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Abstract 34 

Objective: To investigate the impact of physical efforts performed in the period preceding 35 
activity as a potential risk factor of muscle injury during match-play within a sample of 36 
professional soccer players.  37 

Design: Observational cohort study. 38 

Methods: Match load (running [>14.4-19.8 km/h], high-speed running [>19.8 km/h to 25.2 39 
km/h], sprinting [> 25.2 km/], leading and explosive sprint type) averaged in 1-minute and 5-40 
minute periods prior to an event or non event for 29 professional outfield soccer players. 41 
Conditional logistic and Poisson regression models estimated the risk of injury for a 2 within-42 
subject standard deviation in match load or 1-action increment in the number of sprinting 43 

activities, respectively. Associations were deemed beneficial or harmful based on non-overlap 44 
of the 95% confidence intervals against thresholds of 0.90 and 1.11, respectively. 45 

Results: An increment in sprinting distance [+ 2-SDs = 11 meters] covered over a 1-minute 46 
period (odds ratio [OR]: 1.22, 95%CI, 1.12 to 1.33) increased the odds of muscle injury. 47 

Conclusions: Our study provides novel exploratory evidence that the volume of sprinting 48 

during competitive soccer match-play has a harmful association with muscle injury occurrence. 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 



Introduction 67 

In elite soccer, lower injury incidence and higher match availability is positively associated 68 
with points gained per league match.1 Strategies focused on enhancing playing availability are 69 
therefore fundamental to the work of players' support teams; routine modifications in training 70 
load help prepare players for the demands of competition as well as for reducing susceptibility 71 

to non-functional over-reaching, injury, and illness.2 Increasingly, attention has focused on the 72 
influence of training load as a modifiable injury risk factor. Players can be at increased injury 73 
risk when exposed to high (i.e. “spikes”) absolute (1-3 week) training loads, large week-to-74 
week changes in load,2 and greater training times spent above 85% of maximal heart rate.3 75 
Paradoxically, players are better able to tolerate higher loads and high-intensity activities with 76 

reduced injury risk following exposure to appropriate chronic (e.g. 3-4 week) training loads 77 
prior to performing these high-intensity activities.4 Thus, completion of high-intensity activity 78 
as part of correctly prescribed training load, culminating in enhanced aerobic fitness may serve 79 

to reduce the injury risk associated with high-intensity activity.4 80 

While useful for understanding associations between training load and injury risk, the 81 
aforementioned studies did not isolate match loads which represent the highest load 82 
experienced by players during the microcycle. Predictably, overall injury incidence is greater 83 

in matches (27.5 injuries per 1000 h) than in training (4.1 injuries per 1000 h),5 with muscle 84 

injury incidence also greater during matches than training and influenced by fixture 85 
congestion.6 Of further relevance to help our understanding of soccer match injuries and in turn 86 
the support provided to players, is that precise descriptions of the inciting event are needed to 87 

help understand injury cause.7 In the context of soccer match-play, increases in critical 88 
incidents and injury risk observed during the early and latter stages of match-play were 89 

postulated to reflect both the higher exercise intensities when players are fresh and lower 90 
intensities when players experience fatigue, although player activity was not recorded.8 In other 91 

studies, movement intensities were recorded subjectively but no comprehensive data were 92 
provided on running characteristics (e.g., speed) preceding injury.9, 10 Using match data 93 

recorded via a computerised motion-analysis system, high-speed running and recovery 94 
between high-speed bouts was generally higher and lower in the 5-minute period immediately 95 
preceding injury, respectively.11 However, this investigation did not examine the association 96 

between physical match load and injury occurrence. Therefore, further research on the role of 97 
prior activity on match injury occurrence is needed.11 Using motion analysis data derived from 98 
an entire professional soccer league and adopting a novel design analysis approach to provide 99 

realistic associations,12 we aimed to examine the influence of players’ physical efforts during 100 
1-minute and 5-minute periods immediately preceding a muscle injury sustained during match-101 

play.  102 

Methods 103 

Study participants were 29 outfield professional soccer players competing in the Qatar Stars 104 
League (2013-2014 and 2014-2015). Muscle injuries sustained during 276 competitive 105 
matches were diagnosed and documented by the team’s physician. Performance data were 106 

collected as a condition of employment in which player performance is routinely measured 107 
during match-play.13 The Aspire Zone Research Committee and the Anti-Doping Laboratory 108 

Institutional Review Board, Qatar (protocol number: E2017000252) granted ethics approval.  109 

The methodologies and definitions of injury used in the present study closely follow those of 110 
a previous consensus statement.14 Information including the type, location, and diagnosis of 111 
injury, alongside the occasion (training/match) and minute of the injury were recorded by the 112 



team physician on a injury card. Descriptive information on the final action at the time the 113 

injury was sustained and whether contact had occurred between players was recorded. Each 114 
match injury incident was cross-referenced to determine whether the match had been recorded 115 
and analysed by the multiple-camera player tracking system (Prozone®, Leeds, England) used 116 
by the clubs to evaluate physical performance in competition as described previously.15 This 117 

system has previously been shown to be a valid and reliable system for measuring match 118 
activity in soccer.15 Where information from the system was available, physical performance 119 
data were used to measure the players’ efforts over 1-minute and 5-minute periods leading up 120 
to the injury. 121 

To investigate the effects of physical efforts prior to injury, distances covered in the following 122 

activity categories were measured over the 1-minute and 5-minute period preceding the time 123 
of injury: walking (<7.2 km/h), jogging (>7.2-14.4 km/h), running (>14.4-19.8 km/h), high-124 
speed running distance (>19.8 km/h to 25.2 km/h), and sprinting distance (> 25.2 km/h).15 125 

Further analysis of sprint activity (> 25.2 km/h) included the total number of leading and 126 
explosive sprints undertaken. An explosive sprint (i.e., rapid acceleration), was defined as the 127 
attainment of sprint speed from either walking, jogging or running with time spent in the high-128 
speed running category less than 0.5 seconds.16 A leading sprint (i.e., gradual acceleration),  129 

was defined as the attainment of sprint speed from either walking, jogging or running with time 130 
spent in the high-speed running category for a minimum of 0.5 seconds.16 To determine 131 
whether performance over these 1-minute and 5-minute periods influenced muscle injury 132 
occurrence, data across the completed matches were used in an attempt to establish a normative 133 

physical performance profile for each player.11 For this profile, the total high-intensity distance 134 
(>14.4 km/h) covered was calculated for entire games. For example, to calculate the distance 135 

covered over a 5-minute period, the total high-intensity distance covered was divided by the 136 
match duration expressed in minutes and then multiplied by 5. This figure was considered to 137 
be the player’s habitual match-play high-intensity activity level over a 5-minute period. The 138 

physical performance data used for the normative profile were based on information during the 139 

same season in which injury occurred. The normative profile was subsequently compared to 140 
physical efforts over the 5-minute period prior to injury. The characteristics of physical efforts 141 
undertaken during the final 5-seconds preceding each injury occurance were also investigated. 142 

Where the exact time of injury was not discernible from video observation, the injury was not 143 
included in the analysis (N=4).   144 

Distances were averaged into 1-minute and 5-minute periods for the three primary exposures 145 

(running distance, high-speed running distance and sprint distance). These data were stratified 146 
into (i) the 1-minute and 5-minute time periods immediately preceding an in-match muscle 147 

injury, (ii) the 1-minute and 5-minute periods for the same players as in (i) but for all other 148 
within-match time periods (those periods that did not immediately precede the injury), and (iii) 149 
normative data of 1-minute and 5-minute data bins where an injury did not occur. 150 

Conditional fixed-effects logistic regression analyses estimated the odds of muscle injury 151 
occurrence (0, no; 1, yes) based on the comparison of players’ pre-injury match load data versus 152 

normative data in which an injury did not occur using the survival package. This procedure is 153 
conceptually different from the conventional logistic regression modelling, whereby the 154 

calculation of the conditional likelihood involved the analysis of load data with player identity 155 
as a cluster factor in the model to account for the within-subject association between the 156 
examined observations.17 The association between distances covered at running, high-speed 157 
running, or sprint intensities with injury occurrence was examined for the first event only. Odds 158 
ratios (OR) to determine the association between physical match load and muscle injury 159 



occurrence were derived for a 2-within-player SD increment in each primary exposure variable, 160 

representing the effect of a typically high versus a typically low value of the exposure.18 A 161 
within-player SD of the exposure was calculated as the square root of the residual mean 162 
square.19 Separate conditional Poisson regression models estimated rate ratios (RR) describing 163 
the association of a 1-action increment in leading and explosive sprint activities, entered as 164 

primary exposure variables in the model, and muscle injury occurrence.20 In the absence of an 165 
established anchor to inform on the smallest meaningful association between physical match 166 
load and muscle injury, thresholds of 0.90 and 1.11 represented beneficial and harmful 167 
associations, respectively.18 Retrospective design analyses assessed Type M error rates and, 168 
corrected the point estimates and respective sampling uncertainty for the observed effects.21 169 

This approach provides an objective quantification of the Type M error indicating the degree 170 
of overestimation of an observed effect estimate relative to the magnitude of the true underlying 171 
population effect given the data.21 Corrected ORs were obtained by dividing the logarithm of 172 
the estimated OR by the respective magnitude of exaggeration or Type M error relative to a 173 

targeted increase or reduction in the odds of muscle injury of lnOR = ± |0.105360515657826|. 174 
Associations were deemed beneficial or harmful based on non-overlap of the respective 95% 175 

confidence intervals for the estimated ratio statistic with the aforementioned thresholds (i.e., 176 
0.90 and 1.11). Overlap of the confidence interval with these thresholds represented a trivial 177 
association. Outcome statistics are reported as point estimates and 95% confidence intervals 178 
(CI). Statistical analyses were performed using R (version 3.6.1, R Foundation for Statistical 179 

Computing, Vienna, Austria). 180 

Results 181 

A complete overview of the number and type of muscle injuries examined in the study is 182 
illustrated in Figure 1. Twenty injuries occurred in the second half of which eight events during 183 
the final 15 minutes.  184 

Analysis of the 1-minute data periods revealed a harmful association only between sprinting 185 
distance and muscle injury (Figure 2a). Type M error rates for the observed point estimates for 186 

running (7.20), high-speed running (6.29), and sprinting distances (3.65) indicated the original 187 
injury odds to be overestimated by approximately 4-to-7 times. Conditional Poisson regression 188 

analyses revealed a trivial association between a 1-action increment in the number of leading 189 
(RR = 1.16; 95%CI, 1.06 to 1.26) and explosive (RR = 1.09; 95%CI, 1.00 to 1.19) sprints 190 
undertaken by a player 1-minute prior to the event. 191 

For the analysis of the 5-minute data periods, running, high-speed running, and sprinting 192 

distance were all trivially associated with muscle injury occurrence (Figure 2b). The 193 
corresponding Type M error rates were 8.57, 8.87, and 7.10 suggesting the original injury 194 
effects to be exaggerated by approximately 7-to-8 times. A 1-action increment in the number 195 

of leading (RR = 1.01; 95%CI, 0.92 to 1.10) or explosive (RR = 0.99; 95%CI, 0.91 to 1.08) 196 
sprints undertaken by a player 5-minute prior to an injury resulted in trivial associations. 197 
Additional sensitivity analyses comparing the 1-minute or 5-minute periods immediately 198 
preceding an in-match muscle injury with the 1-minute and 5-minute periods within the same 199 

match time periods or the available normative data in which an injury did not occur revealed 200 
our results to be unaffected. 201 

 202 

 203 



Discussion 204 

Competition load is deemed a critical element contributing to greater muscle injury risk,2 yet 205 
our understanding of the activity preceding injury during professional soccer match-play is not 206 
well understood. Therefore, we investigated the influence of player match physical activity 207 
during time periods immediately prior to muscle injury. Of the match load variables commonly 208 

investigated, we found only match sprinting to be harmfully associated with muscle injury 209 
occurrence in professional soccer players.  210 

Match injuries have previously been reported to be preceded by players moving at relatively 211 
moderate speeds during the prior 5-minute period.11 In the present study though, the 212 
associations between a 2 within-subject SD increment in sprinting, high-speed running or 213 
running distances and muscle injury were all trivial. However, when using the 1-minute period 214 

prior to injury, a typically high increment sprinting distance had a harmful association. As short 215 

sprints (≤10 m) represent the dominant type of sprint activity during elite soccer match-play,15 216 
the risk associated with the increment in pre-injury 1-minute sprinting distance is likely 217 

equivalent to 1-2 sprints. Taken together, while the use of 5-minute periods is a widely adopted 218 
match analysis criterion,22 our findings highlight the importance of quantifying and examining 219 
physical match loads in shorter time periods.  220 

In the context of load-injury research, our study provides novel applied and methodological 221 
insights. First, the present investigation advances current knowledge regarding  pre-injury 222 

running activities. An early study examining players’ exposure to injury risk reported 223 
contesting possession as a determining factor for experiencing injury,8 yet subsequent work 224 
showed most injuries occurred during breakdown attacks and tackling duels.10 However, no 225 

exact detail about pre-injury running activities was provided.10 More recently, Carling et al.,11 226 
reported that eight of ten final running actions immediately preceding injury involved a high-227 

intensity running effort. In the present study the same analysis was not possible due to the 228 
nature of the data available. Therefore, it remains to be determined whether the activity 229 

immediately prior or the cumulative (i.e., 1-minute) activity  serves as the likely risk factor in 230 
these instances. Second, the design analyses revealed studies in this field were conducted with 231 

inadequate sample sizes and incorrect statistical analyses. Furthermore, when using advances 232 
in methodological procedures established on pseudo-R2 statistics23 and informed by existing 233 
studies6 a minimum sample size of 369 players would be needed in our 1-minute sprinting 234 
distance model (Cox-Snell pseudo-R2 = 0.362). Taken together, in this field of research, the 235 

use of design analysis demonstrated how associations from small-scale studies are anticipated 236 
to be exaggerated in future similar investigations of equal size leading to erroneous and 237 
misleading conclusions.12, 24 238 

Published investigations on load and injury have also failed to demonstrate how any estimated 239 
association could inform the player management and training process meaningfully in applied 240 

terms.25 In practice, the presence of any association indicating the higher the load, the higher 241 
the in-match injury risk would suggest coaches and practitioners pay particular attention to 242 
prepare players adequately to cope with the demands characterising soccer match-play. In 243 

general, physical demands are assumed to be greater in competition than during training.2 244 
Accordingly, repeated-sprint training has the potential to elicit clear beneficial effect for the 245 

development of speed, explosive leg power, and high-intensity running performance.26 246 
Therefore, adoption of training strategies impacting on physical determinants of soccer 247 
performance, with a particular reference to a player’s ability to repeat and tolerate very high-248 
intensity efforts during match-play, would appear relevant to the context of our study.26 249 



Our study is not without its limitations. Given the underlying nature of our research question, 250 

our study analyses might not have accounted for potentially relevant unmeasured intrinsic and 251 
extrinsic factors of injury risk. Specifically, with a larger sample size, inclusion of other 252 
independent predictors could have potentially mitigated the extent of the main effects of the 253 
selected primary exposures in a multivariable-adjusted model. For example, even though 254 

players’ in-match load distances for non-event outcome were treated as control data in our 255 
investigation, a lack of information about training load over the examined period might 256 
represent a limitation. Likewise, as observed in other team-sport contexts, cumulative match 257 
involvement could have been deemed an additional variable relevant to our study.27 The 258 
analysis of in-match loads expressed in terms of distances covered in predefined speed zones 259 

may also represent another limitation of our study. In practical terms, the use of arbitrary speed 260 
thresholds likely fails to provide coaches and sports scientists with an accurate quantification 261 
of the relative physical demands during a soccer match.28 As our data were collected across an 262 
entire professional league, individualisation of speeds zones was not, however, logistically 263 

possible. Also, information regarding prior clinical history to the selected observational period 264 
for players involved in this study were not available. Finally, it is necessary to point out that 265 
ratio outcome statistics substantiating information about odds or hazards of event provide 266 

clinicians and practitioners with estimates regarding the average effect describing the 267 
probability of clinical outcome, but this may not necessarily translate to meaningful impact in 268 
the real-world. We, therefore, maintain that caution is necessary to generalise our findings to 269 
other populations of professional soccer players or to consider the estimated odds of injury as 270 

real effects since our results provided small-scale empirical evidence which ultimately rendered 271 
the present investigation exploratory in nature. 272 

Conclusions 273 

Our study provides novel evidence that the volume of sprinting during competitive soccer 274 

match-play has a harmful association with muscle injury occurrence. Therefore, we 275 

recommend careful attention be paid to preparing players to sustain and repeat sprint type 276 
activity during match-play. Collectively, our findings provide an important contribution that 277 

may be valuable to inform decisions of coaches and practitioners relating to the optimal player 278 
management throughout a season. 279 

 280 

Practical implications 281 

 The volume of match sprinting activity is a risk factor of muscle injury occurrence in 282 

elite soccer players. 283 

 There is greater sensitivity in quantifying the relationship between physical 284 
performance and assessing injury risk using shorter (e.g., 1-minute) time periods than 285 

those traditionally used (e.g., 5-minute). 286 

 Our exploratory findings place emphasis on the physical preparation of players to 287 
withstand high isolated and repeated sprint activities during competitive match-play. 288 

 289 

 290 
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Figures 380 

 381 

 382 

Figure 1. Flowchart illustrating the number and type of muscle injury examined in the study. 383 



 384 

Figure 2. Outcome statistics for the association between 1-minute match load (a), 5-minute 385 
match load (b), and muscle injury occurrence. The grey shaded area identifies the bounds for a 386 

small reduction (OR =0.9) or increase (OR = 1.11) in the risk of injury, respectively. 387 


