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ABSTRACT 29 

We examined the influence of graded cold-water immersion (CWI) on global and regional 30 

quadriceps muscle perfusion using positron emission tomography (PET) and [15O]H2O. In 31 

thirty healthy males (33±8 yrs; 81±10 kg; 184±5 cm; percentage body fat: 13±5%; V̇O2peak: 32 

47±8 mL·kg-1·min-1) quadriceps perfusion, thigh and calf cutaneous vascular conductance 33 

(CVC), intestinal, muscle and local skin temperatures, thermal comfort, mean arterial pressure 34 

and heart rate were assessed prior to and following 10-min of CWI at 8°C, 15°C or 22°C. 35 

Global quadriceps perfusion did not change beyond a clinically relevant threshold (0.75 36 

mL∙100g∙min-1) in any condition, and was similar between conditions [range of the differences 37 

(95% confidence interval [CI]); 0.1 mL∙100g∙min-1 (-0.9 to 1.2 mL∙100g∙min-1) to 0.9 38 

mL∙100g∙min-1 (-0.2 to 1.9 mL∙100g∙min-1)]. Muscle perfusion was greater in vastus 39 

intermedius (VI) compared with vastus lateralis (VL) (2.2 mL∙100g∙min-1; 95%CI 1.5 to 3.0 40 

mL∙100g∙min-1) and rectus femoris (RF) (2.2 mL∙100g∙min-1; 1.4 to 2.9 mL∙100g∙min-1).  A 41 

clinically relevant increase in VI muscle perfusion after immersion at 8°C and a decrease in 42 

RF muscle perfusion at 15°C were observed. A clinically relevant increase in perfusion was 43 

observed in the VI in 8°C compared with 22°C water (2.3 mL∙100g∙min-1; 1.1 to 3.5 44 

mL∙100g∙min-1). There were no clinically relevant between-condition differences in thigh CVC. 45 

Our findings suggest that CWI (8-22°C) does not reduce global quadriceps muscle perfusion 46 

to a clinically relevant extent, however, colder-water (8°C) increases deep muscle perfusion 47 

and reduces (15°C) superficial muscle (RF) perfusion in the quadriceps muscle. 48 

 49 

 50 

 51 

 52 



NEW & NOTEWORTHY  53 

Using positron emission tomography, we report for the first time, muscle perfusion 54 

heterogeneity in the quadriceps femoris in response to different degrees of cold-water 55 

immersion (CWI). Noxious CWI temperatures (8°C) increases perfusion in the deep quadriceps 56 

muscle whilst superficial quadriceps muscle perfusion is reduced in cooler (15°C) water. 57 

Therefore, these data have important implications for the selection of CWI approaches used in 58 

the treatment of soft tissue injury, while also increasing our understanding of the potential 59 

mechanisms underpinning CWI.  60 

 61 

INTRODUCTION 62 

The application of cryotherapy (i.e., cold therapy) is widely used as a recovery modality 63 

in the treatment of soft tissue injuries (6, 18, 25). The proposed benefits of acute cryotherapy 64 

(e.g., cold-water immersion or extreme air-cooling) exposure are related to reductions in 65 

body/local temperatures, muscle microvascular blood flow, oedema, perceived soreness and 66 

possibly muscle damage (18). Therefore, understanding the change in muscle perfusion in 67 

response to cryotherapy is key in providing appropriate advice for effective intervention 68 

strategies. 69 

The current theory that cooling causes reductions in lower limb muscle blood flow is 70 

based on studies employing techniques that only allow the inference of hemodynamic, e.g., 71 

Doppler ultrasound alongside simultaneous cutaneous blood flow measures (14, 27, 28) or 72 

volume changes within the limb (9, 12, 19, 43). Positron emission tomography (PET) alongside 73 

oxygen-15 water radiotracer [15O]H2O kinetics, provides a unique tool for the direct 74 

measurement of skeletal muscle perfusion (35). With knowledge of [15O]H2O kinetics in the 75 

arterial blood and specific tissues, it is possible to provide quantitative perfusion measurements 76 



in the muscles of interest (20, 36). PET and [15O]H2O has been employed previously to 77 

determine muscle perfusion responses of the lower limb to local and whole body heating (16), 78 

and thereby provides an excellent model to determine muscle perfusion changes during cooling.  79 

Another key issue not yet considered when examining the impact of cooling on limb 80 

perfusion, is that individual skeletal muscles respond to cold differently (8, 42). For example, 81 

glucose metabolism, muscle perfusion and oxygen consumption have been shown to increase, 82 

particularly in deeper centrally located cervico-upper thoracic skeletal muscles compared to 83 

superficial muscles, as a response to cold-induced shivering thermogenesis (8, 42). This deep 84 

muscle activation, which cannot be investigated by surface electromyography (EMG), has been 85 

interpreted as a physiological response to maintain core temperature as a result of cold exposure 86 

(15). However, to date, the heterogeneity in the muscle perfusion response to cooling has only 87 

been documented in the upper body muscles as part of brown fat activation studies (42). While 88 

it has been shown that perfusion is spatially and heterogeneously distributed in the quadriceps 89 

femoris muscle at rest and during exercise (24), it remains unclear how cooling may influence 90 

the directional change in global and regional muscle perfusion in the lower body. Therefore, 91 

our aim was to examine the effects of lower body cooling with 8°C, 15°C and 22°C water on 92 

global and regional quadriceps muscle perfusion, using the PET-radiowater technique. We 93 

hypothesized that colder water would elicit the greatest reductions in global quadriceps muscle 94 

perfusion but would increase muscle perfusion within the deep lying quadriceps muscles. 95 

 96 

 97 

 98 
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 100 



METHODS 101 

Ethical Approval 102 

All procedures performed in the study were in accordance with the latest revision of the 103 

declaration of Helsinki, and was approved by the Ethical Committee of the Hospital District of 104 

South-Western Finland and National Agency for Medicines. The purpose, potential risks and 105 

nature of the study were fully explained to each participant before their written informed 106 

consent to participate was given. 107 

 108 

Participants  109 

Thirty recreationally active healthy males (age: 33 ± 8 yrs; body mass: 80.9 ± 9.5 kg; 110 

height: 183.9 ± 4.7 cm; percentage body fat: 12.9 ± 5.3%; V̇O2peak: 47.4 ± 8.1 mL·kg-1·min-1; 111 

peak power output on cycle ergometer (PPO): 343 ± 45 W; means ± standard deviation) 112 

volunteered to participate in this study. The participants were asked to abstain from alcohol 113 

and caffeine containing beverages for at least 24 h before the commencement of the 114 

experiments and asked to avoid strenuous exercise within 48 h of commencing the 115 

experimental protocol. Participants had no history of cardiovascular or neurological disease, or 116 

skeletal muscle abnormality, and were not currently taking any pharmacological medication. 117 

Given the exploratory nature of our study, a formal sample size estimation is not presented. 118 

Our sample of 10 participants per condition was chosen to be representative of the usual 119 

between-subject experiments in this domain (48).   120 

 121 

 122 

 123 



Study Design 124 

Participants were randomly allocated to one of three conditions: 8°C water immersion, 125 

15°C water immersion, or 22°C water immersion (9, 43) using covariate adaptive 126 

randomization (40), after their first visit to the hospital. A within-subject crossover design was 127 

not permitted due to ethical restrictions concerning radioactive exposure limits and invasive 128 

arterial cannulation. The groups (n = 10) were matched for potentially confounding covariates 129 

which could influence changes in muscle perfusion, namely aerobic fitness (V̇O2peak) and 130 

anthropometric indices (height, body mass, body surface area, muscle mass and thigh skinfold 131 

thickness). 132 

 133 

Experimental Protocol  134 

Each participant attended the hospital on two separate occasions. On the first visit, the 135 

participants were familiarised with the experimental protocol, had anthropometric 136 

measurements taken, and completed a peak oxygen uptake (V̇O2peak) test. The participant’s 137 

height was measured using a stadiometer (KaWe, Asperg, Germany) and body mass was 138 

obtained using electronic scales (Seca 703, Seca, Hamburg, Germany). Limb girths 139 

(circumferences) were then measured using a tape measure (Seca 201, Seca, Hamburg, 140 

Germany) placed around the participant’s right mid-thigh, forearm and calf at pre-identified 141 

landmarks (38). These measurements enabled calculation of each participant’s estimated 142 

muscle mass (26). Skinfold thickness measures using calipers (HSK BI; Baty International, 143 

West Sussex, U.K.) were then taken at seven body sites (21) to permit calculation of body fat 144 

percentage (%Bfat) (37). Following anthropometric assessments, each participant completed a 145 

maximal incremental cycling protocol on a cycle ergometer (Tunturi Ergometer E85, Tunturi, 146 

Finland) while simultaneous breath by breath (V̇O2) measurements were recorded (Oxycon 147 



Mobile, Jaeger, Germany). The cycling protocol commenced at 75 W and was increased 25 W 148 

every 2 min until volitional exhaustion was reached. Peak Power Output (PPO) was derived as 149 

the highest power output attained at this point. V̇O2peak (mL·kg-1·min-1) was recorded as the 150 

highest 30 s average recorded before volitional exhaustion.  151 

On the second visit, each participant arrived at the hospital (0700-0800 h) in a fasted 152 

state and after having consumed 5 mL·kg bodyweight of water two hours prior to their arrival 153 

to help maintain hydration status (2). Each participant ingested a disposable temperature sensor 154 

pill (CorTemp, Human Technologies Inc., Florida, USA) on the evening (before sleeping) prior 155 

to arrival for experimental testing. The participant changed into a pair of shorts, and was fitted 156 

with a chest heart rate telemetry belt (Polar M400, Kempele, Finland) before resting in a semi-157 

reclined position while laser Doppler probes and skin temperature thermistors were attached to 158 

the body. An anaesthesiologist then cannulated the radial artery under local anaesthesia to 159 

permit tracer administration and blood sampling during PET measurements. After resting semi-160 

reclined for ≥ 20 min, to ensure physiological status was stabilised, baseline thermometry 161 

measures were taken. The skin thermistors were then unattached (laser Doppler probes 162 

remained affixed to skin), and the participant was taken by wheelchair to another room to 163 

undergo simultaneous PET/CT and laser Doppler measures. The participant was then immersed 164 

in a semi-reclined position up to the navel into an inflatable water bath (iSprint, iCool, 165 

Queensland, Australia) for a period of 10 min. The water temperature was pre-set to one of the 166 

three temperatures (8.7±0.3°C, 15.1±0.3°C, 22.0±0.46°C) using a heating/chiller water system 167 

(Boyu CW Series, Guangdong, China) dependent on the participant’s group allocation. The 168 

water temperature was continuously monitored using a skin thermistor (MHF-18050-A, Ellab, 169 

Rodovre, Denmark) to validate the water temperature. Upon completion of the immersion 170 

protocol, the participant’s legs were dabbed dry (as not to stimulate blood flow) to enable the 171 

skin thermistors to be re-attached before being returned to the PET/CT room (via wheelchair) 172 



to undergo PET and laser Doppler measures (commenced 10 min post-immersion). Our 173 

previous work has shown that CWI-induced (8°C & 22°C) decreases in deep muscle 174 

temperature, limb and cutaneous blood flows are further exacerbated over a 30 min recovery 175 

period following immersion under normal ambient temperatures (14). The 10 min period 176 

following CWI and the final PET and laser Doppler measures would therefore not have 177 

minimised the impact of CWI on these hemodynamic measures. 178 

Heart rate, intestinal, skin and muscle temperatures were measured at baseline and after 179 

the post immersion PET/CT scan. Thigh and calf cutaneous blood flow and mean arterial 180 

pressure were measured during each PET/CT scan. Perceived thermal comfort, rated using a 181 

9-point Likert scale (0 = unbearably cold to 9 = very hot; (49), was recorded at baseline and 182 

during immersion. 183 

 184 

Thermometry  185 

Upon arrival at the hospital, the ingestible core temperature sensor pill was immediately 186 

checked for location in the gastrointestinal tract by sipping 100 ml of cold water. If the 187 

temperature varied by <0.1°C, it was deemed that the ingestible senor pill was sufficiently sited 188 

down the gastrointestinal tract to enable commencement of the experimental protocol (5). The 189 

sensor pill was remotely connected to a data logger worn around the waist of each participant 190 

during resting PET/CT measures and held next to the participant (umbilical level) during 191 

immersion. Local skin temperature was measured at four sites using skin thermistors (MHF-192 

18050-A, Ellab, Rodovre, Denmark) affixed to the chest, forearm, thigh and calf using tape 193 

(Medipore, 3M). Mean skin temperature was subsequently calculated as a weighted average of 194 

these four measurement sites (34). Thigh muscle temperature was measured via insertion of a 195 

temperature thermistor (13050; Ellab, Rodovre, Denmark). The area of insertion was marked 196 



over the muscle belly of the vastus lateralis by measuring half the length between the head of 197 

the femur and the lateral condyle. The depth of probe insertion was then determined by 198 

measuring skinfold thickness with calipers (HSK BI; Baty International, West Sussex, U.K.) 199 

and dividing by two to determine the subcutaneous fat layer. The probe was inserted to a depth 200 

of 3 cm, plus one-half of the skinfold measurement, for the determination of deep (3 cm) muscle 201 

temperature (11). The thermistor was then withdrawn at 1 cm decrements for the determination 202 

of muscle temperature at 2 cm and 1 cm below the subcutaneous layer. Muscle and skin 203 

temperature were recorded using an electronic measuring system (CTF-9004, Ellab, Rodovre, 204 

Denmark). 205 

 206 

Blood flow measurements and analysis  207 

Radiowater positron emitting tracer [15O]H2O was produced using a Cyclone 3 208 

cyclotron (IBA Molecular, Belgium) and a PET/CT scanner (STE General Electric Medical 209 

systems, Milwaukee, USA) was used in three dimensional (3D) mode for image acquisition to 210 

measure muscle perfusion with [15O]H2O. A dynamic scan (6 min) was performed 20 seconds 211 

following an intravenous injection of ~455 MBq of [15O]H2O with dynamic scanning images 212 

performed in the following frames: 6x5 seconds, 12x10 seconds, 7x30 seconds and 12x10 213 

seconds. 214 

Input function was obtained from arterial blood, which was continuously withdrawn 215 

using a pump during scanning (5 ml·min-1). Radioactivity concentration in blood was measured 216 

using a two-channel online detector system (Scanditronix, Uppsala, Sweden), cross-calibrated 217 

with an automatic gamma counter (Wizard 1480 3”, Wallac, Turku, Finland) and the PET 218 

scanner. Arterial function was pre-processed with a delay correction. Muscle perfusion was 219 

subsequently measured using the 1-tissue compartment model. Data analysis were performed 220 



using in-house developed programs (Carimas software, http://www.turkupetcentre.fi/carimas). 221 

Muscle perfusion was determined in a blinded fashion by the same individual for the specific 222 

regions of the right quadriceps muscle group, namely the rectus femoris (RF), vastus lateralis 223 

(VL), vastus intermedius (VI) and vastus medialis (VM; Figure 1). Blood pressure and MAP 224 

were recorded using a blood pressure monitor (Apteq AE701f, APTEQ, Finland) during the 225 

final 1 min of each PET scan.  226 

Red blood cell flux was used as an index of skin blood flow using laser Doppler 227 

flowmetry (Periflux System 5001; Perimed Instruments, Jarfalla, Sweden). An integrated laser 228 

Doppler probe (Probe 455; Perimed, Suffolk, U.K) was positioned on the right anterior thigh 229 

halfway between the inguinal line and the patella, and on the calf in the region of the largest 230 

circumference. The probes remained in situ on the skin throughout the testing period. 231 

Cutaneous vascular conductance (CVC) was calculated as the ratio of laser Doppler flux to 232 

MAP. The data were transformed with natural logarithm using %CVC baseline and post-233 

immersion data and expressed as percentage change from baseline values. 234 

 235 

Statistical Analysis  236 

We employed an ANCOVA model with the change score (post immersion minus 237 

baseline) as the dependent variable and baseline value as the covariate to control for any 238 

between-group imbalances (44). The least significant difference (LSD) test was used for post-239 

hoc pairwise comparisons of the fixed effects. This ANCOVA model was used to examine the 240 

fixed effect of CWI Condition (8°C, 15°C, 22°C) under resting conditions on global muscle 241 

perfusion and skin blood flow (i.e., our primary outcomes measures), MAP, heart rate, 242 

intestinal temperature, mean and thigh skin temperature, muscle temperature, and thermal 243 

comfort (secondary outcomes measures). Following this, we employed an ANCOVA model, 244 



again with the change score as the dependent variable and baseline as a covariate, and examined 245 

the fixed effect of CWI Condition (8°C, 15°C, 22°C) on muscle perfusion in each individual 246 

quadriceps muscle group (Muscle: rectus femoris (RF), vastus lateralis (VL), vastus 247 

intermedius (VI), vastus medialis (VM)). This model also assessed Condition*Muscle group 248 

interactions. The same ANCOVA model assessed the fixed effect of Depth (3 cm, 2 cm, 1 cm) 249 

and Condition*Depth interactions on muscle temperature. The LSD test was used for all post-250 

hoc pairwise comparisons of the fixed effects and interactions.  251 

For muscle perfusion, the fixed effects of CWI Condition, Muscle, and CWI 252 

Condition*Muscle interactions, were assessed for clinical relevance against a minimal 253 

clinically important difference (MCID) of 0.75 mL∙100g∙min-1. This value was based on the 254 

comparable reduction of resting muscle perfusion with nitric oxide synthase inhibition (17). 255 

Changes in skin blood flow were assessed against an MCID of a 19% CVC reduction. This 256 

value was based on our previous work (27, 28, 29), with a ~6°C decrease in skin temperature 257 

after 22°C lower body cooling causing a reduction in thigh %CVC by ~19%. For our primary 258 

outcome measures (muscle perfusion and skin blood flow), statistical inference was then based 259 

on the disposition of the lower limit of the 95% confidence interval (95% CI) for the ANCOVA 260 

adjusted mean differences to our MCID’s, with differences deemed clinically relevant when 261 

the lower confidence interval was equal to or exceeded the MCID. Differences not reaching 262 

this threshold were declared not clinically relevant. P values are also presented but not 263 

interpreted, as the p-value does not measure the size of an effect nor the practical importance 264 

of a result (13, 45). Interpretation of our cardiovascular and thermoregulatory responses 265 

(secondary outcome measures) were based on non-overlapping of 95% CI’s for the ANCOVA 266 

adjusted change scores, with non-overlap of the CI’s constituting a clear difference. Here, we 267 

purposefully placed less inferential emphasis on our secondary outcomes as these data were 268 

provided to describe the differential cardiovascular and thermoregulatory response of the lower 269 



body cooling. Jamovi statistical software, version 0.9.2.8 (https://www.jamovi.org) was used 270 

for all statistical analysis. Data in the text are presented as means and 95% CI. 271 

 272 

RESULTS 273 

Muscle Perfusion  274 

Baseline and post-immersion muscle perfusion and temperature data (absolute values) 275 

are included in Table 1. The change in global quadriceps muscle perfusion was not clinically 276 

relevant in any CWI condition when compared to the 0.75 mL∙100g∙min-1 MCID (p =0.233; 277 

Figure 2). The differences in global quadriceps muscle perfusion between cooling conditions 278 

also failed to reach clinical relevance (p = 0.174 to 0.791; Figure 2).  279 

The change in muscle perfusion in VI compared to VL and RF was clinically relevant 280 

(Figure 3A). The CWI Condition*Muscle interactions also revealed a clinically relevant 281 

increase in VI muscle perfusion after immersion at 8°C (2.15 mL∙100g∙min-1; 1.28 to 3.02 282 

mL∙100g∙min-1) and a decrease in RF muscle perfusion at 15°C (-1.61 mL∙100g∙min-1; -2.47 to 283 

-0.75 mL∙100g∙min-1, Figure 3B), respectively. In the 8°C group, clinically relevant differences 284 

in muscle perfusion were found between the VI and RF (3.1 mL∙100g∙min-1; 1.9 to 4.4 285 

mL∙100g∙min-1, p<0.001) and VI and VL (3.5 mL∙100g∙min-1; 2.3 to 4.7 mL∙100g∙min-1, 286 

p<0.001). Similarly, after 15°C CWI, clinically relevant differences in muscle perfusion were 287 

found between the VI and RF (2.4 mL∙100g∙min-1; 1.1 to 3.6 mL∙100g∙min-1, p<0.001) and VI 288 

and VL (2.2 mL∙100g∙min-1; 1.0 to 3.5 mL∙100g∙min-1, p<0.001; Figure 3B). The change in 289 

muscle perfusion in the VI was greater after 8°C CWI when compared to 22°C (2.3 290 

mL∙100g∙min-1; 1.1 to 3.5 mL∙100g∙min-1, p<0.001). All other differences in muscle perfusion 291 

between individual muscles effects did not reach clinical relevance, with the differences 292 



ranging from 0.1 mL∙100g∙min-1 (95% CI, -1.2 to 1.1 mL∙100g∙min-1, p=0.937) to 1.8 293 

mL∙100g∙min-1 (0.7 to 3.0 mL∙100g∙min-1, p=0.003).  294 

 295 

Skin Blood Flow  296 

There was a clinically relevant reduction in CVC at the thigh (Figure 4A) and calf 297 

(Figure 4B) in each cooling condition. However, there were no clinically relevant between-298 

condition differences in CVC at either site (Figure 4C & 4D). 299 

 300 

Thermoregulatory and Cardiovascular Responses  301 

Muscle Temperature 302 

There were clear differences in the changes in muscle temperature for the fixed effect 303 

of Depth, with greater muscle temperature decreases at 1 cm and 2 cm depths compared with 304 

3 cm (Figure 5A). At a depth of 1 cm, a clear difference in the change in muscle temperature 305 

was observed in the 8°C and 15°C conditions compared with 22°C (Figure 5B). However, there 306 

were no clear differences in the change in muscle temperature between conditions at depths of 307 

2 cm or 3 cm (Figure 5C & 5D).  308 

 309 

Intestinal and Skin Temperature 310 

There were no clear differences in intestinal temperature between conditions (Figure 311 

6A). A clear difference in mean skin temperature was observed in the 8°C condition compared 312 

with 22°C (Figure 6A). A clear difference in local thigh skin temperature was also found in the 313 

8°C and 15°C conditions compared with 22°C (Figure 6A).  314 



 315 

Thermal Comfort  316 

A clear difference was observed in thermal comfort ratings between the 8°C and 22°C 317 

conditions (Figure 6B). 318 

 319 

Mean Arterial Pressure and Heart Rate 320 

There were no clear differences observed for either MAP or heart rate responses 321 

between conditions (Figure 6C). 322 

 323 

DISCUSSION 324 

We show for the first time that CWI temperatures between 8°C and 22°C did not reduce 325 

global quadriceps muscle perfusion beyond a clinically relevant threshold. However, the 326 

change in muscle perfusion was not uniform across the individual muscles of the quadriceps. 327 

A clinically relevant increase in muscle perfusion was observed in the deeper vastus 328 

intermedius (VI) in the 8°C group, while muscle perfusion decreased in the more superficial 329 

rectus femoris (RF) muscle after 15°C. Taken together, our findings provide new insights 330 

regarding the influence of CWI on quadriceps femoris muscle perfusion. 331 

Muscle perfusion responses to local and whole-body heating have previously been 332 

investigated (16), but this is the first study to quantitatively determine lower limb muscle 333 

perfusion responses to cooling. The observation of similar changes in global quadriceps muscle 334 

perfusion (<0.75 mL∙100g∙min-1), from baseline, and between CWI trials (see Figure 2) 335 

contrasts with previous work from our laboratory (14) and others that assessed forearm blood 336 

flow (4) under resting conditions. Using simultaneous Doppler ultrasound and cutaneous blood 337 

flow measurements, to provide indirect estimates of muscle perfusion, we reported that total 338 



leg blood flow decreased after both 8 and 22°C CWI with greater blood flow reductions in the 339 

colder water. The contrast of the present study’s findings with our previous work most likely 340 

relate to the methods used to index muscle perfusion. Nonetheless, our current observations 341 

are partly in agreement with other previous studies, which have qualitatively examined the limb 342 

blood volume/flow response to different CWI temperatures after exercise using various 343 

measurement techniques (9, 27, 29). In line with the current investigation, these studies 344 

reported similar reductions in limb blood flow/volume (clinical relevance not determined) 345 

between the different cooling conditions (range: 8 to 22°C). 346 

Skin blood flow also contributes to total limb blood flow and was consistently reduced 347 

in all experimental conditions in the present study. Indeed, our novel findings demonstrate that 348 

cold-induced reductions in limb blood flow are likely mediated through reduced flow to the 349 

skin, superficial skeletal muscles and other tissues (i.e., subcutaneous fat). Under resting 350 

conditions, we have previously reported (14) a higher cutaneous blood flow response to 351 

noxious (8°C) versus non-noxious (22°C) cooling despite lower skin temperatures at 8°C. We 352 

speculated that this higher cutaneous blood flow response may have been due to the occurrence 353 

of cold-induced vasodilation, which could have potentially redistributed blood from the 354 

underlying muscle. In the present study, the graded decrease in skin blood flow between the 355 

cold (8°C-15°C) and cool (22°C) conditions provided no evidence of cold-induced vasodilation 356 

(Figure 4A & B). The discrepancy with our present findings may be related to our experimental 357 

design, with the group design (and selected measurement time points) utilised in this study 358 

potentially masking the identification of any cold-induced vasodilation due to the inter-359 

individual nature of skin blood flow responses (33).  360 

 Despite not finding a change in global muscle perfusion after cooling, we observed a 361 

directionally different muscle perfusion response in the deep VI muscle compared with the 362 

superficial VL and RF muscles (see Figure 3A). The differences in the changes in perfusion 363 



between these individual muscles were only evident with exposure to the colder water 364 

temperatures (8°C-15°C; see Figure 3B). The 8°C water also induced a clinically relevant 365 

increase in VI muscle perfusion compared with 22°C cooling (see Figure 3B). Our findings 366 

suggest that colder water temperatures modulate specific muscle perfusion responses across 367 

individual quadriceps muscles. Indeed, a spatially and heterogeneous distribution of quadriceps 368 

muscle perfusion has previously been reported at rest and after exercise (24). The observation 369 

of greater perfusion in the VI under these conditions were thought to be related to the higher 370 

proportion of slow oxidative fibres within this muscle. In addition, our findings also support 371 

the observation of greater muscle perfusion within deeper centrally located upper body skeletal 372 

muscles during cold exposure (8, 42). Therefore, our novel findings subsequently extend 373 

previous observations (8, 42) to support the view that in response to relatively intense cold 374 

exposure (8°C-15°C), deep muscle perfusion is also elevated in the lower body.  375 

The deep lying VI muscle, located next to the femoral bone, has a higher proportion of 376 

type 1 fibres in comparison to the three other superficial muscles in the quadriceps (23). It may 377 

be speculated that shivering was responsible for the increase in VI muscle perfusion in the 378 

colder water, since burst shivering rates have been related to differences in muscle fiber 379 

compositions between individuals (7), with low intensity shivering in particular associated with 380 

type 1 fibers (15, 30). It has been proposed that this benign shivering response begins from 381 

deep muscles to maintain core temperature (8). Slight twitching of muscle fibers stimulates 382 

metabolism and oxygen consumption, with more blood supply in the form of blood flow needed 383 

to meet the increased metabolic demands (1, 22, 32) of the largely type I muscle fibers (10, 23). 384 

Nevertheless, it is difficult to ascertain with certainty that the increase in VI muscle perfusion 385 

in the 8°C condition was related to shivering thermogenesis since responses were not 386 

objectively measured. Surface electromyography (EMG) cannot be used to assess the shivering 387 

contribution in deeper muscles and limits interpretation of surface EMG signals in superficial 388 



muscles which are in close proximity to each other (3). The use of EMG would, however, have 389 

provided an indication of the degree of shivering in superficial muscles and therefore the 390 

absence of EMG measures represents a study limitation. Blondin et al’s., (8) seminal work 391 

indicated that EMG measures of shivering are strongly associated with PET measures of 392 

fludeoxyglucose (18FDG) uptake in superficial muscle. Future work may consider 393 

extrapolating this method to determine the relationship between the shivering and perfusion 394 

response in superficial and deeper muscles in response to cooling to confirm our present 395 

findings. 396 

In the present study, the generally lower magnitude of muscle temperature reduction in 397 

the deeper tissue (3 cm depth; see Figure 5A) was associated with higher muscle perfusion in 398 

the VI compared with the RF and VL muscles across the conditions. This finding suggests that 399 

after cooling the legs with CWI (independent of water temperature), perfusion in the deeper 400 

and superficial muscle tissue does not respond in a similar manner to reductions in muscle 401 

temperature across the quadriceps musculature. Another key finding was the greater increase 402 

in VI muscle perfusion in the colder water (8°C) compared with 22°C immersion. This 403 

difference in muscle perfusion was evident despite similar changes in deep muscle 404 

temperatures (2 & 3 cm) across the conditions (Figure 5B & C). It would perhaps be expected 405 

that a difference in muscle temperature of sufficient magnitude would be required to modify 406 

the observed perfusion response between the cooling conditions (4, 29). However, it must be 407 

noted that muscle temperature was only measured at different depths within the VL muscle and 408 

therefore does not necessarily represent tissue temperature changes within other quadriceps 409 

muscles, in particular the deeper muscles (i.e., VI muscle).  410 

Cryotherapy is widely administered in clinical and applied sport settings in the acute 411 

treatment of soft tissue injuries and exercise induced muscle damage. It is proposed that a 412 

cooling induced reduction in muscle perfusion may limit infiltration of leucocytes, 413 



macrophages and other pro-inflammatory cells to better preserve cellular oxygen supply, which 414 

may be otherwise compromised by local swelling, oedema and capillary constriction (39, 41, 415 

46). This may limit hypoxic cell death and damage and minimize secondary tissue damage (31, 416 

41, 46). We demonstrate for the first time, that 10 min of lower body CWI, can lead to a 417 

clinically relevant reduction in muscle perfusion in superficial areas of the quadriceps femoris 418 

muscle. This reduction appears to be dependent on water temperature with the decline in RF 419 

muscle perfusion observed in 15°C water (Figure 3B). Nevertheless, in contrast to deep 420 

muscle(s), there was a trend for perfusion to decrease in the three superficial muscles (RF, VL 421 

and VM) across all experimental conditions. Since superficial muscles still contribute to a large 422 

part of the bulk skeletal muscle mass, our findings suggest that cold-induced reductions in 423 

superficial perfusion and skin blood flow play an important role in mediating reductions in 424 

total limb blood flow previously reported (9, 14, 27, 28, 29, 43). Taken together, our data 425 

indicates that a less noxious water temperature (15°C) may be the most viable option as a 426 

treatment for soft tissue injury by promoting a clinically relevant decrease in superficial muscle 427 

perfusion whilst minimising increases in deep (VI) muscle perfusion (Figure 3B). Moreover, 428 

the increase in deep muscle perfusion (VI) in the 8°C condition suggests that more noxious 429 

CWI cooling may potentially accentuate the inflammatory response in deeper tissues. This 430 

inference, however, warrants further investigation.  431 

 Our experimental design, using CWI as the cooling stimulus, was used to simulate real-432 

world practice (construct validity), which required the logistics of moving participants from 433 

the bed/cold water bath to the PET scan room to undertake muscle blood perfusion 434 

measurements. We therefore used a wheelchair to move the participants from either location 435 

to try and control any muscle activation and limit any confounding of perfusion measurements. 436 

Whilst we endeavoured to limit any unnecessary muscle activation, is it important to note that 437 

participants briefly had to stand out of the wheelchair to position themselves onto the PET 438 



scanner in a supine position. However, there was a 10 min period prior to commencing PET 439 

scans after lying supine, which is likely to have limited any potential confounding of muscle 440 

perfusion. Indeed, another limitation of the present study was that PET scan perfusion measures 441 

were only measured at one time point after cooling. We have documented (14, 27, 29) 442 

prolonged decreases in deep muscle temperatures during extended post cooling periods (30 443 

min) due to sustained tissue heat loss via thermal conduction. In addition, the magnitude of this 444 

deep muscle temperature decrease is related to the CWI water temperature (14, 27, 29). 445 

Therefore, if tissue temperature change is of sufficient magnitude to modify muscle perfusion 446 

per se, it is possible that a greater change in muscle perfusion may have been observed over a 447 

longer duration post-cooling.  448 

The semi-reclined immersion protocol utilized in this study is only one of several that 449 

can be chosen, for example, CWI protocols can be undertaken at a variety of depths (navel, 450 

chest, neck), positions (seated or standing), temperatures, and/or durations. In the current 451 

protocol, the hydrostatic pressure acting on the legs (whilst seated) was minimal, due to the 452 

pressure that acts on a body part being dependent on its depth in the water (46). However, 453 

changes in central hemodynamic responses and muscle perfusion associated with hydrostatic 454 

pressure will need to be accounted for when adopting greater water depths. Additionally, CWI 455 

is often used immediately after intense or muscle damaging exercise (47), when tissue 456 

temperature, and skin and muscle blood flow, are elevated. It remains to be elucidated if any 457 

potential differences in muscle perfusion would be noted when CWI is applied under these 458 

conditions. Therefore, there is greater scope for work in this area by utilizing different cooling 459 

protocols and examining perfusion responses across different muscle groups at rest and after 460 

exercise. 461 

In summary, we used PET and [15O]H2O to quantitatively measure muscle perfusion in 462 

the quadriceps muscle after different degrees of CWI cooling. CWI (8-22°C) did not reduce 463 



global quadriceps muscle perfusion to a clinically relevant extent, however, the muscle 464 

perfusion response to cooling was not uniform across the individual muscles composing the 465 

quadriceps. Our findings suggest that colder-water (8°C) increases deep muscle perfusion, 466 

while 15°C water reduces superficial muscle (RF) perfusion in the quadriceps muscle. 467 

Therefore, a less noxious water temperature (15°C) may be considered a viable option as a 468 

treatment for soft tissue injury.  469 
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 684 

Table 1. Baseline and post immersion absolute values of muscle perfusion and temperature 685 

variables (mean ± SD). 686 

 687 

Figure 1. Representative cross-sectional computed tomography (CT) image of a participant’s 688 

right quadriceps femoris muscle (left). The specified region of interests (ROI) are shown on 689 

the CT image (middle), which were fused with the positron emission tomography (PET) image 690 

to calculate muscle blood flow (right). 691 



 692 

Figure 2. The mean ∆ in global quadriceps muscle perfusion after 8°C, 15°C and 22°C cooling 693 

(mean ± 95% CI). Clinical relevance was assessed against a minimally clinically important 694 

difference (MCID) in muscle perfusion of ±0.75 mL∙100g∙min-1 (shaded area).  695 

 696 

Figure 3. The mean difference in muscle perfusion between individual muscles independent 697 

of the cooling condition (A) and the mean ∆ in perfusion in each quadriceps muscle after 8°C, 698 

15°C and 22°C cooling, respectively (B) (mean ± 95% CI). Clinical relevance was assessed 699 

against a minimally clinically important difference (MCID) in muscle perfusion of ±0.75 700 

mL∙100g∙min-1 (shaded area). 701 

 702 

Figure 4. The mean ∆ in thigh (A) and calf (B) cutaneous vascular conductance (CVC) from 703 

baseline and the mean differences in thigh (C) and calf (D) CVC between the 8°C, 15°C and 704 

22°C conditions, respectively (mean ± 95% CI). Clinical relevance was assessed against a 705 

minimally clinically important difference (MCID) in CVC of ±19.0% (shaded area). 706 

 707 

Figure 5. The mean ∆ in muscle temperature for the fixed effect of depth (A) and at 1 cm (B), 708 

2 cm (C) and 3 cm (D) depths in the 8°C, 15°C and 22°C cooling conditions (mean ± 95% CI). 709 

None overlap of ±95% CI’s represents clear difference between conditions.   710 

 711 

Figure 6. Forest plot displaying condition main effects of secondary outcome variables: 712 

temperature (A), subjective measures (B) and cardiovascular measures (C). Symbols represent 713 



mean differences: 8°C (), 15°C () and 22°C () ± 95% CI. None overlap of ±95% CI’s 714 

represents clear difference between conditions.  715 
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