE and dead-

reckoning.  

2.5 Filter for data 

The use of filters is crucial for smooth data and precise data, but it is also an essential problem 

in designing indoor navigation systems to select which filters to use. As mentioning earlier, 

RSSI is chosen as the primary data of the research. Hence, average filters, feedback filters, 

Gaussian filters and Kalman filters were considered in this study. 

2.5.1 Averaging filter 

This is the most intuitive method to smooth the data signal. RSSI values are measured for one 

node and the average value is calculated using Equation (2.12) given below: 

 RSSI̅̅ ̅̅ ̅̅ =
1

m
∑ RSSIi

m
i=1   (2.12) 

where RSSI̅̅ ̅̅ ̅̅  is the mean RSSI; m is the number of measurements (window) and RSSIi is the 

RSSI of the ith beacon. This median value represents the whole set of collected neighbouring 

RSSI. 

2.5.2 Feedback filter 

Feedback filter as described in (Halder, Giri and Kim, 2015) and (Anuradha et al., 2016) to 

eliminate the large differences in the measured value of RSSI. Its principle is to add a weighted 

value α to the RSSI to correct RSSI values. In addition, the feedback filter considers the 

previous RSSI measurement to make sure the RSSI can be smoothed. Formula (2.13) shows 

this solution: 

 RSSIsmoothed = α × RSSIk + (1 − α) × RSSIk−1  (2.13) 

In this equation, k is the current measurement, whereas k-1 is the previous measurement. The 

current RSSI value is based on the previously validated RSSI value. The α parameter 

demonstrates this connection. In research of Anuradha and his co-author (2016), α typically 
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varies from 0.65 to 0.8. Average and feedback filters are very useful in areas with LOS 

between beacon and object, such as outdoor environments or wide-open indoor areas, 

according to the literature. However, when the signal suffers multi-paths and attenuates in 

more complex environments, they both underperform and need to be re-adjusted. 

2.5.3 Gaussian filter 

As stated, the findings of taking average filters are not great when the volatility of the signal 

is too significant. Applying Gaussian filters can fix this issue as the value of RSSI follows the 

standard distribution. The concept of the Gaussian filter is to calculate the region with a high 

probability of the RSSI signal value falling into. The filter selects and retains these RSSI 

values and takes the average. Its formula for RSSI is represented by Equation (2.14): 

 
f(RSSI) =

1

√2πσ2
e

−(RSSI−μ)2

2σ2   (2.14) 

where μ is the mean RSSI̅̅ ̅̅ ̅̅  and σ2 is the variance and defined by the Formula (2.15): 

 σ2 = 
1

m−1
∑ (RSSIi − μ)2m

i=1   (2.15) 

The Gaussian filter limits the RSSI within the range of one standard deviation σ from the 

mean. This is presented in Equation (2.16): 

 P(μ − σ < RSSI < μ + σ) = ∫ f(RSSI)dRSSI
μ+σ

μ−σ
≈ 0.682   (2.16) 

RSSI values outside the limit region are regarded as noise and are eliminated. 

2.5.4 Kalman filter  

The Kalman filter (Lee, Lim and Lee, 2016) is proposed to cope with noise obeying the normal 

distribution. The basic principle of this filter is implementing a predictor and a corrector to 

minimize the error covariance. It will revise the past, present and future state which includes 

noise to correct/predict the RSSI measurement. As stated, there are two main stages in Kalman 

filtering: prediction and updating and they are represented in the following set of Equations 

(2.17) to (2.21): 

Prediction phase: 
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State Model: xk̂ = Fxk−1 + Bk−1uk   (2.17) 

Error covariance:  pk̂ = Fpk−1F + qk (2.18) 

Correction phase: 

Kalman Gain: Kk = pk̂H(Hpk̂H
T + rk)

−1   (2.19) 

Updated covariance: pk = (I − KkH)pk̂   (2.20) 

Updated state: xk = xk̂ + Kk(zk − Hxk̂) (2.21) 

where F is the state transition matrix; Bu is the control input if applied; q is the system noise 

covariance; I is the identity matrix; r is the measurement noise covariance and z is the 

measurements or true observation. 

2.5.5 Summary 

Filters commonly used to smooth RSSI data have been introduced in this subsection.  Each 

filter has its way of working and expected to remove unwanted noise and provide stability for 

RSSI data in the indoor environment. In chapter 4 and 5 of this thesis, filters will be applied to 

real-data and details evaluation will be presented in order to find out the optimum filter for this 

study. 

2.6 Introduction to BLE Beacon and iBeacon 

A beacon is a standalone BLE device powered by batteries or USB. It repeatedly transmits a 

small data packet that other devices can pick up. One beacon can operate for months or years 

thanks to the low energy consumption of BLE technology. They are built in different shapes 

and colours but most of them are small and portable. 

Beacons broadcast data packets periodically. The time interval will determine how often the 

beacon wakes up and sends its message. These intervals are predefined and usually depend on 

the actual purpose of beacons. Shorter intervals will increase the chance other devices pick up 
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the message as well as improve the data readings. However, it will reduce battery life. Other 

metrics need to be considered such as the transmission power. It determines how far the signal 

can reach in theory. Again, stronger transmission power gives a more significant beacon’s 

working range, but it costs more energy consumption. Thus, configuring a suitable interval 

value and transmission power is critical for any indoor positioning system. 

These data are formatted into a packet which is specified by Bluetooth Core Specification 

(Bluetooth.com, 2019). Figure 2.12 shows this payload (Bluetooth.com, 2019). 

 As we can see, the broadcast data of a BLE packet is minimal, only 31 bytes. It is usually a 

string of text of numerical values. This can be a beacon identification, signal strength or time 

interval.  Some manufacturers integrate beacons with other sensors such as accelerometer, 

gyroscope or movement sensors to provide more information. One of the most popular beacons 

on the market is iBeacon. 

 

Figure 2.12 Beacon payload (Bluetooth.com, 2019) 

iBeacon was first introduced by Apple in 2013. Its data field is described in Figure 2.13. 
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Figure 2.13 iBeacon data field (Bluetooth.com, 2019) 

iBeacon data consists of four values. The first value is called Universally Unique identifier 

(UUID) which identifies the beacon manufacturer or application or owner. This means all 

beacons belonging to one manufacturer or owner will share the same UUID. In some cases, 

some manufacturers allow developers to change this value to a dedicated application. The 

second value is major. It identifies the group within the manufacturer. The third value is minor. 

It determines the beacon within a group. Major and minor are unsigned integers ranging from 

0 to 65535. The final value is called the TX power. This is the calibrated transmission power 

at the distance of 1m. This value is set by the manufacturer and cannot be changed.  

iBeacon is a proximity device. It defines three ranging states of a target: “immediate” means 

the target is very close to the beacon; “near” means the target is about 1m-3m away from the 

beacon; “far” indicates that the target can be detected but over 3m from the beacon. However, 

these ranging indicators are not reliable for a high accuracy indoor positioning system. Another 

drawback of iBeacon is its compatibility. It requires Apple products to be fully used and 

integrated into a system. Fortunately, Google provides an alternative solution called Eddystone 

in 2018 (Google Developers, 2019), which has a very similar specification to iBeacon. In the 

context of this research, iBeacon is defined as our beacons. 
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Chapter 3 Literature Review 

Research and applications on indoor positioning will be covered in this chapter with great 

details. This chapter begins with section 3.1 by introducing the indoor localization system 

architecture. Two architectures have been presented and compared. This is the basic model that 

has been developed later. Section 3.2 shall include the properties and characteristics expected 

by an indoor positioning system. Section 3.3 then features an extensive listing of applications 

for indoor localisation. This section underlines the importance of this system in the industry 

and the latest market trend. Systems using various algorithms and technologies will be 

reviewed and outlined in section 3.4 

3.1 Indoor positioning system architecture 

Localisation is one of the most popular application systems of MANETs. Despite various 

purposes of localisation systems, there are some essential components suggested by Pahlavan 

et al. (2002). Figure 3.1 shows these functional blocks: 

 

Figure 3.1 Localisation system block 
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There are three stages in a positioning system. First, the location sensing device collects useful 

data using an appropriate sensing signal such as infrared, ultrasound, LIDAR or radio 

frequency. The useful data can be time of arrival (ToA), angle of arrival (AoA) or received 

strength signal (RSS). They are fed into the location estimation algorithm in stage 2. There are 

a number of positioning techniques such as trilateration, fingerprinting, triangulation or neural 

networks. In this stage, data from the sensed signal will be filtered and calculated to estimate 

the position of the unknown node. Finally, there will be a display system to convert calculated 

results into a readable format for the end-user. 

Alternatively, Hightower and his co-author (2002) presented a different perspective of a 

location system. The location stack is their point of view about localisation as a software 

engineering model. It is based on the famous Open System Interconnection (OSI) layered to 

the network model and shown in Figure 3.2: 

 

Figure 3.2 Seven layered location stack (Hightower. J, 2002) 

In the first layer, “Sensors” contain sensor hardware and a software driver for detecting raw 

data such as GPS signal or proximity beacon. The second layer “Measurement” is algorithms 

to convert raw sensor data into canonical data such as distance, angle or proximity. The 

“Fusion” layer is a method to merge data into time-stamps probabilistic representations of 

positions and orientations of nodes. “Arrangements” is an engine to perform the relationship 
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between two or more objects such as the relative position of a user in a room. “Contextual 

Fusion” is the layer to merge the position with other non-location contextual information such 

as calendar, colour or temperature. “Activities” and “Intentions” are two layers which take 

responsibility for categorising all the information into activities using machine learning.  

These are the two widely used architectures to construct an indoor positioning system. The 

Hightower model (2002) is generally presented from the software engineering perspective, 

using the location stack. This system has the advantage of breaking down tasks in the design 

of an indoor positioning system, making it easier and more practical for future development 

and maintenance. Nonetheless, the system's drawback is that communication interfaces 

between layers are required, which may be complex when there is no standardisation in indoor 

positioning. Pahlavan's system, on the other hand, aims to provide components required for the 

indoor positioning system. Every element may be customised, depending on the application. It 

can be seen as layers 1, 2 and 5 of the Hightower (2002) structure. Within the scope of this 

research, a typical framework architecture based on these two basic studies will be introduced 

and discussed in Chapter 5. 

3.2 Positioning System properties 

Understanding requirements and applications is crucial before carrying any research and/or 

development. There were a number of studies in this field (Mautz, 2012) that show that in order 

to serve the market in any application, an indoor positioning system should be low-cost, low-

complexity, low-power, short latency, high integrity, relatively low-maintenance and with a 

minimal amount of required infrastructure. These should be used to drive the direction of 

research and design.  

• Accuracy: centimetres, decimetres or metres level.  The standard definition of 

positioning accuracy is used during this thesis for the comparison of systems’ 

performance. It defines the closeness between a measured or estimated quantity at a 

given time and the true quantity. This is the key criterion for various phenomena such 

as signal propagation, multipath or positioning. In terms of positioning accuracy, there 
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are two types: which are relative and absolute accuracy. These terms will be explained 

further in the next section.  

• Coverage area: it identifies the conceptual range in which a positioning system ensures 

its efficiency. In this thesis, this area is defined as a limited and defined area that rarely 

would be extended such as a room or a building.   

• Complexity: a positioning system should be sufficiently easy for widespread 

deployment, integration, connection and configuration. It should require minimum-to-

nonspecial cabling. Also, the manual setting up should be as little as possible. Any tags 

or beacons in the system are desired to be small and energy-efficient. 

• Cost: this could be installation cost, maintenance cost, operation cost or time cost. All 

stages will be involved in calculating the cost such as initial set-up hardware and 

software, the staffs or the system complexity. 

• Interface/Output: text-based, graphic display, audio. This is how an operator/engineer 

will work with systems and how users will interact with systems. In general, it should 

user-friendly for both operators and users. 

• Update rate/latency: per-hour, per-day or real-time. This could be periodic, on event or 

on-demand. In some applications, it even is post-processing which means there is no 

specific time be defined (log collection). 

• Scalability: systems that can expand the working area by inserting components. It can 

be scaled in terms of node deployment, supported users or devices. 

• Privacy and security: the ability to protect personal data or a device’s information from 

theft or any unauthorised access. It also includes the restriction of outward data leakage. 

• Infrastructure: tags, beacons, server, etc.  

• Compatibility: cross-platform system (Android, iOS), support multiple devices (phone, 

tablet, watches, speaker, screen, etc.) 

• Power conservation: to preserve the energy on the transmitter, there are several 

important design issues. First, it is the signal rate. In general, the higher the signal rate 

and the update rate, the higher the accuracy. However, it will cost too much regarding 

the energy consumption especially if the tags and mobile devices in the wireless 

infrastructure are battery-powered. Reducing signal rate will improve the battery life 

but this needs to be done wisely in order to maintain the quality of the signal. The 
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second issue is the signal strength. Stronger signal strength provides better coverage 

area but again, it demands a lot of energy. Other design issues can be named as 

algorithms optimisation or data processing. 

• Technology: optical, magnetic, light, sound, etc. 

• Signal used: radio frequencies, infrared, electromagnetic waves, etc. 

• Measured quantity: distance, time, transmitted power, etc. 

• Measuring algorithm: trilateration, triangulation, centroid, least-square, etc. 

• Coordinate reference: object, sensor or wall reference. 

• Application: which application will the system be deployed on. This will be discussed 

in more details in the next section of the report. 

• Legal and approval: how users’ data are collected and used and what level of 

information will the system need from users are two important questions. It should be 

under the acceptance of users and be encrypted before being transferred. 

3.3 Localisation application 

Applications of indoor positioning called Location-Based Services (LBS). They all use the 

knowledge of geographical location to provide useful context data visible via mobile gadgets. 

In fact, this offers enormous business advantages. The requirements of an indoor positioning 

system are determined by the actual application. For example, in the healthcare sector, an 

application to provide navigation for patients or staffs around a hospital will require an indoor 

positioning system with an accuracy of meters. On the other hand, an asset tracking or medicine 

tracking application will require much higher accuracy which is just about centimetres. 

In general, the applications offered by the indoor positioning in the current market can be 

classified into four main categories (Haverinen, 2017): Proximity marketing/advertising, 

Wayfinding/navigation, Search/Requesting help and Asset or people tracking. 

The list below enumerates those application areas in the industry and their use cases. 

Location-based services and indoor navigation in the railway station/airport. 
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• Search: orientation in a new station (platform, help points, ticket office); trains’ 

event/schedule/alerts in a familiar station; show places in real-time; available services 

• Indoor navigation: dynamic real-time routing to destination; distance/time to 

destination; personal recommendations (to shop/store; to tax-free kiosks) 

• Advertising: push personal advertisement based on preference. 

• People tracking for station operators: getting information about the stream of visitors, 

peak hours, and security. 

Location-based services and indoor navigation in hospital. 

• Search: orientation in the hospital. This helps patients know the way to where they need 

to be.  

• Indoor navigation: vulnerable patient, patient with visual impairment can be aided by 

real-time guiding with their personal device.  

• People tracking: tracking the patient for their safety. 

Location-based services and indoor navigation for police, firefighter or militaries.  

• Search: orientation in a building on fire or warfare. 

• Indoor navigation: routing to the crime scene, navigation through minefields. 

• Tracking: tracking enemy, statistics and logs for training and analytical use. 

Location-based services and indoor navigation for office use: 

• Search/navigation: for a large office and industrial building; or for a new employee. 

This also offers guiding for robotic machines. 

• Asset and tracking: determine the location of the warehouse, pallets; monitoring staff 

and robots. 

Location-based services and indoor navigation for the shopping centre: 

• Search/ navigation: guiding customers through the centre with detailed shop location. 

• Proximity marketing/advertising: advertisements can be displayed based on customers’ 

preferences or based on their actual location. This improves the overall users’ shopping 

experiences. 
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• Tracking people: for operators to improve shop allocation, knowing busy hours… 

These are some of the applications that can benefit from indoor navigation. This research 

particularly focuses on the station and hospital venues. 

3.4 Indoor localisation technologies 

As mentioned in the previous chapter, indoor localisation systems can be built using different 

technologies. Many studies and systems have been developed by researchers. There are many 

promising outcomes but there are also some drawbacks. They will be discussed as follows. 

3.4.1 Infrared 

Infrared is one of the most popular and early technologies developed not only for wireless 

technology but also for localisation. One benefit of this technology can be defined as requiring 

only small, easy-to-integrate sensors. However, issues remain unresolved, such as requiring 

LOS communication, a short working range, security and accuracy. Researchers have been 

working to address these problems. 

Kostromins and Osadcuks (2014) proposed a novel mobile robot localisation system in 

agriculture using active infrared beacons. The system contains stationary infrared active 

beacons and a robot which has a rotary infrared light detection. The authors stated that there 

are external factors that affect the system: sun, other ambient light, ambient temperature, etc. 

(Kostromins and Osadcuks, 2014). Also, the system set-up geometry is another critical design 

criterion. This includes the beacon placements and the antennas’ direction and orientation. 

Their experiment shows that the system can achieve an error margin within 7 cm with the 

processing time of 7 seconds. 

Yang et al. (2015) offered a PIR system that produces an accessibility map. The proposed 

method is based on the particle filter for human tracking and long-time observation for the map. 

Then the fusion of two results is used to give the final estimation. The simulation shows that 

their system can achieve the error ranging from 0.1 m to 0.6 m. However, conditions for 

creating the accessibility map are quite strict: 3 types of static activities (lying, sitting and 
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standing) 6 specific types of furniture (sleeping bed, living room couch, dining table, kitchen 

sink, front door and bathroom basin). Authors claimed this can be improved by implementing 

the system in the real environment and the dynamic map will be investigated. 

Cahyadi et al. (2019)  developed an indoor positioning system using infrared technology and 

invisible beacons. Authors used surveillance cameras capable of capturing IR in both bright 

and low-light conditions. The beacons used here were mobile phones equipped with IR 

proximity sensors. The strength of this method is that the range depends on the field of view 

of the camera, meaning that it has a very large working range. The experiment concluded that 

the system was capable of detecting static beacons with an error of less than 5 cm. Although 

the accuracy is good, the system will only function effectively if the camera is in night mode. 

Many external light sources interfere with the signal obtained in daytime conditions. It also 

needs more sophisticated image processing to be able to locate the beacon. Additionally, the 

use of the camera makes it clear to see that LOS communication between the camera and the 

beacon is mandatory. 

3.4.2 Ultrasound 

Ultrasound positioning system, like the IR indoor positioning system, can also deliver 

impressive short-range performance. Besides, LOS communication between transmitter and 

receiver is not necessary in Ultrasound communication. Another Ultrasound bonus is that this 

mechanical wave does not interfere with other electromagnetic waves like Wi-Fi or Bluetooth. 

Ward's "Active Bat" (1997) and "Cricket" (Balakrishnan and Priyantha, 2001) systems are 

considered to be the most popular and laid the foundation for IPS operating on ultrasound. 

They use TOA to estimate an object's location. Nevertheless, they acknowledged that there are 

some problems generally encountered by the ultrasonic positioning system, including relatively 

low resolution, limited working range and external noise exposure. 

Lopes and his colleagues (2012) introduced a high accuracy 3D indoor positioning system 

using ultrasonic. The typical challenges initially make the ultrasound-based localisation system 

achieve bad results in a 3D application. Inspired by the idea of GPS, the authors use 

synchronised ultrasound anchors and a time division multiple access (TDMA) scheme to 

overcome these problems. The experiment shows that their system can achieve a stable result 
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in a 3D environment. The absolute error is 20.2cm and the update rate is 350ms in a room of 

200m3. However, while the range has been significantly enhanced, the use of GPS is still not 

appropriate for indoor applications.  

Qi and Liu (2017) proposed another novel ultrasound positioning system. The author used 

preset beacons, combined with Wi-Fi, and suggested a novel Time of Flight (ToF) estimation. 

This ToF calculation is used by the author to improve time synchronisation between nodes. 

The highest accuracy achieved by simulation was 0.61 mm, which was very impressive. 

Nevertheless, the accuracy of the robot experiment was more than 10.2 mm, despite the 

presence of LOS communication between the transceiver. The reason for this inconsistency is 

believed to be due to ambient noise and radio signal interference with Wi-Fi. In addition, in 

order to achieve high accuracy and synchronisation, this system requires very precise sensors 

placement. This is because of the natural ultrasound wave that is diverse over the distance. The 

complexity of the data processing is also increased on a large scale. 

3.4.3 WLAN 

WLAN, also known as Wi-Fi, is one of the most popular solutions introduced for indoor 

positioning systems. Like many other technologies, various approaches are available to locate 

objects using Wi-Fi technology, such as ToA, RSS or AoA. However, a study, which was done 

by Zafari, Gkelias and Leung (2019), indicates that methods of using ToA or AoA are not 

widely employed. Many Wi-Fi based indoor localization systems use the popular 

"Fingerprinting" technique. Not only because of its accuracy but also it can use existing 

infrastructure to minimise costs. 

The fundamental part of the "Fingerprinting" technique is the construction of a database 

system. Nonetheless, this is a very labour-intensive and time-consuming process, so 

researchers have been focused on solving this problem.  Wu and Liu (2013) proposed a Wi-Fi-

based indoor localisation called WILL. They developed a logical map structure to be used for 

the offline training phase of the database construction process. This system used smartphone 

sensors such as accelerometer, gyroscope and magnetometer to classify user actions. By doing 

so, they combine the RSS data obtained with the user movement and place them in a virtual 
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room and create a logical map accordingly. Experiments showed that the room-level accuracy 

rate was 86%. 

In 2019, Gu and colleagues introduced another approach to tackle the difficulty of the site 

survey process. The authors proposed a "landmark graph-based" approach to automating the 

fingerprint collection. Devices such as smartphones or sensors would have to be mounted 

initially, but the system does not require active users to participate. Experimental testing 

showed that the accuracy of the device was approximately 1.5 m. 

Researchers also work to boost the performance of Wi-Fi-based indoor positioning systems 

regarding accuracy. Kim et al. (2012) developed an improved Wi-Fi fingerprinting algorithm 

called semi-supervised affinity propagation Weighted K-nearest neighbour (WKNN-SAP) 

This helped to resolve the inconsistency between the offline process and the online RSS 

process. In addition, isolated access points and data outliers have been eliminated using 

clustering methods. Noise and interference are therefore minimised. Experiments found that 

the mean error was approximately 1.85 m. 

Wang et al. (2016) applied deep learning and channel state information to the positioning 

system. This device has been labelled DeepFi. Through studies, DeepFi has shown that it can 

achieve accuracy of about 1.36 m, which is claimed to be better than other approaches. 

However, the complexity of the training process is very high, making it difficult to expand. Li 

et al. (2019) proposes a division area approach to reduce process time and system complexity, 

as well as to improve accuracy. The author presented an offline training method called 

Improved Fuzzy C-means (IFCM). Experimental results indicated that the overall processing 

time is decreased by 94.13% compared to other methods. The average accuracy was 

approximately 2.53 m. 

3.4.4 ZigBee 

Zigbee has many features similar to Bluetooth, especially low-cost and low power 

consumption, making it also a candidate for indoor positioning technology. 

Uradzinski et al. (2017) deployed ZigBee technology to evaluate the accuracy of their proposed 

fingerprint algorithm. They boost the fingerprint ZigBee database by filtering the interference 
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data and applying the Bayesian algorithm to estimate the position. The standard deviation error 

of 0.51 m was achieved. And the maximum working distance is approximately 40 m. Zhao et 

al. carried out another analysis in 2010. They presented a cooperative positioning algorithm 

tailored to ZigBee applications. By using the link quality and the received signal strength of 

the ZigBee signals, the distance between paired devices can be determined more precisely. 

Simulation tests indicate that their algorithm is capable of achieving 0.06 m of positioning 

errors. 

At the other hand, the Zigbee working mechanism is sleep and awake to preserve energy, so 

nowadays, this technology is often used to locate robots or devices for home automation 

systems where so many devices and sensors are involved. There are some commercial 

initiatives that have been use Zigbee to connect and locate devices in smart home ecosystems 

such as NetVox (NETVOX, 2020) và Samsung (Smartthings, 2020). Within the range of this 

study, we concentrate on locating users with handheld devices. Due to this sleep and awake 

mechanism, the requirement for real-time positioning might be achieved. 

3.4.5 IEEE 802.15.3, IEEE 802.15.6 – Ultra Wide Band 

UWB as mentioned has the potential to overcome NLOS communication and multipath effects. 

In 2018, Ridolf and his collaborators performed an in-depth research to understand the 

capabilities of UWB. They ranked UWB as one of the most promising indoor positioning 

systems candidates. In their analysis, the authors stated that the accuracy could be up to a 

centimetre. In addition, accuracy can be increased up to 31 per cent if the system is able to 

predict user movements. The UWB-based positioning system often consumes less power than 

other systems such as WLAN or Bluetooth (Mautz, 2012; Liu et al., 2007). It has therefore 

recently actractted researchers for developing an indoor positioning system using this 

technology. 

Kok et al. (2015) presented a fusion approach of intertial sensors with UWB to boost the 

efficiency of the indoor positioning system. They combined data from accelerometer, 

gyroscope and ToA measurements to make a 6D pose prediction. Synchronization of clocks 

between the intertial sensor and the UWB sensor is mandatory to resolve the multipath effect 

and NLOS communication. Experimental tests showed that the error is just 2.3cm-3cm. 
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Another approach suggested by Arsan and Hameez in 2019. To maximise the accuracy of 

UWB-based localization, authors used the concept of clustering algorithms. Based on their 

assessment, K-means algorithms are accredited to produce the best results for their systems 

and to achieve an accuracy of approximately 14 cm.  

Retscher et al. (2019) integrated UWB and WLAN in order to build an indoor navigation 

system. The goal of this combination is to exploit existing WLAN infrastructure and improve 

UWB accuracy. The experiment was conducted under laboratory conditions. Initial results 

showed that the minimum accuracy can be up to 0.3 m. The average error, however, is up to 

6.5 m. 

Although UWB has great potential for an indoor navigation system, UWB is not yet supported 

by handheld devices (Mautz, 2012 and Bespoon, 2020). This technology will therefore be very 

costly to deploy, particularly on a large scale. 

3.4.6 Visible Light Communication (VLC) 

VLC is described as a new and modern device-based indoor positioning solution. It uses Light 

Emitting Diodes (LEDs) which transmit visible light between 400 and 800 THz. The light is 

picked up by the devices and measures the location accordingly. AoA is likely the most 

common and reliable approach used with VLC (Armstrong, J, 2014). However, other methods 

are being studied and the accuracy of the centimetres is being achieved (Afzalan and Jazizadeh, 

2019,  Zhuang et al, 2018). 

Lv et al. (2017) implemented a RSSI-based VLC system. The authors considered using a 

differential detection algorithm to address LED signal instability. The algorithm also helps to 

increase the working range of the LED. The accuracy of the experiment was 4.0 cm and the 

authors noted that the working range could be increased by 46 times if the light setup could be 

optimised for the environment. 

Li et al. (2018) implemented another system. The traditional VLC technology was combined 

with the smartphone camera. The camera on the smartphone records the LED signal and uses 

the Perspectrive-n-point algorithm proposed by the authors to determine the position of the 

smartphone. The results indicated that the average error ranged from 4.81 cm to 6.58 cm. 
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Generally, VLC-based indoor positioning systems often achieve very high accuracy, up to 

centimetres level.   Nevertheless, most authors only performed room-level experiments (Li, Y 

et. Al 2018, Lv et al., 2017, Han et al., 2016, Afzalan and Jazizadeh, 2019) and yet clearly 

demonstrated that their systems would work on a larger scale. In addition, the VLC-based 

indoor positioning system has another requirement that requiring strictly LOS communication 

(Mier, Jaramillo-Alcázar and Freire, 2019), which is very difficult in the indoor positioning 

context. In addition, the installation costs of new LED may be very high or not appropriate for 

use in old buildings, as they may interfere with the existing lighting system. 

3.4.7 Radio Frequency Identification (RFID) 

RFID in an indoor positioning system is traditionally formed of electromagnetic connectivity 

between RFID tags and RFID readers. This system is commonly used in security control or 

monitoring equipment (Ahsan et al. 2010). There are two models to construct an indoor 

positioning system based on RFID. One possibility is that the user carries the tag and the tags 

will be read by a pre-setup reader installed in the infrastructure. It is called an active system; 

another alternative called a passive system is that the user holds the reader and the tags are 

attached to the structure. In particular, the active device draws more interest from researchers 

because the tag is cheaper and very small, easier to scale and carry. 

Ni et al. (2004) presented an active RFID indoor positioning system called LANDMARC.The 

author used the nearest neighbour algorithm to process the signal received from the reader  and 

then calculate the location of each tag. The author stated that the accuracy is around 1 metre. 

Although the accuracy is not great and the system has other disadvantages, such as only signal 

strength indicator (detectable and not detectable) and good delay. But this is the foundation for 

the later development of active RFID-based indoor positioning systems. 

Zhang et al. (2016) proposed an active indoor positioning RFID system for a large-scale IoT 

network. The new algorithm called iLocate had achieved accuracy of up to 30 cm with a 

transmission distance of up to 1000 m. In 2019, Shen et al. developed another active system in 

which the reader is placed on a rotary table and collects data accordingly. The system can 

achieve accuracy of up to 9.34 cm in 2D and 13.01 cm in 3D through experiments. 
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However, according to surveys conducted by Zafari and Mier in 2019, RFID-based indoor 

positioning systems often deliver a low working range and unreliable accuracy. A lot of tags 

are required to achieve reliable accuracy and longer working range. This would increase costs, 

increase power consumption and increase the complexity of the system. In addition, RFID also 

has security and connectivity issues (Mier, 2019). 

3.4.8 Bluetooth Low Energy 

Like mentioned above, there are a number of well-known advantages of BLE compared to 

other competitors such as low cost and deficient power consumption. Another advantage of 

BLE technology is that the communication link between two devices in the system does not 

need to be visible so they can be blocked or even in different rooms. However, there are two 

notable disadvantages which need to be understood when studying Bluetooth based 

positioning. First, the communication process of Bluetooth is quite time-consuming especially 

for various numbers of devices and platforms. This needs to be optimised in order to use 

Bluetooth technology in a real-time tracking application. Second, because the position of target 

devices is estimated within a cell, the smaller the cell, the better the accuracy. This will lead to 

an increase in the number of cells and number of devices. As a result, the proximity-based 

network as BLE will have to deal with confliction and noise. Furthermore, the 2.4 GHz 

spectrum is unlicensed, so it is free and widely used. BLE operating under this radio frequency 

will interfere with other radio signals. Consequently, according to Basiri and his colleagues in 

2017, BLE is potentially the most suitable technology for an indoor positioning system. At 

present, iBeacon is a well-known application of BLE for indoor positioning. A lot of research 

has been done on this topic. 

One of the greatest benefits of BLE over Wi-Fi is that it has the ability to create a dedicated 

positioning system. Nevertheless, identifying an effective topology and a selection of beacons 

is a challenge to overcome. One of the early BLE-based indoor positioning studies on this issue 

was completed by Faragher and Harle in 2014. They had shown that the accuracy of the system 

could be improved with the number of beacons used per unit area increases, and the number is 

up to 6 to 8 beacons. Beyond this point, their analysis showed that there has been no change in 

positioning accuracy. The authors also reported that due to low bandwidth, BLE is vulnerable 
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to fast fading, which will result in varying overall performance. Also, active Wi-Fi scanning 

and Wi-Fi network can cause BLE measurement errors (Huang, He and Du, 2019). 

Budina et al. (2015) provided instructions on how to determine the number of beacons in a 

building. Authors recommended dividing the space into smaller areas and optimise the 

localisation result in each area. Rezazadeh (2018) presented an analysis of the environment and 

adjust positions the beacon accordingly. Their system achieved 21,7 percent higher precision 

than the standard iBeacon placement. However, the position of beacons and number of beacons 

is dependent not only on the environment, but also on the characteristics of the beacon. It will 

be one of the main goals and the focus of this study. 

Table 3.1 provides a review of several BLE-based indoor positioning systems which have been 

studied and presented. In general, authors agree that the design and deployment of the beacon 

in the building is very critical and greatly affects the accuracy of the beacon. Accuracy is 

normally lies between 0.7 m and 8 m. Nevertheless, in order to obtain an accuracy of about 0.7 

m, Paterna et al. (2017) and Huang, He and Du, (2019) need to use a lot of beacons (6-8) for a 

small office area. In addition, Paterna's system is a passive system, which will incur more 

installation costs and energy usage when there are more users and in a larger environment. 

NLOS communication and multipath effects have not been well addressed. In addition, it is 

worth to note that the accuracy can also be enhanced by combining it with an effective Kalman 

filters (Huang, He and Du, 2019). 

Table 3.1  Recent BLE-based indoor positioning system review 

Author Method Accuracy Environment Beacons Comments 

Faragher, 

R and 

Harle, R, 

2015 

Fingerprinting 2.6m – 8.5m 50m x 15m 19 The error will be decreased as the number of 

beacons increased in one area 

Need to perform fingerprinting training 

No tracking ability  
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Paterna, 

V. C, et. 

al 2017 

Weighted 

Trilateration 

0.7m – 1.82m 5m x 5m 4 - 6 Authors use the "passive" system where the 

receivers are placed in the infrastructure and the 

user keeps the BLE tag and transmits the signal.  

The findings are fairly good, but this approach is 

complicated when there are a lot of active users 

in the network.  

LOS communication is required. Tag and reader 

must be at the same altitude 

Radoi et 

al., 2017 

Particle filtering 2m-6m 8m x 6m 5 Author claim that the accuracy can be improved 

by study the characteristics of the room and the 

beacon. 

Teran, 

Carrillo 

and Parra, 

2018 

Fingerprinting 

Machine 

learning 

1m 8m x 8m 4 Pairing with Wi-Fi helps to achieve significant 

coverage while retaining a low number of 

beacons needed. 

Zuo, Liu, 

Zhang and 

Fang, 

2018 

Fingerprinting 1.27m – 3.94m 90m x 37m 48 The author has suggested an indoor positioning 

system using BLE and Wi-Fi. Experiments in a 

large area give positive outcomes. 

Silva. M, 

et al, 2019 

RSS 

Fingerprinting 

4.43m – 4.88m 121.65m2 24 Authors suggested the concept of combining 

BLE and Wi-Fi to perform positioning in a very 

complex environment like a library.  

The accuracy is not high, but the RSSI data set is 

designed to help further research. 

Huang, 

He and 

Du, 2019 

Trilateration 

Kalman filter 

0.757m - 

2.23m 

5.6m x 8.8m 8 Accuracy improved with Kalman filtering. 

Huang, 

Liu, Sun 

and Yang, 

2019 

Weighted 

Lateration 

2.2m 9m x 12m 4 Authors stated the accuracy can be improved by 

utilising the beacon deployment. 

NLOS effect has not been considered. 
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3.4.9 Summary 

Typically, each technology has its own advantages and disadvantages. After a comprehensive 

review and evaluation, as well as engaging with stakeholders on current industry trends and 

markets, the following points are provided to select the most appropriate technology: 

• Wi-Fi is a well-known, well-matured technology, and many researchers have studied 

the Wi-Fi indoor positioning systems. It is capable of providing high precision and great 

coverage. In fact, Wi-Fi is present in almost every place of modern life. However, Wi-

Fi is normally used for purposes other than positioning and there is no dedicated Wi-Fi 

localization system. It affects system scalability and performance. Besides, Wi-Fi also 

requires high power consumption, and the most commonly used "fingerprinting" 

algorithm involves comprehensive training data. It becomes troublesome when the 

layout or interior of the building changes. 

• RFiD, like Wi-Fi, has been around for a long time. The low cost and high accuracy 

make this technology widely incorporated into the object tracking application in the 

market. The maximum operating distance is however too short: less than 1 m. RFiD is 

thus not suitable for this type of study.  

• Infrared and ultrasound systems are both inexpensive and well documented. It is 

capable of providing both relative accuracy and a moderate link range. The major 

downside though is that these two systems are unable to penetrate walls and 

obstructions. As a result, people may experience many difficulties in tracking 

individuals. 

• VLC is a state of the art technology. It's environmentally friendly and potentially very 

effective. However, since it is new, VLC needs a lot of time to develop and grow. 

Furthermore, this technology is vulnerable to interference and noise generated by other 

ambient lights.  

• Zigbee, it has very similar characteristics to Bluetooth. This is capable of providing 

reasonable precision and a sufficient range for indoor systems. Another advantage is 

the generally low cost. However, this system is not as readily implemented as 

Bluetooth. The sleep and waking process is not suitable for real-time applications. 
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• Bluetooth or its new version, Bluetooth Low Energy, has the advantage of being a low-

cost, simple, highly energy-efficient operating mechanism. This has also been widely 

integrated into existing devices. This makes this technology very appropriate for our 

research. Accordingly, BLE was chosen in this study. Disadvantages such as noise 

instability risk of inconsistent accuracy can be addressed in combination with proper 

filtering, algorithms, and iBeacon settings will be the main focus of the research. 

Potential technologies are compared in Table 3.2: 

Table 3.2  Technologies advantages and disadvantages 

Technology Advantages Disadvantages 

Bluetooth 

Low Energy 

Low cost, high availability. Integrated into 

most smart handheld devices. 

Simple working mechanism. 

Low power consumption 

 

Vulnerable to the environment. The signal 

is blocked by obstacles 

More beacons cover wider coverage and 

more accuracy but increasing cost and 

power. Not sufficient for a very large area. 

Interference with other sources because 

BLE using 2.4 GHz spectrum 

Wi-Fi Widely available 

Mature development 

High speed, high throughput 

No need LOS 

 

Requires data training but it can be 

changed easily by building changed or 

even furniture moved. 

High power consumed compared to other 

technology. 

Likely has no dedicated system for IPS. 

 

RFID Cheap, accurate and low complexity 

Very low energy consumption 

Pass through objects, no need LOS 

Coverage is too small. Not suitable to 

position human or large object. 

Costly in large scale. 

Security issue. 

Low accuracy 

Zigbee Low cost, low energy Interference with Wi-Fi and Bluetooth 
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Already deployed for IoT application 

 

More suitable for a communication link 

occurs within second because of the sleep 

mode working mechanism to preserve 

energy. 

Infrared Quite mature as early development. 

Low energy consumption. 

Does not penetrate wall and obstacles, so it 

is more suitable for proximity application. 

Interfere with other light sources 

LOS communication is strictly required 

Ultrasound Low cost 

No interference with other electromagnetic 

waves 

Can work in aggressive conditions 

Require LOS between transceiver. 

High delay. 

Very short range 

Solid walls create too many echos, 

therefore noise. 

Sound pollutions issue. 

Visual Light 

Communicat

ion (VLC) 

Precise 

Easy to be installed 

High cost 

Low availability, low flexibility 

Table 3.3 is a comparison of technologies based on their ability to meet the key requirements 

of indoor positioning systems as defined in section 3.2. 

Table 3.3  Technologies for indoor positioning summary  

Technology Metric Accuracy Range Complexity Cost Update 

rate 

Scalability Privacy Compatibility Power 

BLE TOA, RSSI Medium < 20m 

 

Low Low Medium Medium Medium High Low 

Wi-Fi RSSI, TOA Low < 100m High High High Medium Medium High High 

RFID RSSI Low <1m Medium Mediu

m 

Medium Low Low Medium Low 

Zigbee RSSI, TOA Medium < 40m Medium Low High High Medium Medium Low 

Infrared TOA Medium < 10m High Low Medium Medium Low Medium Low 
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Ultrasound TOA, AOA Low < 10m Medium Low Low Medium Medium Medium Low 

VLC AOA, TOA High < 10m High High High High High Low High 
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Chapter 4 Design and evaluation of iBeacon 

topology for optimal signal to noise ratio 

In the recent market, a varied range of handheld devices has been integrated with Bluetooth 

making this technology very highly applicable. In this project, Bluetooth Low Energy and 

iBeacon devices are used to develop an indoor positioning system. Because of the complex 

characteristics of the indoor environment, it is vital to understand and evaluate Bluetooth 

characteristics in this environment, so that we can verify that Bluetooth and iBeacon are 

suitable for indoor tracking applications. This chapter will investigate and evaluate Bluetooth 

properties in many practical experiments. The environment was changed from a free space area 

to a noisy room, from natural conditions to artificial conditions. At the end of this chapter, a 

suitable topology of iBeacon infrastructure for optimal signal to noise ratio is designed and 

presented. 

4.1 Test area 

The main parameter of the research, as mentioned in the previous chapters, is the RSSI of BLE 

technology. Experiments to explore the properties of RSSI and BLE are therefore set up. There 

are two areas chosen for the experiments. The long corridor on the 5th floor of the James 

Parsons building was chosen to represent the ideal environment with no object and obstacle 

(Figure 4.1). The dimensions of the testbed area were set to around 1.5 m x 30 m and are shown 

in Figure 4.2. The LOS contact in this testbed is assured. 
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On the other hand, Room G04/05 on the ground floor of the building was considered as a more 

complicated environment with many obstacles, potential interference sources such as Wi-Fi 

Access Points, work station, lab machine and people present during working hours. Its 

graphical representation is shown in Figure 4.3.  

 

Figure 4.1  Corridor on 5th floor James Parsons Building 

 

Figure 4.2 Dimension of the testbed area on  5th floor JP Building: Testbed 1 
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4.2  Equipment and tools  

The equipment and tools, including software and hardware used for data collection and 

analysis, will be presented as follows. 

4.2.1 iBeacon 

iBeacon can be considered to be one of the most significant parts of this study. They are the 

known nodes deployed and pre-installed on the infrastructure at pre-calculated locations. Each  

iBeacon has two key tasks: it is used as a reference node to find users, and it is used to calibrate 

parameters. 

There are many types of iBeacons on the market today. Most of them are powered by the 

battery. After approaching manufacturers and reviewing the beacon available in the UK, three 

variants of iBeacon are chosen: Estimote iBeacon (Estimote, 2020), Locly iBeacon (Locly, 

2020) and BlueCats iBeacon (BlueCats, 2020). The settings and characteristics of the type of 

beacons used are shown in Table 4.1. 

 

Figure 4.3 Graphic Representation of testbed in Room G04/05: Testbed 2 
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Table 4.1  iBeacon Vendors 

 Estimote Locly BlueCats 

Range Up to 40m Up to 40m Up to 60m  

MAC 

address 

Unique per device 

Not Configurable  

Unique per device 

Not Configurable 

Unique per device 

Not Configurable 

Major Random between 0 – 65,535 

Configurable 

Random between 0 – 65,535 

Configurable 

Random between 0 – 65,535 

Configurable 

Minor Random between 0 – 65,535 

Configurable 

Random between 0 – 65,535 

Configurable 

Random between 0 – 65,535 

Configurable 

Tx Power 

level 

-4 dBm -4 dBm -4 dBm 

Advertising 

Interval 

400 ms 400 ms 400 ms 

Battery type 3V Coin battery 3V Coin battery Double AA 

Battery life 14.6 months using these settings ~12 months using these settings 23.1 months using these settings 

4.2.2 Handheld devices and the application 

An application for iOS using the SDK provided by Apple (Apple Developer, 2019) has been 

developed to collect RSSI from the reference points. This SDK offers seamless communication 

between Apple's smartphones and iBeacon. Application searching for the UUID, major and 

minor, to locate a beacon within the scan range. When detected, the RSSI value is registered 

and logged into an excel file. 

Figure 4.4 shows RSSI how data were stored. The key information was major, minor of the 

iBeacon and RSSI measured from the beacon to the device. However, in the version only the 

timeline (starting from zero), the MAC address and the iBeacon format were collected along 

with the RSSI index. However, we realised that the iBeacon with an undetected signal is not 

shown in this format and that it is difficult to determine the exact time to collect this data to 

facilitate future research. The second version was created to solve these problems. Figure 4.5 

presents this version. The number of beacons detected and the actual time recorded had been 

added. Furthermore, the estimated distance from the RSI calculated by the Apple SDK was 
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also shown in the data for ease of comparison and calculation. This application is run over an 

iPad 2 to collect the data.  

 

Figure 4.4 RSSI data collected version 1 
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To expand the research, the Samsung Galaxy S6 is used as an Android OS candidate. However, 

unlike iOS, Android does not have native iBeacon support. The Estimote programme on the 

Google Play Store (Estimote, 2020) is then used to collect data. This programme can print the 

logged data to the Excel file. Figure 4.6 displays the data sample. 

 

Figure 4.5 RSSI data collected version 2 - updated format 
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Figure 4.6 RSSI data collected Android 

Table 4.2 is a summary of the devices and apps used in the study. 

Table 4.2  Devices and apps 

Operating System iOS Android 

Device iPad 2 Samsung Galaxy S6 

Manufacturer Apple  Samsung 

Settings iOS 9.3.5 

Wi-Fi: On 

Bluetooth: On 

Android 7.0 

Wi-Fi: On 

Bluetooth: On 
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SDK Provided by Apple Provided by Estimote 

Support iBeacon Native Not native 

Other Apps Xcode 

Matlab 

Android Studio 

Matlab 

4.3 Bluetooth stability in the indoor environment 

As mentioned, the indoor environment has distinctive characteristics that affect radio signals 

emitted by sensors. The first factor is the strong multipath effect. This phenomenon is caused 

by walls, furniture or equipment. These obstacles block the signals making them reflected and 

diffracted. Thus, it will influence how well the receiver behaves. The second factor is the 

interference from other radio sources. Inside a building, there are many radio signals operating 

in the same frequency such as WLAN or Bluetooth. 

Furthermore, in a big building, the number of wireless emitters and electronic devices can be 

huge leading to a very noisy environment. This disrupts and disturbs the usual pattern of the 

Bluetooth signal. The final relevant factor can be named as humans. A significant part of the 

human body is water which has a resonance frequency at 2.4 GHz. The Bluetooth signal, 

therefore, is weakened. Another impact of humans is their mobility. Users and carried devices 

might move around a building in an unpredicted pattern and inconstant speed.  This also causes 

the signals to fluctuate. There are other factors such as heat, humidity or temperature. 

Therefore, in this subsection, the stability of the Bluetooth signal in the indoor environment 

will be verified. 

In the first experiment, an iBeacon and an iPad were set up in two fixed positions in the first 

testbed. Figure 4.7 shows the setup. 
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Figure 4.7 Experiment setup for testing signal stability 

This experiment aims to study the quality of the Bluetooth signal between static devices. Both 

devices were placed on the floor, opposite, and directly in line-of-sight, each other from 50 cm 

away. There were no other radio noise sources near them. The Bluetooth signal emitted from 

the iBeacon and picked up by the iPad was observed for 10 minutes, the reading frequency is 

1 sample/sec. Figure 4.8 shows the observation. In the first 200 samples, the Bluetooth signal 

fluctuated from -55 dBm to -61 dBm. Then the RSSI became more stable and only varied 

between about -57 dBm and -59 dBm. The reason for the instability in the beginning can be 

estimated as two devices needing time to discover each other and be stable.  

 

Figure 4.8 Bluetooth RSSI at a distance of 50 cm 
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Based on this initial experiment, the experiment was modified to approve the performance of 

the Bluetooth signal. In the second experiment, the distance between the two devices was 

changed to 3m and 6m respectively. Similar observations had been done over 10 minutes. 

Figure 4.9 shows results for this experiment. It can be seen in both cases, that the overall shape 

of the RSSI signal is similar to the first experiment. At the beginning of the measurements, the 

signal is quite unsteady, but it becomes firmer after a period of time. However, there are some 

points to notice in these results. When the distance between the two devices is 3m, the signal 

only fluctuated in about the first 60 readings, which is equivalent to about 1 minute, ranging 

from -63.6 dBm to -66.6 dBm. Then it was stabilised in the region of -64 dBm to -66dBm. In 

the set-up with 6m separation between devices, there were about 110 readings which varied 

from -72.6 dBm to -75.3dBm in the beginning. The signal firmed up at around -74 dBm with 

only 1 dBm variation. It can be seen that, out of three experiments, the results in experiment 2, 

when the two devices are 3m apart, give the most stable performance. Furthermore, it was 

interesting to see that there were 612 RSSI samples collected in the first test compared to 553 

samples in the two later experiments despite being recorded in the same period of time. The 

reason for this might be the connection between beacon and device was lost, result in the RSSI 

collected is 0. These values were discarded. Nevertheless, in all three experiments, after the 

stabilisation period, the RSSI signal varied only within 2 dBm, which will make no difference 

for later position calculation.  
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However, the first session just made evident that iBeacon and Bluetooth signals can maintain 

their stability over a short distance and when there is LOS between devices. In fact, these 

conditions only happen in the laboratory. In the real scenario, the distance between devices can 

be further and there are many obstacles and interference sources in the indoor environment. 

Also, in order to verify the relationship between the beacon-target distance and the RSSI signal 

and to find the optimum distance threshold between them, another experiment with some 

 

 

Figure 4.9 Bluetooth RSSI at distance of 3 m and 6 m  
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alterations was carried. The first change in the experiment is shifting the distance between the 

iBeacon and the mobile device up to 30m. The RSSI signal is collected while moving further 

from the iBeacon. In every 1m which is the assumption for a human’s stride length at normal 

walking speed, the user stopped and recorded the signal for 1 minute. The mean value of these 

measurements will be taken for the observation. The second modification of this experiment is 

the environment. The experiment was then conducted in the second testbed – room G04/05. 

Figure 4.10 presents my observations from the test on the 5th floor corridor of the James Parsons 

building. The first point we can notice from the result is the number of samples in each stop 

are not equal. Within a 1-minute recording, there are about 60 samples expected to be recorded. 

However, the number of readings is varied, and it became much less than expected when the 

iPad went further away from the iBeacon, especially after 20 metres. The mean value of these 

readings was taken, which is the red line, and confirm that the Bluetooth signal decreases over 

distance in the quadratic trend, which is the green line on the graph. It obeys the Friis’ Free 

Space Loss. This can be explained that in this environment, where there are no obstacles or any 

other noticeable noise sources, the Bluetooth signal can reach the target in a straight line. The 

signal variation for each distance is from 1 dBm in the nearer distance to 3 dBm in the further 

distance. Although this is an acceptable range, it shows that Bluetooth and iBeacon might not 

work well when two devices are separated too far.  

 

Figure 4.10 RSSI vs Distance in the 5th floor corridor  
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The next experiment took place in room G04/05. Its results are presented in figure 4.11. 

Observation shows us that the RSSI signal also decreases in the quadratic trend. Nonetheless, 

this trend is different compared to the previous result. Overall, although being recorded at the 

same distance, the signal strength is lower than in the previous experiment. For example, at 

1m, the RSSI is about -56 dBm compared to -48 dBm in the test in the 5th-floor corridor. It is 

also be noticed that after 10 m, the RSSI signal becomes much more fluctuating. This may be 

the effect of noise sources in room G04/05. Wi-Fi access points and other electronic equipment 

such as oscilloscope, signal generator, amplifier and computer may interfere with the Bluetooth 

signal. Furthermore, from 16 m, only about 15 samples per minute were recorded and the 

maximum distance was 21 m with only 2 samples recorded. It is a noticeably shorter distance 

than the 5th-floor corridor experiment results. Bluetooth signal suffers a multipath fading effect 

as there are many chairs, table and humans present in the room. The signal had to bounce off, 

reflect and diffract when coming into contact with obstacles. Therefore, it becomes weaker. 

Furthermore, the signal variation is also more extensive than the preceding test. It was about 

10 dBm at 16 m and even at 20 m, the variation is about 16 dBm. This will cause a significant 

error in the later position calculation. Fortunately, under 8 m, the signal only varied less than 3 

dBm, which is still within my expectation. 

 

Figure 4.11 RSSI vs Distance in Room G04/05  
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In summary, results made evident that iBeacon and Bluetooth signals can maintain their 

robustness over distance in both a free space area and “noisy” indoor environment. The 

Bluetooth signal will decrease over distance obeying a quadratic trend. However, the model 

for the “noisy” indoor environment needs to be considered and appropriately chosen. Also, the 

result showed that Bluetooth and iBeacon work best within the range of 5 m to 8 m.  

4.4 Impact of height and orientation 

In a real-life indoor environment, there are numerous structure and layout set-ups. Thus, 

beacons might be placed at different positions with different heights or different orientations. 

This is also the case for mobile devices when users are moving around and carrying them in 

different postures. Signals experience the multipath fading effect in the indoor environment. 

They bounce off obstacles and be reflected before reaching targets. Because iBeacons 

periodically emit signals, this effect will cause interference if two or more transmit reflected 

signals across others. This experiment aims to evaluate the effect of height and orientation to 

the Bluetooth signal, reflection and multipath fading effect. This section is going to give a 

recommendation on the beacon height placement and a suitable calibration for the indoor 

localisation system to reduce the effect of the multipath fading effect. 

In the first experiment of this section, the beacon was placed at three different heights from the 

ground. First, the iBeacon was placed on the ground, i.e. 0-metres height. Then it was placed 

at the height of 1 m, which is my assumption for the height of a mobile device when a user is 

carrying it. Finally, the same iBeacon was placed at 2 m height. This is the assumption when 

the iBeacon is installed in the ceiling in real case scenarios. In three cases, the RSSI signals 

were collected from the iPad moving from 1m to 30 m in room G04/05. Note that room G04/05 

is the testbed for a real-life indoor environment.  Figure 4.12 describes the experiment: 
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Figure 4.12 Experiment: RSSI at different heights  

Figure 4.13 shows the results. Although beacon and mobile settings were identical, we can see 

that there are differences in terms of distance and value fluctuation for the three cases. 

Surprisingly, in the case of 1m height, the signal experiences lots of noise and can only reach 

20m. In comparison at the 0-metre height, the signal fluctuates less, and the maximum distance 

is also 20 m. And in the case where beacons were installed at 2 m high, the signal recorded at 

30 m was quite acceptable and the overall shape was much more stable. This set-up outperforms 

other previous set-ups. This can be explained as when the iBeacon is placed higher such as on 

the ceiling, the emitted signal has a straight path to reach the target mobile. Therefore, it suffers 

a less multipath fading effect. On the other hand, in the 1 m height set-up, sometimes, the signal 

can reach the target mobiles directly, but most of the time it meets other reflected signals as 

this is the height of most obstacles in the room such as chairs, tables, computers... These signals 

may be in phase which causes a stronger signal, or if they are out phase, these will be cancelled. 

These effects lead to the most fluctuation of RSSI as we can see. 
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Figure 4.13 RSSI at different heights  

The second experiment was set that placed the iBeacon and the iPad at the same height and in 

a straight line at the distance of 1m as shown in Figure 4.14. The iBeacon was then turned 

clockwise in 8 directions in the space. In each direction, 50 RSSI samples were collected and 

took the average value. Figure 4.15 shows the observations. When the two devices were facing 

each other, i.e. iBeacon points to East direction, the signal collected was the strongest. 

However, the difference when the iBeacon was turned is quite small, it was only within 1.2 

dBm.  In fact, the antennas of Estimote’s iBeacon and other major current manufacturers are 

omnidirectional (Estimote.com, 2019), which broadcast signal in a doughnut-shaped as figure 

4.16 (Estimote.com, 2019). Thus, the signals collected are considered identical.  
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Figure 4.14 Experiment: RSSI with 8 orientations  

 

Figure 4.15 RSSI with 8 orientations  

In summary, after two experiments, we can see the effect of height placement on the Bluetooth 

signal. This significantly affects how the signal approaches the destination and therefore affects 

the signal quality. My test suggests that the signal is more reliable when the beacons are placed 

higher than other obstacles and moving objects. In such a set-up, there is a high possibility that 

signals can reach the device target in a straight path without interference with other reflected 

signals. On the other hand, the effect of orientation between beacon and device is negligible. 

Thus, in this project, this parameter is not considered in order to reduce system complexity. 
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Figure 4.16 Bluetooth antennas (Estimote, 2019) 

4.5 Bluetooth signal for cross devices and cross-platform 

In the current market, there is various type of devices with different OS and different functions. 

Furthermore, more and more beacon manufacturers are joining the market. In this section, the 

cross-platform and cross-devices performance of the BLE signal will be in the indoor 

environment. The experiment was amended as follows.  

• Different beacons from the same manufacturer – Estimote - were used. 

• Different beacons from different manufacturers were installed: Locly and BlueCats 

beacons are used to verify the result. 

• The mobile device was replaced by a different one:  a Samsung S6 with Android OS is 

used instead of the iPad. This collected data from the initial Estimote beacon. 

Figure 4.17 and figure 4.18 display results from the experiment. In the first test, two Estimote 

iBeacons at 50 cm from the iPad was placed and the signal was measured for 10 minutes. 

Results collected share a very similar shape to each other. The RSSI signals from two iBeacons 

are almost identical with the average of 57.6 dBm. 
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Figure 4.17 RSSI collected from Estimote iBeacon 1  

 

Figure 4.18 RSSI collected from Estimote iBeacon 2 
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In the second experiment, again the signal from iBeacons to iPad device was inspected at 50 

cm for 10 minutes but with three different manufacturers: Estimote, Locly which are coin 

battery-powered and Bluecats which is powered by two AA batteries. Figure 4.19 and figure 

4.20 present our observation. Although three beacons were placed in the same position with 

the same time transmission power settings, the overall collected signals were notably different. 

First, Estimote and Locly’s signal fluctuated for about the first 180 readings before becoming 

stable. On the other hand, Bluecats iBeacon needs about 4 and a half minutes, equal to 270 

readings, to be stabilised. Second, it is interesting that despite the shortest stable signal time, 

Bluecats’s signal has the highest average RSSI at -51 dBm whereas this value of Locly’s 

beacon is -59 dBm and Estimote’s beacon is -58 dBm. 

 

Figure 4.19 RSSI collected from Locly iBeacon   
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Figure 4.20 RSSI collected from Bluecats iBeacon  

In the last experiment, the performance of the Bluetooth signal of the two most popular OS for 

mobile devices: iOS and Android, was studied. An Estimote iBeacon was placed from 1 m to 

20 m away from an iPad and a Samsung S6. The reading frequency is about 1 sample/sec and 

at each metre distance, signals were measured for 10 seconds and took the mean. Figure 4.21 

is my report. It shows that there are some differences between the two signals. The average 

RSSI value collected from the iPad is higher than from the Samsung device. Also, the signal 

from the iOS handheld is more stable than the competitor: variation is about 3 dBm compared 

to 3.8 dBm. However, two signals follow the same quadratic trend line as described throughout 

the experiment. This result shows that the differences of Bluetooth signals in two major mobile 

OS are quite small and they share the same characteristics as discussed in the previous 

experiments. 
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Figure 4.21 RSSI collected by various devices  

Briefly, observations verified that there is diversity in signal performance between beacons 

from different manufacturers. This indicates that, in one system and one environment such as 

one building, using the same beacons is a crucial design criterion to achieve a satisfactory 

positioning result. On the other hand, the Bluetooth signals gathered from multiple OS, i.e. 

Android and iOS are dissimilar. Fortunately, they performed almost identically regarding the 

shape and the signal movement. Thus, a calibration in each OS needed to be done before 

calculating positions. In this project, a calibration using the appropriate propagation model is 

developed. Then, the evaluation is done using the iOS system. However, this can be applied to 

be used in an Android positioning system as the parameters can be changed accordingly.  

4.6 Bluetooth signal characteristics summary 

From experiments, it is noticeable that the Bluetooth signals are varied in the indoor 

environment. Fortunately, this variation is only about 2-3 dBm which might not affect the result 
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of positioning at a shorter distance. However, in this environment, the signal experiences a 

multipath fading effect especially when transceivers are further away from each other. The 

signal fluctuation can be as significant as 5 dBm after 6 metres and even larger than 10 dBm 

after 20 metres. Thus, keeping the Bluetooth signal varying within the variation threshold with 

appropriate distance from beacons to devices is an important basis for the design. It is also 

found that the height between beacon and devices, between beacon and ground and beacon and 

other obstacles, plays an impactful role for the signal collected. By placing beacons at a suitable 

height, a clear path can be created, and then the signal from the beacons can go straight to 

devices as expected without experiencing too much propagation and attenuation. Another 

interesting element is that mixing beacon manufacturers in one system might lead to noisy data 

measurement. Each manufacturer has its own settings and design such as antennas, batteries, 

etc., which notably influences the signal transmitted. Thus, it is recommended that only 

beacons from the same manufacturer should be used in one system or in one area. This will 

reduce the system complexity and utilise the performance of system calibration. 

On the other hand, it is discovered that the effect of device orientation to data measured is quite 

small. This is thanks to the omnidirectional antennas design in the most recent iBeacons in the 

market. Finally, the Bluetooth signal performs quite similarly across devices and platforms. 

There is minor dissimilarity such as in signal strength or signal variation, but they share all the 

same other characteristics such as robustness, reliability, multipath fading effect. A simple 

adaptive calibration for each platform might solve this difference and be able to provide a 

satisfactory positioning result in that platform.  

4.7 iBeacon topology suggestion for indoor position systems 

In this section, a recommended topology for iBeacon in an indoor positioning system is 

proposed. There are some points to note in the design:   

• Each beacon covers a circle area which has a radius equal to its range. Within this range, 

the beacon’s signal must be reliable and stable. In one area or building, it is 

recommended to use all beacon from 1 manufacturer with same settings. 
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• Each target point, i.e. user’s device, must be surrounded by at least three beacons for 

reliable positioning. In addition, based on BLE specification, the maximum parallel 

connections is 7 (Townsend, 2014). Thus, to maintain the connection and avoid the 

interference, the number of neighbour beacon should not exceed 7.  

• The number of deployed beacons in the system should be minimised to save the cost.  

Under condition 3, the densest circle packing (Graham et al., 1998) is used as the base topology 

to maximise the covered area. It was proved (H.C. Chang, L.C. Wang. 2010) that the regular 

hexagonal packing is the densest packing. In my proposal, it is assumed that all beacons have 

the same settings, i.e. they will cover the same circle area with equal radius. In order to obey 

point 1, beacon transmission range will be configured to around 5 metres for reliability which 

requires the transmission power only about -12dBm (Estimote.com 2019). In fact, throughout 

the experiment, it was able to measure data up to 11m at this transmission level but within 6m, 

signals were stable as predicted. This small amount of required energy also increases the battery 

life of the beacon.  

Then, comply with point 2, the set-up topology is created using 4 beacons, which are placed 

five metres apart. This created a parallelogram as shown in figure 4.23. Five metres distance 

between beacons is also the expected circle radius. This topology setup will cover the area up 

to 25m2. As in the regular procedure, it is assured that each target point will be covered by at 

least 3 beacons.  

In fact, there are applications where localization is only necessary for small spaces such as 

small meeting rooms or offices, where the distance between beacons is not far away and there 

will be little noise from beacons outside the area or interference from external sources. 

Therefore it is required only a minimum number of 3 beacons with 5 meters away from each 

other as shown in Figure 4.22 to enforce the trilateration or LSE algorithm for positioning. This 

setup covers an area of 10.8m2. However, for wider areas, such as the hall or the airport or the 

large office, the optimum topology needs to be specified as 3 beacons can not cover the entire 

field. At the same time, more potential noise is possible, so 4 beacons are recommended in 

each 25m2 region to ensure that the user can pick up the most reliable signal. 
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The extension for a large area is shown in figure 4.24. As mentioned, in the normal manner of 

my recommended setting, the reliable signal can be collected when the distance between 

beacon and device is 6m. Then the maximum number of beacons, that produce a strong signal 

and reliable signal, surrounding one point in the topology is 6. This topology is used and 

evaluated in my project.  

 

Figure 4.22 Minimum iBeacon topology for a small area up to 10.8m2  

 

Figure 4.23 Recommended iBeacon topology to cover an area up to 25m2  
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Figure 4.24 iBeacon topology for an area larger than 25m2 
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Chapter 5 Intelligent Algorithms for high 

accuracy positioning of static objects 

A highly accurate algorithm to estimate the positioning of the static object will be proposed in 

this chapter. It starts with the introduction of relevant research and model. The proposed system 

model is then defined. Finally, the algorithm is introduced and evaluated via experiment. 

5.1 Related work 

5.1.1 Log-Normal Shadowing Model 

The most commonly used indoor propagation model is the log-normal shadowing (LNS). It 

represents and simplifies the relationship between RSSI, distance and “noise” term as shown 

in Equation (5.1). This is an extension of the Friis’s free space model. The received signal 

strength suffers an exponential loss in the indoor environment. This loss is predicted in the 

model over distance d and path loss exponent η.  The path loss exponent represents the 

shadowing effect and multipath propagation. Its value is dependent on the environment with 

different obstacles and material. In the indoor open space, the shadowing effect is neglected 

and η value is equal to approximately 2. In this thesis, the value of η is obtained by 

measurements and the calibration. 

 RSSI = A − 10 ×  η × log10(d d0⁄ ) + 𝑋𝜎 (5.1) 

Another factor in the model is A, which is the received signal strength at the reference 

distance d0. Typically, in the building environment, d0 is set to be 1m whereas the A value is 

set by the beacon manufacturer. However, the A value depends on the actual receiver and 

transmitter. One single value cannot represent a various set of devices in real life, therefore, it 

needs to be measured on the specific device in the system. 𝑋𝜎  is the zero-mean Gaussian 

random variable. If the error has no zero-mean, it will be reflected in the measured reference 
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received signal strength A. Thus, for simplicity, this parameter is removed in the following 

calculation.  

5.1.2 RSSI filtering 

The Bluetooth signal was found reliable, over the short-range and when the target is static, 

through experiments in the former chapter. However, mobile nodes move, and the 

environment can be altered in a real scenario. We saw how vulnerable RSSI signals are when 

the environment and other circumstances change. Mainly due to the current complexity of the 

multi-path fading of the indoor environment, the signal is dispersed and gets noisy. This 

variation may cause an error in distance calculation and the high precision position estimation. 

Signal filtering is, therefore, one of the most important criteria for a reliable data value of an 

indoor positioning system.  

RSSI filters are being assessed to identify the best solution for the indoor positioning system. 

The experiment was conducted in room G04/05, with a wide range of noise sources, in order 

to assess the ability of each filter. Beacons are situated 1 m and 5 m apart from the mobile 

device. At each position, the RSSI from each beacon was observed 100 times, which is 

equivalent to about 2 minutes. This is the highest schedule for RSSI information collection for 

a single static node. Following the application of feedback filters, Gaussian filters and Kalman 

filters at 1 m and 5 m, the measures of raw RSSI and RSSI information are shown in Figure 

5.1 and Figure 5.2. 

The primary problem of RSSI is the fast fading impact. RSSI information collected varies 

rapidly over time. The filter requires, therefore, to remove this oscillation, creating smooth 

information by decreasing standard deviations. However, RSSI filtered must be able to show 

the RSSI features with regard to slow fading, mainly owing to mobility and displacement. The 

observation results were assessed with these requirements. At 1m, the Feedback filter gives the 

variance of 1.97 whereas the Gaussian filter gives the variance of 0.62 and Kalman filter gives 

the least variance at 0.11. At 5m, the Feedback filter has 2.73 variances, whereas the Gaussian 

filter and Kalman filter achieve 1.62 and 1.13 variance respectively. The feedback filter is not 

suitable for smoothing the signal with rapid deterioration, as mentioned in the preceding 

section. The filtered signal remains gross and the standard deviation is quite significant. The 
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Gaussian filter shows a bit better, but the Kalman filter outperforms its competitors. The 

Kalman filter filtered signal has a very small standard deviation and is close to the average 

RSSI value at that range. The average value measured at the same place with the same 

environments in 8 hours should be noted. 

This chapter utilises experiments to select the Kalman filter as the principal filter in my indoor 

positioning system. In other conditions and systems, however, different types of filters may be 

used. 

 

Figure 5.1 Raw RSSI at 1m and 5m 
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5.1.3 RSSI- Distance estimation model 

The distance between beacons and a device can be obtained using the log-normal shadowing 

and calibrated factor. From Equation (5.9), the conversion between RSSI and distance can be 

expressed by the formula (5.2) below: 

 
d = 10

RSSI̅̅ ̅̅ ̅̅ ̅−A̅

10η    
(5.2) 

Where RSSI̅̅ ̅̅ ̅̅  is the averaged measured RSSI at distance d, A̅ is the averaged measure RSSI at 

reference distance and η is the environment and noise factor. From Equation (5.2), it can be 

seen that A and η are mathematically related and need to be carefully calibrated to improve 

the accuracy. All beacons and devices are considered static, then it can be seen that after the 

factor calibration and RSSI smoothing, there is no noticeable noise in the distance calculation. 

In section 5.2, a method for obtaining the value of A and η by fitting a large number of 

experiment measurement will be introduced. 

 

Figure 5.2 Comparison of RSSI filtered at 1m and 5m 
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5.1.4 Least Square Estimation 

Least Square Estimation (LSE) is a well-known method to solve the lack of GPS for 

positioning objects (Sharp and Yu, 2013). It is based on the following Equation (5.3): 

 y = Mx + ϵ    (5.3) 

The approach is to choose an appropriate value for estimated x̂ so that the norm value 

‖Mx̂ − y‖is minimised. Then the general linearised solution is: 

 Mx̂ ≈ β    (5.4) 

Applying into the classic positioning problem, the matrices can be represented as in Equations 

(5.5)(5.6) and (5.7): 

 
M = 2 [

x1 − x2 y1 − y2

x1 − x3 y1 − y3

x1 − x4 y1 − y4

]    
(5.5) 

 

β = [

d2
2 − d1

2 − (x2
2 + y2

2) + (x1
2 + y1

2)

d3
2 − d1

2 − (x3
2 + y3

2) + (x1
2 + y1

2)

d3
2 − d1

2 − (x3
2 + y3

2) + (x1
2 + y1

2)

]    
(5.6) 

 x̂ = [
x
y]    (5.7) 

 

The solution is given by: 

 Mx̂ ≈ β    (5.8) 

5.2 Proposed system 

5.2.1 System model 

The positioning system is designed to be used in the indoor environment, i.e. hospitals, in an 

IoT network. Figure 5.3 presents the system architecture overview. There are two main tasks 

which are: collecting and exchanging data with operator and users and applying different 
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technologies and algorithms to provide location tracking and monitoring based on data 

collected. It consists of four primary communication interfaces: 

• Interface 1: data collection and exchange data with the database within the IoT network 

of operators. 

• Interface 2: application to interact with users: users input or automatically collect the 

required data. 

• Interface 3: enable communication between different platforms, various types of 

devices suitable for the indoor environment. 

• Interface 4: applying suitable technology and calculation to analyse data to provide 

tracking results as well as other required health monitoring. 

 

Figure 5.3 System architecture overview 

In this thesis, my proposed architecture is focusing on interface 4 which will identify the 

location of users and objects, with timestamps of their movement, in the indoor environment. 



97 

 

Taking an insight into the architecture for interface 4, of my proposed tracking system, Figure 

5.4 describes the general working flow of the system. There are three main stages:  

• Modelling and collecting data: beacons are pre-installed in appropriate positions (as 

identified in my earlier work) (Nguyen et al., 2017). Their positions and the reference 

RSSI value will be collected, measured and calibrated. Users with BLE-enabled 

devices/tags will communicate with these beacons. Useful information such as RSSI, 

timestamp, height, etc. are collected and will be analysed in the next stage. 

• Data processing and position calculation: the RSSI value collected in the previous stage 

is filtered and processed through a set of improved LSE calculations (Nguyen et al., 

2017) in order to estimate the actual position of devices. Other integrated data will be 

analysed in this stage. 

• Output: the position is provided after achieving satisfactory error correction. Real-time 

tracking in a grid map, 2D map or 3D map is presented. Other metrics such as fall 

detection, heart rate, etc. will be communicated to appropriate staff. 

As mentioned earlier, BLE is chosen as the primary technology for the tracking system due to 

its advanced technical capability compared to other competitors available on the market. Figure 

5.5 illustrates the schematic of my implementation. The BLE-enabled beacons are used as 

anchors. They advertise their identity and transmission power periodically. This advertisement 

will be picked up by the user’s device when they enter within the range of a beacon. On 

receiving the data from beacons, the APP in the user’s device will process the data and calculate 

the distance between itself and the beacons. If the device is offline, i.e. there is no internet 

connection, the Offline Positioning module in the APP should estimate the position of the 

device and display it in the offline map. The tracking/navigation and any guidance will be based 

on this offline data. If there is an internet connection, all collected and calculated data would 

be transferred to a server. This server will execute the localisation and other data processing in 

real-time. A comparison process between estimated positions in the server will be made in 

order to select the most satisfactory result based on the actual application. The positioning 

technique used at this stage of research is my hybrid Centroid-Least Square Estimation 

(Nguyen et al., 2017) and it is named iLSE. 
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Figure 5.4 Indoor Positioning working flow 

 

Figure 5.5 BLE positioning overview 

5.2.2 Positioning step 

The detailed steps of the proposed optimised indoor positioning approach using iBeacon and 

Bluetooth are also shown in Figure 5.6. There are four steps which obeys our general working 

flows preparation, which includes mapping and beacon deployment; collect data and 

modelling, position calculation and output.  

Below is the step by step breakdown of the experiment result. 
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• Collect RSSI values from beacons at pre-defined position. 

• Find environment factor η and calibrate A. 

• Measure RSSI value from beacons to devices. 

• Smoothing RSSI uses Kalman Filter. 

• Calculate distance estimate from the log-normal shadowing model. 

• Position estimation (x0, y0) using Trilateration-Weighted Centroid approach as the 

initial state. 

• Position estimation (x, y) using improved Least Square Estimation for t number of 

times until ∆x and ∆y are satisfied. 

• Measure and calculate errors. Get feedback and output. 

 

Figure 5.6 Optimized Indoor Positioning step 
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5.2.3 Calibrated localisation 

Using the reference distance as 1 metre, we see that the distance and RSSI are dependent on 

A and η as given by formula (5.9): 

 RSSI = A − 10 ×  η × log10(d d0⁄ ) (5.9) 

Under the complexity of different indoor environments such as multipath, human body, 

interference etc., and the device’s condition such as battery life, antenna direction, choosing a 

generic set value of A and η can cause errors in ranging estimation later. Hence, these factors 

should be calibrated and corrected. 

In the given area where the localisation of a device is to be calibrated,  [d]n is a set of n known 

reference distances [ d1,  d2 …  dn−1,  dn] and [RSSI]n is a set of n pre-measured 

RSSI [RSSI1,  RSSI2 … RSSIn−1,  RSSIn]. This is shown in figure 5.7. Using a linear regression 

method, the relationship between A and η can be expressed by the formula (5.10): 

 [RSSI]n =  η × [d]n + A  (5.10) 

Solving (5.10) gives the value of A and η for a specific area and a device. The pseudo-code 

for the calibration is shown as below: 

Algorithm 1: CALIBRATION 

// This program can be used to calibrate the environment factor and 
reference power for each node or the whole environment for 
simplicity. 

Input:  number of iBeacons NB 

      number of known device’s location n 

      distance between K iBeacons and n devices locations d 

Output: environment factor η 

  reference power A 

1.  INITIAL: RSSI to zero 

2.  INPUT: NB, n, d 

// Measure RSSI from each known device’s location to each reference 
iBeacons 
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3.  FOR n device’s location DO 

4.      FOR NB beacons DO 

5.       P = measure the mean received power at known location  

6.      ENDFOR 

7.      RSSI = calculated P for n device’s locations and K beacons 

8.  ENDFOR 

// Execute linear regression to calculate the output 

9.  WHILE true DO 

10.     η, A  ← linear regression RSSI and d 

11. ENDWHILE 

12. OUTPUT η, A 

 

Figure 5.7 Calibration phase measurements 

5.2.4 Positioning calculation 

Weighted Centroid 

In practical calculation of Formula (2.5) a scenario may arise where the distance between two 

beacons is larger than the sum of distances from these beacons to the device. For example, 
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LAB> d1 + d2 , i.e. the Euclidean distance between beacons A and B is larger than the sum of 

distances from A and B to the device. Figure 5.8 describes this scenario. This leads to values 

in the imaginary quadrant, which in turn will require more complex processing when finding 

the intersection. Furthermore, in the centroid calculation, all the beacons and devices are 

treated equally regardless of their distance from the device. Hence, it may lead to error in the 

position calculation. The RSSI or the estimated distance can be used to overcome this issue of 

the Trilateration–Centroid approach without increasing the complexity.  

The RSSI from each beacon to device shows the contribution of each beacon to the 

positioning. Furthermore, RSSI represents the relationship in terms of signal strength and 

distance between beacons and devices. Hence, the weighted factor w can be expressed with 

distance to represent the contribution of each beacon as Formula (5.11): 

 wi =
1

di
ω   (5.11) 

where ω is the degree representing the contribution of each beacon. In the testbed, as the 

distance under 10m so the ω is set to be 1 (Blumenthal et al., 2007). The weighted factor for 

intersection points D1 , D2 and D3  can be expressed as follows (5.12): 

 w1̃ =
1

d1
ω + d2

ω 

 w2̃ =
1

d2
ω + d3

ω 

w̃3 =
1

d3
ω + d4

ω 

w̃4 =
1

d4
ω + d1

ω 

(5.12) 

However, in these weighted distances, if one distance is much larger than another, the beacon 

with the smaller distance to the device might be considered as unimportant. In fact, this should 

be understood in the opposite situation. The smaller distance the more major role a beacon 

should play. Hence, resolving (5.11) and (5.12), the weighted centroid algorithm is modified 

in (5.13) as agreed with (Shi, 2012): 

 w1 =
1

d1
ω +

1

d2
ω 

 w2 =
1

d2
ω +

1

d3
ω 

w3 =
1

d3
ω +

1

d4
ω 

w4 =
1

d4
ω +

1

d1
ω 

(5.13) 

And the final position results in the following formula (5.14): 
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x =

∑ xDi
wi

h
i=1

∑ wi
h
i=1

 y =
∑ yDi

wi
h
i=1

∑ wi
h
i=1

 (5.14) 

where h is the number of intersection points, (xDi
, yDi

) are the intersection points. 

 

Figure 5.8 Weighted centroid 

Improved Least Square Estimation 

In the classic LSE, it always uses the position (0, 0) as the initialisation. The main idea of this 

improvement is cooperating with the prior positioning result from the trilateration – weighted 

centroid algorithm and finding the value of change in distance between two immediate states. 

Resolving Equation (2.5), the Euclidean distance between the beacon and device can be found, 

which is represented as a function of x and y, shown below: 

 di
k = f(xk, yk) = √(xk − xi)2 + (yk − yi)2    (5.15) 

where di
k is the distance from beacon i to the device at the time state k (xk, yk) is the estimated 

position and (xi, yi) is the beacon i position. 

Using Taylor expansion to find the distance in the next time state k+1 as expression (5.16): 

 
f(xk+1, yk+1) = f(xk, yk) +

∂f(xk, yk)

∂xk
∆xk +

∂f(xk, yk)

∂yk
∆yk (5.16) 
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As f(xk, yk) is the first-order function, the Taylor expansion results in (5.17): 

 
di

k+1 = f(xk+1, yk+1) = di
k −

xi − xk

di
k

∆xk −
yi − yk

di
k

∆yk (5.17) 

In this equation, ∆xk = xk+1 − xk  and ∆yk = yk+1 − yk  are the change in distance between 

time k and k+1. If either of these values is 0, it can be considered as the classic Least Square 

problem. 

For n beacons in 2D dimension and static devices, we can express (5.17) as a series of matrices 

representing the coordinates over the Euclidean distance, change in Euclidean distance and 

change in time states of coordinates (5.18), (5.19) and (5.20): 

 

M =

[
 
 
 
 
 
x1 − xk

d1
k

y1 − yk

d1
k

⋮ ⋮
xn − xk

dn
k

yn − yk

dn
k ]

 
 
 
 
 

 

(5.18) 

 

β = [
d1

k+1 − d1
k

⋮
dn

k+1 − dn
k

] 
(5.19) 

 x̂ = [
∆xk

∆yk] (5.20) 

This becomes a Least Square problem with the solution of finding: Mx̂ ≈ β. Solving this 

problem gives us the change in distance between two immediate states. 

The pseudo-code for this algorithm is described as: 

ALGORITHM 2: iLSE FOR STATIC DEVICE 

// This program is used to estimate the position of a static device 

using iLSE approach. 

Input:  number of iBeacons NB 

   i = (1,2,…,NB) 

   coordinate of each iBeacon (Xi,Yi) 

   time measurement K in seconds 

Output: device’s position X,Y 
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1.  INITIAL: RSSI, R, D, X0,Y0  to zero, ω, threshold 

2.  INPUT: NB, (Xi,Yi), K 

3.  FOR i from 1 to NB beacons DO 

4.      FOR time k from 1 to K DO 

5.          RSSIik = measure the RSSI from device to the ith iBeacon 

6.      ENDFOR 

//Measure the RSSI from the device to ith beacon 

7.     RSSIi = RSSIik ← Kalman filter 

//Calculate the distance from the device to ith beacon 

8.     Ri = 10**((RSSIi – A)/ η) 

9.  ENDFOR 

//Calculate all the intersection point of all circles  

10. D = intersection_circles(Xi,Yi,R) 

//Calculate initial position value after time K 

11. FOR h from 1 to length of D DO 

12.     (X0=
∑ xDi

wi
length(D)
i=1

∑ wi
length(D)
i=1

, Y0=
∑ yDi

wi
length(D)
i=1

∑ wi
length(D)
i=1

)  

13. ENDFOR 

14. (X,Y) = (X0,Y0) 

//Calculate delta x and delta y using iLSE and update (X,Y) 

15. WHILE running time t DO 

16.    (Δxt,Δyt) <- improve_LSE(X,Y,R,Xi,Yi) 

17.     IF Δx > threshold AND Δy > threshold DO 

18.         X = X + Δxt 

19.        Y = Y + Δyt 

20.     ENDIF 

21.  OUTPUT X,Y 

22.  ENDWHILE 
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5.3 Experiment and observation 

5.3.1 Positioning for one device 

Testbed set up 

Figure 5.9 shows the testbed environment for my experimentation. Four beacons are placed in 

a grid area of 5x5 meters. They are placed at fixed positions as followed: iBeacon_1 

(coordination 0, 0), iBeacon_2 (0, 5), iBeacon_3 (5, 5) and iBeacon_4 (5, 0). There are five 

different positions of devices Position A (0, 3), Position B (2, 4), Position C (1, 1), Position D 

(3, 2), Position E (5, 5). There are ten tables randomly placed around the testbed, but all 

devices can see each other directly. 

 

Figure 5.9 Testbed set up 

Table 5.1 lists devices used in my experiment for measurements: 
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Table 5.1  Devices used in the testbed 

Items 
Details 

Manufacturer Settings 

iBeacon Estimote 
Transmit power: -4 dBm 

Advertising interval: 400ms 

iPad 2 Apple 

iOS 10.2.1 

Wi-Fi: On - Bluetooth: On 

There are several assumptions made for this experimentation as listed below: 

• All the devices are static. 

• All the antennas are omnidirectional. 

• All the devices are at the same height of 1.2m. 

 

Calibration 

The RSSI measurements were collected 100 times using Estimote application at predefined 

locations and fixed distances varying from 0 to 10m on the iPad device. Figure 5.10 shows the 

calibration results. 

The calibrated result gives the environment factor for the testbed as η = 2.6472. The received 

signal strength at 1m is A = -54.6476 dBm compared with the Estimote documentation 

(Estimote.com, 2019), with a transmission power of 4dBm, in theory, A will be approximate 

-60dBm.  
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Figure 5.10 Factor Calibration 

 

Positioning result 

Figure 5.11 shows the experimental results for the three positioning calculations when 

applying the Kalman filter for RSSI measurements. Table 5.2 compares the accuracy among 

approaches. 

As can be seen, my proposed approach has the best performance of all three approaches in 

terms of positioning for a static device in my specific testbed. The mean error for Trilateration-

weighted Centroid is 0.375m. The mean error for classic LSE is 0.333m. The improved LSE 

performs the best with a mean error of 0.192m. This is the result of correcting factor and 

smoothing the RSSI value.  The experiment was replicated 10 times and the average error is 

about 0.3374m. It is a very promising result considering the area is 25m2. The precision, 

therefore, is about 98%. Table 5.3 shows the details of these repetitions. 
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Figure 5.11 Test 1: Static positioning Results 

Table 5.2  Positioning Accuracy 

Method Mean error Maximum error 

Trilateration-weighted Centroid 0.375 m 1.009 m 

LSE 0.333 m 0.89 m 

Improved LSE 0.192 m 0.354 m 

Table 5.3  iLSE repetition result 

Improved 

LSE 

Run 

1 

Run 

2 

Run 

3 

Run 

4 

Run 

5 

Run 

6 

Run 

7 

Run 

8 

Run 

9 

Run 

10 

Average Error 

(m) 
0.192 0.302 0.447 0.714 0.451 0.349 0.154 0.136 0.414 0.215 
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5.3.2 Scalability evaluation 

The experiment was expanded to test the scalability and cross-platform capabilities of the 

proposed algorithm. Using the same testbed introduced in 5.3.1 and iBeacons' placement and 

configuration is similar, 4 handsets were used including: Samsung Galaxy S6 at position A 

(0.3), iPad at position B (2.4), Samsung Galaxy S10 at position C (1.1) and iPhone X at position 

D (3.2). Data were obtained and analyzed using Matlab. Figure 5.12 shows the observation: 

 

Figure 5.12 Test 2: Static positioning Results for multiple devices 

It can be seen that the findings are very positive and the accuracy is still very good. In particular, 

the findings are shown in Table 5.4. Apart from position D, the average error is around 0.48 m, 

higher than when only one active user is being tracked. Interestingly, the estimated position at 

position D is almost perfect, with an error of just 0.031 m. The explanation may be that the 

iPhone X is a modern device, the Bluetooth antennas and the OS are much improved, so the 

signal collected is more reliable. This can also be seen by comparing the performance of both 

Android devices. Samsung Galaxy S10, which is the newer unit, offers better performance than 

Samsung Galaxy S6 does. In addition, we can see that two iOS devices perform better than 
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Android devices. The reason may be the iOS native support for iBeacon, which makes the 

signal more stable. 

Table 5.4  Multiple devices tracking result 

Result Position A Position B Position C Position D 

Device 
Samsung 

Galaxy S6 
iPad 2 

Samsung 

Galaxy S10 
iPhone X 

True Position (0, 3) (2, 4) (1, 1) (3, 2) 

Estimate Position (0.1096, 3.597) (1.68, 3.756) (1.276, 1.332) (3.022, 1.978) 

Error (m) 0.609 0.402 0.43 0.031 

 

We expanded the experiment with a larger testbed and an additional beacon. Four beacons are 

placed at 4 corners of the testbed, each beacon is 10 m apart: Beacon_1 (0.0), Beacon_2 (0.10), 

Beacon_3 (10.10), Beacon_4 (10.10). Another Beacon_5 is located in the middle spot (5,5). 

This experiment simulates the case that the devices are at the edge of the topology and in a 

broader area. The three devices are positioned at three locations: the iPad at position A, the 

iPhone X at position B, and the Samsung Galaxy S10 at position C. Again, RSSI data is 

obtained and processed in the Matlab. Figure 5.13 Test 3: Space Expanded positioning Results 

the result. In this experiment, the handheld device can receive signals from all 5 beacons at 

each position. Nevertheless, only three of the strongest RSSI signals were selected and then 

filtered and processed. We can see that the result is still very good, with a mean error of 0.51 

m as expected. In details, the error at positions A, B and C is 0.65 m, 0.065 m and 0.819 m 

respectively. In particular, the device could gather very strong and reliable signals from all 

beacons at position B, so the result is very impressive. This indicates that the system has the 

potential to expand. But, due to the small budget of the report, we have not been able to explore 

this further. This is going to be discussed in the future with the real-life environment and even 

more beacons. 
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Figure 5.13 Test 3: Space Expanded positioning Results 

Table 5.5  Expanded positioning Results 

Result Position A Position B Position C 

True Position (6,8) (4,5) (5,0) 

Estimate 

position 
(5.3466,7.9751) (4.0009,4.9344) (5.7747,0.2676) 

Error(m) 0.653874 0.06506 0.8196 
 

5.4   Discussion and summary 

As seen in the experiments above, the performance of the algorithm is very encouraging with 

an average accuracy of about 0.3374 m for tracking one device in the testbed and 0.48 m for 

tracking multiple devices. First, this is because the Kalman filter stabilized the RSSI signal at 

the calibration stage. Second, especially when the device is on the edge of the testbed or on the 

side of the testbed, the improved LSE method outperforms its competitors. For example, in 

position A (0, 3), my method gives the positioning result of (-0.115, 3.233) whereas 

Trilateration-weighted Centroid results is (-1.009, 3.196) and classic LSE results is (0.8917, 

3.078). In position E (5, 5), the Trilateration-Centroid and classic LSE results are (5.382, 5.394) 
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and (4.525, 4.537) respectively. The improved LSE estimates (4.804, 4.807) as the coordinate. 

This is because, in this position in the testbed, distances from beacons to the device are the 

farthest, it leads to more fluctuation in RSSI even with the filtering. Furthermore, at larger 

distances, even small changes in RSSI will result in larger error distance estimations. However, 

using improved LSE and by incorporating the trilateration-weighted centroid approach results 

as the initial guess, this error is minimised. In addition, repeated tests were carried out and the 

accuracy obtained by less than 0.5 mm for 90% of the number of experiments also illustrated 

the reliability of the algorithm. The system was also tested on a larger scale with a wider testbed 

and one more beacon were added. Findings indicated that the precision was up to 98%. In 

particular, the outcomes are very good with a modern device or place that has the ability to 

obtain strong and stable signals. The error in these scenarios is only about 3-6 cm. 

Concerning power consumption, the setting of each beacon is advertising interval of 400ms 

and transmitting power of-4dBm. We measured the average current consumed by an Estimote 

beacon is about 0.09mAh in the application and the Estimote beacon is powered by a 1000mAh 

- 3VCR2477 coin battery. Thus, the total power consumed is just about 27 microwatts. Thus, 

it can operate for about 10658 hours which is about 14.6 months while maintaining the 

continuous connectivity. Compared this to other proposing BLE-based indoor positioning 

which also focuses on the energy-efficient, we can see its advantages. Table 5.6 presents this 

comparison: 

Table 5.6  Power consumption comparison 

Author Method Power consumption 

Nguyen, 2019 
RSSI-based 

iLSE 
27µW 

Paterna et al. 

2017 

RSSI-based 

Trilateration 
54 µW  

Sadowski and  

Spachos, 2018 

RSSI 

For IoT 
367 µW 

Although, the settings were recommended by the manufacturer. we also varied it to evaluate 

the effect on power consumption. Table 5.7 presents the findings. It is worth to note that 
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decreasing the advertising interval will increase real-time communication capability but will 

conduct much more power consumption. 

Table 5.7  Power consumption on different settings 

Advertising 

interval (ms) 

Transmitted 

power (dBm) 
Average current 

(mAh) 
Power consumption (µW) 

100 0 0.35 135 

100 -4 0.22 88 

200 0 0.17 34  

200 -4 0.115 0.345 

400 0 0.098 29.4  

800 0 0.04 12  

800 -4 0.029 8.7  

We also do not notice any significant power consumption during data collection and 

processing. The battery of the smartphone only drops about 2% when collecting data for 10 

minutes. Note that smart handhelds still operate other functions in regular use.  

We explore another primary aspect of the indoor positioning system, which is processing time 

as computational complexity. We measured the computational time of the data processing in 

experiment 1, experiment 2 and experiment 3. The histogram of computational time is shown 

in Figure 5.14. And the average computational time are presented in Table 5.8 

Table 5.8  Computational Time of the algorithm 

Experiment 
Test 1: classic 

LSE algorithm 
Test 1: improved 

LSE algorithm 
Test 2: improved 

LSE algorithm 

Test 3: improved 

LSE algorithm 

Average 

Computational 

time (sec) 

0.14182 0.20326  0.85034 0.59461 
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Figure 5.14 Histogram of Computational Time 

Looking at the results recorded for experiment 1, the average computational time of the iLSE 

algorithm is around 0.203s for tracking one device, while the average running time of the 

classic LSE algorithm is 0.142s. In experiment 2, as the number of mobile nodes increased by 

4 times, the processing time also increased by about 4 times and an average of about 0.85 

seconds. On the other hand, it was interesting to look at the third experiment, a 3-fold increase 

in the number of mobile devices and one additional beacon make the data point obtained around 

3.75 times. Though, the computational time just increases about 3 times to around 0.595s. The 

histogram reflects the same observation. While the number of beacon increases or the covered 

area increases, the processing time does not raise at the same rate. However, in general, the 

computational time increases with the number of active mobile nodes. This matter will be 

studied further in future research. 

It's not straightforward to compare our system with other systems. This is because each system 

uses very different criteria, such as beacon manufacturers or environmental factors, even 
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though it is possible to use the same metric as RSSI. Nonetheless, Table 5.9 demonstrates the 

accuracy and precision of recent BLE-based indoor positioning systems. It can be shown that, 

with recent testing, BLE-based indoor positioning systems produce very good accuracy. Our 

proposed system also proved its potential while achieving high accuracy of 0.3m-0.5 m with a  

working area can be comparable to other systems. This is because implementing the 

recommended topology setup optimizes the layout of the beacons, as well as the iLSE 

algorithm, helps to improve the accuracy of the beacons compared to the traditional method. 

Table 5.9  Algorithms comparison 

Author Method Accuracy Range Note 

Nguyen, 2020  
RSSI 

Improved LSE 
0.3 -0.5 m 25m2 – 100m2 

 

Insoft, 2020 RSSI 0.5-1 m Range up to 75m Commercialised 

Huang et al, 

2019 

RSSI  

Wi-Fi- fingerprinting 
2.2m 108m2 

 

Huang, He, 

Du, 2019 

RSSI 

Modified Trilateration 
0.757m 50m2 

 

Mekki et al., 

2019 
Trilateration  0.5m 25m2 

For IoT 

application.  
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Chapter 6 Intelligent algorithms for High 

Accuracy Tracking of Objects 

Nowadays, the development of large infrastructures such as airports, railway stations, 

commercial centres or hospitals requires adequate positioning and navigation at the same 

standard as GPS for outdoor navigation. The proliferation of smart handheld devices makes it 

possible to become a reality. Handheld device localisation can help users identify their position 

in the building in real-time and navigate precisely in the building. Besides, it may also be used 

in other ways, such as the identification of assets and objects or monitoring of the number of 

people entering and leaving the building for security reasons. In order to do this, it is essential 

to have a high precision indoor object tracking system. In this section, an indoor object tracking 

system based on the system proposed in Chapter 5 will be presented. 

6.1 System Overview 

At present, solutions for indoor monitoring are primarily divided into two main groups:  

• The solution relies on radio frequency signals such as Wi-Fi, RFID and Bluetooth in 

the same way as the approach described in Chapter 5.      

• The solution uses sensors attached to the tracked object. 

Each approach has its own advantages and disadvantages. In the first group of the solution, as 

discussed in the last chapter, static devices work very well. Also, with my proposed method, it 

does not require the planning of a complex database or intensive data training. It needs only 

the pre-installed iBeacon and the calibration in the corresponding region and is still capable of 

achieving high efficiency. Nevertheless, the solution does not work well with high mobility 

objects and in the application that demand real-time tracking. Fortunately, this is the strength 

of the second group of solutions. The second set of solutions can predict and calculate the 

position of an object in real-time with properly installed sensors. However, with only one 
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incorrect prediction, usually at the start or at the turning points, the error of this process will 

increase as it relies on previous predictions. Thus, a small error can lead to a substantial error 

when tracking an object. I propose a fusion between the two solutions to monitor objects in the 

indoor environment method. It will combine the results of the algorithm developed in Chapter 

5 for static devices and the results of a pedestrian dead reckoning technique for handheld 

devices. Figure 6.1 presents my system overview. Details of the system will be present in the 

next sections.  

 

Figure 6.1 Overview of fusion indoor tracking system 
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6.2 Pedestrian Dead Reckoning 

Pedestrian Dead Reckoning is a method used to estimate the movement of an object usually 

person. This method uses information from the Inertial Measurement Unit (IMU) to detect 

motion, estimate stride length and direction of motion. This is the foundation of many 

localisation approaches, such as Simultaneous Localisation and Mapping (SLAM). One of the 

ways to collect sensor data and execute the PDR as mentioned above is to use an IMU that has 

been incorporated into smartphones, tablets or smartwatches currently on the market. The IMU 

in smartphones usually consists of three main types of accelerometer, gyroscopes and 

magnetometers. Accelerometer information is used for Phase and Step Detection Estimation. 

The magnetometer is used as a compass to determine the orientation of the object. Lastly, the 

gyroscope is used to decide the altitude and change the direction of motion of the device. Of 

course, information from the sensors will be gathered simultaneously and in conjunction with 

each other to make the most accurate predictions. 

As noted, the method can be divided into four main parts: step estimation, estimation of step 

length and estimation of orientation and estimation of position. My indoor tracking system is 

also based on these main components. 

6.2.1 Step Detection 

Step detection is one of the subjects that has recently attracted much study. Many studies are 

showing good results, but, they share the same fundamentals as using the accelerometer data. 

The accelerometer is usually embedded into smart handsets. When a user walks, there is a 

change in the speed and acceleration due to the human motion mechanism. At average walking 

rates and regular moves, the acceleration will increase and decrease periodically. Calculation 

of these parameters is the answer to step identification. 

Wang et al. (2007) and Jimenez et al. (2009) proposed one way to detect the step. They pointed 

out that while going forward, the acceleration would go through the zero marks two times in 

one step. Therefore, a zero-crossing can be counted, and the step can be identified. Based on 

this, these authors developed and proposed a zero-crossing detection algorithm. All articles 
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presented that their approach achieved excellent results. However, the basic rule is that IMU 

must be placed on the user's foot, or at least that users can hold a handheld device and walk 

with swing hands. This study concentrates more on the case of a user using an IMU Integrated 

Device such as a mobile phone and walking, or a small unit, such as a tag attached to a user's 

body or the smart device is put in a pocket. 

Another way to detect step is to determine the peak magnitude of the acceleration. Mladenov 

and Mock, 2009 did find the peak value by way of measuring fixtures sample data, averaging 

it and taken out the peak. As described in the research of Wang and Jimenez, (2007, 2009) 

while moving, the recurrence of the swing process can produce both positive and negative 

peaks. The peak can be identified by looking for a maximum or minimum point in a sliding 

window. After that, the bandpass filter can be used to reduce the defect. If the readings in the 

window surpass the threshold value of the bandpass filter, a peak is identified. Two peaks 

establish one step. This will be used in this thesis due to its simplification as well as its well-

performance in many cases including walking and running (Ho, Truong and Jeong, 2016). 

Figure 6.2 presented the step detection algorithm used in the system. 

6.2.2 Step Length Detection 

Step length estimation is another critical factor in the process. In fact, this parameter varies on 

each individual, depending on the speed of walking, step frequency and other physical 

characteristics such as gender age, height, weight, etc. (Renaudin, Susi and Lachapelle, 2012) 

As a consequence, the measurement of step length is quite difficult in a real application. In 

several newspapers and magazines (Nina, 2019), the writer provided figures on the average 

stride length based on age and gender. Of course, the data is still generic and can hardly be 

used in applications that require very precise accuracy, such as object tracking. Weinberg 

(2002) proposed a formula for the measurement of user stride length based on a maximum 

accelerometer founded in the step detection stage. Equation (6.1) shows this: 

 
𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ =  𝐾 × √𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛

4  
(6.1) 
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Where 𝑎𝑚𝑎𝑥  is the maximum in speed in vertical, 𝑎𝑚𝑖𝑛  is minimum in speed in vertical and 𝐾 

is a constant. Ladetto (2000) observed that when the device is in a fixed position relative to the 

user the relationship between step length and step frequency will be linear. Also, this 

connection can be applied to this project as users keep and use it in hand or place it in a bag. 

Step length can be calculated as Equations (6.2) and (6.3):     

 

𝑓𝑠𝑡𝑒𝑝 =
1

∆𝑡
 

(6.2) 

 
𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ = 𝑎 × 𝑓𝑠𝑡𝑒𝑝 + 𝑏 × 𝑣𝑎𝑟 + 𝑐 

(6.3) 

In these,  ∆𝑡  is the time interval of a step, (𝑎, 𝑏, 𝑐) is the coefficient,  𝑓𝑠𝑡𝑒𝑝  is walking frequency 

and 𝑣𝑎𝑟 is the acceleration variance.  Figure 6.3 presented the step length calculation process. 

6.2.3 Orientation Estimation 

Orientation or heading Estimation is an indispensable step in the PDR process and must be 

achieved from the very first step of the algorithm. Headings can indicate the direction of travel 

of the system in the next frame. There are a number of ways to determine the direction of the 

device. The most basic approaches are to use the compass. The gyroscope is used in modern 

equipment as an alternative. This will provide the position of the device according to the true 

magnetic north of the earth, and the output of the device will be in the spherical coordinates 

(roll, pitch, and yaw). In the sense of this study, indoor 2D tracking is the main focus. The 

rotation of the yaw provides sufficient data to predict the device direction. A gyroscope and an 

accelerometer can accomplish this angle. The matrix of rotation is defined as Equation (6.4) 

with 𝜃 is the yaw angle or angle of direction: 

 
𝑅(𝜃) = (

cos (𝜃) −sin (𝜃)
sin (𝜃) cos (𝜃)

) 
(6.4) 
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Figure 6.2 Step detection process 
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Figure 6.3 Step length calculation process 

6.2.4 Indoor tracking by Merging IMU-based PDR and improved 

RSSI-based BLE positioning  

The final step of the indoor tracking system is the calculation of the position for each period. 

On the basis of measurements taken from the previous stage, including step identification, step 

sizes, orientation and velocity, the customer's location is calculated in the PDR system. A 

Kalman filter as described in chapter 5 will be applied for a finer resolution. The position is 

estimated based on the Equation (6.5). 

 
{
𝑃𝑜𝑠𝑡(𝑥) = 𝑃𝑜𝑠𝑡−1(𝑥) + 𝑆𝐿𝑡𝑐𝑜𝑠(𝜃)

𝑃𝑜𝑠𝑡(𝑦) = 𝑃𝑜𝑠𝑡−1(𝑦) + 𝑆𝐿𝑡𝑠𝑖𝑛(𝜃)
 

(6.5) 

Where 𝜃 is yaw angle but also is an angle of direction. Figure 6.4 describes this calculation:   
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Figure 6.4 PDR position calculation 

Nonetheless, the main problem with PDR is volatile. The mistake occurs at any point due to 

the calculation in each time frame. Apparently, the final error can be high and irrational if the 

error occurs at the beginning of the measurement process, i.e. at the first few measures, because 

the PDR uses the previous estimate in order to measure the next estimate. The initial point is 

often set at (0, 0), which is quite impractical. For example, it creates a significant error if the 

user's starting point is in the middle of the room. Orientation is another issue because the user 

may rotate and adjust the direction of the device during the motion. This may make the later 

orientation estimation incorrect, as the PDR is based on the previous calculation. 

In the last chapter, I proposed an RSSI-based approach using iBeacon and BLE to identify the 

user location. As described and evaluated, the proposed solution has a very positive outcome 

for static devices with an error of only 0.25 m. We also know that this approach performs poor 

in real-time and high accuracy tracking application. This is due to the BLE and iBeacon 

tolerance and update rates. It takes around 8 sec-10 sec to provide the most reliable RSSI signal. 

Therefore, during the tracking, the position can only update every 10 sec, which is much less 

than the PDR. However, in each point estimated, the direction and position are satisfied.  

A fusion system using my BLE RSSI-based approach and PDR technique to track an object in 

real-time will be developed. Each approach will perform its own task with the time 

synchronisation. Then the output will be filtered through a noise filter to eliminate any 
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unwanted interference and spike. The step-by-step method is described in figure 6.5 and pseudo 

code is presented below: 

Algorithm 3: FUSION TRACKING 

//This program combines PDR and iLSE algorithm to track moving object 

Input: sensors information: accelerometer acc, gyroscope g, 
magnetometer m 

       Timestamp T, beacon position 

       received power strength RSSI 

Output: Pos(X), Pos(Y) 

1.  INITIAL: coefficient a, b ,c, acceleration peak threshold pth, 
beacon position (Xi,Yi) 

2.  Pos0(X) , Pos0(Y) ← execute iLSE algorithms with (Xi,Yi), RSSI 

3.  FOR t from 1 to T DO 

4.      INPUT: acc, g, m ,t ,RSSI  

// Perform the PDR tracking, take advantage of its update rate  

5.      Peak detection ← bandpass filtering, pth, a 

6.      Δtt = time of peak p – time of peak pt-1 

7.      SL = a * 1/ Δtt + b * var(acc) + c 

8.     Extract yaw rotation from gt: θt 

9.     Post(X) = Post-1(X) + SLt*cos(θt) 

10.   Post(Y) = Post-1(Y) + SLt*sin(θt) 

11.     PDR = [PosPDRt(X) PosPDRt(Y) t] 

// iLSE tracking, take advantage of its exact orientation and 
position 

12.     PosLSEt(X), PosLSEt(Y) ← execute iLSE with (Xi,Yi), RSSIt 

12.     iLSE = [PosLSEt(X) PosLSEt(Y) t] 

// Fusion tracking 

13. Pos(X),Pos(Y) ← apply extended Kalman Filter with more weight 
on iLSE(PDR,iLSE) 

14.  OUTPUT Pos(X), Pos(Y) 
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15.  ENDFOR 

 

Figure 6.5 Fusion indoor tracking system 

Inertial 
Measurement 

Units

Step Detection

Step Length Orientation

Pedestrian Dead 
Reckonning

iBeacon

Filtering & 
Processing

Tracking from 
iBeacon

Noise/Spike 
Filtering

Fusion Indoor 
Tracking

RSSI

Start

End

Time Index



127 

 

6.3 Experimental results 

To evaluate the performance of the proposed system, we equate the outcome of the fusion 

system with the results of the PDR and the result of the proposed solution to chapter 5 for 

tracking application. 

The same testbed but larger as defined in Chapter 5 is used. Thus, to follow the suggestion 

topology in Chapter 4, two more iBeacons were placed to create 2 equal parallelograms. A 

person was carrying an iPhone X and was walking at an average speed. Data are collected and 

transferred from the IMU sensors to the PC in real-time. In order to have the MATLAB 

compliant format log file without further testing, the MATLAB software on iOS was used to 

capture these data. Figure 6.6 describes the testbed and the walking path. Table 6.1 presents 

our devices and software used 

 

Figure 6.6 Indoor Tracking Testbed and Walking path 
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Table 6.1  Devices used in the testbed 

Items 
Details 

Manufacturer Settings 

iBeacon Estimote 
Transmit power: -4 dBm 

Advertising interval: 400ms 

iPad 2 Apple 

iOS 10.2.1 

Wi-Fi: On - Bluetooth: On 

 

For this experiment, there are several assumptions: 

• All the antennas are omnidirectional. 

• All the devices are at the same height of 1.2m. 

• The Earth's rotation effect is negligible 

• The Earth’s force is negligible. 

In the scope of this project and experiment, we do not examine the function and performance 

of PDR solutions. We centred on how the fusion model enhances the performance compared 

to the traditional PDR in terms of positioning and direction. Therefore, the detailed results of 

the PDR was not addressed or debated. 

My approach is tested in the first experiment. One of the problems identified for my BLE-

based approach is the response of the RSSI in real-time. Although the beacon update frequency 

was set to 1ms, it is found that the phone had picked up the same RSSI value for about 8-9 

seconds. This was clarified in chapter 4 that BLE and iBeacon need a few seconds to execute 

the communication process and a few minutes to become sufficiently stable. Nevertheless, we 

have also stated that the instability caused by this operating mechanism is acceptable. 

Therefore, in order to reduce interference and boost battery life, the update rate of the beacon 

was increased to 20ms as the vendor defaults. The data of the RSSI then be logged every 10 

sec. Figure 6.7 shows the tracking result of my proposed algorithm for the static device. As can 

be seen, although the measured path is not smooth, it achieves entirely appropriate consistency 
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as the route observed followed very close to the actual walking path. The mean error of my 

modified LSE model is about 0.35 meters, but the peak error is almost 1 meter. 

We then tested the PDR tracking methodology with data collected from IMU embedded into 

the iPhone. Surprisingly, the result was fairly average as shown in figure 6.8. The initial point 

was found wrongly, and, at some points, the orientation of the route was not right. The average 

error is roughly 0.84 meters and the peak error is 1.4 meters. There are several explanations for 

this finding. In the first place, the implemented PDR may not be tailored for the condition used 

on a mobile phone. The tuning and calibration of the PDR may have taken too much effort and 

time, so the basic and standard PDR methodology was used for this study. Second, we observed 

that the orientation of the phone can be changed at any time due to the ordinary handling of the 

human to the device. It makes the final mistake uncertain. For future work, the solution to these 

problems could provide an additional and improved approach for the indoor tracking system. 

Nevertheless, as stated above, in the scope of my research, this finding is used as a reference 

point for examining the fusion system. 

 

Figure 6.7 iLSE Positioning Tracking Results 
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Figure 6.8 PDR Tracking Results 

Final, the outputs of two methods were integrated into a single product using an extended 

Kalman filter. Figure 6.9 shows the outcome. The tracking performance is noticeably improved 

both in terms of position and orientation. The minimum error is now around 0.2 metres, while 

the peak error is 0.4 metres. The direction of the walking path is also improved as more weight 

was put on the iLSE result than the PDR result in the filter. This experience indicates that the 

quality of an indoor tracking system can be improved by a hybrid model between the classic 

PDR and my iLSE method. In specific, the iLSE approach plays an important role in the use 

of user orientation regardless of their movement or handling of smartphones. 

In addition, Table 6.3 contrast our proposed approach with other approaches to enhance the 

PDR. It can be seen that, with the ability to improve the PDR tracking accuracy by 76%, our 

proposed system is comparable to other proposed systems in terms of accuracy. However, this 

fusion system is at an early stage, so it has not been tested for practical use. By contrast, for 

example, the algorithm proposed by Yan et al. 2018 uses PDR in combination with a 

smartphone camera to provide visual support to the user. Our system will continue to develop 

in a project to assist first responders. This project is funded by Innovate, UK (KTP, 2020) 
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Figure 6.9 Fusion tracking Results 

Table 6.2  Positioning Accuracy 

Method Average error Maximum error 

Improved LSE tracking 0.35 m 1 m 

PDR tracking 0.84 m 1.4 m 

Fusion tracking 0.2 m 0.4 m 

Table 6.3  Compare with other solutions 

Author Method Improvement Application 

Nguyen, 2020  
Fusion with Improved 

LSE 
76%  

Yan et al. 2018 Fusion with Camera 70% Visual aiding 
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Yu et al, 2019 Fusion with Wi-Fi 66.4%  

Shi et al, 2018 

Fusion with RSSI 

fingerprint 

 

30%  
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Chapter 7 Conclusion and Future work 

7.1 Conclusion 

I will provide an overview of the outcomes of the system and highlight its outstanding aspects 

and drawbacks in this chapter. 

In summary, an indoor positioning system using Bluetooth Low energy technology and 

iBeacon has been established and examined using the proposed localisation algorithm. An in-

depth survey and extensive assessment of past research and the current market were performed. 

Studies indicate that each technology has its own advantages and disadvantages, but Bluetooth 

Low Energy is a prospective candidate for an unique indoor positioning system in hospitals or 

stations. First, it is the upgrade of Bluetooth Low Energy compared to the traditional Bluetooth. 

Its operating mechanism means that only installed beacons periodically transmit 

advertisements, and mobile nodes in the scheme conduct passive scanning and do not need to 

respond back to the beacon. It would benefit if the number of mobile targets in a region 

increased considerably. Besides, Bluetooth Low Energy does not involve 10.25 seconds for 

full scanning and communicating like traditional Bluetooth. Processing time then is 

considerably decreased and meets the real-time demand of the contemporary indoor positioning 

system. Another benefit compared to other rivals can be stated as the market accessibility of 

this technology. Bluetooth and Bluetooth enabled equipment, particularly handheld devices, 

are penetrating very deeply into the current market. It enables any application created to be 

able to be applied to the market in a very brief time. This also improves the usability of cross-

platform and cross-devices. In fact, this has been verified in my studies in previous sections. 

The cost also reflects high availability. Devices such as iBeacon and BLE antennas are 

inexpensive and are commonly powered by the battery. In contrast to Wi-Fi, deployment costs 

for BLE technology are much cheaper and less power is consumed. Furthermore, by using 

handheld devices, the localisation scheme can benefit from the available sensors mounted on 

these phones. Sensors such as accelerometer, gyroscope, etc. can play a significant role in 

navigating and predicting locations, particularly in complicated circumstances. Together, 
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Bluetooth and iBeacon meet the various demands of indoor navigation systems, such as 

navigation, which only require a coarser positioning or human/object localisation which 

requires to be very precise. 

The purpose of this study is to develop and propose systems and intelligent indoor positioning 

algorithms using Bluetooth Low Energy. Therefore, experiments were conducted to verify the 

characteristics of Bluetooth in indoor localisation. Through tests, it demonstrates that Bluetooth 

has enough reliability and efficiency to satisfy very high accuracy requirements of my 

developed indoor positioning system. An optimal set-up of topology based on the experiment 

was also proposed. It is a topology consisting of 4 beacons and capable of covering an area of 

around 25m2. It helps maintain signal reliability while reducing deployment costs and energy 

consumption for the entire network.  

However, the vulnerability of the RSSI signal in complicated environments or quickly altering 

objects causes some system issues. We used a suitable filter and appropriate techniques of 

calibration to solve this instability. The system was developed using iBeacon and the proposed 

improved Least Square Estimation algorithms. In general, the system and my algorithms gave 

very positive results with only less than 0.5 m of positioning errors. The test was performed 10 

times and for 90 per cent of the measured time, the system achieved the error of less than 0.5m. 

Maximum error was 0.714 m. In comparison to other system algorithms in which the error 

ranges from 0.5 m to 2.2 m, the potential of this system can be seen. The processing time is 

only about 0.20s and does not increase too much as space is increased. Also, the power 

consumption for each beacon is about 27 microwatts which is relatives low compared to other 

studies. 

A fusion system was also developed and proposed for indoor tracking application. It is a 

combination between the classic PDR and the improved Least Square Estimation. The 

experiment shows that despite the underperform of PDR in the testbed, the system is still able 

to achieve 0.2m average error. The performance is boosted by about 70% compared to classic 

PDR.  
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7.2 Limitation 

The proposed system has shown positive results and has been successfully tested, but there are 

still problems that need to be addressed. In the first place, the major limitation of this work is 

scalability. It can become a concern as the number of users in the region increases. Around that 

time, the server had to manage more users and the amount of RSSI data collected increased 

dramatically. This makes the processing time also increased in proportion to the number of 

users. This issue needed to be addressed and optimised. However, a straightforward solution is 

building an application so that the RSSI data can be processed within the handheld device. Also 

regarding the scalability, although the experiment has shown that when the number of beacons 

increased, the computational time is not greatly increased as the size of the localisation area. 

However, adding more and more beacons and spreading into a very large area can lead to over-

deployment and trigger many waves. Applying big scales also makes maintenance difficult 

because the beacons can be too dense and at the position that is difficult to reach. At the same 

time, mixing between old and new beacons can also prompt system efficiency degradation and 

require more calibration effort. Secondly, in real conditions, the environment can be changed 

by subjective or objective factors.  Beacons may be shifted or damaged, or obstacles may move 

too often. This makes it possible to mislead the necessary manual calibration at the start and 

cause mistakes in predicting target locations. This requires manual re-calibration if there are 

too many changes to the area or environment. Third, the iLSE algorithm alone does not perform 

well in real-time tracking and updating the user's location. This, therefore, needs to be 

integrated with other algorithms in order to be able to monitor the user's location in real-time. 

A  solution to this problem is to use the PDR as stated in Chapter 6. Promising findings were 

presented. However, further design of the PDR fuse with iLSE in both hardware and software 

is needed for practical use. Fourth, the suggested system uses beacon from the same 

manufacturer. It is ideal, but it is difficult to implement broadly in practice. However, due to 

the small budget for studies, this has not been investigated.  
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7.3 Future work 

The project and objectives were concluded as expected. However, there are improvements can 

be established if more time is allowed to overcome the limitation. 

The first is to extend the experiment with various types of beacons, such as Google's Eddystone, 

AltBeacon's Radius Network, or Tecno-World's GeoBeacon. Each beacon is provided with 

different communication protocols by different manufacturers. Cooperating with multiple 

beacon manufacturers would help to improve the efficiency of the system and to qualify for 

the market. Not only this, research can also be carried out in a range of different environments 

to further improve and evaluate. 

Second, it would be easy and useful to introduce a complete software solution on the 

smartphone for both Android, iOS or any other popular operating system. Data can be stored 

locally on devices, making the system work better when scaled up. Third, it is important to 

tackle the problem of scalability and reduce the time complexity of multiple users. This can be 

overcome by integrating it with other technologies by using other methods, such as ToA and 

AoA. Applying ToA and AoA techniques also possible to open the system to a new route: a 

pre-deployed beacon is not required. It can be achieved by combining the available sensors on 

the mobile device and integrating a timer into the beacon. The concept of this scheme is to 

integrate the transceiver straight into the mobile device. By collecting data on ToA and AoA, 

the system can predict the distance and position of a mobile relative to other existing obstacles. 

It is beneficial if the system used in the building is not prepared in advance. 

Fourth, exploring the use of machine learning and deep learning in the system is another 

direction. The system can thus adapt to the evolving environment such as shifting obstacles. 

Adaptability to failure is also enhanced at the same time. Besides, ML / DL can assist the 

system in reconstructing the map of the region as a map grid or as a 3D map by constructing 

an appropriate database. Fifth, an appropriate PDR approach or similar technique can be 

developed in order to exploit the best benefit from the fusion system. Finally, enhancing 

topology and scalability, as well as hybrid technology, will make the system more comfortable 

and more efficient to adopt and use in the future. From the industry perspective, the system 

principle can also be used by offering friendlier and rich data output such as picture or audio.  
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On the other hand, we would recommend a more comprehensive approach to this research after 

having had this experience. We recommend that we create a virtual simulation environment, 

for example, using the Robotics Operating System (ROS) platform. In this environment, we 

can place different beacons from different manufacturers in different circumstances, including 

height, noise, orientation, topology, speed, number of beacons etc. Other sensors like the 

accelerometer, the gyroscope can also be integrated easily. Beacons’ model and its library can 

be obtained by collaborating with the manufacturers for sample raw data. This platform allows 

for convenient, cost-effective and time-effective testing of different beacon installations and 

the impact of different conditions compared with actual tests. In addition, different algorithms 

can be tested and optimised in this simulated environment to give an understanding of their 

performance. Having these results and understanding will help to experiment with real beacons 

and sensors in a much more efficient manner. 
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Appendix A: improve_LSE.m 

improve_LSE(X,Y,R,Xi,Yi) 

function [delta_x,delta_y] = 

improve_LSE(initial_pos,distances,known_pos) 

i=1; 

temp_pos(i,:) = initial_pos ; 

temp_error = 0 ; 

for j = 1 : size(known_pos,1) 

temp_error = temp_error + abs((known_pos(j,1) - 

temp_pos(i,1))^2 + (known_pos(j,2) - temp_pos(i,2))^2 - 

distances(j)^2) ; 

end 

estimated_error = temp_error ; 

while norm(estimated_error) > 1e-2  

for j = 1 : size(known_references,1)  

m_matrix(j,:) = -2*(known_pos(j,:) - temp_pos(i,:)) ;  

f(j) = (known_pos(j,1) - temp_pos(i,1))^2 + 

(known_pos(j,2) - temp_pos(i,2))^2 - distances(j)^2 ; 

end 

estimated_error = -inv(m_matrix' * m_matrix) * 

(m_matrix') * f' ; 

temp_pos(i+1,:) = temp_pos(i,:) + estimated_error' ; 

i = i + 1; 

end 

delta_x = temp_pos(i,1) ; 

delta_y = temp_pos(i,2) ; 

Z 


