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Abstract 
This research is motivated by the lack of a robust risk management framework addressing 

the high risks in Arctic Marine Seismic Survey Operations (AMSSO), and the lack of 

transparent decision-making in Arctic shipping risk management globally. The literature 

review carried out herein reveals that the AMSSO and Arctic navigation involve 

significant risks caused by human elements and the unique features of this region. These 

known risk factors combine to constitute a ship-ice collision risk. This last represents the 

goal of the research investigation. With the complexity of the AMSSO system, three 

technical chapters are proposed to analyse and reduce the risks in the AMSSO. The first 

technical chapter deals with local risk analysis of the system. Herein, a Fuzzy Rule-based 

methodology is developed employing the probability distribution assessment in the form 

of belief degrees with Bayesian Network (BN) and Failure Mode and Effect Analysis 

(FMEA) for estimating the risk parameters of each hazard event using a computer-aided 

analysis. A case study of the application of the proposed risk model – Fuzzy Rule-based 

Bayesian Network (FRBN) –, in the Greenland, Iceland and Norwegian Seas (GNIS) 

AMSSO is carried out to identify the most critical hazard event in the prospect oil field. 

The second technical chapter deals with the global safety performance of the Ship-Ice 

Collision model dovetailing the Evidential Reasoning (ER) technique and Analytic 

Hierarchy Process (AHP) with the FRBN. A trial application of the global safety 

performance of the Ship-Ice Collision case in a prospect oil field is carried out to 

determine the safety level of AMSSO, measured against a developed benchmark risk. The 

outcome of the investigation reveals the Risk Influence Factor (RIF) of each hazard event 

in AMSSO. Since the risk level is far above the tolerable region of the developed 

benchmark risk, several Risk Control Options (RCOs) are investigated in the last 

technical chapter to reduce and control the critical risks. This technical chapter finalises 

the risk management framework developed in this research. In a trial application of 

reducing a critical risk in AMSSO, AHP-TOPSIS is utilised to find a balance between 

cost and benefit in selecting the most appropriate RCO at the heart of several RCOs and 

their associated criteria. The novelty of this research lies in the fact that it tackles the 

major concerns in risk analysis (concerns such as dynamic event risk analysis, hazard data 

uncertainties, and hazard event dependencies) of a complex system. More also, it adopts 

a hybrid methodology that offers a non-monotonic utility output to select the most 
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appropriate RCO amongst several RCOs and conflicting criteria, to reduce the critical 

risks in AMSSO, in an economically viable strategy. 
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Chapter 1– Introduction 

Overview 

In this chapter, the research background, justification of research, aim of investigation 

are presented, followed by the research objectives and the challenges of conducting the 

research. The research methodology and scope of this thesis are further discussed, 

followed by the research achievements. The construction of this thesis is drawn to 

demonstrate how the proposed risk-based methodologies can provide support for 

strategic decision making in AMSSO risk management. 

1.1 Research Background 

With the current technological advancements to reduce global warming – that is, by 

encouraging the use of renewable energy sources to replace fossil fuels –, it is apparent 

that the world at large still depends on natural oil and gas resources for energy production. 

(Patel et al., 2015).  According to the International Energy Agency (IEA), global oil and 

gas demand could grow by more than 35% from the present time to 2035 (Eurasia-Group, 

2018).  

Currently, the world’s rising desire for natural oil and gas, coupled with the retreating 

reserves of natural oil and gas in shallow waters, has prompted mariners among others to 

come up with solutions and expertise to carry out oil and gas exploration in the far regions 

of the earth (Foy, 2017, Appenzeller, 2019). This far region of the earth referred to as the 

“Arctic” is a poorly charted area (Mollitor, 2018). Consequently, navigation in this area 

could be very challenging not only because of the poor navigation charts but also because 

of the presence of other risk factors, such as sea ice, limited navigation system and 
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infrastructure at high latitudes, and adverse weather conditions (National Research 

Council, 2011, Leppälä et al., 2019). 

The Arctic waters, according to IMO guidelines 2002, is defined by a body of water 

having a sea ice concentration of 1/10 coverage or greater, and which has the potential to 

cause structural damage to ships (Willy Ostreng et al., 3013). Areas with Arctic waters 

are referred to as either the Arctic or the Antarctic region. The Arctic region, which is the 

subject of interest, is situated in the regions of the North Pole (see Figure 1). It is mainly 

dominated by the Arctic Ocean (Micalizio, 2016) and covers an area about 14.5 million 

square kilometres in extension. The Arctic sea ice extent for August 2018 averaged about 

5.61 million square kilometres (NSIDC, 2018a). The Arctic region makes up about 8% 

of the Earth's surface (AMSA, 2009).  

The Arctic region consists of the ice-covered Arctic Ocean extending to land regions, 

including Greenland and Spitsbergen, Canada, northern parts of Alaska, Norway and 

Russia.  
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Figure 1: Location of the Arctic region (Shea, 2018) 

Regions towards the North of the Arctic Circle according to a 2008 United States 

Geological Survey are believed to contain over 90 billion barrels of undiscovered and 

technically recoverable oil; this includes 44 billion barrels of Natural Gas Liquids in 25 

distinct geological areas (Eurasia-Group, 2018). This region (the Arctic), represents 30% 

of the world’s undiscovered gas and 13% of undiscovered oil (Eurasia-Group, 2018). The 

Arctic is believed to have the world’s largest untapped resource of natural oil and gas 

(USGS, 2008). The energy and mineral assets distribution are represented in Figure 2, 

with Russia, Norway, the USA, and Canada topping the list in terms of mineral reserve 

deposits (USGS, 2008), (Desjardins, 2016). 
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Figure 2: Energy and Mineral Assets of the Arctic (Desjardins, 2016) 

The Arctic in overview is seen as a new frontier, undeniably one of the last on Earth, both 

in terms of its estimated economic benefits and as a poorly understood and fast-changing 
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ecosystem (Hildebrand and Brigham, 2018). Despite the unique features of this region, 

such as the presence of ice, severe operating conditions, unpredictable climatic changes, 

and remoteness, oil and gas explorers are still relentless in exploring it because of the vast 

availability of natural hydrocarbon resources (Fu et al., 2018a).  

Pinpointing the location of hydrocarbon resources (mostly oil and gas), in the Arctic seas, 

is in most cases a challenging task, because of the presence of ice. To overcome this 

challenging task, a seismic survey ship is desirable to carry out this operation efficiently 

and in a timely fashion (Hutchinson et al., 2009). This sophisticated vessel navigates 

about the surface of icy waters, letting off small explosions, which sends sound waves 

down to the rock layers, and recording the reflected sound waves with the aid of 

hydrophones to predict the possible location of natural oil and gas. The layout of the 

seismic survey vessel operation is represented in Figure 3. 
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Figure 3: The layout of a Seismic survey vessel operation (EIA, 2019) 

The sustained use of seismic vessels in Arctic oil and gas exploration is still very popular 

and cost-effective (Li, 2013a). Apart from the use of the marine seismic vessels in 

pinpointing the location of hydrocarbon, the use of these vessels can also be used to 

identify risks, and monitor and manage activities in the Oil and Gas Exploration & 

Production (E&P) life cycle (NPC, 2011). Marine seismic surveys remain a fundamental 

tool in Arctic oil and gas exploration, and presently one of the most sustained methods in 

pinpointing the location of oil and gas (Przeslawski et al., 2018, Daleel, 2019, NPC, 

2011). 

Seismic surveying in the Arctic is carried out with the presence of other shipping activities 

and offshore structures. With the recent trend in Arctic activities as a result of melting 

ice, there is a great likelihood of increased environmental and operational risks. In 
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addition, there is a great likelihood of conflicts among traditional and new ocean users, 

and concerns of safety of life at sea (Hildebrand and Brigham, 2018). The 2009 Arctic 

Marine Shipping Assessment reported that there were around 6,000 vessels active in the 

Arctic in 2009 (AMSA, 2009). In addition to the negative impacts from the growing 

Arctic shipping activities, failure to plan for a robust risk management plan could 

potentially lead to loss of lives, assets, and damage to the environment (AMSA, 2009). 

Regardless of the complexity of things in the Arctic, all anticipated activities, whether oil 

and gas exploration, fishing and tourism must be done in a way that risks can be controlled 

to ‘As Low as Reasonably Practicable’ (ALARP).  

From a governance viewpoint, Arctic states and a growing number of non-state actors, 

are working together with the IMO and the Arctic Council on common Arctic issues, 

particularly on issues of sustainable development and reducing risk to ALARP levels 

(Hildebrand and Brigham, 2018). Apart from the IMO contribution to the safety of life in 

the Arctic region, the United Nations Convention on the Law of the Sea (UNCLOS) also 

has a vibrant presence in ensuring the safety of lives in the Arctic region. The UNCLOS 

provides a comprehensive legal framework for the Arctic Ocean activities. In addition to 

the diplomatic table, the IMO also identified and published an international code, named 

IMO Polar Code (IMO, 2018a). 

The Polar Code culminates in the one of the latest recommendations of previous IMO 

documents (IMO, 2014). The contents of the Polar code are affiliated in a way that allows 

for rational integration into the parent IMO instruments. The IMO Polar Code uses the 

Formal Safety Assessment (FSA) guidelines in ensuring safety at sea according to MSC- 
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MEPC.2/Circ.1 (IMO, 2014). Up until now, the FSA guidelines and framework are still 

the state of the art for the rule-making process in risk management. 

The recent introduction of several safety regulatory bodies in Arctic shipping operations 

to safeguard lives might be doing more harm than good, as there is wide speculation that 

the unification of these safety regulatory bodies might not be as effective in reducing 

Arctic risk. This speculation is documented in IMO Resolution MSC.385 (94) 2014 

(Hildebrand and Brigham, 2018). Consequently, there is an urgent need for stakeholders 

and Arctic marine company managers to adopt the FSA framework in the IMO rule-

making process to achieve a single fit-for-all in reducing risks whilst operating in the 

Arctic region.  

This research framework/model can assist each individual risk management policy, to 

measure their progress and to make sure important steps are not overlooked in AMSSO 

and arctic shipping in general. 

The modelling techniques used in this thesis will be organised using the FSA guidelines.  

The FSA guidelines will be adopted to achieve a reliable and systematic risk management 

framework in this thesis. The FSA methodology can offer desirable results by providing 

proactive ways to reduce risk and improve Arctic maritime safety. This is achievable 

because FSA has the ability to offer a systematic mechanism that enables decision-

making based on risk assessment and, more importantly, the cost-benefit analysis of the 

risk control option (Wang and Trbojevic, 2007). The FSA guidelines have been used 

extensively by several maritime related industries, and other industries involved with risk 

management (Bai and Jin, 2016b, Wang, 2003). Therefore, in this study, the FSA method 
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will be adopted to offer a clear and justifiable rationale for a risk management-based 

methodology in marine Arctic seismic survey operation. 

With the current shortage of documented list of hazard events in AMSSO, this research 

will focus on analysing major risks (such as human error, loss of signal in the ship 

navigational system, loss of ship control, bad ice and weather conditions). In addition, 

this research will focus on taking vita risk information from primary (such as MAIB) and 

secondary (such as eyewitness) data with the aid of expert judgement and literature 

review. Lastly, with the lack of risk control measures in dealing with AMSSO risks, this 

research will focus on developing a methodology that minimises costs and maximises 

benefit through literature review and experts’ knowledge. This is done to ensure effective 

solutions to manage the dynamic risk in AMSSO in a cost-effective manner. 

The proposed risk management model will help to identify all those that are potentially 

high risks in AMSSO and evaluate the possible channel to mitigate such high risks to 

achieve a high standard of safety. The developed framework and model in this research 

will incorporate Quantitative Risk Assessment (QRA) techniques with uncertainty 

modelling techniques, such as evidential reasoning, Fuzzy Logic and BN, in order to 

assess and reduce the risk of data uncertainty in a more reliable manner. 

Making appropriate decisions on selecting the most appropriate risk-based techniques are 

clarified in this research in order to achieve an advanced risk assessment and management 

framework that employs systematic reasoning and a variety of uncertainty techniques to 

solve complex safety concerns in AMSSO. 
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1.2  Justification of Research 

This research is motivated by the lack of a suitable risk management framework 

addressing the high risks in marine seismic survey in the Arctic region, (with reference 

to search results from the web of science and Google scholar, 2019). The major concern 

that Arctic marine seismic survey operators are faced with is a lack of research upon 

which to base their safety procedures for their complex activities. In addition, there is a 

general shortage of robust risk management models in Arctic oil and gas E&P industry. 

Furthermore, there is a misinterpretation of uncertainty and methods capable of assessing 

risk from its root characterisation. The need to formulate a bespoke model that can address 

risk with all ramifications, and highlight the safety and work efficiency issues facing 

Arctic marine seismic survey operators, managers, stakeholders and safety officers, is 

eminent now. 

A gap in knowledge exists regarding the applications of robust risk management in 

AMSSOs and Arctic shipping in general. In addition, there is a need for more practical 

research at the academic level, to advance the best practice of risk management methods, 

to ensure proper implementation of the risk management methods in AMSSO. 

Furthermore, the need for more practical research at the academic level will benefit the 

potential requirements of Arctic activities in the near future. 

The following guiding questions have been generated to ensure that the objectives of this 

research are fulfilled and to provide a base for conducting this research. 

 Considering AMSSO, what are the sources of accident or hazard events associated 

with AMSSO affecting safety and efficiency, and how can these hazards or 

sources of an accident be identified and grouped for further investigation? 
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 One of the most notable definition of risk is Likelihood (L) × Consequence 

Severity (S) (Stergiopoulos et al., 2018). With this definition, a low risk might 

mean high safety, but this might not mean high work efficiency. Hence, other risk 

parameters would need to be considered to ensure safety and efficiency in 

AMSSO. Therefore, how can the risk parameters capable of affecting the safety 

and efficiency level in AMSSO be identified?  

 What are the most appropriate and useful tools for evaluating each identified risk 

factor with associated data uncertainties for AMSSO in real practice, and how can 

these tools be applied? 

 How can the identified hazards or risk factors be prioritised and ranked? 

 How can the identified hazard events or risk factors be mitigated and controlled 

in an economically viable manner? 

1.3 Aim of investigation 

An Arctic seismic survey ship navigates icy waters in grid pattern, with towed sensors 

and an escort vessel. The entire operation exposes the crew and the marine seismic 

equipment to additional risks. Additional risks such as a ship-ship or ship-ice collision 

can cascade to accidents such as machinery damage, grounding, and hull damage with 

catastrophic consequences. Given controlling and averting these risk factors, this research 

aims to investigate all catastrophic hazard events in AMSSO and address the issue of risk 

data uncertainty in AMSSO risk analysis. The data uncertainty arises from the 

unavailability of sufficient primary observations and consequent shortage of statistical 

data about hazard events. In addition, the research aims to estimate and control the risk 
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level of the identified hazard events to a tolerable limit, and provide a cost-effective 

solution to manage the anticipated high-risk levels in AMSSO. The present study 

conforms to the International Maritime Organization's (IMO) probabilistically based FSA 

model. 

1.4  Research Objectives 

The following objectives shall be met: 

I. To carry out a literature review on the subject matter and examine published 

materials on Arctic shipping, AMSSOs, and examine Polar Code regulatory 

guidelines.  

II. Analyse the complex activities in the AMSSO in order to identify the unwanted 

events (hazards) including human factors influencing risks to AMSSOs.  

III. Review the risk assessments and decision-making methods, that are capable of 

dealing with uncertainty and incompleteness of risk data both qualitatively and 

quantitatively, which have extensively been developed and used in the maritime 

domain. 

IV. To develop advanced risk analysis models to support the proposed research 

framework employing techniques such as Fuzzy Logic (FL), Bayesian Network 

(BN) and Evidential Reasoning (ER), to deal with uncertainty and incompleteness 

in risk data, to fit in the scope of the research.  

V. Apply techniques to achieve a risk reduction method that is practical and cost-

effective. 

VI. Collect and analyse data to validate the proposed framework and models via a trial 

application of the proposed framework and models. 
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1.5 Challenges of carrying out the research in the presence of uncertainties 

(Statement of the Problem) 

The main challenge in the research is the lack of historical accident data. With the lack of 

historical accident data, it is difficult to precisely identify all accidents, or provide 

accurate failure data for a precise risk management plan. The aforementioned challenges 

are subdued by employing experts' knowledge and advanced risk management 

techniques, coupled with state-of-the-art computer models, to deal with the challenges 

and risks associated with AMSSO. This strategic risk management plan will contribute 

greatly to the improvement of the Arctic marine seismic survey operational safety and 

seismic data. In Chapter 2, various risk-based techniques will be looked into in order to 

subdue the challenges in achieving a robust risk management plan in AMSSO.  

1.6 Methodology and Scope of the Thesis 

A Risk management-based methodology is a continuous process to identify hazard 

events, estimate, and mitigate risks for any system or organisation by setting goals and 

strategies to control all potential sources of risks. The research risk management-based 

methodology conveys the path for solving the research problem in a systematic and 

rational approach.  

The methodology and scope of this research are detailed as follows: 

Stage 1: identify all possible hazard events in Arctic shipping and AMSSO through 

literature review and screen the identified hazard events through brainstorming meetings, 

in order to obtain a substantial list of all important hazard events in AMSSO. 

Stage 2: develop a Fuzzy Rule Base (FRB) dovetailed with BN to analyse the most 

significant risk factors generated from the literature review and experts’ knowledge. 
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Development of a benchmark risk will be achieved through the developed Fuzzy Rule- 

based Bayesian Network (FRBN) and experts’ judgement. 

Stage 3: develop a hybrid approach to the modelling of AMSSO safety performance 

measurement. 

Stage 4: develop suitable means to select the most appropriate risk control option using 

Multi-Criteria Decision Making (MCDM) techniques such as the Analytic Hierarchy 

Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS). 

1.7 Structure of Thesis 

An overview of the description of each chapter presented in the thesis is described as 

follows and is represented in Figure 4: 

Chapter 1: corresponds to the research background and provides a clear justification for 

conducting the research. Research questions are generated to offer a guarantee that the 

research objectives are met. This chapter concludes by providing the risk management 

framework and structure of the thesis. 

Chapter 2: starts by providing an explicit description of the Arctic marine environment 

and Arctic shipping in order to offer a grasp of the perception of risk in the Arctic offshore 

environment. This is followed by the introduction of AMSSO, here the risks in operating 

in the Arctic environment described earlier are narrowed down to the risks in AMSSO. 

The description of the IMO’s Polar Code contribution to Arctic marine risk control and 

management is followed by a careful review of the widely applied risk management 

methodologies with consideration to marine and Arctic shipping. Risk, hazard, and 

uncertainty, all three of which are central terms used in the research risk-management 
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process, are defined and differentiated. FSA, a popular tool used by the IMO in marine 

risk management is introduced to conclude this chapter.  

Chapter 3: the first phase of chapter 3 acknowledges seven (7) major accident categories 

in Arctic operations and later combines six (6) risk factors common to the seven major 

accident categories to form the subject of investigation, termed Ship-Ice Collision risk 

factor. Hazard elements related to the Ship-Ice Collision scenario were identified through 

experts’ knowledge and literature review in Chapter 2. The development of the FRBN 

model is described in the second phase of this chapter to analyse the most significant risk 

in the Ship-Ice Collision model. Finally, the sensitivity analysis method is developed and 

carried out to validate the new risk-based FRBN methodology. 

Chapter 4: concludes the risk analysis process by focusing on assessing the overall risk 

estimate of the Ship-Ice Collision globally. Results from Chapter 3 are used to treat the 

issue of data uncertainty at the bottom level of the Ship-Ice Collision risk tree while AHP 

is employed to obtain the weights of all important hazard events at the intermediary level 

of the risk tree. Finally, the overall safety performance of the Ship-Ice Collision risk 

model is measured using the ER approach and the obtained results are measured against 

the developed FRBN benchmark risk. In addition, the sensitivity analysis method is 

developed and carried out to validate the new “FRBN-AHP-ER” risk analysis model. 

Chapter 5: identifies different risk control options (RCOs) to mitigate the hazard event 

with the highest Risk Impact Factor (RIF) to the safety performance of the Ship-Ice 

Collision risk model. AHP is used here again to determine the weights of the identified 

RCOs, the outcome of the RCOs assessment is dovetailed with TOPSIS to arrive at the 

most cost effective RCO. 
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Chapter 6: provides the discussion. Knowledge contributions to AMSSO risk 

management are highlighted and areas for further research are highlighted.  

Chapter 7: provides a recap of the risk management framework and models used in the 

study, this last shows how the aim and objectives of the research have been met. 

 

 

Figure 4: Research Structure 

1.8 Conclusion/Research Achievements 

This research develops an advanced, novel framework for the assessment of risks and 

vulnerability within Arctic shipping operation on a safety basis that allows industrial 

stakeholders and safety engineers to identify, assess, and mitigate the risk factors with the 

uncertainties that affect AMSSO. In addition, this research utilises risk-based 

methodologies in order to validate the theory of the strategic risk management approach. 

In addition, it reveals the effective execution of the risk management principle and 

integration to eliminate the concerns of uncertainty in risk evaluation in a complex 

AMSSO. For uncertainty treatment, FL, BN, AHP, ER and TOPSIS methodologies are 
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applied in this research. The proposed models are anticipated to provide practical tools in 

the application and study of AMSSO risk management.  
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Chapter 2– Literature Review 

Overview 

This chapter starts by providing a broad description of the Arctic, and the extent of Arctic 

marine navigation. This is followed by a review and description of critical accidents in 

the Arctic region. Since, AMSSO involves both marine seismic survey operations and 

Arctic marine navigation, a careful review of risks related to Arctic shipping and marine 

seismic survey operations are highlighted. Several risk factors are identified capable of 

putting in danger AMSSO. Consequently, the lack of suitable risk assessment and 

management in AMSSO reveals a knowledge gap in reducing the critical risk factors in 

AMSSO. To analyse the risks in AMSSO, this chapter has reviewed seventy-five academic 

papers and printed books that have been utilised in other complex maritime systems, to 

fit in the risk analysis of AMSSO. The knowledge of the studied academic papers and 

printed books are dovetailed to reveal a proposed model to analyse the intricacies of risk 

analysis in the AMSSO system. The proposed model is capable of taking into account, the 

unavailability of statistical accident data as well as uncertainty in risk data.   

2.1 Introduction 

Seismic surveys are one of the primary ways mariners and oil companies learn about a 

site’s production potential. Seismic surveys in the Arctic region can be challenging and 

even more difficult, especially when the seismic ship needs to tow in-water equipment 

and a number of streamers in the presence of ice. The process of gathering seismic data 

in the Arctic Seas has been carried out in various Arctic regions for over 5 decades (Rice 

et al., 2015), and it is still very much in practice these days (Eurasia-Group, 2018). The 

marine seismic vessels with towed sensors have continued to experience risks such as 

collision, grounding, machinery damage and hull damage. The aforementioned risks are 



19 
 

because of floating ice packs, and increased traffic, which are partly as a result of global 

warming (The Independent News, 2018). Significant parts of the Canada Basin in the 

Western Arctic Ocean, for example, have remained a high-risk zone because of the 

presence of multiyear ice (Hutchinson et al., 2009). 

Although sea ice seems to be melting gradually, however, the record of the melting ice 

extent in the Arctic Sea and the effects of global warming for the past 2 years has 

increased the level of risk in sailing through this region (The Independent News, 2018). 

Furthermore, discrepancies in the rate of global warming are a contributing factor that 

adds to the complexity of events occurring in the Arctic Seas. For instance, on September 

15th, 2007, it was reported that the Arctic ice cap was 23% below the previous record set 

in 2005 (NSIDC, 2018b). Also, the 2007 record exceeded the computer model predictions 

that were used to prepare the Intergovernmental Panel on Climate Change (IPCC) Fourth 

Assessment Report in the same year (NSIDC, 2018c). This last means that, with the 

volatile nature of the Arctic Seas, it is believed that new risks will arise and the reduced 

sea ice would likely result in an increase of traffic (Molenaar, 2009), and probably 

increase accidents (Kum and Sahin, 2015). 

In addition to the level of risks in the Arctic region and in Arctic operation, exploring this 

region can be an expensive stake (Li, 2013b), both in terms of capital investments and 

time. With project costs rising every year, an oil company cannot stand to lose a huge 

amount of money developing a prospect oil field, that fails to yield hydrocarbons in 

commercial rates (RigZone, 2019). Also, a seismic survey project can take a protracted 

length of time for completion; for example, a 3D- marine seismic survey of 500 km2 

would take about 8 months for completion (RAG Austria, 2019).  
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Although AMSSO has been in practice for over for over 5 decades (Rice et al., 2015), 

there is still a concern that accidents and/or incidents are not properly reported and 

documented. This last is leaving safety engineers and stakeholders with inaccurate failure 

data measurements. The uncertainties in the failure data are amplified in situations where 

human judgement is taken as primary input data in risk analysis and management (Zhang 

et al., 2016). Consequently, the uncertainty of events and risk measurements often leads 

to disruption of operation, or an unwanted chain reaction requiring strategic risk control. 

The consequences of high risks in AMSSO have prompted stakeholders to employ 

advanced risk management strategies, to aid in making decisions regarding the allocation 

of scarce resources.   

In order to support the safe and efficient AMSSO, efforts have been made to review the 

monthly descriptions and records of ice and weather conditions for all Arctic states, both 

during the summer and in the winter season. The combination of the information 

contained in the meteorological institutes and published related papers, has provided 

essential support for developing a safe and efficient AMSSO. 

A limited number of academic papers have in one way or another described AMSSOs; 

for example, Gagliardi et al. (2018) described in full details the operational plan of 

carrying out an AMSSO, while Dudley et al. (2000) and Toennessen (2008) described a 

seismic survey vessel and included the layout description of the vessel. However, none 

has been able to venture into addressing the complexity of risks or propose a technically 

sound risk-management plan to carry out AMSSO in a safe and efficient manner. 

Nevertheless, several academic papers have been able to describe the root cause of 

accidents in the Arctic, have analysed safety and risks in Arctic shipping, and have 
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discussed the occurrence of accidents in Arctic voyages. For example, Kum and Sahin 

(2015) discussed a root cause analysis for Arctic Marine accidents from 1993 to 2011, 

Eguíluz et al. (2016) carried out a quantitative assessment of Arctic shipping in 2010-

2014. Khan et al. (2018) discussed an operational risk analysis tool to analyse marine 

transportation in Arctic waters. While Mussells et al. (2017) analysed the risks and 

identified the hazards for winter resource-based shipping in the Canadian Arctic. Jalonen 

et al. (2005) and Goerlandt et al. (2017) carried out a preliminary risk analysis of winter 

navigation. Valdez Banda et al. (2015) carried out a risk analysis of winter navigation in 

Finnish sea areas. However, Afenyo et al. (2017), (Fu et al., 2018b) and Serdar and Bekir 

(2015), provided useful information on addressing the uncertainty of failure data in Arctic 

shipping/navigation.   

Several other studies have addressed the types of accidents occurring in a specific 

maritime area. For example, Hänninen et al. (2014) linked the safety management to the 

maritime traffic safety indicated by accident involvement; Mullai and Paulsson (2011) 

designed a conceptual model for analysis of marine accidents; Rambøll (2006) 

investigated the registered groundings, collisions and navigational traffic patterns 

between Danish and Swedish territorial waters.  

In terms of towing in-water equipment, a seismic survey can be compared to a fishing 

vessel. Therefore, a risk and safety analysis for fishing vessel operation carried out by 

Wang et al. (2005) and Jin and Thunberg (2005), is likewise taken into consideration in 

this present study. Furthermore, descriptive information concerning safety and risk 

management strategies implemented to support AMSSO is rarely considered in Arctic 

operations. Hence, this chapter will start by describing the impression of the Arctic and 
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describing the following: 1) the extent of Arctic navigation, 2) various risk factors in 

Arctic shipping and AMSSO and 3) critical review of safety and risk assessment as it 

relates to AMSSO. Next, the operational characteristics of ship independent operation in 

ice conditions and icebreaker assistance are presented. Based on the lack of a systematic 

risk management plan, FSA is introduced with the contribution of the IMO Polar Code in 

ensuring safety in Arctic operations. 

The main purpose of this Chapter is to gain a high-level insight into AMSSO, as it poses 

a high risk to life, assets, and the environment. Furthermore, the conditions under which 

accidents occur are examined. Such a detailed investigation is significant for identifying 

which scenarios or hazard events should be prioritised, in developing a strategy for risk 

reduction and control in AMSSO. 

2.2 An impression of the Arctic 

The most basic and common definition of the Arctic describes it as the land and sea area 

north of the Arctic Circle (that is, a circle of latitude of approximately 66.34° North) 

(Harriss, 2016). There are just eight countries having territory north of the Arctic Circle, 

they are: Canada, United States (Alaska), Russia, Denmark (by virtue of Greenland, a 

member country of the Kingdom of Denmark), Norway, Finland, Sweden, and Iceland 

(O'Rourke, 2018).  

The Arctic region also consists of the ice-covered Arctic Ocean. The Arctic Ocean is the 

smallest and shallowest of the world's five major oceans, namely Atlantic, Arctic, Indian, 

Pacific and Southern Oceans (Pidwirny, 2009). It is partly covered by sea ice throughout 

the year, and in winter, it is almost completely covered by sea ice. The Arctic Ocean’s 

salinity and surface temperature vary seasonally as the ice cover freezes and melts 

(Rudels, 2016, K and A, 2006). Out of the five major oceans, the Arctic region has the 
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lowest salinity on the average; this is due to the heavy freshwater inflow from streams 

and rivers, low evaporation, and discharge to surrounding oceanic waters with high 

salinities and restricted connection. From June to September, the shrinking of the ice is 

envisaged to be at 50% (Pidwirny, 2009).  

Under present international law, the North Pole position and the region of the Arctic 

Ocean surrounding it, are not owned by any country (The Telegraph, 2013, Harriss, 

2016). The Arctic countries only have limited access to an Exclusive Economic Zone 

(EEZ) of 200 nautical miles (that is, 370 km or 230 miles) adjacent to their coasts as 

documented in Article 76(1) of UNCLOS (MRAG Report, 2013). The waters beyond the 

territorial waters of the coastal states are known to be the “high seas” (i.e., international 

waters). The sea bottom further away from the EEZ is known to be the “heritage of all 

mankind”, and is managed by the U.N. International Seabed Authority in the UNCLOS-

Convention (Guo, 2018). 

Huge areas of Arctic shorelines remain without satisfactory geographic data. Arctic 

countries and their international state agents are faced with the urgent need to quicken the 

provision of Search and Rescue (SAR) services and reachable coastline seaports. 

Extended periods of extreme cold in winter time (see Figure 5), winter darkness, icebergs, 

and summer hurricane-strength storms (see Figure 6), are just some of the serious threats 

to all human and commercial activities in the Arctic.  
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Figure 5: Winter growth of sea ice in January 2016 (Harriss, 2016) 

 

 

Figure 6: A summer storm over the Arctic– NASA’s Aqua satellite captured this natural–, colour image of 

the storm in the Arctic on August 7, 2012. The storm that appears as a swirl is directly over the Arctic in 

this image. NASA image by Schmaltz (2012) 
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2.3 Extent of Arctic Navigation 

New Arctic shipping and marine operations are evolving, but significant challenges 

persist with the presence of ice (Stephenson and Pincus, 2018). From October to June, 

most parts of the Arctic region remain ice locked thereby making navigation impossible 

for most vessels (Drewniak et al., 2018). Sea ice grows in thickness year in and year out 

(Hodges, 2015). Even with the receding sea ice coverage, it is nearly impossible for ships 

to make their way through a region infested with multi-year ice (Dewitz et al., 2015). 

This last demands specially designed vessels and navigational skills, as ships operating 

in the Arctic Ocean are subject to significant obstacles, posed by the presence of ice in all 

its forms (Jensen, 2007). Contrastingly, as parts of the Arctic regions are becoming 

increasingly accessible in recent time, shipping traffic, in turn, could be put at risk.  

Therefore, while the warming of the Arctic may indicate the need for fewer icebreakers, 

the growth in shipping traffic and unpredictable environmental conditions require nations 

to strengthen their icebreaking fleet.  

Icebreakers are a vital means to clear and maintain Arctic navigation, necessary for oil 

and gas exploration. In Arctic navigation, the icebreakers can serve as multifunctional 

platforms to support Search and Rescue (SAR) and mass rescue operations (Drewniak et 

al., 2018). Hence, additional investments in new construction of icebreakers and/or escort 

vessels are required to support the growing need of Arctic marine activities. 

Consequently, the introduction of icebreakers along with well-trained crewmembers in 

carrying out Arctic operations can be essential in order to navigate/operate safely in the 

Arctic.   

Modern Arctic navigation is further faced with geopolitical concerns amongst several 

countries with a stake in this region. For several countries, the Arctic offers an investment 
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opportunity to raise its strategic and economic importance as well as to boost their 

international status (Kossa, 2016). Although the political aspect of the Arctic industry is 

not within the scope of this thesis, this is only mentioned herein to provide the latest 

developments in Arctic navigation.  

2.4 Information on bergy bits, iceberg and growlers 

Icebergs are different from sea ice in the sense that they are formed from freshwater-ice 

originated on land. Bergy bits were once defined by the Canadian Coastguard as a piece 

of glacier ice appearing from 1m to about 5m above the sea level (ECCC, 2016), having 

lengths between 5m and 15m (Canadian Coast Guard, 2019a). The smaller pieces of the 

glacier are the growlers appearing less than 1m above sea level, having a length of not 

more than 5m. Growlers in most cases are transparent, showing greenish or blackish 

colour on the water surface; as a result, it is difficult to detect them.  

Icebergs are glacier ice pieces bigger than bergy bits; the growlers and bergy bits are 

formed by calving from the icebergs (O’Connell, 2013). The little ice pieces in the 

growlers and bergy bits can amount to large forces upon impact with structures; hence, it 

is of importance to obtain information about the possibility of sailing into these tiny 

pieces, drifting close to the parent iceberg. 

In relation to the relative velocities between the little ice pieces and the parent iceberg, 

the little ice piece has a maximum distance it can travel before melting to a trifling size; 

this negligible size lacks the capacity to cause damage in case of impact (O’Connell, 

2013).  

Prediction of the origin of a drifting iceberg can be obtained from ice temperature 

measurements, since the temperature of the parent glacier is stored in the heart of the 

iceberg (Høvik, 2015). 
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A study on an iceberg drifting in the Kara and Barent Sea was carried out from 1987 to 

2005 (Keghouche et al., 2010). In the study, Novaya Zemlya, Franz Josef Land, and 

Svalbard were the core sources for icebergs capable of causing structural damage to ships 

in this region. Also in Keghouche et al. (2010), estimation of calving rate based on the 

average size of icebergs were made on the average number of icebergs on the loose each 

year from diverse sources. Assuming that the estimation is accurate, the yearly number 

of icebergs calved each year would amount to around 19,000 to 20,000 pieces.  

Also based on the study, approximately 77% of the calved icebergs each year become 

grounded, with icebergs spending about 42% of their lifetime stationary. From the study, 

about 20% of the icebergs endured more than one year and only 3.3% endured more than 

two years. The possibility of running into an iceberg is highest close to its calving source, 

and slowly drops with the distance from the source (Keghouche et al., 2010). 

The solid light blue circles in Figure 7 represent the diverse sources of the iceberg and 

the main ocean currents; the arrowhead represents the ocean currents where the icebergs 

float.  
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Figure 7: Iceberg sources, Svalbard and Franz Josef Land (Keghouche et al., 2010) 

The probability of running into an iceberg within a year in the domain from 1987 to 2005 

within a 25×25 kilometre grid cell is graphically represented in Figure 8. The scale is 

logarithmic. The thick grey line shows the northern boundary of the model. The red and 

black colouration on the map represents areas with a high probability of running into 

icebergs about Svalbard to Franz Josef Land. These are areas open to seismic surveying 

and other shipping activities. Wave erosion of materials at the waterline and thermal stress 

caused because of solar radiation, are some of the diverse calving processes from the 

iceberg. Icebergs are easily detected on the ship radar, but the objects in the bergy bits 

and growler size range can sometimes be difficult to detect. For the sake of precaution, 

care is being taken upon sighting or identifying an ice piece.  
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Figure 8: Probability of encountering an iceberg (Keghouche et al., 2010) 

2.4.1 Ice Navigation and Pathways 

Ice is a hindrance to any ship, even an icebreaker, and it is the responsibility of the 

Navigation Officer (NO), to understand the latent power of ice and its destructive 

strength. Nevertheless, it is possible for well-found seismic ships to develop their 

pathways and navigate successfully through an ice-covered prospect project. 

The first principle of successful ice navigation is to maintain freedom of manoeuvre 

(Canadian Coast Guard, 2019b). A detailed description of the most important pathways 

based on the experiment carried out from 1988 to 1992 in the Arctic Circle, shows that 

the spreading of icebergs inside the domain is complex and chaotic. The most important 

pathways from the experiment agreed to a high degree with the one described by 

Abramov (1992), and it is presented in Figure 9. 
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Figure 9: Pathways of icebergs from their calving site based on the model runs covering the period 1985-

2005. Main pathways are shown with larger arrows(Keghouche et al., 2010). 

The growlers, bergy bits and icebergs will flow in the direction of the ocean current as 

shown in Figure 9. The growlers and bergy bits will drift with a higher velocity than the 

icebergs because of their smaller masses. This assumption is dependent on the direction 

of flow of the Ocean and the wind (Keghouche et al., 2010), where the smaller ice pieces 

are more affected by the wind than the iceberg, which moves in line with the current flow. 

Apart from the growlers and the bergy bits, other smaller pieces of ice will also be formed 

from the calving.  
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The smaller pieces of ice, lesser in size to the bergy bits and growler, do not pose a 

significant threat to the approaching vessel hull, but would pose a threat to the seismic 

survey in- and/or on-water equipment. When a vessel navigates through the current, it is 

in a hazardous position, as there might be a high possibility of running into bergy bits and 

growlers. Crewmembers working on board could be put in a dangerous position, if the 

ice pieces are not identified in advance. For a seismic survey vessel navigating in grid 

pattern, it will be necessary to reduce speed in the event of running into an area with bergy 

bits (Canadian Coast Guard, 2009). An impression of the correct approach to an oil field 

in presented in Figure 10. It is noteworthy that the sizes of the different items shown in 

the drawing can differ from a real situation. 

 

Figure 10: Ice Navigation and Pathways model (Canadian Coast Guard, 2019b) 

For a seismic survey vessel approaching packed ice, the vessel should reduce speed and 

navigate at right angles to the edge of the packed ice. This approach is preferred to avoid 

glancing blows. In addition, the ship should be ballasted down to ice draft, if suitable, or 

to such a draft that would offer protection to a bulbous bow, rudder, or propeller (as 

applicable) (Canadian Coast Guard, 2019b). 



32 
 

2.5 AMSSO– An Overview 

A seismic survey is a geophysical survey technique employed to map the geology of the 

rock subsurface. The key driver of this type of survey is to identify possible petroleum 

traps – located in the subsurface –, where petroleum can be located. An image of the 

subsurface can be obtained by employing seismic data. Geologists use the data to interpret 

the rock’s subsurface, and identify areas where petroleum may have accumulated (Rice 

et al., 2015) 

The gathering of seismic data has been carried out in the various Arctic regions for over 

5 decades now. The earliest AMSSO included 2D seismic profiles (refraction and 

reflection), using both land acquisition equipment for wintertime, and a towed marine 

streamer in the summertime. Gathering of the towed 2D streamer data was usually done 

during the open water seasons, where the equipment and vessels could operate in ice-free 

zones. 

Since the improvement in data gathering methodologies and 3D technology in the 1980s, 

there has been a great advancement in data acquisition, including time lapsed or 4D 

seismic. The advanced technologies have been known as one of the most notable 

developments to deliver a step change improvement in seismic image quality (Wilson and 

Dutton, 2019). The advanced technologies have also been known to improve drilling and 

production success in the E&P industry.  

With the exemption of the orthodox 2D offshore Arctic Exploration and Development 

Technology (EDT), many of these advanced seismic methodologies and technologies 

have not been suitable for use in the Arctic (Efnik and Taib, 2011). There could be a 

number of reasons for this, including but not limited to the higher risk prospect in the 

Arctic region, and the lack of technological development to suit the Arctic operations, 



33 
 

considering the overall cost of exploration and production of oil and gas offshore in the 

Arctic.  

2.5.1 Brief history of Arctic seismic surveying 

Until now, AMSSO has been on a small scale (Heide-Jørgensen et al., 2013). The efforts 

made so far have been carried out on the borders of the Arctic, using conventional 

methodologies and technologies whilst taking advantage of open water seasons (Rice et 

al., 2015). However, as stated in section 2.6, a seismic survey operation in Arctic waters 

has metamorphosed since the early 1980s. In the 1980s, Arctic seismic survey operations 

were divided between the E&P industry in pursuit of possible hydrocarbon resources, and 

data gathering operations backed and funded by academic and government research 

groups and consortiums (Rice et al., 2015).  

Early Arctic seismic survey operations in the Sverdrup Basin of Northern Canada were 

carried out using land seismic technology, positioned on top of the ice (Masterson, 2013). 

This method was later used in Alaska in the 1990s, where the offshore operation was 

carried out in late winter season on the sea ice to plot possible near shore prospects. These 

on-ice procedures are limited to conditions of landfast ice (also called shore-fast ice) or 

stable ice. An old-fashioned marine 2D streamer was collected offshore in the Canadian 

Beaufort Sea in the period of 1980 to early 1990. From early 2006, a wide regional 2D 

streamer seismic data (including Ocean Bottom Cable (OBC)), was collected throughout 

the Chukchi and the Beaufort Sea, employing primarily the old-fashioned acquisition 

methods.  

Up until 2009, there have been approximately three exploration grade 3D streamer 

surveys and at a minimum, two smaller 3D OBC developments carried out over specific 
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lease blocks (Rice et al., 2015).  These developments or projects produced more than 

8,000 square kilometres of seismic data. 

In Eastern Canada, Norway, Russia, and Greenland, there have been comparable type 

efforts to collect seismic data north of the Arctic Circle, using mostly the old-fashioned 

technology, and taking advantage of the old summer open water seasons. For comparison, 

there was no activity in the North American Arctic in 2014, while recently in 2015, there 

are about eight 3D surveys going on in the Kara and Barents Seas (Rice et al., 2015). 

2.5.2 AMSSO– Procedure 

The first stage of AMSSO is supplying the seismic survey vessel with all necessary fuel, 

water, food, seismic equipment and crew (IAGC, 2002). The overall Arctic marine 

seismic survey system consists of an escort and a survey vessel that traverse a pathway 

to perform marine seismic surveying in a marine Arctic environment This AMSSO uses 

equipment and techniques described in Gagliardi et al. (2018) and in subsequent sections. 

Seismic surveying in the Arctic or the Antarctic has unique challenges; hence, the data 

acquisition procedure requires particular techniques for operating in ice regimes. To that 

end, Figure 11 illustrates a set of procedures for performing AMSSO. This set of 

procedures gives a general outline of the AMSSO, with the description as follows in 

chronological order:  

1. From the beginning, operators carefully plan a track for surveying the desired area 

of the ocean where ice exists or may be located. Unlike the orthodox marine 

surveying where the survey vessel can simply traverse the area without much 

hindrance, here the operators plan the survey track in the icy region with specific 

consideration to weather conditions, current and historical regimes. Concurrent 

with the planning of the survey track, operators select the required vessels and 
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equipment of the system to conduct the planned survey. These selections are made 

with respect to the environment of the icy regions likely to be encountered. The 

same considerations apply to the selection of the streamer(s), the source(s) and 

other seismic equipment. 

2. Once the vessel and the system devices (equipment) are chosen, operators prepare 

the vessel and install the system equipment. These preparations can incorporate 

outfitting the vessel with particular equipment for conducting the seismic survey 

in ice, such as installing ice skegs on the vessel, modifying decks on the vessel, 

and upgrading other equipment as required. 

3. Once the vessel has been selected and installed with suitable equipment, operators 

can begin the planned seismic survey by taking the vessel and installed equipment 

out to the start of the planned track. If required, the seismic vessel can be 

accompanied by an escort vessel (an icebreaker). Even the travel of the vessel to 

the desired region requires particular planning when the region has ice. For 

example, an initial route may need to be planned to bring the seismic survey vessel 

to an appropriate starting location, so that the equipment of the AMSSO system 

can be deployed without much interference from ice. 

4. Once at the planned start position, operators then begin deploying the equipment 

to commence the seismic survey. Because these procedures are carried out in or 

near icy waters, operators use deployment techniques different from the overall 

conventional deployment procedures used in normal open waters. 

5. Finally, operators carry out the seismic survey with the equipment deployed by 

traversing the planned survey track. Since the icy region changes dynamically and 

has a number of potential dangers and impediments, operators repetitively 
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monitor for threats, manage ice, modify the track if required, and handle 

emergencies. 

 

Figure 11: Procedure for performing AMSSO 

2.5.3 Key risk associated with AMSSO 

AMSSO comes with additional risks compared to other Arctic shipping activities. The 

challenges in Arctic seismic survey can be summed up in two major categories, that is, 

the environmental sensitivity and metocean conditions (ice included) (Rice et al., 2015, 

Hänninen and Sassi, 2010). The operating conditions in the Arctic all shorten the time 

window for conventional seismic operations; such conditions are limited or no daylight, 

extremely cold temperatures, high winds and seas, and variable ice conditions (Ayele et 

al., 2015). These conditions pose great risks to crewmembers, the vessel, and the in-water 

seismic equipment.  
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Hence, operating in this dangerous zone requires a careful selection of marine vessels of 

a suitable ice-class. In addition to the harsh operating conditions, remoteness of this 

region introduces attendant logistical issues. 

Section 2.6 and its corresponding subsections describe in detail the selection of marine 

vessels for Arctic operation as well as the concerns and state of established practice for 

AMSSO “in” and “under” ice conditions. 

2.6 The state of the established practice in Arctic seismic surveying 

2.6.1 Current Practice in AMSSO 

The conventional towed seismic streamer arrangements make use of either fluid or solid 

filled streamers. In order for the towed seismic streamer to maintain a suitable positioning 

of the airgun and streamers, it uses surface referenced floats. To achieve a suitable 

positioning, the arrangements would include floats on the paravanes, which are employed 

to form the lateral spread of the streamers and the airgun as shown in Figure 12. The 

tailbuoy floats the tail of the streamers, which could be 150m apart, while the headbuoy 

floats the streamer lead-ins, and lastly the airgun floats the airgun arrays, which could be 

75m apart in the layout.  
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Figure 12: Schematic illustration of a 3D towed seismic streamer arrangements (Damm and Badewien, 

2014) 

All or any of these arrangements may have acoustic positioning equipment or GPS for 

maintaining exactness of positioning, in the course of data acquisition (Rice et al., 2015). 

As mentioned previously, the presence of ice poses a significant risk to the vessel and 

other in-water equipment as it navigates the hostile environment. Contact between the 

vessel and the sea-ice, and/or any other in-water equipment or cables, can potentially have 

severe consequences resulting in equipment damage, injury, or loss of life. Some of the 

more recent Arctic data acquisition methods have utilized a number of special risk 

mitigation measures, including but not limited to, ice classing of vessels and distinctive 

environmental consideration, in a way to reduce any potential risk from the sea ice. 

With these risks and restricted technology to challenge the recorded and envisaged risks, 

Arctic seismic surveying has been conducted using the open water methods in “ice-free" 

conditions.  
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Most of the AMSSOs to date have been carried out in “ice-free" conditions, and have 

used the conventional seismic methods and equipment (Onarheim et al., 2018). These 

conventional methods are subject to the limits of the equipment and vessel used, and the 

conditions of the prospect area – including the extent of the presence of ice – at the 

scheduled time of the operation (Rice et al., 2015). While these types of surveys are 

organised to reduce risk to the lowest minimum, the underlying assumption is that, if there 

is a bad ice year or rare conditions, the opportunity to collect data for any given project, 

will be at the mercy of the present ice conditions during the scheduled operating window.  

Recent examples of “ice-free” data acquisition projects are as follows: 

 The 2D seismic exploration in the Russian Arctic which was conducted by 

Russian Geophysical Companies (such as MAGE, SMNG, and DMNG), on 

behalf of Gazprom, Rosneft. 

 The 2D regional agenda in the United States Arctic (2006-2009) carried out by 

TGS and ION Geophysical, using a conventional seismic airgun array and a towed 

marine streamer. 

 The 2D regional agenda in the Russian Arctic carried out by ION Geophysical 

(2010-2012), using a conventional seismic airgun array and a towed marine 

streamer. 

Some other recent projects have been carried out in the presence of ice but the key 

precaution is avoidance of the several growlers, icebergs and bergy bits that were seen in 

the prospect area. The surveys carried out in the presence of ice may use the traditional 

seismic vessels with some ice-class and/or winterisation features, with modified in-water 
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seismic devices, on-board ice management systems, personnel, and other support 

facilities to reduce catastrophic failure in the event of incidental contact with sea ice. 

Examples of data acquisition carried out in the presence of ice include: 

 The Shell Chukchi and Beaufort Sea exploration (2006-2007), carried out by 

WesternGeco, 

 The Statoil Chukchi sea exploration (2010), carried out by Fugro-Geoteam, 

 The Western Greenland 3D exploration (2012), carried out by Polarcus on behalf 

of Shell, using on-board ice forecasting tools and two conventional multi-streamer 

seismic vessels operating in tandem, 

 The 2D regional agenda in Labrador (2013), carried out by ION Geophysical 

using a conventional airgun source, and a 2D streamer with an icebreaker escort 

vessel, 

For the successful completion of the above projects, the key focus was avoidance of the 

several icebergs, growlers, and bergy bits that were present in the prospect area. 

There have been a number of executed “under ice” data acquisition projects, but the 

number of completed projects is very limited because of the huge ice contact risk. The 

success of the completed projects has been a result of advanced technology and 

methodologies. These advancements include a conventional 2D seismic vessel with some 

ice-class features. Here, the equipment is deployed in such a way as to ease, but not to 

eliminate the surface footprint of the in-water seismic device; this is done by using a 

technology-based approach, which focusses on the development of new equipment. Thus, 

providing a means for the total elimination of any surface footprint of the towed in-water 

seismic device. 



41 
 

Recent examples of “under” ice data-acquisition projects include: 

 2D Regional seismic projects, carried out in northeast Greenland from 2009 to 

2011; this project was conducted by ION Geophysical using a conventional Ice-

classed seismic vessel, equipped with under-ice technology, and an ice breaker, 

and 

 2D Regional seismic project – an UNCLOS project in 2011 – carried out in the 

Russian High Arctic with ION Geophysical, by outfitting the Arctic classed 

icebreaker with under-ice seismic equipment, and with a nuclear icebreaker as 

an escort vessel. 

Since the 1990s, there has only been a small number of additional “under-ice” surveys 

carried out, but the majority were academic/government based and these utilized a very 

short streamer and a very small source. Hence, the applicability of the data acquired for 

E&P exploration purposes is limited. 

2.6.2 Ice-Classed vessel 

Vessels operating in the Arctic region require special considerations in their design and 

construction, to ensure they are designed against the harshness of the Arctic region 

(Deggim, 2013). In designing special vessels for Arctic operations, the basic parameters 

to consider  are the safety of the crewmembers, the vessel, and associated equipment, 

since these are exposed to ice, and low air and sea temperatures (Rice et al., 2015).  

The classification of vessels for use in ice is a vital reference in choosing vessels for such 

harsh operations. The machinery rating and the hull strength of a selected ship should be 

compared with the ice conditions that such a vessel is expected to navigate in. One of the 

regulatory bodies with the responsibility for setting rules for ice classification is the 

Classification Societies (CS) (Girba et al., 2015). Although there are different CSs with 
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similar criteria and requirements, however, caution should be taken in selecting the most 

appropriate criteria and requirements that include structural and machinery classification. 

A set of unified requirements as developed by the International Association of 

Classification Societies (IACS) for Polar ships prescribes for example, that Polar ships 

navigating in ice-infested waters should be constructed of steel. Vessels (or ships) that 

conform to IACS requirements, under the Polar criteria, are suitable for a Polar Class 

(PC) notation. Vessels designed to operate with an icebreaker notation, have additional 

requirements and often receive special consideration.  

An icebreaker vessel is designed to work with an escort or ice management functions, 

with the powering and dimensions that would allow the vessel to carry out rigorous 

operations, offshore in the Arctic. This icebreaker has a class certificate notation, and 

without this notation, vessels are only allowed occasional ramming. See Table 1 for Polar 

class notation and the corresponding description. 

Table 1: Polar Class notation and description (Amin and Veitch, 2017)   

Polar Class Ice description based on WMO Sea Ice 

Nomenclature 

PC1 Year-round operation in all Polar waters 

PC2  Year-round operation in moderate multi-

year ice conditions 

PC3 Year-round operation in second-year ice 

which may include multi-year ice 

inclusions 

PC4 Year-round operation in thick first-year ice 

which may include old ice inclusions 

PC5 Year-round operation in medium, first-

year ice which may include old ice 

inclusions 
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Polar Class Ice description based on WMO Sea Ice 

Nomenclature 

PC6 Summer/autumn operations in medium 

first-year which may include old ice 

inclusions 

PC7 Summer/autumn operation in thin first-

year ice which may include old ice 

inclusions 

 

Table 1 is adapted from IACS Machinery Requirements for Polar Class Ships (IACS-UR-

I3), 2006, and from Amin and Veitch (2017). 

Poor selection of vessel with fitted ice-class and winterization level could risk the safety 

of operators, assets, and the success of the operation. Additionally, operating the vessel 

above its ice-class standard could possibly render the vessel out of class, and overturn its 

insurance. There are a limited number of seismic vessels built to navigate in ice-infested 

waters; such seismic vessels would be in the PC7 class or in most cases less than the PC7 

ships. This means that only a few seismic vessels are up to-date and suited for Arctic ice 

conditions. Although the proposed IMO Polar Code excludes non-Polar Classed Vessels 

from operating in waters South or North of 60° S or 60° N, respectively.  

Ice Class consideration is essential for ships utilised in ice-covered waters. As a result, 

seismic survey operation in Polar waters requires judicious consideration of support, 

escort, and/ or ice management vessels, to safeguard the operators and the intended 

operation or project. 

2.6.3 Seismic Survey Ship 

Seismic survey ships needed to operate in Arctic waters must be designed to have the 

physical capabilities to withstand the harshness of the Arctic environment, and be able to 
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maintain high safety standards. State-of-the-art and fit-for-purpose technology can be 

employed to reduce risk and ensure operational capabilities.  

Ice class ship type is selected to operate in this environment with key considerations to 

powering and control systems, sea suction layout, fuel capacity, and the ability to make 

satisfactory fresh water in the course of operation in cold sea water. The fuel and fuel 

systems must be able to work in low temperatures, and be able to avoid clouding and 

waxing issues (Canadian Coast Guard, 2019a).  

Other key ship components suited for this operation are ice management and ice 

information support systems. Like the conventional seismic survey operation, here, the 

physical environment must be wholly assessed to make sure that the vessels selected for 

ice avoidance, “ice-free” or “under ice” conditions are matched to the demand of the 

project. In addition to the conventional assessment, the winterization assessment ensures 

that the escort ship(s) and seismic vessel(s) are suited to the project requirements, and the 

intricacies of the ice, et cetera. A higher classed vessel means more confidence to reduce 

the risk from ice and other environmental hazards.  

The powering of a selected ship for Arctic marine seismic survey must be sufficient to 

tackle the rigours of harsh weather, ice resistance, and to provide the required amount of 

bollard pull (force) for the in-water seismic equipment. In addition to the selected 

powering requirement, the control features and the hull strength must be suited, to provide 

for sufficient manoeuvrability and stability in both open waters and ice-infested fields. 

The in-water equipment must be protected by a means of an ice skeg. This special 

protection offers a subsea towage point close to or below the bottom of the keel, and 
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offers protection to the streamers and umbilicals, from these tow-points to the streamer 

deck and to the airgun. 

Ocean Bottom Cable (OBC) operations in ice equally require an approach concerning risk 

assessment and environmental elements. The deployment of an armoured bottom cable 

by ships suitable to this kind of ice seismic operation also needs to be well founded and 

capable in ice. The operational use of seismic vessels in “under-ice” or “ice avoidance” 

seismic projects, together with Ice-classed vessels tailored for this role, must require the 

help of an escorting ice management vessel. This collaboration offers a pre-break or an 

ice-escort for the main ice features like ridges and other ice that would hamper the 

continuous forward advancement, required of the seismic vessel. This collaboration of 

the seismic vessel with an Ice-classed vessel and an escort ice-management vessel helps 

to avert loss, injury, or damage to assets, environment, and human lives. 

2.6.4 Escort/Guard Vessels 

Ice classed seismic vessels are generally provided with an escort ice-management vessel 

to support the towed streamer and bottom cables. In most cases, the choice of an ice 

management vessel depends on its availability (since a small number of icebreakers are 

selected for such work).  

The seismic survey vessel and the icebreaker will both work together closely, in order to 

tow streamers and to complete a fully integrated and coherent operation. The choice of a 

suitable ice-management vessel is focussed not only on the physical harsh environment, 

but also upon the selected ice-seismic escort vessel, and other factors such as ergonomic, 

et cetera. The selection of an ice-seismic vessel and the escort/guard vessel must be 

compatible to work coherently; that is, the two-ship system must be able to navigate in 

all ice conditions mapped for the survey mission.  
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The ice-seismic escort vessel is important in AMSSO because it helps the seismic vessel 

not to halt in the ice, but also to slow down below the minimum stipulated speed. The 

collaboration between the ice-seismic survey ship and the ice-breaker vessel, demands a 

very high level of coordination in terms of both system coordination and navigation 

(Gagliardi et al., 2018). See Figure 13 for the various systems coordination between the 

ice-seismic survey vessel and the ice-seismic escort/guard vessel.  

The icebreaker is assigned to lead in a way quite different from the traditional ice-escort 

operation, as it is now expected to break ice along a defined track, so that the seismic 

survey vessel can navigate and tow the streamer over the required pre-plotted tracks, 

without halting the forward navigation of the seismic survey vessel. An appropriate 

selection of an escort icebreaker will be considered based on icebreaking capabilities, 

bow and hull forms, redundancy protection, directional stability, displacement, track 

clearing characteristics, propulsion type, manoeuvrability, draft, surplus power 

management, and control systems. 
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2.6.5 Specialised Equipment Handling Systems 

Like in open water seismic survey, all seismic surveys involve a configuration of sensors 

or receivers and a source. In order to manage these collections of equipment, a careful 

arrangement of dedicated procedures, handling equipment, and vessels are expected to be 

deployed and be recovered from the field. AMSSO can be categorised into two main 

operations centred on their popularity, namely the two-dimensional (2D) and the three-

dimensional (3D) seismic survey operations. In a nutshell, 2D can be fairly described as 

an old survey method which is quite simple in its underlying assumptions, this method is 

Figure 13: Various systems coordination between the ice seismic survey vessel and the escort/guard vessel 
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still in practice as it offers an effective way to locate oil and gas (Rice et al., 2015). The 

3D, which can be described as a complex survey method, involves the use of sophisticated 

equipment and much more investment, compared to the 2D. The 2D marine seismic 

survey requires a single streamer and a single sound source towed behind the seismic 

survey vessel, while the 3D seismic survey requires multiple sources and streamers 

(IAGC, 2011).  

The 3D survey operation requires a significant amount of in-sea equipment and a vessel 

capable of towing 16 or 20 streamers with lengths ranging from 96 to 120 Kilometres. 

Subsequently, the back deck of a seismic survey vessel becomes very busy because of the 

activity connected to the handling equipment, such as sound sources, streamers and the 

related control devices. Diverters or paravanes spread the streamers’ cables. This can be 

pictured as a type of mid-water trawl door, extending to over 500 meters in width. On the 

ends of each streamer is a tailbuoy, which carries flashing lights and radar reflector. The 

various arrangement of the handling equipment at the back deck of a marine seismic 

survey vessel has been represented in Figure 12. 

Organising and working in a survey field, needs to be safe and efficient with the help of 

highly skilled personnel. The major concern in Arctic Marine Seismic Surveying is the 

risk of in-water equipment making contact with sea ice. The most common of the risks is 

the possibility of snagging and sorting out the auxiliary equipment, such as Streamer 

Recovery Devices (SRD). There is a high possibility of losing all of the source array and 

streamer(s). With the risk of streamer fluid leaks or spills, the use of solid streamers can 

offer protection against such leaks. Source umbilicals and lead-ins provide a better shield 

against separation by ice contact. 
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The use of an ice skeg on the vessel provides a solution to some of the problems that are 

usual under sea ice operations. Therefore, the use of an ice skeg and submerged source 

floats should be encouraged, in order to achieve success in any marine seismic survey 

arranged for under-ice mission (Rice et al., 2015). 

2.6.6 Ice management system 

Ice management is another important key factor to enhance a safe and efficient operation 

in the Arctic. Factors of ice management required for seismic acquisition are detection 

and prediction of ice hazards. Seasoned ice management professionals implement the 

detection and prediction of ice. These professionals provide support from ashore, with the 

help of a host of remote sensing technologies (Rice et al., 2015).  

However, with limited communication systems, the safety engineer or stakeholders 

embark on icebreaking and ice dispersal techniques (Gagliardi et al., 2018). In the 

icebreaking procedure, the icebreaker breaks up high concentrations of mobile packs or 

large floes ice into small pieces. The resulting broken pieces can then flow around the 

survey vessel's hull, whilst the ice skegs protect the deployed cables and lines for the 

streamers and sources. In the ice dispersal procedure, the supporting ice classed vessel 

breaks and spreads out large floes by using propeller wash and/or high-speed manoeuvres. 

Various ice breaking patterns can be used to clear ice so that the survey vessel can traverse 

the survey path. These icebreaking patterns are illustrated in Figures 14 to 17. 
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Figure 14: Linear icebreaking pattern (Gagliardi et al., 2018) 

 

   

Figure 15: Sector icebreaking pattern (Gagliardi et al., 2018) 
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Figure 16: Circular icebreaking pattern (Gagliardi et al., 2018) 

 

   

Figure 17: Pushing icebreaking pattern (Gagliardi et al., 2018) 
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Other sections to acknowledge regarding the concerns and state of established practice 

for AMSSO “in” and “under ice” conditions are: Integrated Multi-Vessel Navigation 

System (IMVNS), Communications, Geophysics for Shallow Hazards, Marine 

Mammals, Marine Sound, Ice Experienced Maritime Professionals, Extended work sets 

and Fitness for Duty etc. More details on the above can be found in (Rice et al., 2015, 

Gagliardi et al., 2018). 

2.7 Some drawbacks on replacing the conventional seismic survey using a survey 

vessel  

Knowing the negative effects that surface ice conditions contribute to the marine seismic 

acquisition, several alternative technologies have been discussed to circumvent these 

negative effects. A promising way out of these negative effects or problems might be 

related to keeping above or below the ice (Rice et al., 2015). A recognisable alternative 

to towed marine streamer would be the launching of OBCs or Ocean Bottom Nodes 

(OBNs). Each of these relies on launching either seismic cable, autonomous recording 

nodes or a hybrid solution of autonomous nodes mounted on a cable. These solutions 

have their drawbacks. The major drawback of an OBN is power supply, whereby batteries 

have to be replaced at certain time intervals, usually less than 60 days (Daleel, 2019). 

Quite a lot of seismic contractors are trying to modify surface streamer equipment to work 

below the ice, employing fully submerged seismic devices. The seismic gear is typically 

mated with the modified surface streamer equipment to provide near neutral buoyancy 

with control surfaces to offer trim buoyancy. Nevertheless, this can be problematic 

because GPS cannot be employed in the positioning of the seismic receivers. The 

alternative is to use a fully submerged acoustic solution but data collected in this way 

might be of limited value (Björn Heyn et al., 2018). 
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To shrink the effects of seismic acoustic pulses on sea life, alternative sources can be 

selected that either stretch out the acoustic amplitude over a longer time period (marine 

vibroseis) or control the frequencies that are produced by airguns (IAGC, 2011). Each 

has some drawbacks and needs further development, but could be used both in ice 

obstructed and non-obstructed waters (Rice et al., 2015). 

The use of Autonomous Underwater Vehicles (AUV’s) or submarines to pull streamer 

cables has been deliberated on for over 20 years now but their use is still viewed as 

impractical or cost prohibitive.  

One possible alternative to replace a seismic survey vessel in pinpointing the location of 

oil and gas resources in the Arctic is the use of Unmanned Aerial Vehicles (UAV’s) 

(IAGC, 2011). However, this technology is mature enough to go on full-scale application 

but it is still not extensively used in the Arctic today as GPS does not work under water 

and surfacing is a difficult task in the Arctic (Björn Heyn et al., 2018). 

All of the different kinds of suggestions to replace seismic survey ships generally only 

collect specific data types. Consequently, one methodology might not completely replace 

others. The arctic geological survey, therefore, depends on financing the various available 

means of reaching this remote region of the earth and making use of economic, military, 

political and scientific interests alike.  

2.8 IMO’s contribution to Safe Arctic Shipping Operations 

Shipping operations in the Arctic (and the Antarctic) regions such as marine seismic 

surveying, fishing, tourism, and other marine and offshore operations are exposed to a 

number of unique risks.  Bad weather conditions, poor communication systems, short 

daylight, and lack of updated navigational charts and remoteness of this area (IMO 
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Document, 2019), are a few examples of the unique risks that mariners and other key 

players in the Arctic oil and gas E&P lifecycle face. 

All the aforementioned concerns and more are the major focus of the IMO to safeguard 

life, property and the Arctic environment. IMO's requirements, provisions, and 

recommendations have been developed over the years (IMO, 2018a). Over the past 27 

years, the IMO has established several requirements, guidelines, and recommendations 

concerning Polar ice-covered waters covering the Arctic and the Antarctic areas. These 

requirements, guidelines, and recommendation are concerned with the certification of 

seafarers on ships operating in Polar waters.  

The guidelines for ships operating in Arctic ice-covered waters are planned to tackle those 

additional provisions thought necessary for consideration outside the existing 

requirements of the SOLAS Convention (IMO Document, 2019). The IMO has accepted 

the International Code for Ships Operating in Polar Waters (Polar Code), and associated 

amendments to the International Convention for the Safety of Life at Sea (SOLAS) to 

make it mandatory, marking a notable milestone in the Organization's work to protect 

ships (Jensen, 2016). 

The introduction of ship classes by the IMO-Polar Code also forms an integrated approach 

to ensuring the safety of life, operation, asset, and the Arctic environment. The 

classification of ships differentiates between Polar class and Non-Polar class ships with 

design preferences. The IMO guidelines have also introduced a system developed to show 

the different levels of strength and capability for vessels navigating in Arctic waters as 

discussed earlier in section 2.6.2.  



55 
 

In parallel to the development of the IMO guidelines, the International Association of 

Classification Societies (IACS) has established a set of Unified Requirements, which, 

integrates suitably with the general classification society rules, addressing all essential 

aspects of construction for ships of Polar Class (IMO Document, 2019). 

The Maritime Safety Committee, at its seventy-fourth session in 2001 and the Marine 

Environment Protection Committee (MEPC) in 2002, approved the Guidelines for Formal 

Safety Assessment (FSA) for use in the IMO rule-making process, at its forty-seventh 

session (IMO, 2015, IMO, 2018b). The Maritime Safety Committee (MSC) deals with all 

matters related to maritime safety and maritime security which fall within the scope of 

IMO (MSC Document, 2019). The FSA methodology is a structured and systematic 

methodology, aimed at enhancing maritime safety, as well as protection of life, health, 

the marine environment, and asset, by using risk analysis and cost-benefit assessment 

(IMO, 2015).  

The method of foreseeing hazards and addressing them before they occur is incorporated 

in the FSA proactive risk-based methodology in conjunction with the use of expert 

judgment (IMO, 2018b). The introduction of expert judgement not only contributes to the 

proactive nature of the FSA methodology, but it is also an essential part in risk analysis 

where there is a lack of historical failure data (IMO, 2015). 

The IMO, with the responsibility of dealing with all phases of maritime safety and 

protection of the marine environment, has acknowledged FSA as an alternative proactive 

safety approach known as Goal Based Standards (GBS) (Hermanski and Daley, 2005). 

2.8.1 Marine Risk Management and the Polar Code 

Generally, all ships whether new or existing, operating on international or local passages 

within IMO defined boundaries of Polar waters must adhere to the Polar Code. The 
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implementation of the Code came into full force on the 1st of January 2017 (IMO, 2018a), 

while existing ships still have until their renewal survey or their first intermediate after 

the 1st of January 2018 to conform (IMO, 2018a). As with most IMO’s rules, government 

vessels that are not involved in commercial business are exempted from the Polar Code 

regulations but there is no room for laxity as government and academic researchers are 

strongly advised to act in a consistent manner, to an extent as reasonable and practicable 

to agree with the requirements of the Polar Code.  

The Polar Code manages the risks of Arctic shipping by defining objectives and 

functional prerequisites relating to watertight and weather-tight integrity; ship structure; 

stability and structural subdivision; operational safety; fire protection and safety. Other 

risks managed are machinery installations; navigational safety; life-saving arrangements 

and appliances; communications; vessel manning and personnel training; voyage 

planning; and prevention of pollution by the garbage disposal, noxious liquid substances, 

oil, and sewage (Ghosh and Rubly, 2015). 

According to the Polar Code, vessels wishing to operate in Polar waters shall be required 

to apply for a Polar Ship Certificate, which classifies the vessel as either a Category A or 

B or C vessel (Ghosh and Rubly, 2015). 

2.8.1.1 Ship Categories 

The idea of splitting ships into different categories was initially introduced in the Polar 

Code for the sole purpose of organising their requirements against the classes of ship. For 

an ice class notation, there exist three Polar Ship categories namely, A, B, and C. These 

categories provide a general indication of a ship's worthiness to sail through in an ice-

infested environment.  Ships meant to sail through Polar water will usually fall into one 

of these categories, namely (IMO, 2016b):  
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1. Category A 

The ships under these categories are designed to operate in at minimum a first-year ice, 

with nominal ice thickness greater than 70cm. The medium first-year ice may include old 

ice inclusions. Category A ships, in general, will be purpose-built having primary 

responsibilities and design features for operating in hostile Polar ice conditions, and 

having the capability to work independently. The standard dimensions for parts of the 

ship structure must be compliant with IACS Polar Class PC 1 to 5 (or at minimum the 

IACS Polar Class PC5). If the structure can comply with any other standard that is 

equivalent to an acceptable level of safety, then the ship can operate as a category “A” 

ship.  

2. Category B 

The ships under this category are not included in category A; they are designed to operate 

in at minimum thin first-year ice, with nominal ice thickness greater than 30cm. The thin 

first-year ice may include old ice inclusions. A typical category B ship will navigate in 

the Polar ice conditions independently or with an escort icebreaker on a seasonal basis. 

The standard dimensions for parts of the ship structure must be compliant with IACS 

Polar Class PC 6 to 7 (or at minimum the IACS PC7). Alternatively, the flag state can 

consent to another ice class notation, for example, the Finnish-Swedish Ice Class 1A super 

(or IA), if an acceptable level of safety can be proved. 

3. Category C 

The ships under this category represent any other ship operating within the Polar waters. 

These ships do not necessarily need to be ice strengthened hence they can operate in open 
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water or light ice conditions. Even in light ice conditions, the flag state can demand that 

the ship must be ice strengthened to meet up with an acceptable standard.  

The appropriate selection of an ice-class as well as the subsequent Polar ship category 

would be judged based on the predicted ice conditions of the planned sailing area. Other 

vital information on the ship’s drawbacks will need to be documented in the Polar Water 

Operational Manual (PWOM) and the Polar Ship Certificate. 

2.8.2 POLARIS 

To ensure safe navigation in ice, IMO came up with a harmonized methodology for 

evaluating the operational setbacks in ice-infested environments through the Polar 

Operational Limit Assessment Risk Indexing System (POLARIS). In 2016, this 

methodology was published as a recommendatory IMO Circular through the Maritime 

Safety Committee (MSC) (IMO, 2016a).  

Experience and best practice from the Russian Ice Certificate concept and Canadian 

AIRSS system are incorporated into this methodology with additional input supplied by 

the rest of the coastal administrations having the experience to regulate Arctic marine 

traffic. The purpose of POLARIS is to evaluate the environmental risk on ships 

employing the ship assigned ice class and the World Meteorological Organisation 

(WMO) nomenclature.  

POLARIS can be used before embarking on an Arctic voyage or can be used on board in 

making a real-time decision on the bridge, like any other methodology. POLARIS is not 

intended to substitute for experienced master’s judgement. It evaluates ice conditions 

centred on a Risk Index Outcome (RIO). Results can be gotten by carrying out the 

following simple calculation: 
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𝑅𝐼𝑂 = (C1 × RV1) + (C2 × RV2) + (C3 × RV3) + (C4 × RV4) 1.1 

Where; 

C1, …, C4 = concentration of ice types within ice regime. 

RV1, …, RV4 = Corresponding risk index value for a given ice class. 

From the above, if a small value (0 ≤ 10) is obtained for RIO, then it shows an acceptable 

risk level, hence the operation may go on, whereas, a large RIO value greater than 10 

shows an elevated risk level; hence, the operation might be stopped, reassessed or 

continued with caution, by reducing speed, et cetera.  

The Risk Values (RVs) depend on ice-class, operational state (whether operating alone 

or with an escort icebreaker) and season of operation. POLARIS offers RVs for seven 

IACS Polar Classes, four Finnish-Swedish Ice Classes, and non-Ice-classed ships (IMO, 

2016b). More details on POLARIS Risk Values for Winter Ice navigation can be found 

in IMO (2016b), and the general theory proves that an increase in ice thickness and 

reduction in ice-class increases the risk level of ice navigation. 

2.8.2.1 Operational Assessment for Arctic Operations 

Under the umbrella of Polar Code, ship owners and stakeholders are expected to carry out 

adequate operational checks before entering Polar waters (IMO, 2016b). The results of 

the operational checks are vital and are directly related to other regulations in the Polar 

Code. The operational checks include operational limitations of the vessel, its capabilities 

as described in the PWOM and sited on the Polar Ship Certificate.  

Other items to consider in the assessment is the life-saving facilities. Ship owners and 

stakeholders are strictly advised to carry out an internal risk assessment, which 

contributes significantly to their internal safety management systems. Risk assessment 

given in the Polar Code is not intended to substitute the company's existing risk 
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management culture, rather it helps to validate best practices. The outcome of the 

assessment should at least cover the following items: 

 Work carried out in low air temperature, high latitudes, and ice conditions 

 Possibility for abandonment on ice or on land 

 Polar Code hazards and other identified hazards 

The Polar Code does not include any stipulated format for risk assessment, but it provides 

guidance on how to carry out such operational assessment. In defining the scope of 

operational assessment, ice-class can provide a basis for definition, and in all cases, expert 

opinion is required to provide a full operational assessment. Assessment from the early 

stage of ship design is recommended so that outcomes can be integrated into the 

construction and operation procedure in the PWOM. According to Polar Code, the 

following basic steps are recommended to be taken (IMO, 2016b): 

1. Hazard identification centred on a review of the proposed operations. Operations 

in ice conditions, low air temperature, and high latitudes should be in 

consideration. 

2. Develop a risk model for analysing the probability and consequences of a potential 

hazard event. 

3. Carry out risk ranking to determine acceptability and non-acceptability of risk. 

4. Carry out risk control options to reduce the frequency and consequences of an 

unwanted event. 

5. Take decision by incorporating the risk control options as desired. 
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2.9 Developing a strategy to manage difficult operational risk in a poorly 

understood environment: AMSSO Case Study 

2.9.1 Introduction  

The term "risk" is often used in our everyday life, the accurate definition is hard to capture 

but according to Garrido and Saunders (2019), risk can be defined as the likelihood and 

consequence of a hazard. It can also be described as the likelihood and impact of 

unexpected hazard events that adversely influence any part of a process system, leading 

to operational, tactical or strategic level failures or irregularities (Baryannis et al., 2019). 

Operational risk herein, summarises the uncertainties and hazards that crewmembers face 

when they attempt to carry out their day-to-day business activities in marine and offshore 

environment. 

There is an element of risk inherent in most, if not all engineering inventions (Engineering 

Council, 2011). Therefore, managing such risks and unexpected events leading to system 

failures and/or loss or injury to human life is vital in engineering practice.  

From the definition of risk, the basic elements of risk are “likelihood” and “consequence” 

of an unwanted event (Garrido and Saunders, 2019). The Risk Index Value (RIV) which 

is consequence multiplied by likelihood can be obtained if the information on likelihood 

and consequence are known. Nevertheless, where there is lack of sufficient data and 

information for identification of the risk influencing factors in a poorly understood 

environment, it becomes difficult to manage such risks (Fu et al., 2018a). Hence, the 

immediate need to tackle the complexities of risk assessment. This process of tackling the 

problems of risk assessment has led to the development of risk measurement disciplines 

such as Advanced Risk Assessment, Advanced/Robust Risk Analysis, and Strategic Risk 

Management. 
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Presently, strategic risk management techniques for improving safety in the maritime 

industry are quite expensive and in most cases, the methods might not be suitable or 

precise due to inadequate applicable risk related data and the associated high level of 

uncertainty involved in the available data (Sing Sii et al., 2001). As a result of this, the 

main objective of section 2.10 is to review all relevant risk analysis techniques that 

address uncertainty and carefully examine suitable criteria and alternatives in controlling 

complex risks in an economically viable strategy.   

2.9.2 A review of Advanced Risk Analysis and Management techniques 

Risk assessment and risk analysis are interchangeably used in marine risk reduction/ 

management disciplines. For clarity, risk assessment involves processes and technologies 

that identify, evaluate and report on risk-related concerns while risk analysis involves 

system description– a process of estimating the probabilities and anticipated 

consequences of an identified hazard. Whereas risk management is the continuing process 

to identify, analyse, evaluate, and treat loss exposures and monitor risk control and 

financial resources to mitigate the adverse effects of loss or accident.  

In simple terms, risk management describes the Identification, Analysis (or 

Measurement), Reduction and Monitoring of risk (Health Guard Security, 2015). 

Therefore, from a hierarchical perspective in Figure 18, risk Analysis is part of Risk 

Assessment, which in turn is a part of Risk Management. 

 

 

 

 

Figure 18: Relationship between Risk Management, Assessment & Analysis (Health Guard 

Security, 2015) 
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A limited number of advanced risk analysis models have been developed to lower risk 

and improve safety in AMSSO and Arctic shipping in general, with reference to the web 

of science and Google scholar search. Criteria for the concerned topic search via an 

advanced Google search on the 8th of January 2019 included: 

 all these words: accident analysis, risk analysis of Arctic operation 

 this exact word or phrase: "Arctic seismic exploration" 

 any of these words: Arctic geo-data acquisition OR Arctic oil and gas exploration. 

Approximately 600 academic material were obtained in the review of risk management 

in Arctic operations. However, most of the results mainly focussed on Arctic shipping 

and operations, Arctic drilling and Arctic navigation but none dealt with the risk 

management in AMSSO. Hence, there is an urgent need to take into account the unique 

risks of AMSSO due to icing, ice loading, low temperatures, remoteness, wind-chill 

effects, limited daylight, etc. 

Another search was carried out to identify the various risk factors and hazard elements in 

Arctic operations, which gave approximately 33,208 websites and PDFs results, 

reordering these results via Google scholar, presented 75 academic papers. The 75 

academic papers included journals papers and company research reports from science 

databases namely: sciencedirect.com, semanticsscholar.org, Viewlt@LJMU, 

researchgate.net, bibsys.no, core.ac.uk, Arctic-council.org, lu.se, sandia.gov, and 

springer.com. 

The Presentation of the literature results both from the Google scholar search and studied 

books from LJMU library will follow the chronological order of the Polar Code– and 

FSA–, steps in managing Arctic risks (IMO, 2016b). It is worth noting that before 



64 
 

commencing any risk management study, it is important to have a preparatory stage, here, 

the goals of the study are defined, and boundaries are set out.  

Consequently, one of the reviewed papers revealed that identification of the risk factors 

or hazard events in Arctic operation, which is the first step in risk analysis, can be 

challenging due to the limited shipping activities in the Arctic Ocean (Fu et al., 2015). 

Moreover, there is a lack of sufficient statistical accident data to thoroughly identify 

hazard events of Arctic shipping operations (Fu et al., 2018a). The problem of uncertainty 

of failure or hazard event data, which emanates from lack of experience in the field and 

the limited shipping activities in the Arctic Ocean, brings enormous challenges to 

managing risks in AMSSO. 

In order to improve safety in AMSSO through advanced risk analysis and management 

techniques capable of dealing with data uncertainty, it is important to first identify 

possible hazard events in the system. From the 75 relevant papers and the studied books 

from LJMU library, it is revealed that Arctic operations are complex and dynamic in 

nature with several risk factors originating from the environment, human, technical, 

management and political factors (Ehlers et al., 2014, Ayele et al., 2015).  

Studies that are more recent also support the aforementioned risk factors (Fu et al., 2018b, 

Rahman et al., 2019, Khan et al., 2018). Experts including academia, industrialists, related 

field managers, and stakeholders are also considered in the hazard identification stage of 

the risk management study. 

Although there is no best method for hazard identification, experts can apply any 

methodology to identify the causes and effects of accidents and the relevant hazards 

(Asuelimen et al., 2019, Loughran et al., 2002). With the limited availability of historical 
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data on seismic vessel accidents/incidents a more detailed risk identification method such 

as Checklist, Hazard and Operability studies (HAZOP), Failure Mode and Effect Analysis 

(FMEA) and Fault Tree Analysis (FTA) might be well suited (Leimeister and Kolios, 

2018, Ericson, 2015, Fuentes-Bargues et al., 2017).  

A detailed risk identification method will also involve the question of how and why 

accidents occur just like the HAZOP technique. Consequently, Kum and Sahin (2015) 

investigated into the subject of how and why Arctic accidents occur by including expert 

knowledge in their Root Cause Analysis (RCA) to identify and investigate the causal 

factors in Arctic marine accidents taking data from Marine Accident Investigation Branch 

(MAIB) from 1993 to 2011. Ship-ice collision and grounding were selected as the most 

common accidents in the Arctic region.  

Consequently, the presence of ice is a major threat to Arctic operations, and there is an 

urgent need for academic researchers to propose a recommendation to reduce the 

occurrence probabilities of ships colliding with ice (Fu et al., 2018b). 

Risk analysis of Arctic operation including AMSSO is a function of (i) ice and weather 

conditions, geographical positions (ii) traffic patterns (iii) previous marine accidents (iv) 

traffic and ice class regulations as well as ice breaker assistance (Serdar and Bekir, 2015). 

In addition, it remains that the most significant risk factors faced by mariners working in 

the Arctic region include drifting ice and extremely low temperature (Valdez Banda et 

al., 2015, Goerlandt et al., 2017, Johansen, 2013, Khan et al., 2018). Moreover, a very 

prominent risk factor experienced in the Arctic is the inaccessibility of the region and as 

such rescue response in the Arctic can be delayed (Jensen, 2007).  
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Although it is perceived that accidents are rare in the Arctic, this could be because of the 

lack of documented incident/accident records. The lack of sufficient accident data does 

not negate the need to develop a robust risk management model since accidents in this 

region often result in high consequences (Zhang and Thai, 2016). Despite the lack of 

sufficient accident data in the Arctic region, the Polar code painstakingly highlighted a 

comprehensive list of hazards for ship operations in Polar waters (IMO, 2014). Low 

temperature, poor hydrographic data and information, potential lack of ship crew 

experience and the presence of ice were not left out of the comprehensive list. 

With the prolong darkness condition in the Arctic, it is revealed that the number of 

accidents happening during this condition were found to be approximately twice the 

number happening in daylight conditions (Akten, 2004).  

The human element, a special kind of risk factor in Arctic shipping, is scantily discussed 

in Arctic accident topics but (Marchenko, 2013) investigated ship-ice collision accident 

model and associated ship-ice accidents with human error, weather and ice conditions.  

Whereas, (Kum and Sahin, 2015, Serdar and Bekir, 2015) identified collision and 

grounding as the most frequent accident scenarios in Arctic operations and linked human 

element as the highest priority for root causes of Arctic marine accidents. Other Arctic 

risk management bodies and authors such as American Bureau of Shipping (ABS 

Advisory, 2014a), Canadian Coast Guard (Canadian Coast Guard, 2013), and Khan and 

Kum (Khan et al., 2018, Kum and Sahin, 2015) have identified weather and ice 

conditions, human error and faults in navigation systems as possible risk factors in Arctic 

shipping.  
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As reported by Lloyd’s Marine Intelligence UFnit  Sea  Searcher  Database,  Canadian  

Transportation  Safety Board (Marine) and Canadian Hydraulics Centre and Arctic  Ice  

Regime  System  Database, there exist 293 marine incidents which have occurred in the 

Arctic region between  1995-2004 (Serdar and Bekir, 2015). And from 2004 up till 2017, 

it is believed that more accidents/incidents have happened as a result of the increased 

shipping activities in the Arctic and the melting of sea ice (Afenyo et al., 2017).  

Since Arctic accidents are composed of constant and unsteady parameters, understanding 

the chain of reaction or failure path of each risk factor is important. In order to simplify 

each risk factor, identifying the root cause(s) of an unwanted event plays a significant 

role in risk analysis. However, reports, summaries and important data of marine Arctic 

accidents/incidents are just not enough to reveal the failure path in AMSSO. To this end, 

experts’ experiences are consulted to discuss failure paths and deliberate on the 

probabilities of all risk parameters and predict accidents that might occur in the future.    

Since the presence of ice and ice loading is a major concern in Arctic operation (Ayele et 

al., 2015), it is still very difficult to obtain information on actual ice load. To counter the 

unavailability of actual ice load data, Ehlers et al. (2014) focussed on various parameters 

such as estimating ice loads with expert judgement, taking maximum loading into 

consideration, assessing structural concerns of the loading events, establishing a risk-

based design framework and assessing related potential environmental consequences.  

Risk-based design methodologies using first principle methods offered a better way to 

achieve safe navigation within and outside of the Arctic. Kjerstad and Skjetne (2014) also 

investigated the impact of ice load on marine vessels, and from the experiment, it was 

revealed that the ice loads affected several major elements of the system. 
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Since the risk factors in Arctic operations are a result of several combinations of hazard 

elements, it is pertinent to carry out effective means to predict the occurrence probability 

of events occurring in this dangerous zone to account for the risk estimation and data 

uncertainties. 

2.9.3 Uncertainty Analysis 

Risks, fuzziness, and uncertainties penetrate every aspect of the exploration of petroleum 

resources in the Arctic (Hasle et al., 2009). To address risks, fuzziness and the uncertainty 

of failure data in a complex operation including AMSSO, most researchers have in most 

times incorporated fuzzy set theory in their risk analysis techniques. Fuzzy set theory has 

successfully been used in novel Probabilistic Risk Assessment (PRA) approaches for 

safety and reliability evaluation under conditions of uncertainty (Zolotukhin and 

Gudmestad, 2000, Kabir and Papadopoulos, 2018).  

Bayesian subjective probability approaches have attempted to solve the problem of 

subjective data uncertainty but recently an alternative method has been proposed that 

involves interval probabilities along with fuzzy sets (Aven, 2016). The fuzzy set, apart 

from having interval distribution probabilities, also has the qualitative feature to express 

the strength of an expert's knowledge to inform the risk analyst or decision-makers. The 

risk analysis results are then summarised in not only probabilities P but also the pair (P, 

DoB), where DoB provides some qualitative measures of the strength of the knowledge 

supporting P. The fuzzy set is compatible and popularly used today, with the conventional 

risk analysis techniques.   

Ferdous et al. (2013) analysed system safety and risk under high uncertainty using a bow-

tie diagram. Since the traditional bow-tie technique does not take account of uncertainty 

in failure data, the author introduced expert knowledge to make up for the missing data, 



69 
 

and incorporated fuzzy set theory, and evidence theory to assess the uncertainty in the 

system’s risk analysis. Other advanced risk analysis techniques used with fuzzy set 

theories include FTA (John et al., 2017), AHP (Sahin and Yip, 2017), PROMETHEE 

with variation of fuzzy set (Tian et al., 2014), BN (Eleye‐Datubo et al., 2008) and FMEA 

(Hajighasemi and Mousavi, 2018). 

Risk Models play an important role in risk analysis and management. Nowadays, we see 

elements of integrative thinking, where risk analysts and decision-makers use different 

techniques to obtain something new and wider ranging. For example, John et al. (2017) 

and Alyami et al. (2019) developed an integrated fuzzy risk assessment technique for 

seaport operations. In the study, the weight of risk factors was determined using the fuzzy 

AHP methodology while ER methodology was used to synthesise the analysis. Validation 

of the developed model was completed using Sensitivity Analysis (SA).  

Again, Zhang et al. (2016) developed an integrated fuzzy risk assessment technique for 

inland waterway transportation systems (IWTS). In the study also, a hierarchical structure 

for modelling IWTS hazards (hazard identification) was utilised to screen the hazards 

before ER was utilised to synthesise the risk estimates from the bottom to the top along 

the hierarchy through an Intelligent Decision System (IDS) Software. With these 

innovative advancements, it is speculated that this integration would enhance the 

resilience of the system in question, in a systematic approach.  

2.9.4 Decision-Making Strategies 

Once the question of how and why accidents occur, and the most appropriate method to 

treat uncertainty is answered, the next question is, how to achieve the most suitable risk 

control option for decision-making? There are several risk reduction techniques leading 

to an adequate decision-making process in risk management discipline, but the choice of 
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selection depends on several criteria such as costs, legal factors, benefits, risk reductions, 

political and environmental factors (Ayyub et al., 2002). Other criteria can include the 

availability of risk data, or time span taken to install a risk barrier.  

Several mathematical techniques have been used to synthesise the most appropriate 

option for risk reduction with the associated criteria such as listed in (Ayyub et al., 2002). 

For a simple decision-making on the most appropriate risk control option, safety 

engineers and stakeholders can use the Cost-Benefit Analysis proposed by IMO (Wang 

and Pillay, 2003). That is if cost and benefit (risk reduction) are the main criteria to be 

considered in decision-making. However, in a complex system with several criteria and 

alternatives, safety engineers and stakeholders can use multi-criteria decision-making 

(MCDM) techniques. 

Recently, a review of MCDM applications was carried out to identify the most widely 

used and efficient MCDM technique. Approximately, 128 peer-reviewed papers were 

published from 1995 to June 2015 in flood risk management. It was also observed that 

the number of flood MCDM publications has exponentially grown during this period, 

with over 82% of all papers published since 2009. Consequently, AHP was the most 

popular method, followed by TOPSIS, and Simple Additive Weighting (SAW) 

techniques (de Brito and Evers, 2016).  

In another study to identify an efficient MCDM, a review of 176 papers published 

between 2004 and 2015, from 83 high-ranking journals relating mostly to Management 

Sciences and decision-making was carried out. The results of this study indicated that 

more papers on VIKOR (VlseKriterijuska Optimizacija I Komoromisno Resenje) 

technique were published in 2013 than in any other year (Mardani et al., 2016). The 
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application of several MCDM, Multi-Objective Decision Making (MODM) techniques 

can be found in (Mardani et al., 2015). In Decision-making applications and theories, 

several modelling techniques are available but selecting an appropriate technique depends 

upon the decision-maker, desired goals, available information, time, etc. The most 

important advantage of the MCDM methods is their capability of addressing the problems 

that are marked by different conflicting interests (Mardani et al., 2015, Kittur et al., 2015) 

Although there is greater interest in MCDM, uncertainty analysis remains an issue. To 

address the issue of uncertainty in decision-making, several stakeholders have initiated 

the introduction of a fuzzy set into MCDM techniques. Torfi et al. (2010) used two Fuzzy 

MCDM methods to solve an MCDM problem. First, the Fuzzy AHP (FAHP) technique 

was applied to determine the relative weights of the evaluation criteria and the extension 

of the Fuzzy TOPSIS (FTOPSIS) technique was applied to rank the alternatives. 

Empirical results show that the proposed methods are viable approaches especially when 

data are vague and imprecise (Kusumawardani and Agintiara, 2015). 

With the lack of systematic risk management methodology, Formal Safety Assessment 

(FSA) methodology as approved by IMO in conjunction with other international and 

national regulatory authorities and class societies (Hermanski and Daley, 2005) will be 

synthesised into AMSSO risk management. Consequently, the FSA methodology will 

enhance the strategic risk management of both documented and envisaged risks posed by 

the ever-changing and dynamic Arctic environment. 

2.10 Formal Safety Assessment (FSA) 

Originally introduced in the response to the Piper Alpha disaster in 1988, FSA is currently 

being used in the IMO to support the rule-making process (Sames, 2009). The FSA 

framework can best be described as a balanced and a systematic process of assessing risks 
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associated with shipping operations and for evaluating costs and benefits of diverse 

options for identified risks reduction (Hermanski and Daley, 2005). Most modern risk 

assessment studies related to shipping activities are often faced with the following four 

challenges, and these four challenges are dealt with in the FSA framework: 

1) Being systematic: the ability to be implemented using a formal and structured 

process. 

2) Being proactive: the ability to predict hazards rather than respond after accidents 

have occurred. 

3) Being transparent: the ability to be clear in the safety level achieved. 

4) Being cost-effective: the ability to find a balance between risk reduction and 

economic benefits, for the key stakeholders of the proposed risk control measures. 

A part of a study under the European Union's Horizon 2020 titled “Formal Safety 

Assessment of a Marine Seismic Vessel Operation, Incorporating Risk Matrix and Fault 

Tree Analysis” has also proved the application of the FSA methodology to be systematic, 

proactive, transparent and able to provide risk management decision making using a cost-

benefit approach (Asuelimen et al., 2019). The inclusion of expert judgement in risk 

analysis of a poorly understood system such as Arctic operations as included in FSA 

studies also proves its proactive step in addressing complex risks (Stanton, 2017).  

However, the basic steps of the FSA methodology elaborated into the following steps: 

1. Preparatory step 

2. Identification of hazards 

3. Risk estimation  

4. Identification of risk control options 
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5. Cost-Benefit Analysis (CBA) 

6. Recommendation for decision-making. 

Details regarding these six (6) steps can be found in section 2.11. It is worth noting that 

the proactive approach included in FSA Guidelines remains deeply imbedded in 

probabilistic methods to risk assessment. This is reflected throughout the “2013 version 

of the FSA guidelines” (Stanton, 2017). In the “2013 version of the FSA guidelines”, 

paragraph 3.2.3, for instance, highlights that a "proactive approach is reached through the 

probabilistic modelling of failures and development of accident scenarios". This objective 

can be argued whether it is realistic or not.  

However, this is not a question for this research. Appendix 3 of the FSA Guidelines 

contain recommendations for approaches to be employed during hazard identification. 

Most of them are qualitative and quantitative risk assessment (QRA) tools such as Event 

Tree Analysis (ETA), Fault Tree Analysis (FTA), FMEA, etc.  

The same is related to methods recommended for the consideration of human factors. The 

main tool to be used for that purpose is the Human Reliability Analysis (HRA), as 

recommended in Appendix 1 of the 2013 FSA Guidelines.  

In general, the use of FSA in the shipping industry whether in the Arctic region or in open 

water areas, represents a fundamental cultural change, from a generally reactive approach 

to a structured, proactive and systematic approach that employs risk evaluation, that is 

integrated, and effective (Stanton, 2017, Wang, 2003). 

2.10.1 Qualitative Risk Assessment  

The risk description generated by a qualitative risk assessment, while ideally centred in 

numerical data for exposure assessment and hazard representation, will generally be of a 
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descriptive or categorical nature, that is not directly tied to a more precisely quantified 

measure of risk (WHO, 2009). Qualitative risk assessments are generally used for 

screening risks to determine whether they deserve further investigation, and this can be 

useful in the ‘preliminary risk management activities’. In Risk assessment, qualitative 

risk assessment is undertaken initially, with the intention of following it up with a QRA 

if it is subsequently understood to be necessary or useful. 

A risk profile or qualitative risk assessment is suggested if a quantitative assessment is 

underway. This can be useful to identify the data presently available, the uncertainties 

about that data, and uncertainties surrounding the exposure pathways, and to decide if 

quantification is both achievable and likely to add information to the present state of 

knowledge (WHO, 2009). A good example of a qualitative risk assessment is represented 

in Table 2. 

Table 2: Qualitative Risk Table (Asuelimen et al., 2019) 

Risk factors Operational stage 

Crew embarking Manoeuvring 

(harbour) 

At sea (coastal) Crew 

disembarking 

Collision/ Contact Very Low High Medium Very Low 

Man Overboard 

(MOB) 

Medium Low Low High 

 

There are about 31 qualitative risk assessment techniques according to ISO/IEC 

31010:2009 (Brocal et al., 2018) although some techniques do cross over one another. 

Out of the 31 methods, the Brainstorming technique is preferred and used in the 

qualitative aspect of this research. The brainstorming method involves a group of experts 

working together to identify potential risks, causes, hazards, criteria and failure modes 
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for decisions and/or options for risk reduction/control. Brainstorming should motivate 

free-flowing conversation amongst experts without criticising or rewarding ideas. This is 

one of the most appropriate and popular ways to identify both risks and key controls of 

risk (Harb, 2018). 

2.10.2 Quantitative Risk Assessment (QRA) 

In simple terms, a QRA is a formal and systematic approach to estimating the likelihood 

and consequences of hazard events and expressing the results quantitatively as a risk to 

people, the environment and the organisation. A QRA can also be referred to as 

Probabilistic Risk Analysis (PRA) or Probabilistic Safety Analysis (PSA). QRA is being 

applied to many industries, including transportation, construction, energy, chemical 

processing, aerospace, the military, and financial planning and management (Tim and 

Roger, 2003, Voeller, 2010). 

A QRA is an effective means to capture an extensive picture of the risk of accidents and 

has the ability to (Khan et al., 2018): 

 be described in terms of probabilities and expected values of hazards and,  

 treat uncertainties related to the risk obtained for the desired event. 

Essentially, QRA answers the following three questions (Voeller, 2010, Kaplan and 

Garrick, 1981): 

 What can happen?  

 How likely is it to happen?  

 Given that it occurs, what are the consequences?  

The key QRA results are the probabilities of various consequences of accidents, the 

identification of the most likely scenarios (event sequences) that may lead to the 
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consequences, as well as the most important (from a risk perspective) structures, 

subsystems, and components. This information is very valuable to designers, operators, 

and regulators because the responsible parties can focus on what is actually important to 

the safe operation of the system (Voeller, 2010). 

The QRA sets out to define, measure, predict and provide a confidence level of likelihood 

and occurrence of threat impacts (Glenn et al., 2015). QRA are rarely used alone – they 

are typically used in collaboration with qualitative analyses, operational experience 

reports, and expert judgement –, their use includes the use of numbers or quantitative data 

and provides quantitative results (Rae et al., 2014). Hence, this method is more precise 

and more objective. More importantly, the quantitative results can be greatly affected by 

the validity and precision of the input parameters. Therefore, the quantitative outcomes 

within the risk analyses do not necessarily have to be exact numbers, but as estimates or 

approximations, with a variable scale depending on data quality. 

2.11 Application of FSA in risk management research 

2.11.1 The preparatory Step 

In any risk management project, it is important to understand the definition of the problem 

under study, with respect to the system, goal, and operations. The reason for defining the 

problem is to have an understanding of the task with respect to risk regulations under 

review; this in turn will assist in determining the scope and depth of the risk management 

process. It is important to include the preparatory step in any risk management project 

because a misguided definition of a problem such as a vessel design or operation etc., 

may lead to insufficient recommendations, which in turn may exclude major risk factors 

from the system being assessed. This preparatory step in risk assessment and management 

helps to simplify the objective of the assessment. 
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2.11.2 Hazard Identification (HAZID)  

After the preliminary phase of outlining the goal and aim of the risk assessment, the first 

and most important phase is the HAZID process (Sutton, 2014, IMO, 2002, HSE, 2014). 

For many managers, the identification of hazards may well be the most difficult part of 

the risk assessment process. The rest of the process is relatively simple maths, depending 

on the analysis and method chosen, and combined decision-making technique (Tucker, 

2014). 

HAZID process is satisfied with a combination of creative and analytical exercises that 

aim to identify all significant hazards. The creative part (mostly brainstorming) is to 

ensure that the process is proactive and not restricted only to hazards that have happened 

in the past (Kontovas and Psaraftis, 2009). The process should be carried out to ensure 

that all circumstances with the likelihood to cause harm to people, and/or damage to assets 

and the environment have been identified, and the risk factors as a result of these causes 

are defined as well (Bai and Jin, 2016a). 

In engineering and other industrial sectors, HAZID is a universal term used to describe a 

practice whose aim is to identify all significant activities that have the likelihood to result 

in significant consequences (Wang et al., 2005, Wang and Trbojevic, 2007). The HAZID 

process can vary depending on evaluated system/facility characteristics, such as an 

operation's complexity, workforce, activity magnitude, equipment and available 

resources.  

Different techniques are used to perform HAZID, including qualitative and quantitative 

approaches, which includes literature review and research, physical inspection, checklist, 

brainstorming, flow charts, What-If Analysis/Structured What-If Technique (SWIFT), 



78 
 

organisational charts, safety audits, HAZOP, Task Analysis (TA) and FMEA (Brocal et 

al., 2018). 

A literature review as one of the HAZID process can provide a high-quality analysis 

where the hazard based data have been searched and justified for a related topic, which 

can be used in conjunction with the other qualitative and quantitative methods (Quinlan 

et al., 2019, Saunders et al., 2009). Brainstorming phases are generally used to analyse 

technical systems and thereby generate the main qualitative results. A team of experts is 

called upon to determine the potential consequences of a deviation in a system in the 

HAZID phase. The concerned team should represent a cross section of disciplines and 

functions, including maintenance, operations, engineering, process design, and 

management, to ensure that all hazard situations are detected and discussed (Sutton, 2015, 

Bai and Jin, 2016a).  

Once hazards have been identified through literature review and/or brainstorming session, 

the method of hazard presentation is also important in the risk management process. 

Identified hazards could be represented in an overlapping, non-linear or linear manner. 

The linear representation involves the use of a novel divisive hierarchical clustering 

technique to identify failures/hazards in a large system such as the Arctic system.  

The purpose of clustering is to reveal an event’s dependency and to partition the hazards 

into hazard groups (clusters), such that hazard elements within the same cluster are more 

similar to each other than to hazard elements in a different cluster. Clustering is a non-

overlapping complete set of clusters. This has been used in the medical field to identify 

clinically interesting subpopulations in a large cohort of Olmsted County, Minnesota, 
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USA (Kim et al., 2014). The hierarchical clustering dendrogram would be such as 

presented in Figure 19. 

 

Figure 19: A Linear dependable representation of events 

2.11.3 Risk Analysis 

The main objective of carrying out risk analysis is to provide an explicit investigation of 

the causes and the consequences of the most significant scenario. The purpose of this is 

to give proper attention to high-risk areas and focus on factors, which affect the level of 

risk. 

Risk is often measured using two-risk parameters (that is, frequency or likelihood and 

consequence). Analysing risks simply in terms of probability of a hazard occurring (or 

frequency) and the impact of hazard (or consequence) with methods such as FTA, Event 

Tree Analysis (ETA), Risk Matrix, Cause-Consequence Analysis (CCA) and bow-tie 

techniques are effective. However, moving on to a more complex and expensive 

operation, these methods might not be suitable, as they tend to miss the much richer detail 

that can be uncovered if the costly and expensive operation are examined in greater detail. 

Examining other risk parameters such as the ability to detect the harm/hazard 
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(detectability) also factors in the estimation of risk (Stavrou and Ventikos, 2016, Stavrou 

et al., 2018, Lo and Liou, 2018).  

Any other risk parameter that can interfere with the risk level of an event can be 

considered in the risk analysis phase. Therefore, detectability as a dependent metric can 

be included as a risk parameter since it reduces the probability of occurrence of an event 

(Speer, 2015). Another factor that can be included in the risk parameters in a risk 

evaluation phase, is costing (Lo and Liou, 2018) or impact on the operation.   

In order to introduce more than two risk parameters in the risk analysis phase, a forward-

looking risk-management technique such as FMEA, FMECA can be utilised. FMEA has 

been utilised in various industries for promoting the reliability and safety of processes, 

structures, systems, and services (Lo and Liou, 2018).  

Again, moving on to a rare and extreme risk, the risk analysis process becomes even more 

complex with intricacies such as probability and uncertainty of hazard information (data). 

The problem with assigning a probability figure in an environment with little or no 

historical accident record can be an issue. Uncertainty in data is due to the combination 

of incomplete knowledge about a process and its expected or unexpected variability 

(Ayyub and McCuen, 2016, Snidaro et al., 2015).  

Therefore, moderating the probability value can provide a solution even when decision-

makers are not sure of their probability data (Liu et al., 2017, Liu et al., 2016, John et al., 

2017). This works in a way that the decision-maker might conclude that there is a 50% 

probability of the risk happening with 20% deviation, giving a possibility range of 70% 

to 30%. Which eventually means that the decision-maker does not think it is very likely 

or unlikely to occur, but the probability is in the middle somewhere. Evidence of this 
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technique to solve uncertainty in data can be seen in a number of studies (John et al., 

2018, Alyami et al., 2019, Yang and Wang, 2015). 

A more advanced risk analysis, which takes account of the multi-faceted nature of the 

risk, can include both qualitative and QRA techniques or a combination of several QRA 

techniques. A variety of QRA techniques which have been introduced by academic bodies 

and used in the maritime industry include but are not limited to Failure Mode Effects and 

(Criticality) Analysis (FMECA), FMEA, BN, VIKOR, FTA, ETA, Preliminary Hazard 

Analysis (PHA), Cause-Consequence Analysis (CCA), ER and Human Reliability 

Analysis (HRA). All these techniques have been used or mentioned in a number of studies 

(Bai and Jin, 2016a, Sutton, 2015, John et al., 2018, Liu et al., 2015).  

The mentioned techniques may differ in structure and may have qualitative or quantitative 

output. Nevertheless, they share a commonality in that they involve identifying hazards, 

analysing the risk associated with each hazard and evaluating how significant the risks 

are (Sandle, 2015). 

2.11.4 Risk control/ Decision-making 

To investigate risk control options, it is necessary to first identify high-risk areas from 

step 3, which needs to be managed. Thereafter, identification of the risk control/reduction 

options otherwise known as RCOs or alternatives can be carried out through literature 

review and expert consultation, including non-professionals from the workplace 

(Asuelimen et al., 2019, HSE, 2010). Risk control embraces decision-making to reduce 

and/or accept risks. The number of resources used for risk control should be proportional 

to the significance of the risk. The process of controlling risk might focus on the following 

questions (Sikdar, 2017, Byrn et al., 2017):  

 Is the risk level acceptable or not?  
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 What can be done to control or eliminate risks?  

 What is the suitable balance among benefits, costs, and resources? 

 Are new risks introduced in the course of controlling risks? 

The marine industry and regulators assess and manage risk using recognised risk 

management tools such as MCDM, MADM, and MODM (Mardani et al., 2015). Decision 

makers could use a single tool or a combination of MCDM tools to arrive at a suitable 

option to answer the above four questions. The selection process could be in the form of 

benefit-cost analysis (Basten et al., 2010), for understanding the optimal level of risk 

control. In addition, MCDM can provide a useful tool in deciding a balance between cost 

and benefit from the risk control options associated with their several criteria.   

Whichever tool is adopted to reduce or manage risk, there are two important points to 

bear in mind, namely: 

 There is no such thing as "zero risk" and therefore, a decision is required as to 

what is "acceptable risk" and this must be qualified before the risk analysis begins; 

 Risk management is not an exact science as different people will have a different 

perspective on the same hazard (Sandle, 2015). 

2.12 Conclusion 

The IMO Polar Code provided the boundaries for the review and techniques of risk 

management practices. The scientific assessment methods adopted by the IMO can be 

used to enable HAZID and risk/safety management of AMSSO under high uncertainty. 

This chapter has provided the knowledge background to identify the most suitable risk-

based methodology to analyse the risks in AMSSO both locally and globally. The 

comprehensive list of hazard events and risk factors obtained from this present chapter 

would be included in the data set of the subsequent chapters. 
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Chapter 3– Enabling Fuzzy Rule-Based Bayesian Network 

(FRBN) Methodology in AMSSO Risk Evaluation and 

Prioritisation  

Overview 

One of the several problems in Arctic shipping and AMSSO risk assessment research is 

the unavailability of sufficient primary observations and consequent shortage of 

statistical hazard data.  The insufficient availability of hazard data adds to the uncertainty 

of events in this region, leading to the possibility of unpredicted catastrophes such as hull 

damage, ship-collision, grounding etc. In addition to the complexity of the AMSSO risk 

analysis, a careful literature review revealed that: human factors contribute more than 

50% of the marine and offshore accidents, and risk is often not primarily within the vessel 

operating in marine environment but by other issues involving efficiency, political, legal, 

social-economic and environmental element.  

Several scholars have offered a wide range of risk analysis techniques such as Risk 

Matrix, FTA to solve complex risk analysis, utilising either the idea of the probability of 

a failure event occurring or the likelihood of a hazard event occurring and the likely 

consequences of such a hazard event. However, those models very often fail to account 

for other significant parameters of risks such as Impact of failure (I) and the probability 

of detecting a failure in the system (P). This in turn limits models' capability to analyse 

the risks in a complex system, as P and I are simply not put into consideration. 

In order to analyse risk confidently and ensure safety in AMSSO, this chapter starts by 

first carrying out a qualitative risk assessment by identifying the most significant hazard 
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events in AMSSO. Then it combines two QRA techniques– i.e. FMEA and BN approaches 

with fuzzy logic–, to establish a novel Fuzzy Rule-based Bayesian Network (FRBN) hybrid 

methodology.  

The FRBN is capable of accounting for the issue of data uncertainty and taking into 

consideration other vital parameters of risks in order to prioritise risk in AMSSO in a 

more confident manner. Compared to conventional FMEA, the new technique integrates 

(Fuzzy Rule-Base) FRB and BN in a complementary way, in which the former provides a 

realistic and flexible way to describe input failure/hazard information while the latter 

allows easy update of risk analysis results and facilitates real-time safety evaluation and 

dynamic risk-based decision support in AMSSO.  

The Sensitivity of the developed model can be an additional issue in the risk analysis 

studies, however, this can be dealt with by incorporating a sensitivity analysis technique 

to link practical design formats. The proposed approach can be tailored for wider 

applications in other engineering and management systems, especially when instant risk 

ranking is required by the stakeholders to measure, predict, and improve their system 

safety and reliability performance. 

3.1 Introduction 

Risk can be described as the probability or likelihood (L), high or low, that somebody or 

some asset or environment could be harmed or damaged (C) by a hazard (HSE, 2017). 

Risk analysis plays an important role in the entire risk management cycle from 

identifying, evaluating, reporting and controlling to monitoring risks. The role of risk 

assessment helps decision-makers to rank and manage risks in order to avoid potential 

hazards and to form the basis to reasonably allocate remedial options (Mirzaei et al., 

2018).  
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Some risk assessment methodologies assess risk qualitatively (e.g. PHA) or with the 

combination of qualitative and quantitative approaches using probability assignment (e.g. 

FTA, ETA) (Rausand, 2013, Cox Jr, 2009).  However, a more suitable approach that 

addresses risk qualitatively and quantitatively from its root definition is the risk matrix 

technique (Duijm, 2015). The risk matrix technique remains popular and often utilised in 

the informative sections of several international standards such as IEC (2006) and ISO 

(2010) (Asuelimen et al., 2019). In the risk matrix approach, qualitative data, such as that 

obtained from interviews and questionnaires, can be used to identify possible 

improvements, while quantitative data, such as that obtained from historical data can 

assist to evaluate risk or failure in a system.  

In line with the description of risk, the probability of occurrence (L) and the consequence 

severity (C) of damage/impact can be expressed as two input variables in the risk matrix. 

The combination of “L” and “C” formulates an index to classify and distinguish different 

risks. The logical interpretation of the combination of “L” and “C” can be described as 

“IF probability is “L” and consequence severity is “C”, THEN risk is “R” (Markowski 

and Mannan, 2008). Generally, qualitative scales in the risk matrix describe both input 

and output variables. The probability of occurrence (L), for example, can be split into five 

levels, such as remote, unlikely, likely, high likely and almost certain, while the severity 

of impact (C), for example, can also be categorized as negligible, minor, moderate, 

serious and critical.  

Concisely, each risk is measured by the risk matrix mainly from two dimensions. 

However, as many practical (real-world) systems are becoming gradually more 

complicated, along with the appearance of unexpected events and changes, the two-level 

measurements of the probability of occurrence (L) and consequence severity (C) are 
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incapable of entirely capturing the whole behaviour of a risk (Janasová and Strelcová, 

2018). It is problematic for the risk matrix technique to provide a complete view of 

multiple aspects. Hence, an advance systematic technique that introduces more than two 

variables such as the FMEA technique can be employed to fill in the gap. 

The application of FMEA follows a series of successive steps. First, it analyses the 

process, then identifies potential failures or hazards. The next step will be risk evaluation; 

unlike the risk matrix, the FMEA methodology advances more into considering ratings 

for detectability along with ratings for severity of failure and ratings for the occurrence 

of a failure (Cicek and Celik, 2013). Although FMEA has been popularly used in the risk 

assessment process to identify high-risk events in situations where objective failure data 

is available, it has also suffered a major drawback in its use of Risk Priority Number 

(RPN) (Liu, 2016).  

The drawbacks of the traditional RPN methodology have been widely analysed (Xu et 

al., 2002, Zhang and Chu, 2011). Recently, a careful literature survey reveals that though 

the FMEA method can take different aspects of risk into consideration, it does lack a high 

level of data certainty, hence, is not capable of addressing such uncertainty that exists in 

AMSSO risk management.  

Consequently, novel risk approaches are needed to overcome such key drawbacks. 

Several new methods based on uncertainty treatment theories such as FL, Dempster-

Shafer (D-S) theory, Grey System Theory, Monte Carlo simulation, BN, Markov models, 

and Artificial Neural Networks (ANNs) have been proposed in the literature to enhance 

the performance of FMEA, especially when criticality analysis is concerned (Yang et al., 

2008b, Li and Chen, 2019). However, such new methods add to the development of more 



87 
 

precise risk analysis and likewise render themselves susceptible by losing visibility and 

easiness, which are improvements of the conventional FMEA method.  

Yang et al. (2008b) suggested a new hybrid methodology to elucidate in a complementary 

way the role of BN in FRB risk inference. In this case, the BN rule is employed to 

aggregate all relevant IF-THEN rules with belief structures and yields failure priority 

values given by posterior probabilities of linguistic risk expressions. While the FRB is 

employed as an effective tool to bring about expert judgments for rationalising the 

configuration of subjective probabilities. 

This chapter aims to apply the novel FMEA approach (also called FRBN) by 

incorporating FRB and BN to rationalise the Degrees of Belief (DoBs) distribution in 

order to address the problem of uncertainty in risk estimation of AMSSOs. The novel 

FMEA approach with the ability to incorporate different weights of risk parameters into 

FRB is described in the subsequent sections.   

A particular test case regarding AMSSO safety evaluation is investigated to demonstrate 

the feasibility of the new methodology. Thereafter, a discussion based on the results 

obtained is shown in the latter part of this section. Next to the discussion is the conclusion 

section (section 3.7). Subsequently, this study will contribute to facilitating the FMEA 

applications in risk theoretical research, and to improving practical safety management 

for AMSSO and other complex engineering systems.   

3.2 Background Analysis 

3.2.1 Fundamental aspects of the notion of uncertainty in AMSSO risk analysis 

There are two fundamentally different forms of uncertainty in AMSSO risk analysis. The 

first type (aleatory uncertainty) refers to the uncertainty of input arising from randomness 

due to inherent variability in the system while the second type (epistemic uncertainty) 
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refers to the uncertainty of input arising from lack of knowledge/information, such as 

event data from expert judgement (Sun et al., 2018). While epistemic uncertainty can be 

reduced, aleatory uncertainty cannot, and for this reason, it is sometimes called irreducible 

uncertainty (Çağnan and Akkar, 2018). Consequently, this research is concerned mainly 

with the second source of uncertainty.  

In standard risk analysis, model parameters are assumed constant values, nevertheless, on 

many occasions, these parameters are difficult to assess or estimate. Thus, their initial 

deterministic character is considered insufficient and parameters are assumed random 

variables. When this occurs, the aim of the risk analysis is to monitor the effect of this 

randomness on a given target variable. In the context of risk analysis bounded by a lack 

of knowledge of subjective input data, the focus is on the treatment of uncertainty 

(Çağnan and Akkar, 2018).  

Quantitative maritime risk studies hardly discuss the uncertainty of their developed risk 

model or the sensitivity of their results in relation to changes in the specific parameters 

of the risk model (Sormunen et al., 2015). However, this research will address the 

uncertainties in the developed risk analysis model by carrying out the sensitivity of the 

risk analysis technique and the obtained results. 

3.2.2 Fundamental aspects of the notion of Fuzziness and Probability 

Fuzziness and probability are related but they both have different concepts. Fuzziness is 

a type of deterministic uncertainty that defines the event class ambiguity (Eleye‐Datubo 

et al., 2008). As with probability, the concept of fuzziness can be assessed by attaching 

numeric values between 0 to 1 or 0 to 100 to each preposition in order to represent 

uncertainty. Fuzziness measures the degree to which the preposition is correct whereas, 

probability measures how likely the proposition is to be correct. 
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However, it seems more appropriate to investigate the fuzzy probability of any system 

risk analysis limited by a shortage of objective data (Dubois and Prade, 1997), than to 

completely dismiss probability as a special case of fuzziness. Subsequent sections in this 

research combine both concepts (and methods) of probability and fuzzy logic to tackle 

inexactness in risk analysis.  

3.3 A review of FMEA/fuzzy FMEA 

FMEA methodology offers a systematic procedure for the analysis of a system to identify 

the possible failure modes, the causes of such failure, and the effects on the system's 

performance. It is very important to be aware that a failure mode is not the cause of a 

failure, but it reveals the way in which failure has occurred (Arabian-Hoseynabadi et al., 

2010). In addition, an FMEA is not restricted to a specific event, but rather it can analyse 

the safety level of a process or system (Davis et al., 2008). Hence, the inclusion of FMEA, 

to analyse the safety level in an AMSSO, is suitable and practicable.  

The traditional FMEA method has three key components, namely failure occurrence 

likelihood (L), consequence severity (C), and the probability of failures being undetected 

(P). These three components can be used to analyse the safety level of a risky operation 

and to calculate their RPN (Lipol and Haq, 2011). 

In evaluation and prioritisation of risks, the traditional FMEA is seen to suffer some 

critical drawbacks (Yang and Bai, 2009) such as rank reversal etc., for other drawbacks 

see (Lipol and Haq, 2011). To counter the weaknesses of the application of FMEA, some 

researchers have identified four key viewpoints (Bowles and Peláez, 1995). These four 

viewpoints include 1) fuzzy logic for prioritising failures, 2) fuzzy risk priority number, 

3) fuzzy assessment of FMEA, and 4) cost estimation using FMEA. In the review of these 
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viewpoints, the integration of fuzzy logic in prioritising failures was most suitable in 

overcoming the major problems of calculating RPN in FMEA Vinodh et al. (2012). 

Xu et al. (2002) presented an approach for carrying out a fuzzy FMEA assessment to 

overcome FMEA drawbacks. Guimarães and Lapa (2004) used the Fuzzy Inference 

System (IF-THEN rules). The RPN was calculated and compared with fuzzy RPN, which 

was compared from experts’ view and drew inferences. Dong (2007) published an article 

connected to FMEA based on fuzzy cost estimation. Fuzzy utility theory combined with 

fuzzy membership functions were utilised for calculating the RPN, and the presentation 

of team opinion was done through the application of the fuzzy membership concept. The 

author used a risk priority index to prioritise the failures. This process enhanced the 

performance of FMEA in product design and manufacturing.  

Wang et al. (2009) used fuzzy weighted geometric mean to carry out a study on FMEA 

application; the authors proposed an approach in which severity, occurrence, and 

detection were utilised as fuzzy variables. By means of those variables, fuzzy RPN was 

simplified. 

From these literature surveys, it is observed that fuzzy sets in all their variations proved 

to be more realistic in dealing with the setbacks of the traditional FMEA RPN calculation 

(Aven, 2016). The fuzzy sets have interval distribution probabilities with qualitative 

characteristics to express the strength of an expert's knowledge to inform the risk analyst 

or decision-makers. The fuzzy set is compatible with the conventional risk analysis 

techniques and popularly used today in several industries, including the nuclear industry. 

(Guimarães and Lapa, 2007). 



91 
 

It is well known that risk analysis techniques are not an exact science (Sandle, 2015), and 

in some cases they do suffer some drawbacks. Hence, it is worthy to mention that the 

application of Fuzzy Logic (FL) in FRBN suffers some drawbacks in its inability to give 

generalised results and the difficulty in developing the fuzzy rules. However, it offers an 

advanced risk-based approach to handle problems with imprecise and incomplete data.  

3.4 Methodology for modelling AMSSO Risk Analysis 

Nowadays, we see elements of integrative thinking to arrive at a more realistic results in 

the risk analysis of a complex system. Not long ago, researchers combined the Bayesian 

subjective probability technique with FL to solve the problem of subjective data 

uncertainty and the scarcity of statistical accident data. As a result, Yang et al. (2008a) 

developed a hybrid Fuzzy Rule-based Bayesian Reasoning (FRBR) to overcome the key 

weaknesses of the traditional FMEA.  

The novel FRBR (also termed FRBN) methodology uses the Bayesian marginalisation 

rule to take in all relevant IF-THEN rules with belief structures then calculates failure 

priority values in posterior probabilities. The BN mechanism in FRBR offers a simple 

mathematical principle for calculating conditional and marginal probabilities of a random 

and dynamic event. Conditional probability is the probability of an event given the 

occurrence of an influencing event whereas marginal probability is the unconditional 

probability of an event.  

The BN mechanism is employed as a tool to perform FRB risk inference to model 

uncertainty in a system and deals with the subjective probability that may represent the 

DoB from an expert data and applies it in a precise and relevant way (Jones et al., 2010).  

An FRB can be used as an effective way to prompt expert judgments for rationalising the 

configuration of subjective probabilities. This methodology is gaining popularity in 
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recent years and has successfully been applied in container supply chain risk management 

(Yang et al., 2010) and in the offshore industry (Yang and Wang, 2015), etc. 

The development of the FRBR defines the role of BN mechanism in Fuzzy Rule-based 

risk inference in a complementary manner and achieves sensitive failure priority values 

without compromising the simplification of the traditional RPN approach.  

The rule-based approach in FRBN consists of IF-THEN rules and a translator that controls 

the application of the rules, which in FMEA risk analysis, is described as the connection 

between risk parameters in the IF portion and risk levels in the THEN portion (Alyami et 

al., 2019).  

The IF-THEN fuzzy rule-based approach offers a variable scale to represent expert 

(subjective) data to moderate the effect of disagreement in expert data and the effect from 

the variable sizes of expert participants. The values of the antecedent portion determine 

the values of the consequent portion. The IF part is called antecedent while the THEN 

part is called consequent (Krzyżanowska et al., 2017). These IF-THEN rule statements 

can be utilised to formulate the conditional statements that include the complete 

knowledge base. 

The novel FRBN method justifies the DoB distribution and creates a new risk-based 

decision support tool for AMSSO risk evaluation. An FRB with belief structures is more 

enlightening and realistic than the traditional IF-THEN rule because of its high success 

in functional mapping between antecedents and the consequent output, principally in view 

of vague knowledge representation (Yang et al., 2008a). 
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Therefore, the novel FRBN is a preferred option in AMSSO risk analysis because of its 

ability to solve the problem of the scarcity of primary observations and consequent 

shortage of statistical data. 

The steps for developing the novel FMEA analysis for modelling AMSSO risk analysis, 

based on the proposed FRBN approach, are drawn as follows: 

 Definition of problems (preparatory phase) 

 Establish an FRB with a belief structure in FMEA 

 Identification of all potential and significant hazard events 

 Developing a BN Model with a rational distribution of DoB in FRB 

 Prioritising the hazard events and comparing the result with benchmark risk 

 Validate the model by using sensitivity analysis techniques 

3.4.1 Formation of an FRB with belief structure in FMEA of AMSSO risk analysis 

3.4.1.1 Definition of the problem– Preparatory phase 

The whole system of AMSSO including the seismic survey vessel, the Arctic sea and 

additional systems such as navigation and monitoring systems, all represent a complex 

and expensive system. Seismic survey operation in locations covered by ice, debris, large 

swells or other obstacles can make surveying difficult, expensive or even impossible 

(Gagliardi et al., 2018).  

Gathering information on the prioritization of AMSSO risk factors for investigation can 

be tricky as one risk factor can be as perilous as the other in terms of accident 

consequences and their impact on operation. Risk factors herein refer to any risk element 

with an attribute or characteristic with the potential to cause an accident. Reports from 

Lloyd’s Marine Intelligence Unit Sea Searcher Database, Transportation Safety Board of 
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Canada, Canadian Hydraulics Centre, MAIB and Allianz Global (from section 2.5.2) 

revealed several accident categories within the Arctic Circle from early 2000s to 2018.  

These can be summarised into seven (7) major accident categories. These seven accident 

categories include: 

i. Machinery damage 

ii. Wrecked/ stranded 

iii. Miscellaneous (e.g. near-miss) 

iv. Fire/ Explosion 

 

v. Contact (e.g. harbour wall) 

vi. Hull damage 

vii. Foundered. 

Although these accidents are common to AMSSO, it is pertinent to note that the above 

accident category and thus the types of problems, or risks, associated with different 

categories of ships and activities vary tremendously (Engler and Pelot, 2013). Hence, 

further investigation revealed that about 6 (six) risk factors are common to each of the 7 

accident category. These 6 risk factors which are present in AMSSO are presented as a 

subcategory and listed below: 

1) Human error 

2) Ship Navigational System States 

3) Ship Operational System States 

4) Weather States 

5) Ice states 

6) Ship Class States. 
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These risk factors combine largely to constitute No.7) Ship-Ice Collision risk factor, in 

which the above six risk factors merge into issues related to Ship-Ice Collision. Ship-Ice 

Collision model represents the goal of the FRBN risk investigation. 

3.4.1.2 Establish an FRB with belief structure in FMEA 

In the traditional FMEA, three risk parameters, Likelihood (L), Consequences (C), and 

Probability of failure being undetected (P), are utilised to evaluate the safety level of each 

failure mode. The impact (I) of a failure or hazard event which is capable of triggering a 

cascade effect that could slow down or completely stall seismic acquisition (Pemberton 

et al., 2015) is noteworthy in AMSSO risk investigation. In addition, the impact (I) of a 

hazard event has the potentiality to cause delays in operation, thus affecting the 

compliance with the consent or licence conditions (JNCC, 2017), hence, resulting in 

financial impact and consequent payment – except not stated in the acquisition contract 

(IAGC, 2014). Therefore, the inclusion of impact (I) of a hazard event is crucial in 

AMSSO risk analysis. 

The four new risk parameters (L, C, P, and I) are fashioned to form the IF portion while 

the risk analysis of hazard events is presented in the THEN portion in an FRB. To simplify 

subjective data collection, a set of linguistic grades of High, Medium, and Low and Very 

Low is used to describe L, C, P and I. The description of the linguistic grades of L, C, P, 

and I assignment is similar to the work done by Alyami et al. (2019) and Yang et al. 

(2008a) and described here in the Tables 3, 4, 5, and 6. 

 

 



96 
 

Table 3: Likelihood assignment definition 

Assigned rating If the likelihood is: 

Extremely Remote Very Low: Might occur every 6 to 10 years and 

beyond 

Remote Low: Might occur once every 7 months to once 

every 1 to 5 years 

Reasonably Probable Medium: Might occur once in 2 months to twice a 

year 

Frequent High: Might occur monthly or weekly or daily 

 

Table 4: Consequent assignment definition 

Assigned rating If the consequence is: 

Insignificant Very Low: Injury requiring little or no first aid, no 

significant harm to people, vessel and environment 

Minor Low: Minor damage (dents and scratches) 

degradation of the vessel strength (local damage to 

the structure), or causing between 1 and 9 major 

injuries or causing injury requiring more than first 

aid 

Major Medium: Major damage/ degradation of the 

vessel strength, or causing between 10 and 100 

major injuries 

Catastrophic High: Total loss of life, vessel or severe damage 

to the environment 

 

Table 5: Probability of a hazard being undetected definition 

Assigned rating If the probability to detect a hazard is: 

Very Low Possible to be detected through regular checks or 

easily observed with less attention 

Low Possible to be detected through mere diagnosis or 

observed with proper attention  

Medium Difficult to be detected through mere diagnosis or 

proper attention 

High Impossible to be detected through mere diagnosis 

or regular checks or proper attention 
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Table 6: Impact of hazard to operation definition 

Assigned rating If the impact of hazard to an operation is: 

Very Low Negligible impact on operations capability of the 

vessel 

Low Little impact on the operations capability of the 

vessel 

Medium Degraded operations capability or readiness to halt 

operation 

High Loss of ability to accomplish the operations or 

operation failure in the vessel 

 

As a result of the lack of properly documented accident data, the belief degrees of the 

parameters expected for each hazard event will be centred on knowledge gained from past 

and similar events. However, the belief structure is introduced to model the 

incompleteness in the THEN portion. The theoretical development of the belief structure 

is as follows (Wan et al., 2019, Yang et al., 2008a). 

 

 𝑅ℎ: 𝐼𝐹 𝐴1 
ℎ 𝑎𝑛𝑑 𝐴2

ℎ𝑎𝑛𝑑 𝐴3 
ℎ 𝑎𝑛𝑑 …𝑎𝑛𝑑 𝐴𝑚 

ℎ , 

            THEN {(𝐷1, 𝛽1′
ℎ), (𝐷2, 𝛽2′

ℎ ), … , (𝐷𝑁, 𝛽𝑁′
ℎ )}                                                         

                                      (𝛴𝑗=1
𝑁 𝛽𝑗

𝑘 ≤ 1) 

 

 

3.1 

Where 𝛽𝑗
ℎ(𝑗 = 1,2,… , 𝑁) is the DoB to which Dj is understood to be the consequent in 

the ℎ𝑡ℎ  multiple-inputs and single-output rule, when the input satisfies the antecedents 

𝐴ℎ = {𝐴1
ℎ  , 𝐴2

ℎ  , … , 𝐴𝑚
ℎ . 𝑁 is the number of all possible consequents. And if 𝛴𝑗=1

𝑁 𝛽𝑗
ℎ = 1, 

then the ℎ𝑡ℎ is considered complete, if not, otherwise.  

In establishing the FRB with belief structure in FMEA, experts with first-hand experience 

in AMSSO use the linguistic assessment of Very Low (VL), Low (L), Medium (M) and 
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High (H) with the DoB. The linguistic variables for describing each risk parameter can 

vary depending on the situation, with reference to the relevant studies in the literature. 

Following the formation of the FRB with belief structure in FMEA, certain set of rules 

are followed. For example: 

Rule 1: If L is Very Low, C is Very Low, P is Very Low and I is Very Low, 

Then R is Very Low with a 100% DoB, Low with a 0% DoB, Medium with a 0% DoB and 

High with a 0% DoB 

Rule 2: If L is Very Low, C is Very Low, P is Very Low and I is Low, 

Then R is Very Low with a 75% DoB, Low with a 25% DoB, Medium with a 0% DoB and 

High with a 0% DoB. 

Rule 3: If L is Very Low, C is Very Low, P is Very Low and I is Medium, 

Then R is Very Low with a 75% DoB, Low with a 0% DoB, Medium with a 25% DoB and 

High with a 0% DoB. 

Rule 3: If L is Very Low, C is Very Low, P is Very Low and I is High, 

Then R is Very Low with a 75% DoB, Low with a 0% DoB, Medium with a 0% DoB and 

High with a 25% DoB. 

From the above DoB rationing, it suggests that a proportion method is employed to 

rationalise the DoB distribution. This further explains that the DoB belonging to a 

particular grade in the THEN portion is calculated by dividing the number of the risk 

parameters, that receive the same grade in the IF portion by Four (4). 
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For example, in Rule 1, the number of the risk parameters receiving the Very Low grade 

in the IF portion is four. The DoB belonging to Very Low in the THEN portion is therefore 

computed as 100% (4/4 = 100%). In Rule 2, the numbers of the risk parameters receiving 

the Very Low and Low grades in the IF portion are three (3) and one (1), respectively. 

The DoBs belonging to Very Low and Low in the THEN portion are therefore 75% (3/4 

= 75%) and 25% (1/4 = 25%). It can be formed as follows, see Equation 3.2:  

 𝐷𝑜𝐵ℎ
= 

∑ 𝐷𝑜𝐵ℎ𝑥
𝑟
𝑗=1

𝑟

 3.2 

where, ℎ𝑡ℎ represents the linguistic terms number (ℎ = 1, … , 4)  

𝑟 represents the total number of the inputs’ attributes, and 

𝑥 represents an individual input’s attribute.  

For the benefit of this model application, Equation 3.2 can be expressed further as:  

 
𝐷𝑜𝐵ℎ =

∑ 𝐷𝑜𝐵ℎ1 + 𝐷𝑜𝐵ℎ2  + 𝐷𝑜𝐵ℎ3 + 𝐷𝑜𝐵ℎ4
4
1

4
 

3.3 

Likewise, the FRB used in AMSSO containing 256 rules (4×4×4×4) with a rational DoB 

distribution can be achieved and shown in Appendix 1 and partly represented in Table 7. 
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Table 7: The developed FRB with a belief structure for AMSSO 

Rules Four risk parameters in the IF portion  DoB in the THEN portion 

No (L) (C) (P) (I)              V.Low 
(R1)  

Low 
(R2)  

Medium 
(R3)  

High 
(R4) 

1 V.Low (L1) V.Low (C1) V.Low (P1) V.Low (I1) 1 0 0 0 

2 V.Low (L1) V.Low (C1) V.Low(P1) Low (12) 0.75 0.25 0 0 

3 V.Low (L1) V.Low (C1) V.Low (P1) Medium (I3) 0.75 0 0.25 0 

4 V.Low (L1) V.Low (C1) V.Low (P1) High (14) 0.75 0 0 0.25 

5 V.Low (L1) Low (C2) V.Low (P1) V.Low (I1) 0.75 0.25 0 0 

. … … … … … … … … 

253 High (L4) Medium (C3) High (P4) High (I4) 0 0 0.25 0.75 

254 High (L4) Medium (C3) Medium (P3) V.Low (I1) 0.25 0 0.5 0.25 

255 High (L4) High (C4) Medium (P3) Low (I2) 0 0.25 0.25 0.5 

256 High (L4) High (C4) High (P4) High (I4) 0 0 0 1 

 

3.4.1.3 Identifying all potential and significant hazard events in AMSSO 

The knowledge for identifying all significant hazards was drawn from the literature 

review and Experts’ judgement. The literature review reveals that the Arctic oil and gas 

development and transportation involve significant risks caused by the unique features of 

this region, such as ice, severe operating conditions, unpredictable climatic changes, and 

remoteness (Khan et al., 2018). In addition, the performance of vessel systems worsens 

in harsh environments, which as a result increases the risk of collision (Khan et al., 2018). 

Khan et al. (2014) identified multiyear sea ice, extremely low temperatures, ice-ridges, 

and pack ice as the chief cause of the growing rate of ship accidents in the Arctic region.  

Other literature, points out that a huge portion of Arctic waters are uncharted and 

according to Rear Admiral Gerd Glang, Director of the NOAA Office of Coast Survey, 

estimates it would take over 100 years to chart Alaska's Arctic coastline (Clark and Ford, 

2017, Mollitor, 2018) due to insufficiently available navigation technologies (Mollitor, 
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2018). Human error is not left off the list of the significant risk factors in AMSSO 

(Rothblum, 2000). Li et al. (2012) reviewed 87 project reports and academic research 

papers to analyse consequences and frequency-based risk estimation models 

independently. They claim that human error is one of the highest significant risk factors 

in offshore ship operation and recommend more research in this field.  

In the search for expert knowledge input, a pre-elicitation meeting was organised in 

September 2016 with the research Directors of Studies (DoS) and two-supervision team. 

The goals of the meeting were 1) selection of experts mainly from Arctic countries to 

contribute their knowledge both in hazard identification and in the quantitative risk 

analysis phase, and 2) setting out the important questions that would be used to seek their 

subjective opinion. The experts selected, based on their experience in Table 8, have 

primary experience in Arctic voyages and/or AMSSOs for over 10 years. 

After a series of contacts with concerned experts and a careful literature review, a list of 

48 hazard events was identified in the AMSSO Ship-Ice collision accident model. Further 

investigation was carried out to screen the hazard events based on their likelihood, 

consequences severity, hazard detection probability, and the impact of hazard to the 

operation. This further screening resulted in 21 hazard events in AMSSO. Consequently, 

a clustering technique mentioned in section 2.11.2 is introduced to show the hierarchical 

clustering of the 21 significant hazard events and their dependencies. The graphical view 

of the events’ dependency is shown in Figure 20, and the risks’ grouping is represented 

in Table 9. 
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Table 8: Expert's knowledge and experience 

Experts Company Experience Arctic region 

A A leading marine 

geophysical services 

company in Norway 

6-10 years as an Arctic 

shipping stakeholder  

The Norwegian Arctic 

B A leading marine 

geophysical services 

company in Norway 

11-20 years as an 

Arctic seismic survey 

crew 

Canadian, Greenland, 

Norwegian Arctic 

C A leading University in 

China 

6-10 years as an Arctic 

risk management 

researcher 

Canadian, Greenland, 

Norwegian Arctic 

D A leading marine 

geophysical services 

company in Norway 

21 years and above as 

an Arctic seismic 

survey crew  

Greenland, others 

including the Antarctic 

E A leading University in 

Norway 

6-10 years as an Arctic 

risk management 

researcher 

The Norwegian Arctic 

 

Table 9: Risk factors and associated hazard events in AMSSO risk model 

Risk group 

1 

S/N Risk group 2 

(Risk Factor) 

S/N Risk group 3 Source  Result 

Ship-Ice 

Collision 

 

 

 

 

 

 

A1 Risk related 

to the Vessel 
navigation 

system 

B1 Limited radio 

communication 

(Khan et al., 

2018), (Kum 
and Sahin, 

2015) 

Loss 

B2 Limited 

sophisticated 

electronic 
navigation 

equipment (such 

as  radar, sonar, 

infrared, and 

microwave 

radiation sensors 

onboard 

satellite) 

(Kum and 

Sahin, 

2015), 
(Kujala et 

al., 2009) 

Loss 

B3 Failure in 

establishment 

and maintenance 

of external aids 

to navigation 

(Sahin and 

Kum, 2015) 

Loss 

B4 Poor ice chart 

(Not updated) 

(Mollitor, 

2018) 

Grounding 

Sinking 
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Risk group 

1 

S/N Risk group 2 

(Risk Factor) 

S/N Risk group 3 Source  Result 

 

 

 

 

 

A2 

 

 

 

 

 

 

 

Risk related 

to vessel 

operational 

system 

 

 

 

 

 

 

B5 Faults in winch/ 

cable 

 Halt 

operation,  

B6 Insufficient 

manoeuvring 

characteristics 

of the vessel not 

specifically built 

for ice breaking 

or quick 

manoeuvring for 
rapid change of 

ice conditions. 

(Serdar and 

Bekir, 2015) 

Collision, 

Grounding 

B7 Insufficient hull 

strength 

Expert Flooding, 

Sinking 

B8 Operational 

incapacitation of 

other vessels 

(such as 

icebreaker, tugs) 

Expert Collision 

 

 

 

 

Ship-Ice 

Collision 

A3 

 

 

 

 

Risk related 

to  

Weather 

 

 

 

 

 

 

B9 Snow 

accumulation on 

the seismic 

equipment and 

superstructures 

(Serdar and 

Bekir, 2015) 

Sinking, 

Halt 

operation 

B10 Poor visibility as 

a result of fog, 

prolonged Polar 

night 

(Kujala et 

al., 2009), 

Expert 

Collision 

B11 Machinery seize 

up with low 

temperatures 

(ABS 

Advisory, 

2014b), 

(Marchenko 

et al., 2015) 

Collision, 

Halt 

operation 

B12 Seasickness 

caused by erratic 

motion of the 

vessel 

(Serdar and 

Bekir, 2015) 

Injury, Halt 

operation 

A4 Risk related 

to ice 

B13 Ice restrictions 

which affect the 

vessel's 

movement and 

force to change 

direction and 

speed 

(Canadian 

Coast Guard, 

2013) 

Collision 
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Risk group 

1 

S/N Risk group 2 

(Risk Factor) 

S/N Risk group 3 Source  Result 

B14 Pieces of 

floating 

multiyear 

ice/icebergs 

causing 

machinery 

damage 

(Canadian 

Coast Guard, 

2013) 

Collision 

B15 Streamer, air 

hose entangled 

in ice 

Expert Halt 

operation 

A5 Risk related 

to human 

factor 

 

B16 Practical 

incompetency 

for duty such as 

experience, 

skills, local 
knowledge of 

waters, usage of 

devices 

 

 

 

(Li et al., 

2012) 

Grounding, 

Sinking, 

Loss, 

Sinking 

Ship-Ice 

Collision 

 

 

A5 

 

 

 

 

 

Risk related 

to human 

factor 

 

 

 

 

 

 

 

 

B17 Inappropriate 

design of task or 

operation such 

as night 

navigation, 

route planning, 

anchoring etc 

Expert Collision 

B18 Available 

warning 

mechanism is 

insufficiently 

developed and 

used 

(Serdar and 

Bekir, 2015) 

Collision 

B19 Workload-

causing stress, 

fatigue, bad 

mood as a result 

of very short 

daylight 

Expert Collision, 

injury 

B20 Lack of situation 

awareness  

Expert, 

{Lawrence P 

Hildebrand, 

2018 #304} 

Grounding, 

Sinking, 

Collision 
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Risk group 

1 

S/N Risk group 2 

(Risk Factor) 

S/N Risk group 3 Source  Result 

B21 Inadequate 

communication 

Expert, 

(Kum and 

Sahin, 2015) 

Collision, 

Halt 

operation 

 

 

Figure 20: A Dendrogram of the dependable relationship of the 21 hazard events in AMSSO Ship-Ice 

Collision Risk Model 

A1-A5, B1-B21 in Figure 20 are described in Table 9. 

It can be observed that the interdependencies of the 21 hazard events are not considered. 

The main difficulty with the interdependencies of events is the definition of group-wise 

events. The problem is that some hazard events may not occur until the end of a stage. 

Each risk group is restricted to event time and only considered at a time point between 

groups. This approach also provides information suppose the 21 hazard events occurred 
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sequentially. The risk group interval can easily be implemented in computer software that 

supports the random risk analysis style. 

3.4.1.4 Develop a BN Model with a rational distribution of DoB in FRB 

3.4.1.4.1 Rule aggregation for prior probability of Hazard events 

Since there is a possibility of uncertainty in hazard event data, some event data may be 

inputted into the FMEA modelling using the described linguistic grades with DoB. This 

invariably means that several rules will be used in the risk analysis of a singular hazard 

event. These rules are capable of synthesising the connected DoB in the THEN portions 

of the several rules involved in the risk analysis. Alyami et al. (2019) and Yang et al. 

(2008a) buttressed the ability of BN to collate cluster or non-linear causal relationships, 

and model the DoB in the THEN portion of an FRB. In order to incorporate BN, the FRB 

established earlier will need to be represented first in the form of conditional probability. 

See, for instance, Rule 2 in Table 7, this can be represented thus:  

Rule2: 𝐼𝐹 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 (𝐿1), 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 (𝐶1), 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 (𝑃1) 𝑎𝑛𝑑 𝐿𝑜𝑤 (𝐼2),  

THEN [(0.75,𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 (𝑅1)), (0.25, 𝐿𝑜𝑤 (𝑅2)), (0,𝑀𝑒𝑑𝑖𝑢𝑚 (𝑅3)), (0,𝐻𝑖𝑔ℎ (𝑅4))]. 

This can be further expressed in the form of conditional probability as thus: 

Given L1, and C1, P1 and I2, the probability of the risk evaluation for each linguistic term 

(Rh) where Rh (R1 = Very Low, R2 = Low, R3 = Medium, R4 = High) is (0.75, 0.25, 0, 0) 

or 

 𝑝(𝑅ℎ|𝐿1, 𝐶1, 𝑃1, 𝐼2) = (0.75,0.25, 0, 0) 3.4 

Where “|” depicts conditional probability. 

Concerned experts in AMSSO risk analysis can analyse a hazard event using their 

subjective judgements centred on primary observations with respect to the four risk 

parameters and their linked linguistic grades. Taking the mean of the DoBs assigned by 

multiple experts to the linguistic grades of each parameter supports the calculation of the 
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prior probabilities: 𝑝(𝐿𝑖), 𝑝(𝐶𝑗), 𝑝(𝑃𝑘) and 𝑝(𝐼𝑙) of the four parent nodes, NL, NC, NP, 

and NI. 

3.4.1.4.2 Bayesian Network mechanism 

By means of a BN technique, the FRB constructed in FMEA of AMSSO Risk Analysis 

can be modelled and transformed into a five-node converging connection that contains 

the four parent nodes, that is, L, C, P, and I (parent nodes NL, NC, NP, and NI) and the 

child node R (child node NR). Once the rule base has been transferred into a BN 

framework, then the rule-based risk inference for the failure (risk) criticality analysis will 

be simplified as the calculation of the marginal probability of the child node NR from the 

four parent nodes, NL, NC, NP, and NI.  

To marginalise R, the required conditional probability table of NR, 𝑝(𝑅|𝐿, 𝐶, 𝑃, 𝐼)), can 

be found using Table 7. It represents a 4 × 4 × 4 × 4 table containing values of  

𝑝(𝑅ℎ|𝐿𝑖, 𝐶𝑗, 𝑃𝑘, 𝐼𝑙) (h, i, j, k, l = 1,…, 4). Whereas, the marginal probability of NR can be 

calculated as: 

  𝑝(𝑅ℎ) = 
∑∑ ∑ ∑𝑝(𝑅ℎ| 𝐿𝑖, 𝐶𝑗, 𝑃𝑘, 𝐼𝑙)𝑝(𝐿𝑖)𝑝(𝐶𝑗)𝑝(𝑃𝑘)𝑝(𝐼𝑙)

4

𝑙=1

4

𝑘=1

4

𝑗=1

4

𝑖=1

 

3.5 

Where: 𝑅ℎ (R1= Very Low, R2= Low, R3= Medium, R4=High) 

3.4.1.4.3 Utility functions for hazard events prioritization 

The overall belief structure provides a wide-ranging view that displays the ratings and 

intervals for each hazard event evaluation with their assessed DoBs. In a practical sense, 

however, the risk ranking of hazards events cannot be easily solved by analysing their 

overall belief structures. Hence, all the belief structures need to be converted into 

expected risk scores of either 0 to1,or 0 to 10 or 0 to100, with 1 or 10 or 100 in the range 

being the highest critical score. The main aim of using a utility function is to prioritise 
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the hazard events. A new risk (evaluated hazard event) prioritization index (also known 

as Risk Index (RI)) can be found using the Equation 3.6 (Chen et al., 2018): 

 RI= Σn=1
N β𝑛×𝑢(𝐻𝑛) 3.6 

Where β𝑛= consequent belief degree, N denotes the number of linguistic terms, and utility 

𝑢(𝐻𝑛) is taken as “0” for Very Low, “0.33” for Low, “0.66” for Medium, and “1” for 

High in RI calculation. The calculation of the RI using the utility functions can be 

simplified and represented in Table 10. 

Table 10:  Risk Index calculation 

Hn Very Low Low Medium High 

Vn 1 2 3 4 

𝑢(𝐻𝑛) 
 

1 − 1

4 − 1
= 0 

2 − 1

4 − 1
= 0.33 

3 − 1

4 − 1
= 0.66 

4 − 1

4 − 1
= 1 

βn 27.39 26.23 25.83 20.55 

Σn−1
n βn = 100 27.39 + 26.23 + 25.83 + 20.55 = 100  

βn × 𝑢(𝐻𝑛) 27.39 × 0 26.23 × 0.33 25.83 × 0.66 20.55 × 1 

𝐷𝑜𝐵 Σn=1
n βn  ×  𝑢(𝐻𝑛)= 27.39 ×0 + 26.23 ×0.33 + 25.83 ×0.66 + 1 ×20.55 = 46.25 

 

3.4.1.4.4 Prioritisation of the HEs using the new FRBN benchmark risk 

No industrial or engineering activity is entirely free from risk. Several stakeholders and 

regulatory bodies around the world require that risk levels be reduced to levels that are 

As Low As Reasonably Practicable, or "ALARP". The "ALARP region" lies herein 

between 0 and 8% as represented in Figure 21. The expressed-preference approach in 

Figure 21 utilised experts’ opinions with the FRBN mechanism to obtain information 

about risk levels warranting mitigation action. The higher the value of RI for a hazard 

event, the higher the risk on an AMSSO. 
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The 8% Very Low is obtained by adjusting this linguistic grade of “Very Low” to 100% 

(that is, the worst case of Very Low) in the FRBN risk model while keeping other 

linguistic grades to zero. The 33% Low is obtained by adjusting this linguistic grade 

“Low” to 100% (that is, the worst case of Low) in the FRBN risk model. This process is 

repeated for other risk levels to obtain 66% Medium and 100% High as shown in Figure 

21. 

Risk levels ≤ 8% in the developed benchmark risk would normally not require risk control 

action. Risk levels ≤ 33% would require risk control action if the cost/benefit ratio is < 1. 

Risk levels ≤ 66% and ≥ 100 must be reduced and prevented from occurring, as these fall 

within the intolerable regions of the benchmark risk. 

3.4.1.4.5 Model Validation using sensitivity analysis techniques 

Model validation involves processes and testing intended to verify that new models are 

performing as expected, in line with their design objectives (Clayton, 2016). Since this is 

the first time of applying FRBN in the subject area, it is important to validate the risk 

        Low 33% 

  Medium 66% 

High 100% 

ALARP. Risk control action is 

normally not required  

Hazard can be reduced if cost-effective 

Hazard consequences must be reduced 

 

Risk control action is required to 

eliminate or control hazards  

     Very Low 8% 

Figure 21: Tolerability of personal risk using FRBN benchmark risk 
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analysis model. Moreover, testing the newly developed risk model (FRBN-AMSSO) is 

important, especially in the involvement of subjective elements in the generated 

methodology (Yang et al., 2008a).  

A more reliable validation method that is gradually gaining popularity in engineering risk 

management is sensitivity analysis. This method will be conducted to check the 

authenticity of the belief structures based on expert judgements. Checking the sensitivity 

in the FRBN method offers an analytical value judgment for the conclusions of risk 

evaluation (or RI). Checking the sensitivity of parameters is usually performed as a 

sequence of tests in which the modeller sets different parameter values to measure the 

changes caused by a change in the risk parameters (Alyami et al., 2019). 

There are three possible axioms that can be used as a mechanism for validating the 

proposed FRBN model. These axioms can vary depending on the area of interest and are 

generally accepted as a rule of statements or as a principle that is accepted to be true with 

the system of “logic” defined and self-evident truth that needs no proof (Asuelimen et al., 

2019, Yang et al., 2008a). The mechanism of the three axioms are stated below (Wan et 

al., 2019): 

Axiom 1. A slight increase or decrease in the prior subjective probabilities of each input 

node should certainly result in the effect of a relative increase or decrease of the posterior 

probability values of the output node. 

Axiom 2. Given the same variation of subjective probability distributions of each risk 

parameter in the antecedents, its magnitude of influence on the RI will remain consistent 

with their weight distributions. 
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Axiom 3. The total influence magnitudes of the combination of the probability variations 

from x attributes (evidence) on the values should always be greater than the one from the 

set of x - y (y ∈ x) attributes (sub evidence). 

3.5 Trial application of the proposed FRBN Model 

In order to carry out a trial application of the proposed model and to analyse the Ship-Ice 

Collision accident scenario in AMSSO, the five-step methodology presented in Section 

3.4 is utilised.  

3.5.1  Preparatory phase 

This phase includes the selection of an oil field for investigation and the selection of 

appropriate experts that will contribute their knowledge and judgement in the real-world 

application of the FRBN model. The Greenland, Iceland and Norwegian Seas (GINS) is 

selected in this study to demonstrate the applicability of FRBN. The GINS or otherwise 

referred to as "Arctic Odden" is selected in this study because of its fair presence of ice 

throughout most periods of the year, vast amount of fisheries, oil & gas, and other 

hydrocarbon resources. (Seidov et al., 2013). This prospect project is perceived as a rather 

busy region of the Arctic Circle. 

The characteristic of the GINS can be defined as a semi-enclosed sea of the Arctic Ocean, 

to which it is mainly connected at oceanic depths through the Fram Strait (see Figure 22). 

The large-scale circulation of the GIN Sea is ruled by the East Greenland Current flowing 

southward to the west, the Norwegian Atlantic Current flowing northward to the east, and 

the Icelandic Current flowing southeastwardly alongside the frontal boundary with the 

Atlantic Ocean. Apart from the landfast ice of the Greenland Shelf, the ice cover consists 

of multiyear ice exported from the Polar Sea and seasonal ice formed within the GINS 

(Hopkins, 1990). Arrows in the Figure 22 show current flow in and out of the GIN Sea. 
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Figure 22: Main ocean currents around the GIN Sea from 1955 to 2012 (Locarnini et al., 2013) 

It is important to note that a vast amount of ice in the GINS persists from a few days to 

several months. The earliest appearance can be found in December, the latest in April, 

almost equally distributed within these months (Niederdrenk and Mikolajewicz, 2016). 

The goal of the investigation has been presented in section 3.4.1. For the trial application 

of FRBN, a questionnaire was developed from the pre-elicitation meeting that was held 

in September 2016. Experts that were contacted with the questionnaire were selected 

based on their experience in Arctic Shipping, with more emphasis on the AMSSO in the 

selected prospect region. Table 8 shows the background and experience of the selected 

experts. 

3.5.2 Establish an FRB with belief structure in FMEA 

The FRB developed in Section 3.4.1 is used in this study. The FRB offers a rational 

distribution of the DoB as well as transparency and simplicity in the risk parameters. Its 

strength lies in its ability to increase flexibility in the definition of the DoB distributions 

in individual rules. In addition, to allow an easy validation by experts and the option of 
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inserting additional rules based on the experts’ memories and experience, especially in 

areas that have not been covered in analysis. 

3.5.3 Identifying all potential and significant hazard events in the Ship-Ice Collision 

risk model in AMSSO 

Literature review (see 2.10.2 and 3.4.1.3), and experts’ knowledge and experience (see 

Table 8 for experts’ background and experience) constituted the basis for identifying all 

significant hazard events in the Ship-Ice Collision risk model in AMSSO. Some of the 

existing hazard events identified in this study were reviewed specifically for the GINS 

prospect project characteristics, and listed as follows: 

B1: Limited radio communication;  

B2: Limited sophisticated navigation;  

B3: Failure in the establishment of external aid; 

B4: Poor ice chart;  

B5: Faults in winch/ cable;  

B6: Insufficient manoeuvring characteristic;  

B7: Insufficient hull strength;  

B8: Operational incapacitation of other vessels;  

B9: Snow accumulation on seismic equipment;  

B10: Poor visibility as a result of fog;  

B11: Machinery seize up with low temperatures;  

B12: Seasickness caused by erratic motion of the vessel; 
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B13: Ice restrictions, which affects the vessel's movement;  

B14: Pieces of floating multi-year ice/icebergs causing machinery damage;  

B15: Streamer entangled in ice;  

B16: Practical incompetency of duty;  

B17: Inappropriate design of task;  

B18: Available warning insufficiently used;  

B19: Workload causing stress;  

B20: Lack of situational awareness;  

B21: Inadequate communication.  

In the developed questionnaire from the series of pre-elicitation meetings, the experts are 

requested to evaluate each of the 21 significant hazard events identified with respect to 

the four risk parameters using their matched linguistic grades and DoBs. 

3.5.4 Develop a BN Model with a rational distribution of DoB in FRB 

3.5.4.1 Rule aggregation for HEs prior probability 

The feedback received from the five experts is initially combined (by conducting an 

average calculation) to yield hazard events’ input values in terms of the four risk 

parameters. The averaged hazard events’ input is then used in the new FRBN in Section 

3.4 based on the new FRB with rational DoBs in Section 3.4.1 to prioritise the 21 hazard 

events. 

Given Equation 3.4, the prior probabilities of the four nodes in BN based FMEA can be 

attained. For example, to analyse B1, limited radio communication, the hazard event’s 
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input values in terms of the four risk parameters are gleaned from the expert's knowledge, 

then the prior probabilities of the four nodes can be calculated, as shown in Table 11. 

Table 11: Prior Probabilities of NL, NC, NP, and NI when analysing Ship-Ice Collision in GNIS AMSSO 

Hazards Experts Likelihood Consequence 

severity 

Probability of 

failure undetected 

Impact of failure to 

operation 

Limited radio 

communication 

 VL L M H VL L M H VL L M H VL L M H 

A 30 30 20 20 10 30 50 10 40 50 10 0 10 20 50 20 

B 0 20 50 30 80 20 0 0 80 20 0 0 0 30 70 0 

C 20 30 30 20 30 40 30 10 10 10 50 30 50 30 20 0 

D 60 20 20 0 40 30 20 10 50 50 0 0 10 40 40 10 

E 50 30 0 20 0 30 70 0 70 30 0 0 0 0 20 80 

GM 

probability 
28 26 23 19 25 29 29 10 41 27 14 12 14 24 35 17 

 

Av Prior 

probability 32 26 24 18 32 30 34 6 50 32 12 6 14 24 40 22 

 

Here, “geometric mean (GM)” values were compared with “mean (Av)” values to account 

for zero value input, but there was not much difference between the “geometric mean” 

and the calculated “mean” values, so, the “mean” values are preferred for consistency 

throughout the prior probabilities calculations. 

3.5.4.2 Bayesian reasoning mechanism 

Once the earlier identified probabilities of the four nodes in BN based FMEA are 

obtained in Table 11, it can be converted to obtain 𝑝(𝑅ℎ|𝐿𝑖, 𝐶𝑗, 𝑃𝑘, 𝐼𝑙) and the risk analysis 

of the Ship-Ice Collision from the data set in Table 11 can be calculated by the Equation 

3.5 as Rh (R1= 31.36% Very Low, R2= 28.11% Low, R3= 27.00% Medium, R4= 13.53% 

High). 
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The calculation can also be computerised using the Hugin software (Hugin Lite 8.6 

Version) (Andersen et al., 1989) as represented in Figure 23. 

 

Figure 23: Risk evaluation of B1 in the Ship-Ice Collision risk model using Hugin software 

3.5.4.3 Utility functions for hazard events prioritization in the Ship-Ice Collision model in 

AMSSO 

The result of the computerised calculation represented in Figure 23 can be explained as 

the risk analysis of “Limited radio communication” in Ship-Ice Collision model in 

AMSSO being 31.36% DoB Very Low, 28.11% DoB Low, 27.00% DoB Medium, and 

13.53% DoB High. Next, Equation 3.6, and Table 10 is used to calculate the utility value 

or risk index value for B1 in the Ship-Ice Collision model as 40.63%.  

Similarly, the risk-ranking index of all the 21 hazard events can be obtained from the 

Hugin computer application, and the results herein presented in Table 12. 
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Table 12: The risk-ranking index evaluation of the 21 hazard events 

S/N Accident categories Risk evaluation 

 

Equivalent 

Rank total 

Very 

Low 

 

Low 

 

Medium 

 

High 

 

1 Limited radio 

communication 

31.36 

 

28.11 

 

27.00 

 

13.53 

 

40.63 

2 Limited 

sophisticated 
electronic 

navigation 

equipment 

26.41 24.18 25.19 24.21 48.82 

3 Failure in 
establishment and 

maintenance of 

external aids to 

navigation 

19.10 29.97 32.63 18.31 49.73 

4 Poor ice chart (Not 

updated) 

18.61 34.06 29.51 17.82 48.54 

5 Faults in winch, 

cable 

20.39 30.09 27.60 21.92 50.07 

6 Insufficient 

manoeuvring 

characteristics of 

vessel …. 

26.74 24.52 23.31 25.44 48.91 

7 Insufficient hull 

strength 

28.17 28.30 19.73 23.80 46.16 

8 Operational 

incapacitation of 

other vessels 

29.06 27.25 22.38 21.31 45.08 

9 Snow accumulation 

on the seismic 

equipment and 

superstructures 

28.79 27.15 23.82 20.25 44.93 

10 Poor visibility as a 
result of fog, 

prolonged polar 

night 

13.37 24.46 31.61 30.56 59.49 

11 Machinery seize up 

with low 

temperatures 

24.24 26.33 24.48 24.95 49.80 

12 Seasickness caused 

by erratic motion of 

the vessel 

36.12 30.20 25.76 07.92 34.89 
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S/N Accident categories Risk evaluation 

 

Equivalent 

Rank total 

Very 

Low 

 

Low 

 

Medium 

 

High 

 

13 Ice restrictions that 

affect the vessel's 

movement.. 

23.41 26.25 26.03 24.31 50.15 

14 Pieces of floating 

multi-year 
ice/icebergs 

causing machinery 

damage 

22.53 29.11 25.65 22.72 49.25 

15 Streamer, Air hose 

entangled in ice 

25.88 29.33 28.59 16.21 44.75 

16 Practical 

incompetency for 

duty such as 

experience 

16.80 34.63 35.68 12.89 47.86 

17 Inappropriate 

design of task or 

operation such as 

night navigation etc 

19.38 30.35 31.45 18.82 49.59 

18 Available warning 

mechanism 

insufficiently 

developed and used 

20.15 34.35 28.43 17.07 47.17 

19 Workload causing 

stress, fatigue 

16.07 27.45 32.72 23.76 54.41 

       

20 Situation awareness 
and bad decision-

making 

14.78 23.75 27.85 33.62 59.84 

21 Inadequate 

communication 

16.24 27.12 31.83 24.80 54.76 

 

3.5.4.4 Prioritising the hazard events and comparing the result with benchmark risk. 

Upon the application of FRBN in AMSSO risk analysis, the significant hazards can be 

prioritised in the following manner (top-down) in Table 13. Following this, is a 

comparison between the FRBN results with the newly developed benchmark risk. Such 

comparison invariably suggests a very important risk-analytical technique for risk 
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decision-making (Piegorsch, 2010). The concept of risk prioritisation and the new FRBN 

benchmark risk evolved partly from the awareness that absolute safety is generally an 

unachievable goal (Piegorsch, 2010), and hence, certain risk levels can be deemed 

tolerable.  

From the comparison, it is revealed that the analysed risks of the 21 hazard events are 

well above the tolerable region of the developed benchmark risk in Figure 21, hence 

further risk decision making is required. 

Table 13: Prioritisation of AMSSO risks in GIN Sea 

Hazard Event Equivalent Rank total Risk Ranking Number 

(RRN) 

Situation awareness 

and bad decision-

making 

59.84 1 

Poor visibility as a 

result of fog, 

prolonged polar 

night 

59.49 2 

Inadequate 

communication 

54.76 3 

Workload causing 

stress, fatigue 

54.41 4 

Ice restrictions that 

affect the vessel's 

movement.. 

50.15 5 

Faults in winch, 

cable 

50.07 6 

Machinery seize up 

with low 

temperatures 

49.80 7 

Failure in 

establishment and 

maintenance of 

external aids to 

navigation 

49.73 8 

Inappropriate design 

of task or operation 

such as night 

navigation etc 

49.59 9 
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Hazard Event Equivalent Rank total Risk Ranking Number 

(RRN) 

Pieces of floating 

multi-year 
ice/icebergs causing 

machinery damage 

49.25 10 

Insufficient 

manoeuvring 

characteristics of the 

vessel 

48.91 11 

Limited 

sophisticated 

electronic navigation 

equipment 

48.82 12 

Poor ice chart (Not 

updated) 

48.54 13 

Practical 

incompetency for 

duty such as 

experience 

47.86 14 

Available warning 

mechanism 

insufficiently 

developed and used 

47.17 15 

Insufficient hull 

strength 

46.16 16 

Operational 

incapacitation of 

other vessels 

45.08 17 

Snow accumulation 

on the seismic 

equipment and 

superstructures 

44.93 18 

Streamer, Air hose 

entangled in ice 

44.75 19 

Limited radio 

communication 

40.63 20 

Seasickness caused 

by erratic motion of 

the vessel 

34.89 21 
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3.5.4.5 Model Validation using sensitivity analysis techniques 

The outcome of this new model having four variables (Very Low, Low, Medium and 

High) needs to be verified against its effective application. In addition, the reliance and 

verification of the outcome of the FRBN can be carried out using validation techniques 

such as sensitivity analysis. 

3.5.4.5.1 Sensitivity Analysis (SA) 

SA is the study of the relative importance of different input factors on the model output 

(Saltelli et al., 2000). SA validates the sensitivity of the parameter in the model in order 

to confer confidence in the use of the new methodology in a real-world application. In 

this section, the model with its simulation as illustrated in Figure 23 would be verified 

with the aim of satisfying the three axioms involved in the process described in Section 

3.4.1.4.5. The examination of the model is conducted for “B1” in the Ship-Ice Collision 

risk model as follows:  

 Axiom 1: An increase in a risk parameter node (for example “likelihood”) prior 

probability value of an event’s linguistic variable (for example “high”), will result 

in an increase in the B1 utility value. For example, an increase of B1’s likelihood 

node prior probability from 18 to 100% resulted in an increase of its utility value 

from 40.63 to 54.93% as represented in Figure 24. Utility value is referred to as 

the final risk estimation of an event. 
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Figure 24: Model validation by adjusting B1's likelihood to 100% "High” 

 Axiom 2: A further increase in the risk parameter nodes (for example a 

combination of “likelihood” and “consequence severity”) prior probabilities of an 

event’s linguistic variables (for example “high”), will result in a much higher 

utility value compared to the utility value from a singular increase in risk 

parameter node prior probability of an event’s linguistic variable. For example, an 

increase of B1’s likelihood and consequence severity nodes from 18 to 100% 

“High” and 6 to 100% “High” respectively resulted in a much higher utility value 

of 75.78% as shown in Figure 25 compared to the utility value obtained from a 

singular increase in the prior probability of likelihood node in Figure 24. 
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Figure 25: Model validation by adjusting B1's "likelihood" and "consequence severity" to 100% "High” 

 Axiom 3: Further to Figure 25, an additional increase in the risk parameter nodes’ 

prior probabilities of an event’s linguistic variable, (for example “high”) will 

result in yet, a further increase in the utility value greater than the utility value 

obtained from the increase in the combination of two risk parameter nodes’ prior 

probabilities. For example, an increase of B1’s likelihood, consequence severity 

and impact and operation nodes from 18 to 100% “High”, 6 to 100% “High” and 

22 to 100% “High” respectively, resulted in a much higher utility value of 85.89% 

shown in Figure 26 compared to the utility value attained from the two-

combination increase in the prior probabilities shown in Figure 25. 
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Figure 26: Model validation by adjusting B1's "likelihood", "consequence severity" and "impact to 

operation" to 100% "High” 

From the SA, it is revealed that, as risk criticality increases in an event (for example an 

event with 100% “high”), the utility value also increases as demonstrated in Figures 24 

to 26, and as the risk criticality is low in an event, the utility value is also observed to be 

relatively low. These observations are shown in a couple of tests represented in Figures 

27 and 28.  

 
Figure 27: Model validation by adjusting B1's likelihood to 100% "Very Low” 
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Figure 28: Model validation by adjusting B1's "likelihood" and "consequence severity" to 100% "Very 

Low” 

 

These revelations go further to buttress the fact that the output node is sensitive to any 

change in the prior probability values of the input nodes. Consequently, this series of test 

validates the results and the application of FRBN in a real-world application, hence the 

FRBN risk-based methodology can be relied on in complex risk analysis.  

3.6 Results and Discussion 

From the result of the FRBN risk analysis in Table 13, the ranking of the AMSSO hazard 

event in GINS indicated that B20 (lack of situation awareness) has the highest 

contribution (59.84%) to cause major disruption to Arctic marine seismic survey activity 

and endanger the safety of the crew, assets and the environment.  

AMSSO in the GNIS and within the Arctic Circle is a challenging task (Björn Heyn et 

al., 2018) and several major oil giants such as Statoil recognise this fact (Henderson and 

Loe, 2016). This statement is valid as it is evidenced that none of the hazard events 

identified in section 3.5.3 fell within the ALARP region of the newly developed FRBN 

“benchmark risk” in Figure 21. This implies that more attention needs to be focussed on 
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preventing a “lack of situational awareness” from occurring to prevent Ship-Ice Collison 

and financial loss in AMSSOs.  

B10 (Poor visibility as a result of fog, prolonged polar night) has the second highest 

contribution of 59.49% to cause major disruption to Arctic marine seismic survey activity 

and thus cause harm to people, environment and the seismic survey assets. Down the risk 

ranking hierarchy in Table 13 is B12 (Seasickness caused by erratic motion of the vessel) 

having the lowest contributing factor of 34.89%. Although this falls slightly over the 

ALARP region of the FRBN benchmark risk, less effort compared to B20 can be made 

to curtail this risk as recent studies show that seasickness decreases between the ages of 

21 and 40 years (McIntosh, 1998). Meaning if younger crewmembers are involved in 

AMSSO, the risk of seasickness can be reduced to some extent.  

Human factor remains a major concern in AMSSO and in general shipping operation. 

From the result of Table 13, it is observed that the human factor appeared in the first five-

hazard event risk ranking. Therefore, it is worth mentioning that to reduce or prevent 

Ship-Ice Collision, the L, C, P and I risk parameters of all hazard events must be reduced, 

and special attention must be paid to B20 and human factors in general. 

3.7 Conclusion 

The benefits of the use of the clustering dendrogram in this chapter to depict the 

interactions among the hazard events, and the introduction of expert knowledge cannot 

be overemphasized, especially when sufficient accident record data is lacking or 

incomplete. The dovetailing of the FMEA and Bayesian Network approach with fuzzy 

logic, otherwise termed FRBN, gives an effective tool to process subjective judgement 

for characterising 21 critical hazards, and prioritising these hazard events in FMEA under 

high uncertainty. 
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 The distribution of the four linguistic terms (Very Low, Low, Medium and High) over 

the four risk parameters (L, C, P and I) dilutes the risk of biased judgement. The validation 

of the FRBN model reveals its reliability in real life scenario. It also reveals that the 

highest and lowest cases of linguistic grades (Very Low and High) have a dominating 

effect on the resultant risk score, as seen in Figures 24 to 28. This new model is simple to 

compute and allows new hazard events to be introduced without collapsing the ongoing 

analysis.  

Moreover, this new model provides a powerful risk evaluation tool for Arctic shipping 

risk management. This new model also highlights its advantages in facilitating risk 

analysis from the design stage of a system to its operation when being suitably tailored 

for use.  

The work herein also recognises that other major concerns in AMSSO, such as legal, 

managerial, and natural and political factors can be investigated in a similar way in order 

to provide a panoramic view on Arctic oil and gas E&P lifecycle. It is, therefore, 

necessary to determine which of the 21 hazard events has more risk influence on the 

global safety performance of AMSSO. The risk influence of the 21 hazard events and the 

measurement of the global safety performance of the Ship-Ice Collision accident scenario 

will be determined in the next Chapter.  
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Chapter 4– An investigation into the global safety performance 

and risk influence of hazard events on the ship-ice collision 

model in AMSSO 

Overview 

This chapter examines the risk influence of the 21 hazard events earlier analysed locally 

in Chapter 3. To ascertain the risk influence of each hazard event on the Ship-Ice 

Collision model, a global RI of Ship-Ice Collision model in AMSSO is investigated.  

A novel method is adopted to achieve this investigation – by incorporating an FRBN 

developed in chapter 3 with AHP and ER in a complementary manner. The former with 

the AHP provides a realistic and flexible method to define input hazard data and to 

determine the relative weights of individual hazard event at the third and second level 

respectively on the risk dendrogram developed in Chapter 3. The latter is used to 

aggregate both the hazard events at the bottom level and the corresponding risk factors 

in the upper levels of the risk dendrogram, thereby producing the global RI of Ship-Ice 

Collision. This novel method has the benefit of accounting for uncertainties existing in 

the measurement of the global RI of the Ship-Ice Collision model.  

Thus, allowing dynamic risk-based decision support in AMSSO from a systematic 

perspective. The novel feature of the proposed method provides a new sensitivity analysis 

method to rank the hazard events by taking into account their specific RIF. The empirical 

results reveal that the qualitative and quantitative hybrid approach is capable of dealing 

with uncertainties in risk and hazard data; hence, its application to a real-world scenario 

can be reliable. 
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4.1 Introduction 

The risk analysis carried out in Chapter 3 has revealed the need to measure the RIF of 

each hazard event of AMSSO in the studied GINS region. It is worth noting that the 

commercial extraction of hydrocarbon resources in the prospect project – GIN Sea–, is 

somewhat in this stage at an infancy level (Sydnes et al., 2017). Therefore, the operability 

and safety of the seismic survey operation in the prospect project and the Arctic region 

need to be investigated and measured. The global safety measurement of Ship-Ice 

Collision accident case in AMSSO generally plays an important role in improving seismic 

data and safeguarding lives, assets and the environment.  

Given the task of assessing the RIF of each hazard event and the measurement of the RI 

of Ship-Ice Collision in AMSSO, certain questions, such as “what to measure” and “how 

to measure” can be tricky since these questions have not been attempted in AMSSO risk 

analysis. Although the Polar Code through the IMO has made efforts in mitigating risks 

in the Arctic marine and offshore domain, experts argue that activities in the Polar region 

are still very risky and hence, the Polar Code has not done enough to ensure safety in 

Arctic operations (CBC News, 2015).  

The Polar Code entered into force on January 1, 2017 and was amended on July 1, 2018. 

With the recent rules and amendments, there is not even a guarantee that the recent 

changes in the Polar Code rules will be adhered to (The Guardian Newspaper, 2014). It 

becomes even more important to develop an RI value for AMSSO in the prospect GNI 

Sea – if the RI value falls in the intolerable region of the FRBN benchmark risk –, to 

allocate resources for risk control, and for a continued safe and efficient AMSSO. The RI 

measurement carried out in this chapter will also support the Polar Code and other private 

regulatory bodies to curb the envisaged high risks in AMSSO. 
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This chapter develops a conceptual AMSSO safety measurement model that represents a 

stout performance measurement tool and provides a diagnostic instrument to Arctic oil 

and gas explorations flexibly and economically. It is worth mentioning that the need and 

importance of measuring a system’s safety lie in the fact that decision-makers are 

generally concerned in estimating the riskiness of a system for resource planning, 

inventory management, development of realistic policies for age replacement, and 

logistics support (Alyami, 2017). 

Estimating the RI or safety level in AMSSO involves a thorough assessment of both the 

complexities and the uncertainties in the Arctic system. The arctic system herein 

represents the environment, assets and the operation. Arriving at a specific RI is usually 

dependent on multiple attributes. Moreover, the estimation will take into account inherent 

data uncertainties that are unavoidable in AMSSO contexts.  

Data (hazard information) uncertainty mainly arise from the lack of primary observation 

and the poor accident statistics record. Data uncertainty is a key issue in estimating risk 

or safety level in any engineering system. Other key issues that are considered in this 

study are 1) the probability of an incorrect assessment technique; 2) various risk 

parameters and stochastic values that exist in measurement; 3) the various hazard events 

and risk factors in estimation and 4) shortage of experts due to the insufficient primary 

observation of events.  

However, previous risk researches have scantily dealt with uncertainties and complexities 

in a multifaceted system, albeit, knowledge from past studies such as port system (Alyami 

et al., 2019), supply chain system (Yang et al., 2010), hydrometeorological ensemble 
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forecasting (Kavetski, 2019), and et cetera, will be incorporated herein to deal with 

uncertainties in risk and safety measurement.  

Knowledge from past and complex risk researches reveal that to arrive at a more reliable 

RI measurement in a system, it is important to identify and synthesise the different 

alternatives with several criteria involved in the system (Gaonkar et al., 2010). The 

synthesising of the different alternatives and their corresponding criteria can be 

problematic in the practical sense. However, the difficulty in comparing different 

alternatives with several criteria in the practical sense has led to the development of 

MCDM under fuzziness. Fuzziness, which is a type of imprecision that is associated with 

fuzzy sets, has been mentioned and described in sections 2.10.3 and 3.2.2.  

A more realistic approach to analyse the global RI of the Ship-Ice Collision model, to 

arrive at a value of the highest degree of desirability will be the integration of knowledge 

from MCDM techniques under fuzziness (Gaonkar et al., 2010).  An early review of 

MCDM problems was carried out by Hwang and Yoon (Tzeng and Huang, 2011) and 

since then, several MCDM problems have been tackled by various academic researchers 

working in the area of decision-making in a fuzzy environment (Verma et al., 2007, 

Gaonkar et al., 2008). Cases of MCDM techniques being used with FL include MAUT, 

AHP, VIKOR and ER.  

In contrast, the fuzzy MCDM methods do not solve missing or incomplete information 

as much as ER does (Gaonkar et al., 2010). The ER approach which is based on the logic 

of the Dempster-Shafer theory (capable of tackling missing or incomplete information) 

has proved to be more useful and practical when a decision problem under consideration 

includes multiple criteria, which are of both a quantitative and qualitative nature (Sönmez 
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et al., 2002). The ER approach is also suitable for handling uncertain subjective 

judgments when considering multiple attributes.  

Sönmez et al. (2001) and Xu and Yang (2003) utilised ER in their studies to arrive at a 

decision in the presence of multiple attributes and subjective judgements. Also, see Liu 

et al. (2005) and Xie et al. (2008). More recent papers such as Ahmadzadeh and 

Bengtsson (2017) and Asuquo et al. (2019) have utilized ER in solving multiple attribute 

problems involving subjective judgements.  

ER has also been formulated, advanced, and finally implemented into a Windows-based 

software called Intelligent Decision Systems (IDS) (Xu and Yang, 2001). Literature has 

revealed that the ER approach supported by IDS, has significant advantages over 

conventional methods in helping to improve consistency, transparency, and objectivity in 

assessments (Xu and Yang, 2006). The ER approach supported by IDS also has the 

advantage of eliminating manual calculation errors in assessments. 

Consequently, this Chapter proposes to develop an FMEA approach integrated with the 

ER technique capable of measuring the global RI of AMSSO. The ER can also be utilised 

with other MCDM techniques such as AHP. AHP is preferred in this study because of its 

suitability. The benefit of the use of ER with AHP is described in subsequent sections. 

Also, a proposed methodology for modelling the RI of AMSSO is elaborated in section 

4.3.  

The hybrid integration of FRBN with AHP and ER is then used in a practical case to 

measure the RI of AMSSO in a complementary way in section 4.4. The ER is utilised 

here to synthesise the evaluations of the various risk factors and the associated hazard 

events from the bottom to the top level in the hierarchy decision tree.  
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The novelty of this hybrid integration (FRBN-AHP-ER) approach lies in the fact that: 

1. It for the very first time incorporates the risk impact of components to the whole 

system into the safety measurement of the ship-ice collision model; 

2. It combines various uncertainty models, such as FRBN for hazards' risk estimation 

and ER-AHP for risk synthesis from components to system levels, systematically 

and;  

3. It newly uses a “zero score” approach to quantify the RIF of each hazard event in 

a Ship-Ice Collision accident model. This is carried out to test both the sensitivity 

of the model and its compatibility with the FRBN risk-based model, as well as to 

prioritise the hazard events. The “zero score approach” is achieved by assigning 

a zero score or excluding each hazard event at a time from the analysis, and re-

running the analysis. This approach reveals each hazard event’s influence on the 

system’s safety. From a theoretical viewpoint, the proposed hybrid method can be 

tailored for risk ranking of any large engineering system of comparable features 

(i.e. a hierarchical risk structure). 

4.2 Research Background 

4.2.1 A brief review of research on AHP 

As mentioned earlier in section 4.1, MCDM techniques offer a proactive approach to 

measure the overall RI of AMSSO. To obtain a more reliable RI score or value using the 

ER approach, it is important to assign weights of risk criteria hierarchically (Song and 

Kang, 2016).  In particular, there are more than a few techniques for deriving criteria 

weights in this approach. However, this could be a cognitively challenging task, subject 

to diverse biases, with the elicited values deeply dependent on the method of assessment. 
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In a bid to find the paramount technique for deriving criteria weights in the determination 

of the RI of the Ship-Ice Collision model, a literature review was carried out. To identify 

those journals/academic papers that gave the most valuable information, a search was 

carried out using the MCDM as a keyword in the search title and the abstract bar using 

the following databases: ScienceDirect, Elsevier, Springer, and IEEE Xplore. Results 

gathered included journal articles and conference proceedings pinpointing mainly on 

marine operations and management science.  

The result was further screened to papers that focussed on the application of popular 

techniques. Consequently, eleven popular methods were identified, and among them is 

the AHP technique. AHP as a type of MADM analysis has been extensively used in 

research because of its suitability to compare and weigh attributes via a hierarchy 

structure and ability to verify the consistency of subjective data through a consistency 

ratio method (Song and Kang, 2016). 

AHP is similar in popularity to both Multi-Attribute Value Theory (MAVT) and Multi-

Attribute Utility Theory (MAUT) (Saaty, 1980). MAUT is only an extension of MAVT 

(Fishburn and Keeney, 1974) and the two methods – AHP and MAUT –, rest on the 

different assumptions on value measurements, whereas AHP is developed independently 

of other decision theories (Velasquez and Hester, 2013).  

The major feature of the AHP method is its use of pairwise comparisons, which are 

employed both to compare the alternatives concerning the various criteria and its use to 

estimate criteria weights (Løken, 2007, Lade et al., 2012). Analytical Network Process 

(ANP) is essentially the general form of AHP and it is non-linear, as contrary to AHP, 

which is “hierarchical and linear with the goal at the top and the alternatives at the lower 
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levels” (Wang, 2012). Despite the inability of AHP to prioritise groups or clusters of 

elements in a network. Several researchers have compared the use of AHP with other 

MCDM techniques and compared the results. For example, Leung et al. (1998) analysed 

decision-making within Hawaii's pelagic fisheries using AHP. Even with the variation 

among the questionnaire used to create the AHP input data, the AHP approach was able 

to weigh criteria importance for sustainable fisheries and this led to alternative rankings 

similar to successful rankings in the past. 

Bentes et al. (2012) examined a telecommunications company in Brazil and assessed its 

organizational performance using AHP to prioritize performance perspectives and 

indicators. In the study, AHP was integrated with the Balanced Scorecard (BSC), a 

framework for performance assessment, to appropriately rank alternatives. The BSC 

explicitly assesses organisational performance from multiple dissimilar perspectives. 

This framework put to bear, the related necessary criteria and alternatives, while the AHP 

was utilised for comparisons, weighting, and rankings. With three alternatives and four 

criteria, the AHP was able to take into account several measures and perspectives.  

Albeit, limitations such as, self-assessment bias affecting internal validity present in the 

AHP-BSC hybrid application, the study concluded that the combination of the AHP-BSC 

hybrid methods led to a ranking of organisational performance that was far superior to 

previous methods.  

One of the biggest criticisms in the application of AHP is its susceptibility to rank 

reversal. Due to the nature of comparisons for AHP rankings, the addition of alternatives 

at the end of the process could cause the final rankings to flip or reverse (Velasquez and 

Hester, 2013). Although AHP is very functional and popular in both academia and in the 
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real world, there are also various biases and misuse of the method which are heavily based 

on the lack of theoretical basis (Bulut and Duru, 2018). 

AHP has seen much use in performance-type problems, political strategy, public policy, 

resource management, corporate policy, and planning strategy (Hati et al., 2017). 

Resource management problems make up the disadvantage of rank reversal by having a 

definite number of alternatives in the assessment. AHP's ability to handle larger problems 

makes it ideal to handle problems that compare performance among alternatives. 

Nevertheless, problems, where alternatives are commonly added, would do well to avoid 

this method (Velasquez and Hester, 2013). 

In recent years, because of integrating thinking and advancing technologies, integrating 

several methods has become a commonplace in MCDA. Consequently, a careful selection 

of multiple methods can take account of the deficiencies that may be present in certain 

methods. A summary of MCDM methods is presented in Table 14. It is observed from 

the literature review that most of the MCDM methods have seen a common pattern of 

improvement and progression, such as the transition from MAVT to MAUT and, to an 

extent, AHP to ANP. Outranking methods, like PROMETHEE and ELECTRE, which 

were predominant earlier on in the development of the MCDA field, have been overtaken 

by the application of value measurement approaches such as AHP, ANP, and MAUT 

(Velasquez and Hester, 2013). 

Table 14: Description of notable MCDM methods (Velasquez and Hester, 2013, Vinodh et al., 2014) 

Methods Advantages Disadvantages Areas of application 

Multi-Attribute Utility 

Theory (MAUT) 

Takes uncertainty into 

account; can 

incorporate preferences 

Needs a lot of input; 

preferences need to be 

precise 

Economics, finance, 

actuarial, water 

management, energy 
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Methods Advantages Disadvantages Areas of application 

management, 

agriculture 

AHP Easy to use; scalable; 

hierarchy structure can 

easily adjust to fit 

many sized problems; 

not data-intensive. 

 

Problems due to the 

interdependence 

between criteria and 

alternatives; can lead to 

inconsistencies 

between judgment and 

ranking criteria; rank 

reversal. 

Performance-type 

problems, resource 

management, corporate 

policy and strategy, 

public policy, political 

strategy, and planning. 

Case-Based Reasoning 

(CBR) 

Not data-intensive; 

requires little 

maintenance; can 

improve over time; can 

adapt to changes in the 

environment. 

Sensitive to 

inconsistent data; 

requires many cases. 

Businesses, vehicle 

insurance, medicine, 

and engineering design. 

PROMETHEE 

(Preference Ranking 

Organization METHod 

for Enrichment 

Evaluation) 

Easy to use; does not 

require an assumption 

that criteria are 

proportionate 

Does not provide a 

clear method by which 

to assign weights 

Environmental, 

hydrology, water 

management, business 

and finance, chemistry, 

logistics and 

transportation, 

manufacturing and 

assembly, energy, 

agriculture 

Fuzzy Set Theory Allows for imprecise 

input; takes into 

account insufficient 

information 

Difficult to develop; 

can require numerous 

simulations before use. 

Engineering, 

economics, 

environmental, social, 

medical, and 

management. 

Simple Multi-Attribute 

Rating Technique 

(SMART) 

Simple; allows for any 

type of weight 

assignment technique; 

The procedure may not 

be convenient 

considering the 

framework. 

Environmental, 

construction, 

transportation and 

logistics, military, 

manufacturing and 

assembly problems. 
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Methods Advantages Disadvantages Areas of application 

less effort by decision-

makers 

Simple Additive 

Weighting (SAW) 

Ability to compensate 

among criteria; 

intuitive to decision-

makers; the calculation 

is simple does not 

require complex 

computer programs. 

Only estimates; does 

not always reflect the 

real situation; result 

obtained may not be 

logical. 

Water management, 

business, and financial 

management. 

TOPSIS Has a simple process; 

easy to use and 

program; the number of 

steps remains the same 

regardless of the 

number of attributes.    

Its use of Euclidean 

Distance does not 

consider the correlation 

of attributes; difficult 

to weight and keep a 

consistency of 

judgment. 

Supply chain 

management and 

logistics, engineering, 

manufacturing systems, 

business and 

marketing, 

environmental, human 

resources, and water 

resources management. 

ELECTRE 

(ELimination and 

Choice Expressing 

Reality) 

Takes uncertainty and 

vagueness into account. 

Its process and 

outcome can be 

difficult to explain in 

layman’s terms; 

outranking causes the 

strengths and 

weaknesses of the 

alternatives to not be 

directly identified 

Energy, economics, 

environmental, water 

management, and 

transportation 

problems. 

VIKOR  Easy to use Does not easily 

estimates the 

compromise solution 

Sustainability, 

renewable energy, 

management,  risk, and 

financial management, 

water resource 

planning, tourism, 

health, supplier 
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Methods Advantages Disadvantages Areas of application 

selection, human 

resource management 

 

4.2.2 Analytic Hierarchical Process (AHP) Methodology 

AHP is a decision-making technique originally developed by Thomas Saaty (Saaty, 

1977). The technique is one of the mathematical methods for analysing complex decision 

problems with multiple criteria and can handle qualitative and quantitative attributes 

(Arslan and Turan, 2009). AHP is a methodical approach that implies structuring criteria 

of multiple options into a system hierarchy. This includes relative values of all criteria, 

and comparing alternatives for each particular criterion and defining the average 

importance of alternatives (Lavasani et al., 2011).  

Among the significant strengths of the AHP method is its ability to integrate either 

objective or subjective perceptions, or tangible and intangible assessments based on 

simple pairwise comparison matrices (Da Cruz et al., 2013). The main goal of an AHP is 

to choose an alternative that suitably satisfies a given set of criteria out of a set of choices 

or to determine the weight of the criteria in any application using the decision-maker’s or 

expert’s experience/knowledge in a matrix of a pairwise comparison of attributes (Saaty, 

2008).  

The execution of the pairwise comparison is to arrange 𝑛 criteria in row and column of 𝑛 

× 𝑛 matrix. Essentially, the AHP mechanism works by developing priorities for 

alternatives (or criteria) used in judging the alternatives (or criteria). The goal of the AHP 

mechanism is to develop priorities for the criteria in terms of their importance. The 
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developed priorities display the performance of the alternatives on each criterion.  The 

description of the assessment grades of the criteria is presented in Table 15 and Table 16.  

The judgement of each expert can be aggregated using Equation 4.1, and the assumed 

quantified judgement on the pairs of criteria can be mathematically represented as 𝐴𝑖 and 

𝐴𝑗 then simplified by an 𝑛 × 𝑛 single value comparison matrix 𝐴 (Pillay & Wang, 2003). 

Therefore, Equations 4.1 and 4.2 can be used and described below. 

Average Numerical Value Rating = ∑ ai
n
i=1

N
 𝑖 = 1,2,3,… , 𝑛 

4.1 

 

Where 𝑎𝑖  is an input value by an expert for the same criterion and N is the total number 

of experts that participated in the pairwise comparison questionnaire. 

Table 15: Scale for assessment grades of the criteria for the important pairwise comparison 

Assessment Grade Description of assessment grade Numerical value rating 

Equally important Two criteria contribute equally 

to the objective 

1 

Between moderately more 

and equally important 

There is a compromise between 
two criteria being considered 

within the grades. 

2 

Moderately more important Experience and judgment 

slightly favour a criterion 

over another 

3 

Between moderately more 

and strongly more important 

There is a compromise between 

two criteria being considered 

within the grades 

4 

Strongly more important Experience and judgment 

strongly favour a criterion 

over another 

5 

Between strongly more and 

very strong important 

There is a compromise between 

two criteria being considered 

within the grades 

6 

Very strongly important A criterion is strongly favoured 

over another and its 

importance is demonstrated in 

practice 

7 
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Assessment Grade Description of assessment grade Numerical value rating 

Between very strong and 

extreme important 

There is a compromise between 

two criteria being considered 

within the grades 

8 

Extreme important The evidence favouring a 

criterion over another is of 

the highest order of affirmation 

9 

 

 

 

A= (aij) =
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1
a12
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4.2 

where each 𝑎𝑖𝑗 is the relative importance of the criteria aij and 𝑖, 𝑗 =1,2,3,…,n. The 

weighting vector of a specific element 𝑘 in the pairwise comparison matrix is defined as 

w𝑘. The weighting vector represents the priority of each element in the pairwise 

comparison matrix in terms of its whole contribution to decision-making (Uyan, 2013). 

Given this, w𝑘 can be represented mathematically as follows:  

 

w𝑘 =  
1

n
∑ (

akj

∑ aij

n

i=1

)

n

j=1

            (k= 1,2,3,…..,n) 

 

 

4.3 

 

Where 𝑎𝑖𝑗 represents the entry of row 𝑖 and column 𝑗 in a comparison matrix of order 𝑛. 

For the sake of simplicity, Equation 4.3 can be described as follows (Uyan, 2013) to arrive 

at a normalized pairwise comparison:  

 Summation of the values in each column of the pairwise comparison matrix. 

 Divide each entry in the matrix by its column sum. 
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 Establishment of the average of the elements in each row. 

Table 16: Scale for assessment grades of the criteria for the unimportant pairwise comparison 

Assessment Grade Description of assessment grade Numerical value rating 

Equally important Two criteria contribute equally 

to the objective 

1 

Between moderately more 

and equally unimportant 

There is a compromise between 

two criteria being considered 

within the grades. 

1/2 

Moderately more unimportant Experience and judgment 

slightly favour a criterion 

over another 

1/3 

Between moderately more 

and strongly more unimportant 

There is a compromise between 

two criteria being considered 

within the grades 

1/4 

Strongly more unimportant Experience and judgment 

strongly favour a criterion 

over another 

1/5 

Between strongly more and 

very strong unimportant 

There is a compromise between 

two criteria being considered 

within the grades 

1/6 

Very strongly unimportant A criterion is strongly favoured 

over another and its 

importance is demonstrated in 

practice 

1/7 

Between very strong and 

extreme unimportant 

There is a compromise between 

two criteria being considered 

within the grades 

1/8 

Extreme unimportant The evidence favouring a 

criterion over another is of 

the highest order of affirmation 

1/9 

 

The values of weights (i.e. w𝑘) obtained in the pairwise comparison questionnaire and 

the subjective input, need to be validated using Consistency Ratio (CR). The key 

determinants of the CR value are the Consistency Index (CI) and Random Index values. 

Saaty (1980) acknowledged that, whenever a CR value of 0.10 or less is obtained, it 
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implies that the pairwise comparison questionnaire and experts’ judgement are rational 

and can be acceptable. However, in any pairwise comparison evaluation, where CR value 

is greater than 0.10, this means that the 𝑤𝑘  is not valid (Dantsoho, 2015, Saaty, 1980). 

Hence, the pairwise comparison calculation must be reviewed or rejected at once. Given 

this, CI can be mathematically described as follows:  

 
𝐶𝐼 =

𝜆𝑚𝑎𝑥 −𝑛

𝑛 − 1
 

  

4.4 

Where 𝑛 stands for the number of alternatives (or criteria) being compared and λmax 

stands for the maximum eigenvalue of an 𝑛 x 𝑛 comparison matrix. To identify λmax 

value in any pairwise comparison evaluation, λmax can be mathematically described as 

follows: 

 

 

λmax = ∑

∑ 𝑤𝑘𝑎𝑖𝑗

𝑛

𝑘=1

𝑤𝑗

𝑛
 

𝑛

𝑗=1

 

 

Where 𝑤𝑗 is the weight regarding the 

column (𝑗) in the 𝑛 × 𝑛 matrix. 

  

4.5 

Since the values of CI and λmax  can be known using Equations 4.4 and 4.5, CR value can 

be solved using its mathematical relation as follows (Saaty, 1990): 

 CR = 
𝐶𝐼

𝑅𝐼
 4.6 

Where RI, is the random index, this random index depends on the n in a pairwise 

comparison evaluation. The random index value can be selected from Table 17. 



144 
 

Table 17: Average RI values (Saaty, 1980)  

𝑛 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

4.2.2.1 Ranking of the intermediate hazard 

Ranking of the intermediate hazard events is used to estimate the risk level of each hazard 

event in the intermediary level of the ER decision tree. The intermediate hazards are 

ranked according to the values of their scores revealed from the application of AHP model 

on AMSSO. An intermediate hazard associated with highest score value is assigned a 

rank of 1. The intermediate hazard with the second-highest score value is assigned a rank 

of 2. Other rankings of alternatives will follow the same procedure. 

4.2.3 A brief review of research on Evidential Reasoning (ER) 

Dempster originally presented the theory of evidence (Dempster, 1967) and since then, it 

has gone through several modifications and improvements by Shafer (1976). 

Consequently, the evidence theory is often referred to as the Dempster-Shafer theory or 

D-S theory (Yang, 2001). Formerly, ER was employed for information aggregation in 

expert systems as an approximate reasoning tool (Buchanan and Shortliffe, 1984, Lee and 

Yang, 2017) and then used in decision- making under uncertainty and risk in contrast to 

Bayes decision theory (Yager, 1992, Yager, 1995, Lee and Yang, 2017).  

The ER approach is one of the latest developments in the MCDM subjects and has been 

widely used by a large conglomeration of researchers (Yang and Singh, 1994). Based on 

the D-S theory, an ER approach (Yang, 2001, Xu and Yang, 2001) has been developed 

to describe and handle uncertainties by employing subjective assessment using the 

combination of FL. 

ER is different from some conventional MCDM methods that use a decision matrix to 

describe an MCDM problem. Instead, it uses an extended decision matrix, in which each 
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attribute of an alternative is defined by a distributed assessment employing a belief 

structure often referred to as DoB. The distributed assessment concept was proposed by 

Zhang in 1989 to synthesise distributed assessment information (Zhang et al., 1989).  

The combination of FL and the distributed assessment with ER is suitable to model 

incompleteness and ignorance in subjective judgement explicitly. For example, the 

distributed assessment result of the quality of a ship engine using fuzzy grades could be 

{(Excellent, 70%), (Good, 30%), (Average, 0%), (Poor, 0%), (Worst, 0%)}, which means 

the quality of the ship engine is assessed to be “Excellent” with 70% DoB and “Good” 

with 30% DoB.  

One of the benefits of employing distributed assessment is that it can model precise data 

and account for various types of uncertainties such as probabilities and vagueness in 

subjective judgements (Xu and Yang, 2005, Zhang et al., 2016). ER is a more precise 

model when dealing with a complex system with various types of uncertainties, this is 

evident from its application in recent times (Zhao et al., 2018, Chen et al., 2018, Jiang et 

al., 2018) and (Fu et al., 2019).  

The ER approach is the only method so far with the ability to handle MCDM problems 

with uncertainties and hybrid nature (Xu and Yang, 2001, Bazargan-Lari, 2014, Derbel 

and Boujelbene, 2016). Hybrid nature here is referred to as a mixture of qualitative (e.g. 

risk level “low”) and quantitative (e.g. risk level “90%”) attributes, mixture of 

deterministic (e.g. price of a car “£”) and probabilistic attributes (e.g. fuel economy of a 

car “random”) or incommensurable units. It describes and handles uncertainties by using 

the concept of DoB.  
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Uncertainties in this context could be in the form of 1) absence of data, 2) incomplete 

description of an attribute and 3) random nature of an attribute. For the absence of data, 

the total sum of DoBs in the distributed assessment for that attribute will be scored zero. 

For an incomplete description of an attribute, the total sum of DoBs in the distributed 

assessment for that attribute will be somewhere between 0% and 100%. For the random 

nature of an attribute, the probability will be utilised here (Xu and Yang, 2001), and the 

probability distribution will be converted into the DoBs in the distributed assessment for 

the attribute. 

The rationality behind the mentioned ER approach is that, if a system has a good or bad 

sub-attribute, then the system must be good or bad to a certain magnitude. The magnitude 

is measured by both the degree to which that sub-attribute is vital to the system and the 

degree to which the sub-attribute belongs to the good or bad category. 

The integration of the ER algorithm into a Windows-based software referred to as the 

Intelligent Decision System (IDS) was achieved in the late 1990s. Moreover, the ER 

approach and the IDS software have become the main tool for many research projects in 

Liverpool Logistics Offshore and Marine Research Institute, LOOM (Riahi, 2010). The 

principle (theory) of ER is discussed in section 4.2.3 while the major benefits of using the 

ER approach are listed as follows: 

 It is capable of handling incompleteness, uncertainty, and vagueness data, as well 

as complete and precise data in MADA problems. 

 It can provide the users with unlimited flexibility by allowing them to express 

their judgements both subjectively and quantitatively. IDS can handle a large scale 

MADM easily with a 128MB RAM PC (Xu and Yang, 2001). 
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 It is capable of accommodating or representing the uncertainty and risk inherent 

in decision analysis for multiple-factor analysis (Riahi, 2010). 

 It can offer a rational and reformulated methodology to aggregate the data 

assessed based on its hierarchical evaluation process. 

 It transforms mature computing software and uses the IDS to obtain the 

assessment output, which relieves the users from the lengthy and tedious model 

building and result from analysis process using Windows-based click and design 

activity. 

 The ER approach and the information conversion techniques used in IDS have all-

encompassing theoretical foundations (Yang and Singh, 1994). 

4.2.4 ER Principle 

As stated in subsection 4.2.3, the ER approach is different from other conventional 

MCDM methods, because it uses DoB structure to symbolise an assessment in a 

distributional form. For example, in risk analysis, an assessor may have the following 

four evaluation grades: H= {H1, H2, H3, H4} = {Very low, Low, Medium, High} 

Solving an MCDM problem with M attributes 𝐴𝑖 (𝑖 = 1,… ,𝑀), K alternatives Oj (𝑗 =

1,… , 𝐾),  and N evaluation grades 𝐻𝑛 (𝑛 = 1,… , 𝑁) for each attribute is represented 

using an extended decision matrix with 𝑆(𝐴𝑖(𝑂𝑗)) as its element at the i-th row and j-th 

column where 𝑆(𝐴𝑖(𝑂𝑗)) is given as follows:  

 𝑆(𝐴𝑖(𝑂𝑗)) = {(𝐻𝑛 , 𝛽𝑛,𝑖(𝑂𝑗)), 𝑛 = 1, … , 𝑁}        i=1,…,M     j=1,…,K 4.7 

Where 1 ≥ βn,1  ≥ 0 (n=1,…,4) denotes the degree of belief that the attribute 𝐴1 is assessed 

to the evaluation grade 𝐻𝑛 . 𝑆(𝐴1(𝑂1)), this also implies that the attribute 𝐴1 is assessed 

to the grade 𝐻𝑛 to a degree of βn,1×100% (n=1,…,4) for the alternative 𝑂1. 
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There cannot be ∑ βn
4
n=1 > 1. The assessment 𝑆(𝐴1(𝑂1)) of an attribute 𝐴1 on an 

alternative 𝑂1 is considered to be a complete distribution if  ∑ βn
4
n=1 = 1 and an 

incomplete assessment mean ∑ βn
4
n=1 < 1 (Lee and Yang, 2017). In ER framework, both 

the complete and incomplete assessment can be considered (Yang, 2001, Xu and Yang, 

2001, Wang et al., 2006). 

It is worth noting that an attribute could have its own set of evaluation grades that may 

be different from those of other attributes (Yang, 2001). 

Assume ω𝑖 is the relative weight of the attribute 𝐴𝑖 and ω𝑖 is normalised so that 1 ≥ ω𝑖 ≥

0 and Σi=1
L ω𝑖 = 1 where L is the total number of attributes in the same group sharing the 

same upper-level attribute in the attribute hierarchy. To simplify the assessment, only the 

combination of complete assessments is investigated. The definition of the recursive ER 

algorithm, capable of aggregating both complete and incomplete assessments is detailed 

in Yang (2001). Without loss of generality and for illustration, the ER algorithm presented 

below is for combining two attribute assessments only. 

Assuming the first assessment is given in Equation 4.8 as: 

 𝑆(𝐴1(𝑂1)) = {(𝛽1,1, 𝐻1),(𝛽2,1, 𝐻2), (𝛽3,1, 𝐻3), (𝛽4,1, 𝐻4)} 4.8 

Then, the second assessment is given by: 

 𝑆(𝐴2(𝑂2))= {(𝛽1,2, 𝐻1), (𝛽2,2, 𝐻2), (𝛽3,2, 𝐻3), (𝛽4,2, 𝐻4)} 4.9 

Combining the two assessments 𝑆(𝐴1(𝑂1)) and 𝑆(𝐴2(O2)), it then can be represented 

thus: 𝑆(𝐴1(𝑂1)) ⊕ 𝑆(𝐴2(𝑂2)). Assume that 𝑆(𝐴1(𝑂1)) and 𝑆(𝐴2(𝑂2)) are both 

complete, then 

𝑚𝑛,1 = ω1𝛽𝑛,1   (n=1,…,4) and 𝑚𝐻,1 = 1 − ω𝑖  ∑ 𝛽𝑛,1
4

n=1
= 1 − ω1 
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𝑚𝑛,2 = ω2𝛽𝑛,2   (n=1,…,4) and 𝑚𝐻,2 = 1 − ω𝑖  ∑ 𝛽𝑛,2
4

n=1
= 1 − ω2 

Where each 𝑚𝑛,𝑗 (j=1, 2) is referred to as basic probability mass each 𝑚𝐻,𝑗  (j=1, 2) is the 

remaining belief for attribute j unassigned to any of the 𝐻𝑛 (n=1, 2, 3, 4). 

The ER algorithm is used to aggregate the basic probability masses to generate combined 

probability masses, denoted by 𝑚𝑛 (n=1, …, 4) and 𝑚𝐻 using the following equations: 

 𝑚𝑛 = 𝑘(𝑚𝑛,1𝑚𝑛,2 + 𝑚𝐻,1𝑚𝑛,2 + 𝑚𝑛,1𝑚𝐻,2), (n=1,…,4) 

 𝑚𝐻 = 𝑘(𝑚𝐻,1𝑚𝐻,2) 

Where 

 

k = [1 − Σt=1
4 Σn=1 

n≠t

4
𝑚𝑡,1𝑚𝑛,2]

−1

 

 

4.10 

The integration of the combined probability masses can then be carried out with the third 

assessment in the same manner. The process is recursive until all assessments are 

aggregated. The final combined probability masses are independent of the order in which 

individual assessments are aggregated.  

If there are only two assessments, the combined degrees of belief 𝛽𝑛 (n=1,…,4) are 

generated by: 

                                               𝛽𝑛 =
𝑚𝑛

1−𝑚𝐻
  (n=1,…,4) 

The combined assessment for the alternative 𝑂1 can at this point be represented as 

follows: 

𝑆(𝑂1)= {(𝛽1, 𝐻1), (𝛽2, 𝐻2), (𝛽3, 𝐻3), (𝛽4, 𝐻4)} 

An average score for 𝑂1, denoted by u(𝑂1), can also be provided as the weighted average 

of the scores (utilities) of the evaluation grades with the belief degrees as weights, or 
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𝑢(𝑂1) = ∑𝑢

4

𝑖=1

(𝐻𝑖)𝛽𝑖 

4.11 

Where 𝑢(𝐻𝑖) is the utility of the i-th evaluation grade 𝐻𝑖. If evaluation grades are 

assumed to be equidistantly distributed in the utility space, for example, the utilities of 

the evaluation grades can be given as follows (refer to Table 10): 

𝑢 (H1) = 𝑢 (𝑣𝑒𝑟𝑦 𝑙𝑜𝑤) = 0.00 

𝑢 (H1) = 𝑢 (𝑙𝑜𝑤) = 0.33 

𝑢 (H1) = 𝑢(𝑚𝑒𝑑𝑖𝑢𝑚) = 0.66 

𝑢 (H1) = 𝑢(𝐻𝑖𝑔ℎ) = 1.00 

Instead of aggregating average scores, the ER approach utilises an evidential reasoning 

algorithm established based on decision theory and evidence integration rule of the D-S 

theory to aggregate DoBs (Lee and Yang, 2017). Average scores are not necessary for 

aggregating attributes in the ER approach, and this makes the ER approach distinct from 

other MCDM techniques. 

4.2.5 The selection of ER and AHP 

The integration of AHP and ER approaches have been seen in many MADM studies such 

as project screening, bridge condition assessment, and risk management. Ng and Chuah 

(2014) applied AHP-ER in the evaluation of design alternatives' environmental 

performance. Recently, AHP-ER was utilised to assess the operational uncertainties of a 

particular piece of equipment in a marine and offshore system based on an oil analysis 

technique (Asuquo et al., 2019).  

The integration of AHP-ER remains effective and popular because it has been proven that 

based on the theory of AHP and ER, the model is flexible and practical to cope with 

qualitative, quantitative and/or uncertain data (Zhang et al., 2012). Dehe and Bamford 

(2015) made a comparison of the results of an MCDA model through a case of healthcare 
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infrastructure location. It is demonstrated that the solution by the combination of AHP 

and ER, provided a traceable and robust framework.  

It is for the first time that AHP and ER will be used to measure safety level in AMSSO, 

this integrated technique will need to be investigated and validated. Since this integrated 

method has been observed to solve large scale real-life problems, confidence can be 

bestowed on this combined technique as it has been effective and transparent in dealing 

with fuzzy situations. 

4.3 Methodology for measuring the global RI value in AMSSO 

In Chapter 3, the risk analysis that was carried out was restricted to hazard events located 

at the bottom level of the Ship-Ice Collision risk dendogram. However, this risk analysis 

has not wholly addressed the risks in AMSSO from a systematic view. There is a 

knowledge gap in the overall RI measurement in AMSSO. 

The ER approach in this chapter is utilised for aggregating risk estimations of the entire 

spectrum of hazard events centred on a DoB decision matrix and the evidence 

combination rule of D-S theory. Here, the ER utilises a distributed modelling framework, 

in which the risk analysis of each hazard event is carried out using a set of collectively 

thorough and mutually exclusive assessment grades obtained from an FRBN method in 

Chapter 3. 

For the ER approach to aggregate criteria at the top-level criterion, AHP and/or any other 

methods can be used for generating relative weights of criteria from the bottom level of 

criteria in a decision tree (Xu and Yang, 2001). 

The new proposed methodology for measuring the global RI of a Ship-Ice Collision 

scenario in AMSSO, using the integrated FRBN, AHP and ER approaches, can not only 
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model the diversity and uncertainty of subjective information in complex FMEA, but also 

incorporate the relative local risk level of hazard events into the determination of the RI 

of the system. This whole process is done in a precise and logical manner and allows the 

investigation into how sensitive the result is to changes in weights and belief degrees to 

certain attributes.  

More significantly, by incorporating ER and AHP with the FRBN analysis, the risk 

measurement of each hazard event can be investigated from both local (i.e., its individual 

risk level) and global (i.e., it's RI to the system safety) viewpoints. 

The steps for measuring the global RI value in AMSSO utilising the novel ER approach can 

be drawn as follows: 

a. Preparatory phase (goal setting). 

b. Develop a hierarchical structure to describe Ship-Ice Collision safety 

performance. 

c. Assign weights to attributes using AHP or any other suitable method. 

d. Use the ER algorithm to synthesise the risk and weight result of each hazard event 

both at the bottom and intermediary level in the ER decision tree respectively, for 

safety measurement of the Ship-Ice Collision risk model.  

e. Compare the results with a benchmark risk 

f. Evaluate the risk impact of each hazard event on the system by using sensitivity 

analysis to validate the developed model. 

4.3.1 Preparatory phase 

The prospect project described in Chapter 3, subsection 3.5.1 will serve as a case study 

for the application of ER in the global risk analysis of Ship-Ice Collision in AMSSO. The 

purpose of this preparatory phase is to access the risk analysis task carefully concerning 
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the Arctic shipping regulations; this in return will assist in determining the extent and 

depth of the ER application.  An up-to-date description of IMO’s contribution to safe 

Arctic shipping operations and the strict regulations concerning Ship Class in Arctic 

operations have been presented in Chapter 2, section 2.9. 

Information regarding Arctic accident and linked hazard information will be provided by 

reputable Arctic accident investigation organisations such as MAIB, Allianz Global, and 

first-hand observations. The experts consulted in Chapter 3, will also be contacted in this 

chapter to provide a first-hand judgement in this chapter. Experts’ background and 

experience have been presented in Chapter 3, Table 8 (Experts’ knowledge and 

experience). 

4.3.2 Develop a hierarchical structure to describe the Ship-Ice Collision safety 

performance 

The hazard events and associated intermediary events investigated in this study are those 

identified through the combination of the literature survey, experts’ memories and field 

investigation. The hierarchical structure of events in the Ship-Ice Collision safety 

performance showing the interactions among the hazard events has been presented in 

Figure 20. Wherein the clustering dendrogram mentioned in Chapter 2, section 2.11.2 and 

Chapter 3, section 3.4.1.3 was utilised. The top-level (risk group 1) of the dendrogram 

risk tree represents the goal of the investigation, the intermediary and bottom levels 

represent risk groups 2 and 3 respectively. 

4.3.3 Assign weights to attributes using AHP  

Since attributes are rarely of equal importance, it is necessary to assign attribute weights 

in the ER approach to determine the most suitable path to measure the global RI of 

AMSSO. One of the most popular methods of assigning attribute weights in risk analysis 

is through the utilisation of the AHP technique (Chen et al., 2018). The AHP technique 
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can handle both qualitative and quantitative multi-attribute factors. The theory and 

foundation of the AHP method has been presented in section 4.2.2. 

4.3.4 Using the ER algorithm to synthesise the risk and weight result of each hazard 

event and each intermediate event for safety measurement of the Ship-Ice Collision risk 

model.  

The risk analysis of each hazard event in the Ship-Ice Collision model in Chapter 3 with 

the corresponding linguistic grading and DoB and of course, their corresponding crisp 

values from the utility assessment can be utilised as the input value in the ER approach 

for measuring the global RI of AMSSO. The dovetailing of the D-S theory and the FRBN 

is an effective way to solve MCDM problems that include fuzzy and random information 

from several sources. One possible way of achieving this is to extend the D-S theory to 

include the feature of fuzzy set theory so that its capability can be enriched to process 

both crisp and fuzzy information. The D-S’s rule of combination has been described 

explicitly in section 4.2.3.  

4.3.5  Result analyses compared with the developed FRB benchmark risk 

The developed FRBN benchmark risk allows the stakeholders to compare the RI of the 

whole system to an ALARP level, or an intolerable risk level. The results of the ER will 

be compared to the developed FRB benchmark risk, presented in Figure 21. 

4.3.6 Methodology to evaluate the Risk Influences of each hazard event on the system  

There are different techniques for validating the knowledge-based system, nevertheless 

the most commonly used techniques are 1) data validation; 2) validation by testing; 3) 

field tests; 4) subsystem validation and 5) sensitivity validation (Mokhtari et al., 2012). 

Among these techniques, sensitivity analysis is a preferred technique in systems relying 

on uncertainty management (Gonzalez and Dankel, 1993, Hoops et al., 2016). Sensitivity 

analysis in this study tries to examine the sensitivity of a risk-based model to individual 

hazard event or risk factors. 
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Sensitivity analysis is necessary to evaluate the hazard event's risk impact by finding the 

risk magnitude of each hazard event on the entire system through sensitivity tests. The 

sensitivity tests demonstrated in this study have been developed on the analysis process 

of the ER methodology validation to quantify the risk impact of each hazard event on the 

system (Alyami et al., 2019).  

The new method of sensitivity analysis allows stakeholder or risk assessor to evaluate the 

risk impact of each hazard event on the system safety and rank them accordingly by taking 

into account both the local and global risk estimate.  

At this point, to verify the methodology used in developing the model in section 4.3, the 

sensitivity analysis must at least, agree with the following three axioms if the 

methodology is reasonable and its inference reasoning assumed to be logical (Mokhtari 

et al., 2012, Chen et al., 2018): 

Axiom 1: A minor decline in a hazard event input data i.e. belief degrees of a hazard 

event, should result in a decrease of the output data i.e. RI of the Ship-Ice Collision model 

(i.e. top-level) correspondingly.  

Axiom 2: A minor increment in a hazard event input data i.e. belief degrees of a hazard 

event, should result in an increase of the output data i.e. RI of the Ship-Ice Collision 

model (i.e. top-level) correspondingly.  

Axiom 3: A minor decline or increment of the relative weights for the intermediary 

hazard events should result in a decrease or an increase of the output data i.e. RI of the 

Ship-Ice Collision model (i.e. top-level) correspondingly.  

 

In order to transform the ER tedious and lengthy model construction and outcome 

analysis, an IDS developed in 2001 (Xu and Yang, 2001) will be employed. The IDS 
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software is intended to transform the tedious and lengthy model construction and outcome 

analysis process into an easy Windows-based "click" and design activity. The following 

sections are devoted to the modelling of a real-world application of ER integrating AHP 

and FRBN in AMSSO RI measurement.  

4.4 Trial application of the proposed FRBN-AHP-ER Model in AMSSO. 

In order to carry out a trial application of the proposed FRBN-AHP-ER model in 

determining the hazard events’ RIF and measuring the Ship-Ice Collision risk in AMSSO, 

the five-step methodology presented in Section 4.3 is utilised.   

4.4.1 Preparatory phase 

This trial application includes the selection of a prospect project in order to investigate 

the application of the proposed ER in the subject area. The GINS is selected in this study 

to demonstrate the applicability of ER in determining the hazard events’ RIF and 

measuring of the Ship-Ice Collision risk in AMSSO. 

The GINS is a high prospect area for hydrocarbon resources such as crude oil and natural 

gas. The Arctic nature and the characteristic of the GINS have been described in Chapter 

3, section 3.5.1.  

For the trial application of FRBN-AHP-ER in the GINS AMSSO, a questionnaire was 

developed from the elicitation meeting that was held in November 2017. Experts that 

were contacted with the questionnaire were selected based on their experience in Arctic 

shipping, with more emphasis on the GINS AMSSO. Table 8 from Chapter 3, shows the 

background and experience of the selected experts. 

4.4.2 Develop a hierarchical structure to describe the Ship-Ice Collision RI in the 

GINS  

The hierarchical structure to describe the Ship-Ice Collision RI in the GINS AMSSO has 

been presented in Figure 20 and described in section 4.3.2. 
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4.4.3 Assign weights to attributes using the AHP method  

AHP methodology is utilised to estimate the weights of the intermediary criteria in the 

intermediary level of the structured event hierarchy of the Ship-Ice Collision risk model 

in the GINS. Response was received from five of the questionnaires that were sent to nine 

concerned experts. An Excel spreadsheet is utilised in the pairwise comparison of the 

intermediary events in order to simplify Equation 4.2 and to represent the subjective 

judgement of each expert. The result from the Excel spreadsheet is represented in tabular 

form. Thereafter, a geometric mean is taken for the five responses to converge the 

subjective judgement of the five valid responses as shown in Table 18.  

Table 18: Geometric Mean of subjective judgement of expert 1 to #5 

 A1 A2 A3 A4 A5 

A1 1 0.60 0.28 0.44 0.25 

A2 1 1 0.29 0.35 0.20 

A3 3.6 3.4 1 0.63 0.33 

A4 2.3 2.9 1.6 1 0.42 

A5 4.0 5.0 3.0 2.4 1 

Sum=∑ 𝐴5
1  11.9 12.9 6.17 4.82 2.2 

 

A1 to A5 have been defined in Chapter 3, sub-sub section 3.4.1.3.  

The weighting of each element in the pairwise comparison matrix can be obtained using 

Equation 4.3, and simplified in Table 19: 

Table 19: Prioritization of criteria 

 A1 A2 A3 A4 A5 w𝑘 

A1 0.08 0.05 0.05 0.09 0.11 7.6 

A2 0.08 0.08 0.05 0.07 0.09 7.4 

A3 0.30 0.26 0.16 0.13 0.15 20.2 
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A4 0.19 0.22 0.26 0.21 0.19 21.4 

A5 0.34 0.39 0.49 0.50 0.45 43.4 

 

The Excel spreadsheet calculation reveals that: 

A1= 7.60% (risk related to vessel navigation system). 

A2= 7.40% (risk related to vessel operation system). 

A3= 20.2% (risk related to weather). 

A4= 21.40% (risk related to Ice). 

A5= 43.40% (risk related to human factor). 

The values of weights (i.e. w𝑘) obtained in the pairwise comparison questionnaire and 

the subjective input, need to be checked for consistency. This is checked using Equations 

4.4, 4.5 and 4.6. The values of CI and λmax  is also revealed from the consistency check. 

The Random Index number which depends on the number of criteria being compared in 

a pairwise comparison evaluation is obtained from Saaty Table (Saaty, 1980). CR value 

is obtained from the maximum Eigenvalue of the comparison matrix in Table 20. See  

Table 21 for the CI and CR values. 

Table 20: Maximum Eigenvalue of the comparison matrix 

 A1 A2 A3 A4 A5 Sum Sum/weight 

A1 0.08 0.04 0.06 0.09 0.11 0.38 5.0 

A2 0.08 0.07 0.06 0.07 0.09 0.37 5.0 

A3 0.27 0.25 0.20 0.13 0.14 0.99 4.9 

A4 0.17 0.21 0.32 0.21 0.18 1.09 5.09 

A5 0.30 0.37 0.60 0.51 0.43 2.21 5.09 

λmax 5.016 
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Table 21: Consistency Index and Ratio of the comparison matrix 

λmax (Lambda Max) 5.016 

CI 0.0035 

CR 0.003125  

 

From the consistency check, it is revealed that there is great consistency in the subjective 

judgements of all experts; hence, the CR value equals zero (less than 0.1) 

4.4.4 Using the ER algorithm to synthesise the risk and weight result of each hazard 

event and each intermediate event for safety measurement of the Ship-Ice Collision risk 

model 

The main computer platform of IDS for solving an MCDM problem is a model display 

window, which has a toolbar, menu bar, and a model display window. The hierarchy of 

events in the Ship-Ice Collision model can be readily constructed using the modelling 

menu or the connected short cuts in the toolbar. The hierarchy of events in the Ship-Ice 

Collision case study is represented in Figure 29. The IDS also provides an assistant model 

constructor for constructing large-scale models that may have hundreds of attributes and 

options.  
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Figure 29: Hierarchy of Ship-Ice Collision risk analysis using the IDS model display 

Once, the hierarchy of events is developed, the individual hazard event data from the 

FRBN results are inputted into the IDS model at the bottom level. 

Once the local risk input for individual hazard event has been inputted, the second part is 

the assigning of weights from the AHP results to the intermediary hazard events at the 

intermediary level in the IDS model display window. IDS software uses the ER algorithm 

to synthesise collective information to arrive at the global goal or global RI of the Ship-

Ice Collision risk in the GINS AMSSO.  

Consequently, the RI of the AMSSO in GINS can be described in a form of linguistic 

grades with DoB values of 26.05% High, 24.19% Medium, 24.10% Low and 25.67% 

Very Low, as represented in Figure 30, and the utility value is calculated using Equation 

4.10 in section 4.2.4 as 49.97%.  
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Figure 30: Risk Index of AMSSO in GNIS using IDS model result display 

4.4.5 Result Analyses compared to the developed FRB benchmark risk 

When the results of the ER are compared to the developed FRB benchmark risk, it is 

observed that the risk level of Ship-Ice Collision in the studied prospect project, being at 

49.97%, is at an intolerable region. The 49.97% risk level is far above the ALARP region 

on the developed benchmark risk hence, hazard consequences must be reduced, and a 

design action is required to eliminate or control hazard events. 

4.4.6 Sensitivity analysis to validate the developed model. 

The sensitivity analysis used in this section is achieved through the three Axioms 

described in section 4.3.6. 

Axiom 1: The result of the application of Axiom 1 on GINS prospect project is depicted 

in Table 22. It is revealed that a minor decrease in B1’s consequent grade resulted to a 
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decline of the original Risk Index value of Ship-Ice Collision from 49.97 to 49.1771 as 

represented in Table 22. 

Axiom 2: The result of the application of Axiom 2 on GINS prospect project is depicted 

in Table 22. It is revealed that a minor increase in B1’s consequent grade resulted in an 

increment of the original Risk Index value of Ship-Ice Collision from 49.97 to 51.0971 

as represented in Table 22. 
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Table 22: Recalculated RI value for Ship-Ice Collision model based on Sensitivity Analysis 

Original RI 

(Output) 

Increasing 

consequent grade 

e.g “H” to 100% in 

the bottom level 

hazard event: 

 

Hazard event Decreasing 

consequent grade 

e.g “H” to 0% in 

the bottom level 

hazard event: 

 

49.97 New RI New RI 

ꜛ51.0971 B1 ꜜ49.1771 

ꜛ50.9298 B2 ꜜ49.0267 

ꜛ50.9278 B3 ꜜ48.908 

ꜛ50.948 B4 ꜜ49.008 

ꜛ50.933 B5 ꜜ48.903 

ꜛ50.939 B6 ꜜ49.029 

ꜛ50.985 B7 ꜜ49.075 

ꜛ51.019 B8 ꜜ49.099 

ꜛ53.130 B9 ꜜ47.374 

ꜛ52.272 B10 ꜜ46.512 

ꜛ52.833 B11 ꜜ47.077 

ꜛ53.745 B12 ꜜ47.965 

ꜛ54.019 B13 ꜜ45.879 

ꜛ54.103 B14 ꜜ49.483 

ꜛ54.508 B15 ꜜ46.308 

ꜛ55.362 B16 ꜜ45.058 

ꜛ55.148 B17 ꜜ44.904 

ꜛ55.395 B18 ꜜ45.154 

ꜛ54.644 B19 ꜜ44.411 

ꜛ54.034 B20 ꜜ43.864 

ꜛ54.584 B21 ꜜ44.354 

 

Axiom 3: The result of the application of Axiom 3 on GINS prospect project is depicted 

in Figure 31. It is revealed that a minor change in the weight of an intermediary event 
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from 1.0 to 0.5 for example resulted in a decline of the original RI value of Ship-Ice 

Collision from 49.97 to 50.29 RI level. 

 

Figure 31: Behaviour of change in intermediary-hazard event weights to the output value 

What follows next is the ranking and prioritisation of the most hazardous events at the 

bottom level having the most influence on the Ship-Ice Collision model globally. This is 

done to verify which hazard event has more risk influence on the studied system from a 

perspective view, using the sensitivity analysis method.  

To evaluate the RIF of each hazard event, for instance, B1, the utility value of B1 is 

assigned a "zero" score and the whole system re-analysed. To arrive at B1’s RIF, the 

resultant global RI value from the re-analysis is subtracted from the original global RI of 

the Ship-Ice Collision model. For the sake of illustration, subsection 4.4.4 gives a utility 

of 49.97% as the global RI for Ship-Ice Collision, after excluding B1 from the global 

Ship-Ice Collision risk analysis, Table 23 gives a utility score of 48.624%. Subtracting 

48.624% from 49.97% gives, a RIF’s value of B1 equals 1.346. This analysis is done 

repeatedly by excluding one hazard event each time for every analysis to arrive at an 
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event with the highest RIF. The result and the ranking of the event's RIF’s value are 

represented in Table 23. 

Table 23: RIF of hazard event on Ship-Ice Collision model 

Utility Score RIF value Novel Ranking 

Original RI 49.97% 

Exclude only B1 48.624 1.346 20 

Exclude only B2 47.965 2.005 9 

Exclude only B3 47.861 2.109 4 

Exclude only B4 47.961 2.009 8 

Exclude only B5 47.904 2.066 6 

Exclude only B6 47.991 1.979 11 

Exclude only B7 48.224 1.746 13 

Exclude only B8 48.322 1.648 17 

Exclude only B9 48.301 1.669 15 

Exclude only B10 47.064 2.906 1 

Exclude only B11 47.884 2.086 5 

Exclude only B12 49.163 0.807 21 

Exclude only B13 47.844 2.126 3 

Exclude only B14 47.942 2.028 7 

Exclude only B15 48.517 1.453 19 

Exclude only B16 48.317 1.653 16 

Exclude only B17 48.235 1.735 14 

Exclude only B18 48.355 1.615 18 

Exclude only B19 47.995 1.975 12 

Exclude only B20 47.730 2.24 2 

Exclude only B21 47.965 2.005 9 

 

Accordingly, based on the results obtained in Table 23, the hazard events can be 

prioritised in order of the importance, in terms of risk impact on GINS AMSSO and from 
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the obtained new risk rank order, the most significant hazard events can be listed as 

follows: 

1. B10 - Poor visibility as a result of fog, prolonged polar night; 

2. B20 - Lack of situational awareness. 

3. B13 - Ice restrictions, which affects the vessel’s movement; 

4. B3 - Failure in establishment and maintenance of external aids to navigation and; 

5. B11 - Machinery seize up with low temperatures.  

This prioritization satisfies the third novelty of the hybrid integration of ER with AHP 

and FRBN models. 

4.5 Results and Discussion 

The risks to lives, assets, and environment and the huge financial investment in AMSSO 

is determined by various elements with various risk parameters and several probability 

distribution grades. It is observed from the sensitivity analysis carried out in Chapter 3 

that if the DoB of “H” in occurrence likelihood (L) of a hazard event, e.g. if B1 is reduced, 

the RI of B1 is reduced correspondingly. Moreover, if the “H” of B1 is reduced as shown 

in Table 22, then the outcome of ER is reduced correspondingly. It is evident from the 

sensitivity analysis carried out in this chapter that a minor change in the FRBN model, 

results in a corresponding change of the Ship-Ice Collision (top-level event) model 

output.   

The benchmark risk, which was constructed from the syntheses of experts’ opinions and 

the developed FRBN in Chapter 3, is utilised to provide a comparison with the RI 

measurement obtained in this chapter. As presented in Figure 30, the obtained RI (goal) 

measurement of GINS AMSSO shows a 25.67% “Very Low”, 24.10% “Low”, 24.19% 

“Medium” and 26.05% “High” with a utility score of 49.97%. From the obtained goal 
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measurement, it can be seen that the risk level in the GINS AMSSO is above the ALARP 

region of the developed benchmark risk requiring further action for risk management.  

It is worth mentioning that the utility score of 49.97% for the RI measurement of GNIS 

AMSSO may fluctuate depending on the dynamic conditions and the operational 

uncertainty to which the AMSSO is subjected over a specific period.  

In line with the sensitivity analysis carried out in section 4.4.6, it is revealed that the 

model is more sensitive to Hazard events B10 and B20 than to the other hazard elements 

in the risk cluster. The model sensitivity reveals the RIF of all hazard events from B1 to 

B21, and this coincides largely with the local FRBN risk analysis results and hazard event 

prioritization in Chapter 3. The result of the sensitivity test has further proved the 

importance of human risk factors in the Arctic marine and offshore industry, with B20 – 

from the human risk factor – having the highest risk score in the FRBN model and 2nd 

place in the ER global risk analysis. 

The case study results confirm that the proposed ER method is capable of offering 

sensitive and flexible risk results in genuine situations by simplifying the description of 

failure information, enhancing both the precision and the visibility of FMEA. 

Consequently, the ER method provides a powerful risk evaluation tool and provides a 

reliable RI measurement for AMSSO. 

4.6 Conclusion 

This chapter proposes a novel ER methodology incorporating an FRBN and an AHP 

approach to handle limited failure data in AMSSO for determining the RI level of an 

AMSSO. The FRB accounts for the DoB distribution of FRBN by utilising the same set 

of linguistic grades in both IF and THEN parts and applying that set to evaluate the hazard 

events of a Ship-Ice Collision scenario. The risk in this research is not only defined by 
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the occurrence likelihood (L) and consequence severity (C) but by other risk parameters 

such as the probability of failure, being undetected (P) and impact of a hazard to operation 

(I). The FRBN simplifies the calculation between risk parameters’ input and output based 

on DoBs at the bottom level in the hierarchical clustering of events in the Ship-Ice 

Collision scenario. The AHP provides a justifiable means to rank the intermediary hazard 

events at the intermediary level of the hierarchical clustering of events in the Ship-Ice 

Collision scenario to facilitate the RI measurement at the top level. 

Although the risk analysis of this chapter heavily depends on expert evidence, it is 

noteworthy that the risk statement derived from this research is subject to change in 

deadlock situations.  In the absence of a deadlock or conflicting risk data, the hybrid 

FRBN-AHP-ER approach offers a more suitable way to characterise and address 

uncertainties and vagueness from the subjective estimates of multiple decision-makers. 

This novel integration in assessing risk level in AMSSO offers a powerful tool to 

synthesise all hazard events from the bottom to the top level of investigation (goal), and 

provide the RIF of all hazard events in the investigated system.  

This novel methodology has revealed the following merits compared to other risk analysis 

techniques currently applied in the maritime domain: 

 The ER approach provides a procedure for aggregation which can represent the 

new risk parameters under high and imprecise situations. 

 The methodology offers managerial insights to analysts in a rational, reliable, 

traceable and transparent manner for joint modelling of complex systems with a 

group of experts under situations of high operational boundaries. 
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 The methodology offers researchers an effective technique to make full use of the 

information generated at the lowest level in a risk dendrogram to evaluate the 

safety of the whole system for safety improvement of its operations. 

 The methodology uses a user-friendly computer aid in the risk evaluation process 

that helps to predict the risk magnitude and describes the real RI of a system. The 

user-friendly computer aid means that the computer aid can be used and by a large 

number of safety engineers and decision-makers all over the world thus reducing 

the manual (human) ER calculation errors. 

Hence, the novel methodology in measuring the global RI of Ship-Ice Collision and the 

RIF of each hazard event on the Ship-Ice Collision in AMSSO has proved to tackle some 

of the key issues in AMSSO risk analysis. The key issues earlier mentioned can be 

summarised as 1) data uncertainties; 2) the probability of an incorrect assessment 

technique; 3) various risk parameters and stochastic values that exist in measurement; and 

4) the various hazard events and risk factors in estimation.  

This study mainly focused on the operational aspects including natural and environmental 

factors, leaving the other risk aspects– such as including managerial, political, climate, 

economic, SAR infrastructures, and operational, technical, natural and environmental 

issues–, to be addressed in future work. The high-risk level in the operational aspect of 

AMSSO needs to be reduced to the ALARP region. Several risk-reducing measures are 

needed to formulate effective risk reduction process. The implementation of several risk-

reducing measures comes at a cost (Pamuntjak, 2016). The strategy for a proactive and 

cost-effective measure to tackle the high risk in AMSSO will be discussed and analysed 

in Chapter 5.   
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Chapter 5– Optimal Risk Control Measure for AMSSO using 

an AHP-TOPSIS hybrid technique  

Overview 

The chapter presents an advanced risk-based decision strategy to tackle the revealed high 

risk of AMSSO from previous chapters. The practice of accounting for various Risk 

Control Options (RCOs) or alternatives with their associated criteria to ensure a safe 

and efficient AMSSO can be seen as an MCDM process. A capable hybrid-MCDM 

technique that can efficiently account for hybrid subjective data, as well as diverse risk 

reduction measures and their corresponding criteria to prevent and control risk, is the 

AHP-TOPSIS.  

AHP and the TOPSIS methodology have been merged to formulate a hybrid approach to 

assess the costs and benefits from risk reduction associated with the diverse RCOs in 

reducing risks in AMSSO. In order to evaluate the benefits of risk reduction, this chapter 

introduces an economic benefit calculation adopted by the offshore industry to avert a 

fatality.  

The novelty of the application of the AHP-TOPSIS approach in the newly studied area is 

twofold. Firstly, the newly proposed approach can provide results comparable to the ones 

obtained using existing risk management decision-making methods when the input data 

is finalised. Secondly, the newly proposed approach can also provide solutions where the 

traditional approaches cannot, especially when the decision input data are uncertain and 

of hybrid nature. This chapter presents the most preferred risk control measures in 

AMSSO that are capable of addressing risk reduction and operational efficiency in an 

easy, cost-effective and timely manner. 
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5.1 Introduction 

Despite the presence of hazards and the high cost of investing in Arctic oil and gas 

exploration, mariners, safety engineers, and stakeholders must develop effective 

measures to ensure safe and efficient operation in order to ensure Return on Investment 

(ROI), the protection of lives, assets and the environment. Arriving at an effective 

measure to ensure safe and efficient operation centred on several alternatives can be a 

complex task. It becomes even more complex when all the identified alternatives have 

shared criteria that obviously lead to more familiar and better decisions, in order to get 

the most appropriate solution. Hence, it is important to find a suitable MCDM technique 

to work satisfactorily in risk prevention and control. 

To ensure safe and efficient operation, three main key elements are considered, namely; 

1) technical safety standard and built-in margins against failures or accidents; 2) 

additional safety barriers (technical or operational) put in place by stakeholders against 

failures and; 3) measures taken to maintain the integrity of these barriers against failure 

over time (Helge, 2012). The first key element is mostly covered through class and 

statutory rules dovetailed with other international standards like the IMO and Polar Code, 

the second and the third key elements involves the human component (Helge, 2012).  

The human component is believed to contribute nearly 85% of most of the marine and 

offshore accidents (Alkhaldi et al., 2017, Chan et al., 2016) and this is further revealed 

from the risk analysis carried out in chapters 3 and 4 of this research. Hence, it is logical 

to invest hugely in human elements to manage accidents. Other factors that are worth 

investing in, are the organisation, technological facilities, and the environment. To ensure 

that risk is adequately controlled, the designed technology, organisation, and the 
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environment will work with the human element (people) and enhance their performance 

(Rothblum, 2000, Coles, 2017). 

Several techniques exist for MCDM (Velasquez and Hester, 2013), albeit, there are no 

better or worse techniques, but some techniques previously discussed in Chapter 4 are 

better suited to some particular decision problems than others.  

There are a few studies emphasising on reducing the future risk pattern in the Arctic and 

the subsequent need for emergency capacities in the case of an accident in the Arctic. 

Although some researchers have focussed on the aftermath of an accident by suggesting 

an increase in the emergency resource capacity (Ehlers et al., 2014). A few others have 

focused on transferring the consequences of risk to marine insurers (Sawhill, 2017). 

While others have focussed on ice management (Mollitor, 2018, Haimelin et al., 2017), 

and safe route planning to lessen Arctic risks (Huntington et al., 2015, Zhang et al., 2017). 

Hardly any research/studies focus on developing a combined technical and operational 

solution to prevent and control the dynamic risk of AMSSO or at least Arctic shipping 

risks in general.  

Hence, this chapter presents a new combined technical and operational solution for 

mitigating risks in AMSSO using AHP-TOPSIS. This modern hybrid MCDM approach 

to select the most suitable RCO will ensure an economically and technically possible risk 

control strategy to guarantee a safe and efficient AMSSO. The risk control strategy 

carried out in this chapter considers all suitable technical and operational solutions with 

respect to distinct decision criteria and measures taken to maintain the integrity of these 

barriers against failure over time. The consideration of all suitable and effective RCOs 
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with respect to the distinct decision criteria delivers a systematic and proactive risk 

prevention and control strategy.   

With the aid of literature review and expert elicitation, fifteen (15) effective RCOs, and 

four distinct decision criteria are established. The introduction of AHP provides a 

thorough assessment of the four distinct criteria by considering the weight of each 

criterion, while the TOPSIS approach provides a means of finding the most suitable 

alternative or RCO from several other alternatives. The AHP-TOPSIS hybrid technique 

involves the design of an easy to comprehend questionnaire to resolve the hybrid nature 

of the RCOs selection problem and the ambiguity of concepts that are linked with experts’ 

opinion.  

The main aim of the application of the AHP-TOPSIS hybrid technique is to offer solutions 

for systematic and proactive risk control and management strategy in real-world AMSSO. 

In addition, this hybrid AHP-TOPSIS can provide solutions to a sensible selection of 

RCOs in a situation where relevant data is scarce.  

5.2 Research Background 

5.2.1 A review of Decision-Making Support (DMS) methods 

One of the most commonly used DMS methods in the marine and offshore sector is the 

MCDA (Shafiee et al., 2019). It is worth noting that MCDM, multiple-criteria decision 

analysis (MCDA) and multiple-attribute decision analysis (MADA) mean the same thing, 

and they represent a sub-discipline of operations research that explicitly evaluates 

multiple conflicting criteria in decision-making. This method is increasingly becoming 

popular for decision-making in the Arctic marine seismic surveying sector because the 

orthodox single-criterion Decision-Making methods cannot deliver efficient results 
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considering the complexity of Arctic marine seismic exploration and development 

activities. The MCDA method provides a flexible approach to solve complex problems 

with multiple criteria (e.g., economic, technical, social, legal and environmental) by 

aiding decision-makers to make clear and consistent decisions. 

In the study of the Decision-Making, a decision is usually reached among the various 

choices of alternatives centred on a set of criteria/attributes (Hwang and Yoon, 2012, 

Tzeng and Huang, 2011). For instance, the selection of a day-to-day travel method may 

include alternatives such as the use of a bicycle, public transportation, or a private motor 

vehicle. Several criteria may include cost, travel time, convenience, health factor, traffic, 

and several other factors. Various criteria might conflict with each other (Yoon and 

Hwang, 1995). Criteria may be quantitative such as travel time, or qualitative such as 

convenience. In some cases, the criteria may not be well defined. In the day-to-day travel 

example, the criteria-convenience may not be quantified in a simple way. 

Consequently, various MCDA methods have been developed for solving complex 

problems such as the travel example described above and the complex Decision-Making 

problems in the marine and offshore industry (Shafiee et al., 2019) not excluding the 

Arctic industry. However, some of the most popular MADM methods include VIKOR, 

AHP, and TOPSIS (Castro and Parreiras, 2018). These and more have been described in 

the previous chapters. 

With the knowledge of the application of the various MCDM techniques, this chapter 

proposes an integrated approach, synthesising AHP with the TOPSIS techniques to 

determine the most suitable risk prevention strategy for AMSSO risks. The advantage of 

this integrated method is that it enables the consideration of both tangible (qualitative) 
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and intangible (quantitative) criteria as well as benefit and cost criteria in the selection of 

risk prevention and control strategy of AMSSO risks.  

Cost and benefit which also provide support for making a decision to arrive at the most 

suitable risk prevention and control strategy in engineering systems are also considered 

in the strategic decision-making process of this chapter. The Cost-Benefit Assessment 

(CBA) concept offers decision-makers the opportunity to evaluate the economic viability 

of different RCOs. The main strength of this approach is that it offers results that are 

compatible with market mechanisms (Shafiee et al., 2019).  

The CBA process involves summing up the equivalent money value of present costs of 

an RCO and compares the result with the present value of benefits from the 

implementation of the RCO in order to ascertain if the RCO is worth investing in. An 

RCO is considered useful if the totality of its benefits becomes greater than the sum of its 

costs or when the benefit to cost ratio is greater than “one”. The TOPSIS method is 

preferable in this research as it is able to maximise benefit, whilst minimising cost to offer 

support with the cost, and benefit viewpoint. 

In summary, the AHP provides an advanced, yet effective means to tackle multiple 

criteria decision problems. The importance of an AHP methodology has been scrutinised 

and proved in several applications (Saaty, 1980, Gupta, 2015, Dey, 2006, Singh and 

Singh, 2019). The AHP can be used alone or synthesised with other methods such as Grey 

Theory, VIKOR, and TOPSIS (Improta et al., 2018, Darko et al., 2018). While AHP is 

utilised to convert subjective assessments of relative importance to weights of 

alternatives, the TOPSIS method can be used to synthesise all the criteria in the system, 
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to find the most suitable alternative, which is the closest to the ideal solution, furthest 

away from the negative ideal solution with a description of precise Euclidean distance.  

The TOPSIS methodology has also been scrutinised and proved effective in several 

applications (Behzadian et al., 2012, Kolios et al., 2016, Huang and Li, 2012, Tanriverdi 

et al., 2018, Khalif et al., 2019). The TOPSIS method is a favourable MCDM method that 

addresses the problem as a group in its decision matrix (Kaliszewski and Podkopaev, 

2016, Shih et al., 2007).  

Most MCDM methods have their advantages and drawbacks. Most of their drawbacks 

arise from rank reversal such as with AHP, but the TOPSIS method has been proven to 

have one of the lowest numbers of rank reversals in analysis (Shih et al., 2007).   

Also, the TOPSIS method is preferred to other MCDMs as it offers a non-monotonic 

utility output, with maximum utility located somewhere in the middle of the attribute 

range (Kalbar et al., 2012), meaning, it finds the most suitable alternative in decision-

making that minimises costs (for instance) and maximises benefits (for instance). That is, 

the greater the attribute value, the more it is preferred. An example is fuel efficiency: the 

greater the attribute value, the less it is preferred.  

The following benefits of the application of the TOPSIS method in the selection of the 

most suitable RCO in addressing risks according to Kalbar et al. (2012) are listed as thus:   

 It provides a sound logic that represents the rationale of human preference, 

 It provides a unique visualisation of the alternatives on a polyhedron, 

 It provides a scaler value that takes into consideration the best and worst 

alternative choices simultaneously and 
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 It provides a simple computation process that can be simply programmed into a 

spreadsheet. 

Despite TOPSIS’ simplicity and popularity in concept, it is frequently criticised because 

of its incapability to tackle sufficiently the uncertainty of the weights/importance of 

criteria and imprecision inherent in the process of representing the perceptions of decision 

makers (Tseng et al., 2018). In order to overcome this drawback, AHP is synthesised with 

TOPSIS. The AHP-TOPSIS hybrid methodology allows decreasing the uncertainty and 

the data loss in group decision making and hence, certifies a robust solution to a decision-

making problem (Efe, 2016). 

Therefore, the combination of AHP and TOPSIS methodology offers results that are more 

informative in the RCO selection and decision-making to ensure the most suitable RCO 

is selected. In ranking of all the RCOs in order of preference concerning the distinct 

criteria, AHP-TOPSIS will be adopted in tacking the decision-making problems in 

preventing and controlling risks in AMSSO. However, in order to apply the selected 

MCDM techniques to solve real-world decision problems, it is important to develop a 

mathematical framework to abstract information into the selected techniques and to 

demonstrate the validity of the model.  

The AHP mathematical modelling has been presented in the previous chapter; hence, a 

description of the TOPSIS and the mathematical formulation of the combined AHP-

TOPSIS is presented in subsequent sections. 
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5.3 Technique for Order Preference by Similarity to the Ideal Solution 

(TOPSIS) Methodology 

With the difficulty of arriving at a decision in the presence of complex situations such as 

those that address operational and financial risks, methods to support decision-makers are 

being extensively investigated. One of the most widely used methods to address complex 

decision-making problems is the TOPSIS methodology. The TOPSIS developed by 

Hwang and Yoon in 1981 (Chen, 2015), has been receiving more and more attention.  

Aruldoss et al. (2013) carried out a survey on various MCDM methods and applications, 

the result from the survey indicated that the TOPSIS technique had the most applications 

when compared to other MCDM methods such as ELECTRE, Grey Theory, AHP, and 

VIKOR.  

Behzadian et al. (2012) also carried out a literature survey on TOPSIS applications; the 

result from the survey revealed that 269 papers were published in 103 scholarly journals 

from 2000 to 2012. The survey results also showed a trend in the application of TOPSIS 

with other MCDM methods rather than the stand-alone TOPSIS. These combinations 

have made the traditional TOPSIS method more workable and relevant when handling 

theoretical and practical problems.  

Other recent surveys of the TOPSIS approach include the review of 105 papers from 2000 

to 2015, and the result also showed that TOPSIS is still relevant in addressing complex 

decision-making problems (Zavadskas et al., 2016). 
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The TOPSIS method assumes that each criterion has a propensity of monotonically 

increasing or decreasing in utility, which leads to the definition of the positive and the 

negative ideal solutions. In order to evaluate the relative closeness of the alternatives to 

the ideal solution, the Euclidean distance approach is incorporated in the TOPSIS 

technique. A series of comparisons of these relative distances will provide the preference 

order of the alternatives (Aruldoss et al., 2013).  

The TOPSIS method first converts the various criteria dimensions into non-dimensional 

criteria similar to the ELECTRE method (Triantaphyllou, 2013). The way the TOPSIS 

methodology works, is that the chosen alternative should have the shortest distance from 

the positive ideal solution (PIS) and the farthest from the negative ideal solution (NIS). 

This method is utilised for prioritising alternatives, which gives the most appropriate 

performance in multi-criteria decision-making. 

5.4 Overview of AHP-TOPSIS 

As mentioned earlier regarding TOPSIS methodology’s inability to tackle sufficiently the 

uncertainty of the weights/importance of criteria in subsection 5.2.1, the need to combine 

TOPSIS with a more suitable technique is inevitable. AHP methodology can tackle the 

main drawbacks of TOPSIS as earlier mentioned in subsection 5.2.1. The AHP-TOPSIS 

methodology allows lowering the uncertainty and the information loss in a group 

Decision-Making session and hence, certifies a robust solution to a decision-making 

problem (Efe, 2016).  

From a literature survey, there are several examples of synthesising TOPSIS with AHP 

to advance the consistency of the subjective weights (Yang et al., 2011, Vipul et al., 

2018). This modern hybrid approach takes the benefits of two different methods in order 
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to account for the uncertainties linked with the problem under study (Ghosh, 2011, 

WANG and LIU, 2007, Sadi-Nezhad and Khalili Damghani, 2010).    

The basic principle of the TOPSIS method is centred on the idea that the selected 

alternative should have the closest distance to the positive ideal solution and furthest 

distance to the negative ideal solution (Ghosh et al., 2019, Aruldoss et al., 2013). In order 

to match the alternatives and update the final ranking, the Euclidean distances between 

separate alternatives and together with the ideal and negative ideal solutions are solved 

first; thereafter, the closeness coefficient is calculated to evaluate the two distances 

respectively (Taylan et al., 2015).  

The AHP-TOPSIS process starts from the construction of a decision matrix as represented 

in Equation 5.1, given m alternatives, n criteria or attributes and k decision analysts (Wang 

and Chang, 2007, Dantsoho, 2015). 

                            𝐶1         𝐶2      …   𝐶𝑛 

𝑅𝑘 =

𝐴1

𝐴2
:
:

𝐴𝑚

    .

[
 
 
 
 
𝑟11 𝑟11 … 𝑟1𝑛

𝑟21 𝑟22 … 𝑟2𝑛

: : … :
: : … :

𝑟𝑚1 𝑟𝑚2 … 𝑟𝑚𝑛]
 
 
 
 

 

  

 

 𝑖 = 1, 2, … , 𝑛; 𝑗 = 1, 2, … , 𝑛 

 

 

5.1 

In the decision matrix in Equation 5.1, 𝐴1, 𝐴2, … , 𝐴𝑚 stands for the alternatives or RCOs, 

and 𝐶1, 𝐶2, … , 𝐶𝑛 stand for criteria or attributes, while 𝑟𝑖𝑗 represents a crisp number that 

expresses the ranking of the alternative 𝐴𝑖 concerning criterion 𝐶𝑗. In circumstances 

where the decision- makers are more than one, then the average of their evaluations or 

ratings is taken as  𝑟𝑖𝑗. In addition, the decision matrix can be normalised using 𝑋𝑖𝑗 (Yue, 

2011) as described in Equation 5.2. 𝑋𝑖𝑗 is used to transform several criteria/attributes 
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dimensions into non-dimensional criteria/attributes in order to enable the selection of any 

alternatives with regards to all the criteria/attributes. 

 𝑋𝑖𝑗 =
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗2
𝑚

𝑖=1

, 𝑖 = 1,2,… , 𝑛; 𝑗 = 1,2,… , 𝑛 
 

5.2 

It is essential to weigh the normalised decision matrix. Weighting is assessed using 

Equation 5.3 in order to enable the determination of both the distance separation measure 

for the PIS (represented as 𝐷𝑖
+

) and the distance separation measure for the NIS ( 𝐷𝑖
−

). 

Where PIS and NIS can be described as the Positive Ideal Solution and Negative Ideal 

Solution respectively. 

 𝑉𝑖𝑗 = 𝑤𝑗 x 𝑋𝑖𝑗 , 𝑖 = 1,2,… , 𝑛; 𝑗 = 1,2, … , 𝑛 5.3 

From Equation 5.3, 𝑤𝑗 stands for the weight of 𝑗𝑡ℎ criterion, while 𝑉𝑖𝑗  is the crisp value 

that represents the rating of the alternative 𝐴𝑖 concerning the criterion 𝐶𝑗 in the weighted 

normalised decision matrix. 

The PIS and NIS can be denoted as 𝑉+ and 𝑉− respectively. The  𝑉+ and 𝑉− are 

mathematically defined in Equations 5.4 and 5.5, to enable the calculation of the  𝐷𝑖
+

 

and 𝐷𝑖
−

. 

𝑉+ = { 𝑉1
+,    𝑉2

+,  𝑉3
+, … ,  𝑉𝑛

+},= {(𝑚𝑎𝑥𝑗 𝑉𝑖𝑗  ∣∣ 𝑗 ∈  𝐽 )}, 

{(𝑚𝑖𝑛𝑗 𝑉𝑖𝑗  ∣∣ 𝑗 ∈  𝐽′ )} 

5.4 

𝑉− = { 𝑉1
−,    𝑉2

−,  𝑉3
−, … ,  𝑉𝑛

−},= {(𝑚𝑖𝑛𝑗 𝑉𝑖𝑗  ∣∣ 𝑗 ∈  𝐽 )}, 

{(𝑚𝑎𝑥𝑗 𝑉𝑖𝑗  ∣∣ 𝑗 ∈  𝐽′ )} 

5.5 
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𝐽 and 𝐽′ define the benefit and cost criteria respectively as used in this research and 

according to Mahmoodzadeh et al. (2007).  𝐷𝑖
+

  and  𝐷𝑖
− will be developed so as to 

facilitate the measurement of all the alternatives with their PIS and NIS.  𝐷𝑖
+

 and  𝐷𝑖
−

 

can be described mathematically as presented in Equations 5.6 and 5.7 respectively. 

 𝐷𝑖
+

 =   

√∑ (𝑉𝑖𝑗 −  𝑉𝑗
+)2

𝑛

𝑗=1

 , 𝑖 = 1,2,… , 𝑛; 𝑗 = 1,2,… , 𝑛 

 

5.6 

 𝐷𝑖
−

 =   

√∑ (𝑉𝑖𝑗 −  𝑉𝑗
−)2

𝑛

𝑗=1

 𝑖 = 1,2,… , 𝑛; 𝑗 = 1,2, … , 𝑛 

 

5.7 

The ranking of the several alternatives such as 𝐴1, 𝐴2, … , 𝐴𝑛 can be carried out employing 

the relative closeness to Ideal Solution, symbolised as 𝑅𝐶𝑖
+

. Consequently, 𝐷𝑖
+

 and 𝐷𝑖
−

 

are employed to describe 𝑅𝐶𝑖
+

 using the mathematical relation in Equation 5.8.  

 𝑅𝐶𝑖
+

 = 
 =

 𝐷𝑖
−

 𝐷𝑖
+ +  𝐷𝑖

−  , 𝑖 = 1,2,… , 𝑛; 𝑗 = 1,2,… , 𝑛 
5.8 

The most suitable alternative will be the value of 𝑅𝐶𝑖
+

 closest to (1) one. 

5.4.1 Ranking of Alternatives 

Ranking of the RCOs is employed to aid the Decision-Making process. The ranking 

reveals which alternative can be selected to achieve optimum safety and efficiency. The 

RCOs are ranked with respect to their  𝑅𝐶𝑖
+

 values.  An RCO linked with the highest 

 𝑅𝐶𝑖
+

 value is of utmost importance, followed by the second highest  𝑅𝐶𝑖
+ value, then 

third, fourth and so on. 
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5.4.2 Decision-making on the most suitable RCO 

Strategic decision-making in AMSSO requires a search for alternatives and structuring of 

alternatives in the context of the risk prevention and control objectives. These alternatives 

must include definable criteria. In order for decision-making to be effective, all 

measurable parameters including the goal must be within the realm of available 

information (Frankel, 1982, Corcoran, 2013). Available information from the application 

of the AHP-TOPSIS can be selected to improve the safety and lower or prevent risk in 

AMSSO. Results from AHP-TOPSIS have been used and relied on in different industries 

(Behzadian et al., 2012) and stakeholders can rely on the  𝑅𝐶𝑖
+

 values to take a strategic 

decision in AMSSO and other dynamic operations. 

5.4.3 A systematic structure of AMSSO risk control and prevention utilising a hybrid 

AHP-TOPSIS methodology 

To reduce and manage hazard events in AMSSO, a risk-based decision strategy AHP-

TOPSIS model is used to select the most suitable RCO from a list of RCOs that can 

prevent accidents and improve the safety and efficiency in AMSSO. The framework of 

the AHP-TOPSIS hybrid technique is presented in Figure 33.  

The organisation of steps in Figure 33 to tackle the risk of “lack of situational awareness” 

in AMSSO starts from the preparatory stage, that is, the assessment of the risk level of 

“lack of situational awareness” in an AMSSO. The next step is to check if the risk level 

of “lack of situational awareness” is acceptable or not. If the risk level were low, there 

would be no necessity to carry out further investigation as shown in Figure 33. However, 

if otherwise, further investigation will need to be carried out to identify RCOs 

(alternatives) and associated attributes (criteria) for a safe and efficient AMSSO.  
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Once all the RCOs and associated criteria have been identified through expert opinion 

and literature review, an evaluation is carried out to ascertain how logical, the identified 

criteria are. Following this, an evaluation is carried out to assess the weights of the criteria 

through an AHP methodology. The overall evaluation is again checked for errors and 

consistency. In situations of erroneous evaluations, the opinions of experts are re-

investigated before the application of TOPSIS methodology is commenced.  

The mechanism of the TOPSIS is employed to rank all RCOs against the associated 

criteria to arrive at an economically viable RCO. Finally, the most suitable RCO, which 

is ranked number “one” in the AHP-TOPSIS hybrid method, can be employed to tackle 

the risk of “lack of situational awareness” in AMSSO. 
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5.5 Model validation 

The reliability of the model is validated through a sensitivity analysis check to ensure its 

applicability and reliability in preventing risks in AMSSO. Sensitivity analysis involves 

checking and validating results from an investigation. It can be done by checking how 

Start 

Describe the risk level of the hazard event of interest 

Is the risk level  

satisfactory? 

Identify Risk Control Options (RCOs) and linked criteria 

Review the RCOs and linked criteria 

Evaluate the weights of the criteria through the AHP method 

Error check 

Apply TOPSIS to match the RCOs with the linked criteria 

Rank and prioritise the RCOs 

Select the most suitable RCO  

Finish 

Are the RCOs linked 

criteria logical? 

Is the weighting 

correct? 

No 

No 

Yes 

Yes 

No 

Yes 

Figure 32: A systematic structure of AMSSO risk control, employing a hybrid AHP-TOPSIS Methodology 
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sensitive minor changes to input data can affect the overall result. In this chapter, 

sensitivity analysis will be conducted by increasing the weight of each criterion 

individually with respect to the results obtained from AHP application, then TOPSIS 

steps are re-activated, and the new results are monitored for the decision-making process 

(Hanine et al., 2016, Fox et al., 2016). 

Another new sensitivity analysis will be carried out by increasing and decreasing the 

value of the distance separation measure for the PIS and monitoring the results. It is worth 

mentioning that increasing the criterion weight by “i” value simultaneously, the weights 

linked with other criteria are decreased by “i” value to make up for the increment 

percentage on the increased criterion. Nevertheless, if the weight is approaching less than 

“i” value, then the outstanding weight will be split on the outstanding criteria and this 

process continues until “i” value is used up. 

5.6 Development of integrated risk management in AMSSO 

Engineering risk management in either the nuclear, marine or offshore sector is an 

important concept related to the safety and financial integrity of an organisation, and risk 

prevention is a vital part of its strategic development. The strategy of an organisation on 

risk management ought to be that all the risks it is exposed to must be identified (see 

Chapters 2 and 3), assessed (see Chapters 3 and 4), reduced to a tolerable limit, and if 

possible prevented for safe and efficient operation.  

The cost of implementing an RCO or a combination of RCOs depends on the methods 

used to manage unexpected events (Vasile and Croitoru, 2012), and in most cases, they 

do come with a hefty cost penalty (Mansouri et al., 2009).  
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Integrating risk control and management into the day-to-day affairs of any engineering 

operation and AMSSO, in particular, will depend on the following: 

a) Goal of investigation 

b) Having complete data or information about all the RCOs 

c) Being able to differentiate and comprehend all the pertinent differences between 

the RCOs, 

d) Employing comprehensive criteria that will be useful throughout the lifecycle of 

the decision’s consequences, and lastly,  

e) Time available to carry out all of the above in a sensible time window. 

In practice, most risk prevention and control strategies depend largely on profit or safety. 

If safety is paramount to an organisation, then diligence regardless of cost will tend to be 

favoured in risk management decision-making. If profits and production targets are 

paramount to an organisation then care, diligence and quick delivery of operation will be 

favoured. However, the fact that timely execution of Arctic marine seismic survey 

projects and diligence are trade-offs means that it is difficult to maximise both at the same 

time. This strain is the source of a big organisational problem, which is, finding a suitable 

balance between cost and benefit. 

The assessment of cost-effectiveness in this regard necessitates a systematic and efficient 

cost-benefit analysis (CBA). An efficient CBA is centred on the utilisation of a risk 

management algorithm, which takes into consideration the complex and operational 

uncertainty of the system (Wang and Trbojevic, 2007) and the amount of information of 

the various RCOs and criteria. Therefore, the main aim of any joint Decision-Making 

process is to achieve the most suitable combination of criteria for logical decision-
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making. In addition, effort needs to be geared towards identifying, developing, and 

structuring those criteria that affect alternatives selection in an appropriate way. The 

choice of the most suitable RCO(s) will enable the most suitable risk control and 

prevention of AMSSO risks.  

5.7 A description of the risk of “Lack of Situational Awareness” in AMSSO 

In previous chapters, the risk associated with AMSSO is found not to be in the acceptable 

regions of the developed FRBN benchmark risk. The risk of each hazard was first 

analysed locally and later analysed globally with respect to the goal (Ship-Ice Collision). 

Upon the local and global risk analysis, some of the hazard events that contributed mostly 

to compromise the safety and efficiency of AMSSO were found to be “lack of situational 

awareness”, “ice restrictions which affects vessel’s movement”, “practical incompetency 

of duty”, “workload causing stress” and “pieces of floating multi-year ice/icebergs 

causing machinery damage”. 

5.7.1 A comparison study 

For the sake of comparison study, twenty-three (23) accident reports were examined 

between attendant vessels and offshore facilities on the Northern part of the Norwegian 

sea (part of GIN sea), where lack of situation awareness was found as one of the most 

critical hazard events leading to collisions in the studied Arctic region (Sandhåland et al., 

2015). Baker and McCafferty (2005) published their three-year long-term analysis of 

maritime accidents from Arctic seas in Norway, United States, Canada to open seas in the 

United Kingdom and Australia, and according to their findings, lack of situation 

awareness was revealed as a major causal factor in the majority of Arctic accidents 

investigated. 
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Barnett (2005) used two surveys of accident data and three case studies to highlight the 

main concerns in the sources of shipping failure. Among the main causal factors found in 

the research, lack of onboard situational awareness was revealed as a critical risk factor.   

Also, in the review of 150 accident reports from 2002 to 2005 from the website of the 

Australian Transportation Safety Bureau (ATSB) in Barnett (2005), causal factors were 

categorised into root cause groupings. The ‘Lack of situational awareness’ group had the 

highest contribution to accidents with a total of the score of 27.5%, while management, a 

non-human error, and a risk group scored 24.5%, 15%, and 30% respectively. Although 

the authors recognised that these root cause groupings are subject to different 

interpretation, the results agree largely with the UK Marine Accident Investigation 

Branch (MAIB) database. Nevertheless, the management group refers to nearly entirely 

on-board management factors, with only 4.5% of these factors credited to organisational 

impacts, such as the business management and the level of staffing.  

Therefore, the lack of situation awareness that is a subset of the human management risk 

factor will form the focus of study in this chapter, this is so because full-scale risk 

prevention and control of other 20 hazard events will be too voluminous to investigate. 

5.8 Data collection method 

Having the correct information about the integrated risk control and being able to 

differentiate between all the RCOs and their matched criteria begins with the 

understanding of the scope and goal of the investigation. Vital information on integrated 

risk control and prevention of "lack of situational awareness" can be sourced through an 

in-depth literature review and brainstorming session with several experts having a first-

hand experience of managing both Arctic and AMSSO risks. Different information is 
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required to identify, analyse and to unify such an integrated risk prevention and control 

information into one strategic risk control and prevention model. 

The data collection method used in this research used both qualitative and quantitative 

data sets, namely the experts’ judgement and mathematical models. The mathematical 

models used with experts’ knowledge in the development of integrated risk control and 

prevention strategy in this research include AHP-TOPSIS. The expert judgement 

methodology, as used in this study, is categorised into three chronological stages:  

1. Choosing experts refers to expert selection. The process of choosing the 

concerned experts in this present study is described in subsequent sections. 

2. Elicitation refers to the process of proposing opinions or expert judgements 

through different means. In this study, this was supplied through questionnaires. 

3. Aggregation refers to the means of taking the average or converging of the 

different expert opinions offered in the study (Endrina et al., 2018). 

5.8.1 A review on the selection of criteria considered in preventing and controlling a 

lack of situation awareness risk 

The criteria for risk prevention enables the stakeholders (decision-makers) to determine 

whether is it reasonably practicable to reduce or prevent the risk of a hazard event. 

Aminbakhsh et al. (2013), Alyami (2017), Giunipero and Eltantawy (2004), and Armer 

et al. (2013) jointly highlighted four main criteria in preventing the operational risks in 

the workplace. The four criteria can be revised as:   

1) Cost of implementation,  

2) Technical difficulty,  

3) Risk reduction and  
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4) Benefit of risk reduction.  

Although there is a paucity of literature on AMSSO risk management, however, the 

literature reviewed from similar operations to AMSSO combined with Vanem et al. 

(2008) represents the following main criteria used in preventing and controlling the risk 

of lack of situation awareness: 

1) Cost: the cost of reducing or managing risk in monetary value. It is a metric that 

can be calculated per year or forecast for a future financial period. This chapter 

focuses on risk control cost, i.e. the cost of installing a safety barrier or the 

operational processes designed to reduce risk such as investing in human, 

hardware elements, etc. 

2) Technical difficulty: this refers to the ease or difficulty of applying the required 

safety barrier accurately and dependably. 

3) Risk reduction: measures taken to reduce the risk parameters L, C, I, P–, of 

AMSSO. Risk reduction may include engineering, safety barriers, safety 

inspections, or claims management. The acronyms L, C, I, and P have been 

described in previous chapters. Although risk reduction will contribute to less 

human loss, damage to the environment and property, it is also important to 

ascertain the benefit of this reduction in monetary terms. 

4) Financial benefit of risk reduction: this refers to the financial benefit achieved in 

preventing the loss of lives, assets and damage to the Arctic environment. 

Technical as this may sound, what underlies the issue of fixing a price to the loss 

of life, assets and the environment is far from just technical. It is, in fact, an 

overwhelmingly ethical issue. However, it might be reasonable to consider the 

high risk of working in the Arctic offshore environment and the average salary an 
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individual earns throughout their active 35 service years. That is, if the risk of 

working offshore is 70% greater than working onshore (Tseng and Cullinane, 

2018), then a conversion factor of 1.7 is utilised to calculate the value of human 

life. The conversion factor multiplied by an average annual salary of £100,000 for 

an individual oil worker in the Nordic countries (The Offshore Post, 2014), then 

multiplied by an individual service life of 35 years, puts the value of human life 

at approximately £6,000,000. This estimate sum will be assumed as the benefit 

derived from preventing the loss of life, assets, and damage to the Arctic 

environment. The above calculation is a mere generalisation, however, more 

details on the above calculation and other logical generalisations on the value of 

human life in a monetary unit can be seen in Partnoy (2012). 

5) Duration of implementation: this refers to the time taken to carry out or install a 

risk control measure. Long terms risk control measures such as training are only 

considered on a yearly basis. 

5.8.2 A review on the selection of RCOs targeted to prevent and control “the lack of 

situation awareness” risk in AMSSO 

The alternatives (RCOs) in preventing and controlling the risks in AMSSO should include 

actions targeted to prevent the situation from manifesting in the first place, or actions 

targeted to reduce both the likelihood and the consequences of risk as well as the impact 

of the hazard to operation. There are a few published papers on AMSSO risk 

management. Nevertheless, a thorough literature review and knowledge from experts can 

be tailored towards achieving a safe and efficient AMSSO. See Table 24 for the list of 

RCOs targeted towards preventing and reducing the risk of situation awareness in 

AMSSO. 
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Table 24: RCOs tailored for lack of situation awareness risk in AMSSO 

S/N Alternative or RCO Literature source 

1 Training to improve knowledge and 

competence 

Sandhåland et al. (2015), 

Zhang et al. (2019), 

Dalaklis and Baxevani 

(2018) 

2 Teaching English language to improve 

communication 

Expert, Berg et al. (2013), 

Wang and Zhang (2000)  

3 Providing quality foods and exercise 
facilities to improve the crew's health and 

wellbeing 

Carter et al. (2019), Expert 

4 Use of durable and readable material for on-

board information display 

Nippon (2010), Expert 

5 Automating the operation of the vessel Ottesen (2014), Pazouki et 

al. (2018) 

6 Provide physical barriers to restrict 

unintended access to important controllers 

Nippon (2010), Expert 

7 The design and installation of equipment 

should consider the user body size to avoid 

awkward posture 

Nippon (2010), Expert 

8 Improved navigation and communication 

equipment 

Wright and Baldauf 

(2018), Aziz et al. (2019) 

9 Improved recruitment procedure Wang and Zhang (2000) 

10 Providing education in cultural awareness 

and cultural sensitivity training 

Horck (2008), Håvold et 

al. (2018) 

11 Assigning personnel to monitor the roles and 

responsibilities of each crew member 

Meyer (2016), Expert 

12 Allocate resources for strategic planning Wang and Zhang (2000), 

Expert 

13 Assign personnel to monitor the workload 

distribution 

Espevik and Olsen (2013), 

Ellis (2014), Expert 

14 Non-operational use of cell phone/ 

entertainment device 

SFS (2017), Towns (2007) 

15 Training crew on how to react to rough 

weather situations 

Expert, Wróbel et al. 

(2017) 

 

The hierarchical structure of RCOs targeted to prevent the lack of situation awareness in 

AMSSO as used in this study is presented in Figure 34. 
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5.8.2.1 Determining dependence among alternatives and sub-alternatives 

The selection of a practical and cost-effective RCO in preventing or reducing/controlling 

risks is one of the most important tasks in marine and offshore risk management and 
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Figure 33: Hierarchical structure of RCOs for preventing the lack of situation awareness in AMSSO 
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decision sciences. The selected alternative group and alternatives represented in Figure 

34, do not necessarily need to be independent of each other in real life. However, a check 

for the dependency of alternatives and sub-alternatives can be started by organising a 

checklist that is intended to capture the presence of interdependencies among alternatives 

and sub-alternatives. This checklist is comprised of blocks that are checked only if any of 

the alternative column data influences any of the sub-alternative data.  

In addition, the questionnaires having the checklist are circulated among N members of 

the decision-maker’s team. Once the questionnaire is completed, Equation 5.9 is 

employed to ascertain which blocks of the interdependency matrix 𝑚 × 𝑚 are fit to 

represent interdependency (Rajesri et al., 2015). 

 Q =
N

2
  5.9 

If vij ≥ Q, block is qualified 

If vij ≤ Q, block is disqualified 

where N is the number of decision makers, vij  is the overall number of votes allocated to 

the block matching to the ith row and the jth column of the interdependencies matrix, and 

𝑖, 𝑗 = 1,2,… ,𝑚. This implies that blocks that were earlier voted for by at least more than 

half of the decision-makers will be accepted as interdependent blocks. 

However, in order to satisfy all doubts on the problems of alternative dependencies, 

decision- makers should pay more attention to the final list, that is, the sub alternatives in 

this context, of the RCO selection process, as the quality of the selection phase heavily 

depends on the final stage of the RCO selection process. 
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In the absence of interdependency among various levels in a network, AHP can assess 

the dependency of criteria in a specific level, and can also measure the relative importance 

or strength of impacts on a given criterion within a specific hierarchy level (Hashemi et 

al., 2015). 

5.9 A test case of using AHP for order preference by similarity to the ideal 

solution (AHP-TOPSIS) methodology in risk control and management of 

AMSSO 

The procedure represented in Figure 33 is demonstrated on an average size (76.8m × 16m) 

PC seismic vessel having an approximately 40-crew unit, operating in the GIN Sea. In 

this section, the feasibility of the AHP-TOPSIS methodology on selecting the most 

suitable RCO from various RCOs and criteria is illustrated. This hybrid methodology is 

achieved by incorporating expert judgement into the AHP-TOPSIS to realise a safe and 

efficient operation through an outright reduction of the alarming “lack of situation 

awareness” risk in AMSSO.  

In developing the several RCOs and associated criteria, knowledge from previous 

sections are screened and tailored to accommodate the present study in order to arrive at 

a more effective risk prevention and control strategy. The most suitable RCO is targeted 

to control the risk of “lack of situational awareness” in GINS AMSSO.  

5.9.1 Experts selection 

A pre-elicitation meeting was organised in May 2018 with all the research Directors of 

Studies (DoS). The goals were: 1) to identify experts in the field of Arctic marine services, 

2) to define the scope of the elicitation exercise and 3) to develop and set out the important 

questions that would be used to seek experts’ subjective opinions. Having established the 
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important questions to consider, 20 experts were targeted with the questionnaires owing 

to their specific experience. Consequently, only nine responses were deemed valid. The 

experience and nature of business of each of the four experts that contributed their 

knowledge and opinion are presented in Table 25. 

Table 25: Expert's knowledge and experience 

Experts Company Experience 

1 A leading independent international seismic survey 

services company in the UK 
11-20 years as a safety officer  

2-4 A leading marine geophysical services company in 

Norway 

6-10 years as a seismic survey 

crew member 

5-6 A leading University in China 6-10 years as an Arctic risk 

management researcher 

7-8 A leading marine service company in the UK 11-20 years as a marine 

assurance manager 

9 A leading marine service company in the UK 11-20 years as a marine quality 

assurance advisor 

 

A total of nine experts, whose backgrounds appear in Table 25, have supplied information 

regarding the RCOs and the associated criteria to carry out a case study to demonstrate 

the feasibility of the proposed AHP-TOPSIS methodology in selecting the most suitable 

RCO for preventing or controlling “lack of situation awareness” risk. 

5.9.2 A Description of the risk level of “Lack of Situation Awareness” in AMSSO 

Several hazard events and sources that pose a risk to the safety and the smooth running 

of AMSSO have been discussed thoroughly in Chapter 3. The Introduction of Fuzzy Rule-

based Bayesian Network (FRBN) in Chapter 3 meant that the results from the advanced 

risk analysis method could be relied on. The hybrid FRBN and the ER methods that can 

be used to simplify the complex nature of operational risks in AMSSO both reveal that 

“lack of situational awareness” when assessed locally and globally presented an 



198 
 

unaccepted risk level. The 59.84% (from local risk assessment) risk level of lack of 

situation awareness, having a RIF of 2.24, lies within the intolerable region of the FRBN 

benchmark risk. Due to the present risk level of “lack of situational awareness", strategic 

measures need to be identified and adopted with the aim of achieving a safe and efficient 

AMSSO since the Arctic region is still in the present state, underdeveloped and 

misunderstood (Mollitor, 2018). 

5.9.3 Risk Control Options (RCOs) and linked criteria 

In this section, the list of RCOs earlier presented in Figure 34 to reduce or prevent the 

risk of “lack of situational awareness” in AMSSO will be incorporated into the AHP-

TOPSIS decision-making methodology. An AHP-TOPSIS hierarchy structure for the 

strategic risk control and prevention of lack of situation awareness in AMSSO is 

developed in Figure 35. The hierarchy structure in Figure 35 is clearly divided into three 

levels, with level one having the goal, level two having the criteria, and level three having 

the alternatives (RCOs) for controlling "lack of situational awareness".  

The application of all RCOs will depend on the given criteria. The technical and 

operational risk control and prevention steps in Figure 33 starts from the identification of 

RCOs and linked criteria that can be referred to as the strategic selection of the most 

suitable RCO for a safe and efficient AMSSO. 
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Figure 34: An AHP–TOPSIS hierarchical structure for the strategic risk control and prevention of lack of situation 

Awareness in AMSSO 
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The five criteria and fifteen alternatives that are more suited to preventing and controlling 

the risk of “lack of situation awareness” in AMSSO are identified based on expert 

opinions and through a thorough literature review as described in Table 24. 

5.9.3.1  Categorising the five criteria into Cost and Benefit in the Prevention and Control of 

“Lack of Situation Awareness” risk 

Risk reduction and financial benefit from risk reduction both fall under "benefit" (B) 

category, while the cost of implementing an RCO, duration of implementing an RCO and 

the technical difficulty of implementing an RCO all fall under "cost" (C) category. The 

lower the value of "cost", the more effective the RCO, and the higher the value of 

"benefit", the more sustainable the RCO. These two categories of "B" and "C" dividing 

into the five criteria for risk prevention and control is represented in Table 26. 

Table 26: Benefit and Cost category 

Criteria Description Category 

C1 Risk reduction B 

C2 Cost of 

implementing RCO 

C 

C3 Duration of 

implementing RCO 

C 

C4 Technical difficulty 

of implementing an 

RCO 

C 

C5 Financial benefit 

from risk reduction 

B 

 

The definition of the five criteria in Table 26 has been described in section 5.8.1. 

5.9.4 Evaluate the ratings of alternatives with respect to each criterion 

In order to choose the most suitable RCO, experts are presented with a questionnaire. The 

assessment for the criteria through the questionnaire is set in a way that the experts can 
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feel confident in contributing their experience. A group of four experts out of the nine 

whose background and experience have been presented in Table 25, judged each criterion 

with regard to each corresponding alternative. The evaluation of all alternatives with 

respect to both qualitative and quantitative criteria is presented in Table 27. 

The column of financial benefit from risk reduction, C5 is calculated by multiplying the 

“risk reduction” by the cost of averting a fatality, £6,000,000GBP. 

Table 27: Expert Judgement on the RCO values with respect to each criterion 

Alternatives Expert C1 C2 in £ C3 in 

months 
C4 C5 

Real Data 

Training to improve 

knowledge and 

competence 

Expert 1 VH-100 400000 4 L-3  

 

5,383,200 

Expert 2 H- 80 46000 1 L- 3 

Expert 3 VH- 90 NA 12 VH- 9 

Expert 4 VH- 90 40000 1 L-2 

Teaching English 

language to improve 

communication 

Expert 1 VH 90 100000 3 M- 5  

 

4,408,800 

Expert 2 VH- 90 20000 1 M- 4 

Expert 3 M- 40 NA 3 M- 4 

Expert 4 VH- 90 16200 1 M- 6 

Providing quality foods 

and exercise facilities to 

improve crew’s health 

and wellbeing 

Expert 1 H- 70 100000 1 VL- 1  

 

3,715,200 

Expert 2 H- 70 400000 12 L- 3 

Expert 3 M- 50 NA 12 M- 4 

Expert 4 M- 60 520000 12 L- 2 

Use of durable and 

readable material for on-

board information 

display 

Expert 1 H- 80 25000 1 VL- 1  

 

3,741,600 

Expert 2 VH- 90 800000 8 H- 8 

Expert 3 L- 30 NA 3 H- 7 

Expert 4 H- 70 1000000 6 H- 7 

Automating the 

operation of the vessel 

Expert 1 VH- 90 500000 3 M- 6  

 

3,381,000 

Expert 2 M- 60 350000000 12 VH- 9 

Expert 3 H- 70 NA 36 M- 6 

Expert 4 L- 30 200000000 12 VH- 10 
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Alternatives Expert C1 C2 in £ C3 in 

months 

C4 C5 

Real Data 

Providing physical 

barriers to restrict 

unintended access to 

important controllers 

Expert 1 H- 70 10000 1 M- 5  

 

4,178,400 

Expert 2 H- 80 75000 6 H- 7 

Expert 3 M- 60 NA 12 H- 7 

Expert 4 H- 70 50000 6 H- 7 

The design and 

installation of equipment 

should consider the user 

body size to avoid 

awkward posture 

Expert 1 H - 80 10000 1 M- 5  

 

3,108,000 

Expert 2 H- 80 75000 12 H- 8 

Expert 3 L- 30 NA 36 L- 3 

Expert 4 M- 50 50000 12 M- 5 

Improve navigation and 

communication 

equipment 

Expert 1 VH- 100 500000 3 H- 7  

 

5,055,600 

Expert 2 VH- 90 80000 12 M- 5 

Expert 3 H- 70 NA 36 H- 8 

Expert 4 H- 80 60000 6 M- 5 

Improved recruitment 

procedure 

Expert 1 H- 80 50000 6 M- 4  

 

4,281,000 

Expert 2 VH- 90 10000 1 VL- 1 

Expert 3 M- 40 NA 12 M- 6 

Expert 4 VH- 90 5000 1 L- 2 

Providing education in 

cultural awareness and 

cultural sensitivity 

Expert 1 H- 70 50000 1 M- 5  

 

3,146,400 

Expert 2 VH- 90 15000 1 VL- 1 

Expert 3 L- 20 NA 12 L- 2 

Expert 4 H- 70 8000 1 L- 2 

Assigning personnel to 

monitor the roles and 
responsibility of each 

crew member 

Expert 1 H- 80 50000 1 M- 4  

 

3,381,000 

Expert 2 H- 70 35000 1 VL- 1 

Expert 3 L- 30 NA 3 L- 3 

Expert 4 H- 80 33600 1 VL- 1 

Allocate resources for 

strategic planning 

Expert 1 VH- 90 50000 3 M- 5  

 

4,156,800 

Expert 2 VH- 90 100000 1 VL- 1 

Expert 3 M- 40 NA 3 M- 5 

Expert 4 H- 80 200000 1 M- 6 

Assign personnel to 

monitor workload 

distribution 

Expert 1 H- 80 20000 3 M- 4  

 

4,178,400 

Expert 2 H- 70 35000 1 VL- 1 

Expert 3 M- 60 NA 1 M- 6 
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Alternatives Expert C1 C2 in £ C3 in 

months 

C4 C5 

Real Data 

Expert 4 H- 80 33600 1 VL- 1 

Non-operational use of 

cell 

phones/entertainment 

devices 

Expert 1 H- 80 20000 1 L- 3  

 

3,574,800 

Expert 2 H- 70 5000 1 VL- 1 

Expert 3 M- 50 NA 1 M- 4 

Expert 4 M- 40 2000 1 L- 2 

Training crew on how to 

react to rough weather 

situations 

Expert 1 VH- 90 150000 1 M- 4  

 

5,091,000 

Expert 2 VH- 90 20000 1 L-3 

Expert 3 VH- 90 NA 12 VH-10 

Expert 4 H- 80 16200 1 L- 2 

 

5.9.5 Identification of Weights of Criteria for Optimal AMSSO using the AHP 

Methodology 

AHP methodology is used to estimate the weights of the five criteria considered in 

controlling and preventing the risk of “lack of situational awareness" in the GIN Sea 

during an AMSSO. For the AHP methodology, five responses were received from the 

questionnaires that were sent out to 20 concerned experts as mentioned previously in 

section 5.9.1. An Excel spreadsheet is utilised in the pairwise comparison of the RCOs’ 

criteria in order to simplify Equation 4.2 and to represent the subjective judgement of 

each expert. The result from the Excel spreadsheet is represented in tabular form. 

Thereafter, a geometric mean is taken for the five responses to converge the subjective 

judgement of the five valid responses as shown in Table 28. 
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Table 28: Geometric Mean of subjective judgement of expert 1 to #5 

 C1 C2 C3 C4 C5 

C1 1.00 3.94 5.38 3.22 2.82 

C2 0.25 1.00 4.36 2.91 1.32 

C3 0.17 0.24 1.00 1.00 0.36 

C4 0.32 0.34 1.00 1.00 0.62 

C5 0.32 0.74 2.78 1.57 1.00 

Sum=∑ 𝐴5
1  2.06 6.26 14.52 9.7 6.12 

 

C1 to C5 have been defined in Table 26. The weighting vector of each element in the 

pairwise comparison matrix, representing the priority of the five criteria can be obtained 

using Equation 4.2 and simplified in Table 29. 

Table 29: Prioritization of the RCOs' criteria 

 C1 C2 C3 C4 C5 w𝑘 

C1 0.49 0.63 0.37 0.33 0.46 0.46 

C2 0.12 0.16 0.30 0.30 0.22 0.22 

C3 0.08 0.04 0.07 0.10 0.06 0.07 

C4 0.16 0.05 0.07 0.10 0.10 0.10 

C5 0.16 0.12 0.19 0.16 0.16 0.16 

 

The excel spreadsheet calculation reveals that: 

WC1= 0.46 (risk reduction). 

WC2= 0.22 (cost of implementing a RCO) 

WC3= 0.07 (duration of implanting a RCO). 

WC4= 0.10 (Technical difficulty of implementing a RCO). 
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WC5= 0.16 (financial benefit of risk reduction). 

These weights WC1 to WC5 only present relative importance between the criteria. 

The values of weights (i.e. w𝑘) obtained in the subjective pairwise comparison need to 

be checked for consistency. This can be done using Equations 4.4, 4.5 and 4.6. The values 

of CI and λmax  are also revealed from the consistency check. The Random Index number 

which depends on the number of criteria being compared in a pairwise comparison 

evaluation is obtained from Saaty table (Saaty, 1980). CR value is obtained from the 

maximum Eigenvalue of the comparison matrix in Table 31. 

Table 30: Maximum Eigenvalue of the comparison matrix 

 C1 C2 C3 C4 C5 Sum Sum 

/Weight 

C1 0.46 0.87 0.38 0.32 0.45 2.48 5.39 

C2 0.12 0.22 0.31 0.29 0.21 1.15 5.23 

C3 0.08 0.05 0.07 0.10 0.06 0.36 5.14 

C4 0.15 0.07 0.07 0.10 0.10 0.49 4.90 

C5 0.15 0.16 0.19 0.16 0.16 0.82 5.13 

λmax       5.16 

 

Table 31: Consistency Index and Ratio of the comparison matrix 

λmax (Lambda Max) 5.16 

CI 0.04 

CR 0.035 

 

From the consistency check, it is revealed that there is great consistency in the subjective 

judgements of all experts; hence, the CR value equals 0.035 (less than 0.1) 
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5.9.6 Synthesising TOPSIS methodology in identifying the most suitable RCO for 

controlling and preventing the risk of "Lack of Situational Awareness" in AMSSO 

Here, the TOPSIS mechanism is employed to enable the ranking of all RCOs. In 

dovetailing AHP with TOPSIS, all the criteria linked with the RCOs are classed as 

monotonic, as represented in Figure 34. A successful application of the TOPSIS method 

will mean that the criteria will be divided into two categories as represented in Table 26.  

5.9.6.1  Development of TOPSIS Decision Matrix 

By means of Equation 5.1, the development of a decision matrix can be obtained. Criteria 

categorised as B, are risk reduction, financial benefit from risk reduction, while the 

criteria categorised as C, are the duration of implementing an RCO, cost of implementing 

an RCO, and the technical difficulty of implementing an RCO. The various RCOs 

identified in this study will be rated around the five criteria. In order to rate the RCOs, 

experts are provided with an easy to understand questionnaire to rate the RCOs with 

respect to the criteria categorised as B as represented in Table 32. The criteria categorised, 

as C will be rated by taking data from the questionnaire feedbacks.  

A summary of Table 27, that is, the expert judgement in the RCO values with respect to 

the five criteria is presented in a decision matrix table shown in Table 33. 

Table 32: Benefit rating scale 

Very Low % Low % Medium % High % Very High % 

0 10 20 30 40 50 60 70 80 90 100 
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Table 33: TOPSIS Decision Matrix 

RCO Cost of 

implementing 

RCO (£) 

Financial 

benefit of 

risk 

reduction 

(£) 

Risk 

reduction 

(%) 

Technical 

difficulty of 

implementing 

an RCO 

Duration of 

implementing 

an RCO 

Training to improve 

knowledge and 

competence 

 

 

90287.15 5,383,200 89.72 3.57 2.63 

Teaching English 

language to improve 

communication 

 

 

31879.76 4,408,800 73.48 4.68 1.73 

Provide quality foods 

and exercise facilities 

to improve the crew's 

health and wellbeing 

 

 

 

275013.8 3,715,200 61.92 2.63 6.45 

Use of durable and 
readable material for 

on-board information 

display 

 

 

 

271441.8 3,741,600 62.36 5.86 3.46 

Automating the 

operation of the vessel 

 

3271066 3,381,000 56.35 7.84 7.67 

Providing physical 

barriers to restrict 

unintended access to 

important controllers 

 

 

 

33471.65 4,178,400 69.64 6.09 4.56 

The design and 

installation of 

equipment should 

consider the user body 

size to avoid awkward 

posture 

 

 

 

 

 

33471.65 3,108,000 51.8 4.95 8.49 

Improve navigation 

and communication 

equipment 

 

 

133886.6 5,055,600 84.26 5.89 6.45 
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RCO Cost of 

implementing 

RCO (£) 

Financial 

benefit of 

risk 

reduction 

(£) 

Risk 

reduction 

(%) 

Technical 

difficulty of 

implementing 

an RCO 

Duration of 

implementing 

an RCO 

Improved recruitment 

procedure 

 

13572.09 4281000 71.35 3.03 2.21 

Providing education 

in cultural awareness 

and cultural 

sensitivity 

 

 

18171.21 3,146,400 52.44 2.11 1.86 

Assigning personnel 

to monitor the roles 

and responsibility of 

each crew member 

 

 

 

83777.19 3,381,000 56.35 1.97 1.57 

Allocate resources for 

strategic planning 

 

100000 4,156,800 69.28 5.69 1.73 

Assign personnel to 

monitor workload 

distribution 

 

 

61727.56 4,178,400 69.64 2.34 1.32 

Non-operational use 

of cell 

phones/entertainment 

devices 

 

 

 

5848.04 3,574,800 59.58 2.00 1.32 

Training crew on how 

to react to rough 

weather situations 

 

 

36493.21 5,091,000 84.85 4.36 2.21 

 

The cost of implementing “training to improve knowledge and competence” to address 

the risk of “lack of situation awareness” is £90,287.15 as represented in Table 33. The 

£90,287.15 is the geometric mean of £46,000, £400,000 and £40,000 as estimated by 

three experts respectively. In the same manner, the cost of implementing other RCOs is 

found. In addition, the risk reduction of implementing "training to improve knowledge 

and competence” is found to be 89.72% in Table 33. The 89.72% is the geometric mean 
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of 100%, 90%, 90% and 80% as estimated by four experts respectively - the experts 

utilised the benefit rating scale presented in Table 32. In the same manner, the “risk 

reduction”, “Technical difficulty of implementing an RCO” and “duration of 

implementing an RCO” on other RCOs are found.  

Consequently, approximate values in Table 33 can be simplified and represented as 𝑟𝑖 ,𝑗, 

where 𝑖- the row number while 𝑗- the column number as shown in Table 34. 

Table 34: Decision-making evaluation 

RCO Cost of 

implementing 

RCO (£) 

Financial 

benefit of risk 

reduction (£) 

Risk 

reduction 

(%) 

Technical 

difficulty of 

implementing 

an RCO 

Duration of 

implementing 

an RCO 

Training to 

improve 

knowledge and 

competence 

 

 

r1,1 = 

90287.15 

 

 

r1,2 = 

5,383,200 

 

 

r1,3 = 89.72 

 

 

r1,4 = 3.57 

 

 

r1,5 = 2.63 

. . . . . . 

. . . . . . 

. . . . . . 

Training crew on 

how to react to 

rough weather 

situations 

 

 

r15,1 = 

36493.21 

 

 

r15,2 = 

5,091,000 

 

 

r15,3 = 84.85 

 

 

r15,4 = 4.36 

 

 

r15,5 = 2.21 

𝑋𝑖𝑗 = √𝛴𝑖=1
𝑚 𝑟𝑖𝑗

2 , 

 𝑖 = 1,2,… ,𝑚; 𝑗
= 1,2,… , 𝑛 

 

 

3301701.33 

 

 

15919203.12 

 

 

265.320052 

 

 

17.66429449 

 

 

16.70207772 

 

5.9.6.2  Construction of TOPSIS Normalised Decision Matrix 

Data in Table 34 is normalised employing Equation 5.2. This is carried out to adjust the 

data values measured on different scales such as percentage, currency, and etc., to a 

notionally common scale. Two criteria need to be normalised, namely cost and benefit. 

Concerning the cost criterion, all values obtained are in British Pound Sterling (£) 
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units/year.  In order to normalise the values in the cost category, Equation 5.2 is 

introduced. For example, the £90,287.15 cost of implementing “training to improve 

knowledge and competence” can be normalised by dividing £90,287.15 with the obtained 

value from 𝑋𝑖𝑗 = √𝛴𝑖=1
𝑚 𝑟𝑖𝑗

2  in the “cost of implementing an RCO” column, which is 

£3,301,701.33. 

In a similar way, the 89.72% risk reduction when “training to improve knowledge and 

competence” is implemented to reduce the risk of “lack of situation awareness”, can be 

normalised by dividing 89.72 with the obtained value from 𝑋𝑖𝑗 = √𝛴𝑖=1
𝑚 𝑟𝑖𝑗

2 in the “risk 

reduction” column, which is 265.320052. Other values are obtained in the same manner 

and represented in Table 35.  

Table 35: TOPSIS Normalised Decision Matrix 

RCO Cost of 

implementing 

RCO (£) 

Financial 

benefit of 

risk 

reduction 

(£) 

Risk 

reduction 

(%) 

Technical 

difficulty of 

implementing 

an RCO 

Duration of 

implementing 

an RCO 

Training to improve 

knowledge and 

competence 

0.0273 0.3382 0.3382 0.2021 0.1575 

Teaching English 

language to improve 

communication 

0.0097 0.2769 0.2769 0.2649 0.1036 

Provide quality foods 

and exercise facilities 

to improve the crew's 

health and wellbeing 

0.0833 0.2334 0.2334 0.1489 0.3862 

Use of durable and 

readable material for 

on-board information 

display 

0.0822 0.2350 0.2350 0.3317 0.2072 

Automating the 

operation of the vessel 
0.9907 0.2124 0.2124 0.4438 0.4592 

Providing physical 
barriers to restrict 

0.0101 0.2625 0.2625 0.3448 0.2730 
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RCO Cost of 

implementing 

RCO (£) 

Financial 

benefit of 

risk 

reduction 

(£) 

Risk 

reduction 

(%) 

Technical 

difficulty of 

implementing 

an RCO 

Duration of 

implementing 

an RCO 

unintended access to 

important controllers 

The design and 

installation of 
equipment should 

consider the user body 

size to avoid awkward 

posture 

0.0101 0.1952 0.1952 0.2802 0.5083 

Improve navigation 

and communication 

equipment 

0.0406 0.3176 0.3176 0.3334 0.3862 

Improved recruitment 

procedure 
0.0041 0.2689 0.2689 0.1715 0.1323 

Providing education in 

cultural awareness and 

cultural sensitivity 

0.0055 0.1976 0.1976 0.1195 0.1114 

Assigning personnel 

to monitor the roles 

and responsibility of 

each crew member 

0.0254 0.2124 0.2124 0.1115 0.0940 

Allocate resources for 

strategic planning 
0.0303 0.2611 0.2611 0.3221 0.1036 

Assign personnel to 

monitor workload 

distribution 

0.0187 0.2625 0.2625 0.1325 0.0790 

Non-operational use 

of cell 

phones/entertainment 

devices 

0.0018 0.2246 0.2246 0.1132 0.0790 

Training crew on how 
to react to rough 

weather situations 
0.0111 0.3198 0.3198 0.2468 0.1323 

 

Here in Table 35, the obtained values can be described as X1,1, X1,2, ..., X15,5. This 

numbering follows the order in Table 34, where for example, X1,1= 0.0273. 
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5.9.6.3  Construction of TOPSIS Weighted Normalised Decision Matrix 

Equation 5.3 is utilised to transform the normalised decision matrix to the weighted 

normalised decision matrix. Since weight is one of the variables in Equation 5.3, then, the 

values of risk reduction, cost of implementing an RCO, duration of implementing an 

RCO, Technical difficulty of implementing an RCO and the financial benefit from risk 

reduction needs to be incorporated in order to enable the development of weighted 

normalised decision matrix. The weights of the criteria are presented in the following 

order: 

WC1= 0.46 (risk reduction). 

WC2= 0.22 (cost of implementing a RCO). 

WC5= 0.16 (financial benefit of risk reduction). 

WC4= 0.10 (Technical difficulty of implementing an RCO). 

WC3= 0.07 (duration of implanting a RCO). 

The application of Equation 5.3 resulted in the development of the weighted normalised 

decision matrix in Table 36. 
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Table 36: TOPSIS Weighted Normalised Decision Matrix 

RCO Cost of 

implementing 

RCO (£) 

Financial 

benefit of 

risk 

reduction 

(£) 

Risk 

reduction 

(%) 

Technical 

difficulty of 

implementing 

an RCO 

Duration of 

implementing 

an RCO 

Training to improve 
knowledge and 

competence 
0.0060 0.0541 0.1556 0.0202 0.0110 

Teaching English 

language to improve 

communication 

0.0021 0.0443 0.1274 0.0265 0.0073 

Provide quality foods 

and exercise facilities 

to improve the crew's 

health and wellbeing 

0.0183 0.0373 0.1074 0.0149 0.0270 

Use of durable and 

readable material for 

on-board information 

display 

0.0181 0.0376 0.1081 0.0332 0.0145 

Automating the 

operation of the vessel 
0.2180 0.0340 0.0977 0.0444 0.0321 

Providing physical 

barriers to restrict 

unintended access to 

important controllers 

0.0022 0.0420 0.1208 0.0345 0.0191 

The design and 

installation of 

equipment should 

consider the user body 

size to avoid awkward 

posture 

0.0022 0.0312 0.0898 0.0280 0.0356 

Improve navigation 

and communication 

equipment 

0.0089 0.0508 0.1461 0.0333 0.0270 

Improved recruitment 

procedure 
0.0009 0.0430 0.1237 0.0172 0.0093 

Providing education in 

cultural awareness and 

cultural sensitivity 

0.0012 0.0316 0.0909 0.0120 0.0078 

Assigning personnel 

to monitor the roles 

and responsibility of 

each crew member 

0.0056 0.0340 0.0977 0.0112 0.0066 

Allocate resources for 

strategic planning 
0.0067 0.0418 0.1201 0.0322 0.0073 
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RCO Cost of 

implementing 

RCO (£) 

Financial 

benefit of 

risk 

reduction 

(£) 

Risk 

reduction 

(%) 

Technical 

difficulty of 

implementing 

an RCO 

Duration of 

implementing 

an RCO 

Assign personnel to 

monitor workload 

distribution 

0.0041 0.0420 0.1208 0.0133 0.0055 

Non-operational use 

of cell 

phones/entertainment 

devices 

0.0004 0.0359 0.1033 0.0113 0.0055 

Training crew on how 

to react to rough 

weather situations 

0.0024 0.0512 0.1471 0.0247 0.0093 

 

In Table 36, the 0.0060 value for “training to improve knowledge and competence” with 

respect to “cost of implementing an RCO” is found as a result of multiplying WC1 (i.e. 

0.46) with X1,1,  (i.e. 0.0273). In a similar way, other values of Vi,j are calculated and 

represented in Table 36. The values in Table 36 can be described as V1,1, V1,2, …, V15,5, 

this numbering follows the order described in Table 34. 

5.9.6.4  Determination of Positive Ideal Solution, PIS, 𝑉+ 

The value of V1,1, V1,2, V1,3, … and V15,5 with the introduction of Equations 5.4 and 5.5 

will be used to calculate the 𝑉+and 𝑉− respectively. Therefore, 𝑉+= { 𝑉1
+,

𝑉2
+,  𝑉3

+,  𝑉4
+,  𝑉5

+} ={0.0004, 0.0312, 0.1556,0.0444, 0.0356}. These five values of 𝑉+ 

are selected from each column of “cost of implementing an RCO”, “financial benefit of 

risk reduction”, “risk reduction”, “technical difficulty of implementing an RCO” and 

“duration of implementing an RCO” in Table 36. These values are selected in line with 

Equation 5.4, that is, the selection of minimum values in each column of the criteria 

categorised as "C" and maximum values in each column of criteria categorised as "B". 
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5.9.6.5  Determination of Negative Ideal Solution, PIS, 𝑉− 

For the repeated time, five value are selected from the normalised weighted matrix to 

calculate the  𝑉−. The 𝑉− = { 𝑉1
−,    𝑉2

−,  𝑉3
−,  𝑉4

−,  𝑉5
−}. Therefore, the 𝑉− =

{0.218, 0.0541,0.0898,0.0112, 0.055}. These five values of the 𝑉−are selected from the 

column of “cost of implementing an RCO", “financial benefit of risk reduction”, “risk 

reduction”, “technical difficulty of implementing an RCO” and the “duration of 

implementing an RCO” in Table 36 in agreement with Equation 5.5. The principle in 

Equation 5.5 highlights that the maximum values are to be selected from each criterion 

categorised as “C”, while minimum values are to be selected from each column of criteria 

in the “B” category. 

5.9.6.6 Determination of the Distance Separation Measure for the PIS,  𝐷𝑖
+

 

It is necessary to calculate the distance separation,  𝐷𝑖
+  to facilitate the measurement of 

all the alternatives with their PIS. Since the values of  𝑉+ and 𝑉− have been revealed, 

then,  𝐷𝑖
+

 can be calculated by applying Equation 5.6 with the calculated  𝑉+ values, and 

the data presented in Table 36. Here, the row for “training to improve knowledge and 

competence” is linked with 𝑉1,1,  𝑉1,2,  𝑉1,3,  𝑉1,4,  𝑉1,5 (0.0060, 0.0541, 0.1556, 0.0202 

and 0.0110) with their corresponding values of  𝑉1
+,  𝑉2

+
,  𝑉3

+
,  𝑉4

+
and  𝑉5

+
. Note that 

the 𝑉1,1 , 𝑉1,4 and 𝑉1,5 fall under the cost category while 𝑉1,2 and 𝑉1,3 fall under the benefit 

category. In view of this, values of  𝑉1,1,  𝑉1,2,  𝑉1,3,  𝑉1,4 and  𝑉1,5  and those related to 

 𝑉1
+,  𝑉2

+, 𝑉3
+

,  𝑉4
+

,  𝑉5
+

 will be utilised to calculate the  𝐷𝑖
−

 values as follows.  

In summary, Table 37 is presented to simplify the extraction of data in the calculation of 

 𝐷𝑖
+

 and 𝐷𝑖
−

.  
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Table 37: Different values of Vj
+ and Vj

- 

 𝑉1
+ 0.0004 

 𝑉2
+ 0.0541 

 𝑉3
+ 0.1556    

 𝑉4
+ 0.0112 

 𝑉5
+ 0.0055 

 𝑉1
− 0.218 

 𝑉2
− 0.0312 

 𝑉3
− 0.0898 

 𝑉4
−

 0.0444 

 𝑉5
− 0.0356 

 

Therefore,  𝐷𝑖
+

can be calculated using Equation 5.6 as follows: 

 𝐷1
+=√∑  (𝑉1𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉1,1 −  𝑉1
+)2 +  (𝑉1,2 −  𝑉2

+)2 +  (𝑉1,3 −  𝑉3
+)2 +  (𝑉1,4 −  𝑉4

+)2 +  (𝑉1,5 −  𝑉5
+)2 

= √ (0.006 −  0.0004)2 +  (0.0541 −  0.0541)2 +  (0.1556 −  0.1556)2 +  (0.0202 −  0.0112 )2 +  (0.0110 −  0.0055)2 

= 0.0119 

In a similar way,  𝐷2
+

to  𝐷15
+

 for the remaining fourteen RCOs are calculated. Please 

refer to Appendix 4-2. 

5.9.6.7  Determination of the Distance Separation Measure for the PIS,  𝐷𝑖
−

 

The distance separation measure for the NIS, 𝐷𝑖
− for the fifteen RCOs can be calculated 

using their respective  𝑉𝑖,𝑗 and 𝑉− values. Note that the values of  𝑉1
−,  𝑉2

− ,  𝑉3
−

,  𝑉4
−

, 

 𝑉5
− has been revealed in Table 36. However, Equation 5.7 can be introduced to calculate 

the fifteen RCOs distance separation for the NIS,  𝐷𝑖
−

. To commence the calculation for 
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the 𝐷𝑖
−

, the row of RCO for instance, termed “training to improve knowledge and 

competence”, with the values of  𝑉1,1,  𝑉1,2,  𝑉1,3,  𝑉1,4,  𝑉1,5 having 0.0060, 0.541, 0.1556, 

0.202 and 0.0110 values respectively in Table 36 need to be categorised as value for 

benefit or cost criteria. 𝑉1,1,  𝑉1,2 fall under the cost category while 𝑉1,3, 𝑉1,4, 𝑉1,5 fall 

under the benefit category. In view of this, values of  𝑉1,1,  𝑉1,2,  𝑉1,3,  𝑉1,4 and  𝑉1,5  and 

those related to  𝑉1
−,  𝑉2

− ,  𝑉3
−

,  𝑉4
−

,  𝑉5
−

 will be utilised to calculate the  𝐷𝑖
−

 values as 

follows: 

 𝐷1
−=√∑  (𝑉1𝑗 −  𝑉𝑗

−)
25

𝑗=1
=

√ (𝑉1,1 −  𝑉1
−)2 +  (𝑉1,2 −  𝑉2

−)2 +  (𝑉1,3 −  𝑉3
−)2 +  (𝑉1,4 −  𝑉4

−)2 +  (𝑉1,5 −  𝑉5
−)2 

= √ (0.006 −  0.218 )2 +  (0.0541 −  0.0312)2 +  (0.1556 −  0.0898)2 +  (0.0202 −  0.0444 )2 +  (0.0110 −  0.0356 )2 

= 0.2258 

In a similar way,  𝐷2
−

to  𝐷15
−

 for the remaining fourteen RCOs are calculated. Please 

refer to Appendix 4-3. 

5.9.6.8    Determination of the Relative Closeness to Ideal Solution,  𝑅𝐶𝑖
+

 

The determination of the relative closeness to Ideal Solution will enable the decision-

making process. In this section, the  𝑅𝐶𝑖
+ values of the fifteen RCOs will be utilised to 

represent the importance of each RCO, thereby offering a ranking mechanism for all the 

RCOs. The RCO with the highest  𝑅𝐶𝑖
+ value will be more important than the ones below 

it in the hierarchy. Equation 5.8 will be introduced to commence the ranking process. The 

calculated values of  𝐷𝑖
+

 and  𝐷𝑖
−

 are incorporated in Equation 5.8 to calculate their 

various relative closeness values thus: 

  𝑅𝐶1
+ = 

 𝐷1
−

 𝐷1
++  𝐷1

− = = 
0.2258

0.0119 + 0.2258
= 0.949937 
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In a similar way,  𝑅𝐶1
+ values for the remaining fourteen RCOs are calculated. Please 

refer to Appendix 4-4. 

In view of this, the prioritisation of the fifteen RCOs are presented in Table 38 as 

follows: 

Table 38: RCi
+ results and prioritisation of the fifteen RCOs 

Alternatives  𝐷𝑖
+

  𝐷𝑖
−

  𝑅𝐶𝑖
+

 Rank order 

Training to improve 

knowledge and 

competence 

 

 

0.0119 

 

 

0.2258 0.949937 1 

Teaching English 

language to improve 

communication 

 

 

0.0336 

 

 

0.2221 0.868596 3 

Provide quality foods 

and exercise 

facilities to improve 

crew’s health and 

wellbeing 

 

 

 

 

0.0583 

 

 

 

 

0.2029 0.776799 11 

Use of durable and 
readable material for 

on-board information 

display 

 
 

 

0.0584 

 
 

 

0.2023 0.775988 12 

Automating the 

operation of the 

vessel 

 

 

0.2276 

 

 

0.0091 0.038445 15 

Providing physical 

barriers to restrict 

unintended access to 

important controllers 

 

 

 

0.0457 

 

 

 

0.2191 0.827417 8 

The design and 

installation of 

equipment should 

consider the user 
body size to avoid 

awkward posture 

 

 

 

 
 

0.0679 

 

 

 

 
 

0.2164 0.761168 14 

Improve navigation 

and communication 

equipment 

 

 

0.0335 

 

 

0.2179 0.866746 4 

Improved 

recruitment 

procedure 

 

 

0.0345 

 

 

0.2233 0.866175 5 

Providing education 

in cultural awareness 

and cultural 

sensitivity 

 

 

 

0.0685 

 

 

 

0.2210 0.763385 13 

Assigning personnel 

to monitor roles and 

responsibility of each 

crew member 

 

 

 

0.0615 

 

 

 

0.2145 0.777174 10 
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Alternatives  𝐷𝑖
+

  𝐷𝑖
−

  𝑅𝐶𝑖
+

 Rank order 

Allocate resources 

for strategic planning 

 

0.0435 

 

0.2159 0.832305 7 

Assign personnel to 

monitor workload 

distribution 

 

 

0.0371 

 

 

0.2186 0.854908 6 

Non-operational use 

of cell 

phones/entertainment 

devices 

 

 

 

0.0554 

 

 

 

0.2206 0.799275 9 

Training crew on 

how to react to rough 

weather situations 

 

 

0.0168 

 

 

0.2264 0.930921 2 

 

5.9.7 An Ideal risk prevention and control strategy for the risk of “Lack of Situation 

Awareness” in AMSSO 

Based on the results shown in Table 38, the most suitable solutions in preventing and 

controlling the risk of “lack of situation awareness” in AMSSO are those related to 

improving human elements. The most suitable RCO is measured against cost, the amount 

of risk reduced, the technical difficulty of implementing an RCO, the number of lives and 

property that can be saved from implementing the RCO and the duration to implement 

the RCO.  

The most suitable RCO in tackling the lack of situation awareness in AMSSO when 

compared with other important RCOs is by investing in the training of crew members to 

improve knowledge and competence. The second choice on the RCO hierarchy will be 

the effective training of crew members on how to react to rough weather situations. The 

third choice on the RCO hierarchy will be the teaching of English language to improve 

communication. The fourth choice on the RCO hierarchy will be the improvement of 

navigation and communication equipment in the Arctic region and so on. 
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5.9.8 Model validation process 

Testing the logicality and reliability of the results delivered in the proposed model is done 

through sensitivity analysis. Testing is imperative, mainly because of the participation of 

subjective elements in the generated methodology (Yang et al., 2008a). Testing the 

sensitivity in the developed AHP-TOPSIS method offers a logical and reliable subjective 

judgment for the conclusions of RCOs prioritisation.  

In carrying out the sensitivity of the proposed model, the weight matched with one 

criterion is increased separately by 10, 20 and 30% while simultaneously decreasing the 

weights matched with other criteria by compensating the increment percentage on the 

increased criterion. These alterations are observed against the final ranking. It is observed 

that a slight increase in the value of distance separation measure for the PIS,  

 𝐷𝑖
+

 for an RCO, resulted in a decrease of the relative closeness to an ideal solution,  

for that particular RCO.  

The sensitivity of the fifteen RCOs has been analysed when the most important criterion 

“risk reduction” is increased separately by 10, 20 and 30% sequentially. The result 

achieved is presented in Figure 35. With such recursive increments, it is observed that 

some RCOs (such as R5 in Figure 36) go further away to the negative ideal solution. The 

negative value has no significance to the result since the sensitivity of the result is only 

meant to show how changes in the result can affect the AHP-TOPSIS RCOs. 
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Figure 35: Risk Reduction weight increments analysis 

5.9.9 Results and Discussion 

Sensitivity analysis is carried out to analyse the effect in the output data given a slight 

change in the most important criteria. It can be revealed from the sensitivity analysis that 

training of crew members to improve their competence and skills offers the most suitable 

solution in preventing and controlling the risk of “lack of situation awareness” in 

AMSSO. The analysis also further reveals that the “risk reduction” weight increment by 

10, 20 and 30% did not have much effect on the final RCOs hierarchy. The slight 

alteration on the 𝑅𝐶𝑖
+

of all RCOs can be observed visibly in Table 39: 
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Table 39: Risk-reduction weight increment influence on the fifteen RCOs 

Alternatives Original  𝑅𝐶𝑖
+ With a 10% 

increase 

With a 20% 

increase 

With a 30% 

increase 

Training to improve 

knowledge and 

competence  0.949937 0.849921 0.768921 0.678021 

Teaching English 

language to improve 
communication 0.868596 0.788496 0.709596 0.619596 

Provide quality foods and 

exercise facilities to 

improve the crew's health 

and wellbeing 

0.776799 0.696599 0.613599 0.522699 

Use of durable and 

readable material for on- 

board information display 0.775988 0.695588 0.613588 0.523288 

Automating the operation 

of the vessel 
0.038445 -0.042455 -0.121455 -0.212255 

Providing physical 

barriers to restrict 

unintended access to 

important controllers 0.827417 0.747307 0.660307 0.569407 

The design and 

installation of equipment 

should consider the user 

body size to avoid 

awkward posture 
0.761168 0.680868 0.599868 0.509168 

Improve navigation and 

communication 
equipment 0.866746 0.786246 0.706246 0.615446 

Improved recruitment 

procedure 
0.866175 0.785575 0.705575 0.615475 

Providing education in 

cultural awareness and 

cultural sensitivity 
0.763385 0.683485 0.602485 0.511685 

Assigning personnel to 

monitor the roles and 

responsibility of each 

crew member 0.777174 0.696874 0.616274 0.526274 

Allocate resources for 

strategic planning 0.832305 0.751805 0.670905 0.580105 

Assign personnel to 

monitor workload 

distribution 0.854908 0.773908 0.693408 0.602608 

Non-operational use of 

cell phones/entertainment 

devices 0.799275 0.719165 0.638865 0.547865 
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Alternatives Original  𝑅𝐶𝑖
+ With a 10% 

increase 

With a 20% 

increase 

With a 30% 

increase 

Training crew on how to 

react to rough weather 

situations 0.930921 0.850621 0.768121 0.677921 

 

5.10 Conclusion 

Developing a highly efficient risk-based decision strategy in AMSSO risk prevention and 

control depends on the type of technique(s) selected, which would enable the precise 

assessment of risk priority and successfully take into account the various RCOs, 

especially in the absence of precise Cost-Benefit Assessment.  

It is revealed in this chapter that, “training of crew members still remains a major priority 

in tacking risks. Training of staff to improve competence has been emphasised over the 

years to reduce marine accidents. For example, Recommendation 39 of The 1960 

International Conference on the Safety of Life at Sea, called upon all contracting parties 

to 'take all practicable steps to ensure that the education and training of seafarers was kept 

satisfactorily up to date' (Lamson, 1987). It is therefore necessary to identify new training 

techniques that will give crew members/trainees the capacity to assess a situation 

accurately and quickly, and to carry out satisfactory actions. 

In a bid to achieve a highly efficient risk-based decision strategy, this chapter presented 

a joint modelling and strategic decision-making technique for the selection of the most 

suitable AMSSO risk prevention and control. The joint AHP-TOPSIS approach presented 

in this chapter has demonstrated its ability to tackle the selection of fifteen RCOs under 

various hybrid criteria and alternatives. The application of the AHP-TOPSIS approach is 

new in the selected study, and it can be applied to situations where qualitative and 

quantitative data have to be synthesised both in normal and extraordinary situations. 



224 
 

The AHP-TOPSIS mechanism formulates a hybrid approach to investigate the weight of 

all identified criteria including the financial benefit from risk reduction, which was 

obtained by multiplying the risk reduction from expert data by the cost of averting a 

fatality. These investigated weights provided a ranking order for the identified RCOs. 

This new approach offers the most suitable solutions and the most preferred risk 

prevention and control strategy that is capable of tackling both risk reduction and 

operational efficiency in AMSSO. The proposed hybrid approach can be suited to tackle 

other risk factors in the Ship-Ice collision model and in other risk factors in AMSSO. 
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Chapter 6– Discussion  

Overview  

This chapter highlights the theoretical framework and models that have been developed 

to manage the dynamic risks in AMSSO, and thus offers a logical relationship connecting 

the developed framework with the models. The developed framework and models provide 

effective risk measurement and management strategies that can help Arctic marine 

seismic survey companies, including safety engineers, risk and Quality Assurance 

Managers, and other stakeholders in the oil and gas sector, to reduce risks in tapping the 

enormous natural resources in the Arctic region. However, there are other risk concerns 

in tapping the enormous natural resources in the Arctic that require further research, 

and the most significant ones are outlined in this chapter. 

6.1 Research Contribution  

AMSSO project is a high investment mission, with operational and financial risks having 

a close link in determining the safety and efficiency of a prospect project. Mitigating these 

risks is an important goal in ensuring the continued E&P of oil and gas and other natural 

resources in the Arctic region. Chapter 1 clearly reveals the copious amount of 

hydrocarbon resources in terms of oil and natural gas present in the Arctic, and as a result 

attracting mariners, politicians, and prospectors to all turn towards the North Pole. 

However, the pressure on the Arctic oil and gas resources only exacerbates the risks 

operating in such a poorly understood and underdeveloped region of the earth.  

The continued over-reliance on fossil fuels and under-reliance on renewable energy 

resources prompted the dire need to establish a sensible risk-based methodology to 

prevent and control the known and envisaged risks in AMSSO. It is fair to mention the 

recent efforts made by the IMO and the Polar Code to ensure safety in Arctic shipping 
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has been effective. However, no mention is made of the use of seismic survey vessels in 

the Arctic. A clear distinction arises between the use of seismic survey vessels and other 

vessels in the Arctic seas especially in the peculiar grid navigation of a seismic survey 

vessel. Hence, the lack of a suitable risk management structure to prevent and control the 

peculiar and dynamic risks of AMSSO is discussed extensively in Chapter 2. More details 

on some notable systematic structures to manage risks proactively such as the use of FSA 

and POLARIS and to deal with the intricacies of risk are detailed in Chapter 2. 

A practical application of an adopted risk management framework, that is advanced and 

thorough in nature, to guarantee safe and efficient operation in AMSSO have been 

undertaken in Chapters 3, 4 and 5, through the development of modern novel risk-based 

models. The structure of the robust risk management framework carried out in this 

research has been executed in a way that it can be suited for a broader application in other 

engineering fields and management systems. Following the comprehensive risk 

management structure carried out in this research, decision-makers can easily prioritise 

risks or unwanted events in order to evaluate, predict and/or improve their system and/or 

reliability performance. 

The advanced risk management framework described in Chapters 3, 4 and 5 begins by 

first describing the general scenario of risks in Arctic shipping. Although the 

identification and the description of risks/accidents are common to AMSSO, it was 

revealed from expert opinion and from the literature review in Chapter 2 that the 

identified risks associated with different categories of ships and activities vary 

tremendously. Hence, further investigation presented a comprehensive list of known and 

envisaged risk factors or otherwise termed “hazard events” typical to AMSSO. The 

description and identification of hazard events brought to bear a more specific goal of the 
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investigation, termed “Ship-Ice Collision”. The Ship-Ice Collision constitutes largely to 

all significant issues related to all activities carried out in the Arctic waters as revealed 

from experts' judgement and from an extensive literature review. The description and 

identification of risk and the goal of investigation represent the first phase of the risk 

analysis section in Chapter 3.  

The second phase of Chapter 3 involved the rationalisation of the DoB distribution in 

FMEA risk analysis. With the lack of properly documented historic accident data, it is 

hard to obtain objective information about a failure or hazard event. To overcome the 

shortage of objective data, an expert approximation is often used. Experts’ professional 

knowledge, first-hand experience and, sometimes, instinct can offer the required data. 

The introduction of rationalisation of the DoB distribution with an expert approximation 

was to overcome the complexity and bad interpretability of the approximated results in 

FMEA risk analysis.  

This proportion method describes the relationship between risk parameters (i.e., L, C, P, 

and I) in the antecedent (IF) part and risk levels in the consequent (THEN) part. In 

conjunction with the DoBs, a set of rules were established having fuzzy logic functions, 

this combination also referred to as “Fuzzy rule-base (FRB)” was developed in order to 

address uncertainty in data in order to arrive at the most critical hazard event(s). The 

introduction of BN in the risk-based FRB using Hugin Lite 8.0 can provide a platform for 

decision-makers to achieve a safe and efficient AMSSO by evaluating each hazard event 

locally, and thus, providing a reliable ranking order for hazard events. Details of the 

application of FRBN with a real-life case can be referred to in Chapter 3. 
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The final phase of the risk analysis section (see Chapter 4) which is all encompassing the 

risk analysis of the whole AMSSO system, involved a case study and development of 

AHP and ER using IDS software. The final phase of this risk analysis is introduced to 

ascertain the RIF of each hazard event to the global Ship-Ice Collision model.  

The latter part of this section presented a new sensitivity analysis derived from the AHP-

ER risk-based model, which provided a new global hazard event prioritisation, whilst 

taking into account all the hazard events’ specific risk weights locally and their RI 

globally. More details of the AHP-ER mechanism can be seen in Chapter 4.  

The safety engineer or stakeholder can rely on the joint risk analysis method as it 

addresses both event dependability and uncertainty in data. This joint methodology can 

help decision- makers to evaluate risks and to improve the safety and efficiency of the 

operational performance in AMSSO. The results obtained from this joint methodology 

are reliable and transparent, and hence risk reduction measures can be applied confidently 

to areas with high-risk values measured against the developed FRBN benchmark risk (see 

Chapter 3). 

The description of the various risk reduction measures with their corresponding criteria 

represents the final phase (see Chapter 5) of the advanced risk management framework 

carried out in this research. The risk reduction measures also referred to as RCO, and their 

corresponding criteria were determined through literature review and through expert 

knowledge. The method to guarantee that an informed decision has been taken to prevent 

and control the high risk in AMSSO, involved the introduction of AHP and TOPSIS. The 

most suitable RCO to prevent an AMSSO accident will be an alternative that is  

1. Practical,  
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2.  Effective and yet 

3. Economically sound.  

The TOPSIS methodology offered a mechanism to find a non-monotonic utility output 

that answers the above three requirements. The utility output must be the one that 

minimises cost and maximises benefit (benefit such as risk prevention).  

However, because of the inability of the TOPSIS methodology to tackle sufficiently the 

uncertainty of the weights/importance of criteria and imprecision inherent in the process 

of representing the perceptions of decision-makers, AHP is introduced to overcome this 

weakness of TOPSIS. Therefore, the utility output from the AHP-TOPSIS hybrid 

technique is transparent, reliable and has the full potential of tackling data uncertainty in 

risk control and prevention strategies. More details on the strategic process of selecting 

not just any RCO but those relevant to Ship-Ice Collision, and the validation process of 

the hybrid AHP-TOPSIS method are presented in Chapter 5.   

Although this is the first time that AHP-TOPSIS will be utilised to select the most suitable 

RCO to control and prevent the high risks in AMSSO. A prominent scientific novelty in 

this research also lies in the fact that FRBN, with AHP-ER, have not been used in the 

related field as well. To this end, this research contributes hugely to both the risk analysis 

literature, and the technical treatment of risks and uncertainty in AMSSO and in Arctic 

shipping in general.  

The new FRBN, with the AHP-ER have been developed in sequential order with an in-

depth description and validation. These new models provide an integrated technique to 

prioritise risk and increase the reliability of AMSSO. The sequential order of arrangement 

of the proposed models is shown in the flow chart in Figure 37. 
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Figure 36: Overview of presented work 
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6.2  Research Limitations 

This research mainly focussed on reducing and managing the risks in operation of an 

AMSSO. Although the scope of this research also extended to the management of the 

financial risks in AMSSO, other aspects of AMSSO such as the political, environmental 

and socio-economic impacts of AMSSO were not included in this research. In addition, 

the risk analysis carried out on Ship-Ice Collision in AMSSO using a new set of a hybrid 

tool revealed a list of significant hazard events. Further investigation on reducing the 

identified significant risks only focussed on the most critical risk on the list – there was 

no extension of investigation on the causes and effects of other hazard events. These 

constricted investigations only point to the fact that a full-scale investigation on 

preventing and managing other aspects of AMSSO concerns would be too voluminous to 

execute.  

The FMEA technique with fuzzy logic referred to as the FRBN methodology, has 

limitations in the risk analysis of complex systems such as AMSSO. The main limitation 

points to the fact that the fuzzy reasoning approaches lack the ability to conduct inference 

inversely, meaning it is only a one-way technique. In other words, when a model is 

provided with a set of inputs, the IF-THEN only predict the output and not the THEN-IF 

backward route. In addition, the FRBN mechanism requires too much information, in the 

form of prior probabilities. However, this can be time-consuming and difficult to arrive 

at a complex system with multiple variables.  

Lastly, the weight distribution of the risk parameters (i.e., L, C, P, and I) have been 

assumed to be equal in the risk analysis section. However, in a practical sense, C might 

be greater than L or in any other proportion.  
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In conclusion, the major difficulty in choosing experts for their recognizable experience 

in the present research points to the fact that AMSSO is a new hot topic and hence, only 

a handful of experts filled and returned the questionnaires.  

6.3 Suggestions for Future Research 

Further examinations will consider a practical weight distribution for the risk parameters 

using any reliable technique such as AHP before the FRBN risk analysis can be carried 

out. Other suggested areas for future research are described as follows. 

The dependency model for the Ship-Ice collision in Chapter 3 is presently set in a 

hierarchical tree also referred to as risk dendrogram. This might not be exact in the real 

world. The current topology compels each hazard event to have one, and only one parent 

attribute. With the present FRBN demonstrated in Chapter 3, an input attribute is only an 

input to one output but it is theoretically possible for an input attribute to contribute to 

more than one output attribute, by transforming the linear layout into a belief network. 

Nevertheless, further research will look into extending the linear tree to a network if 

practically possible. 

With the current global warming trend, it is envisaged that the Arctic Sea will become 

more accessible; hence, more operation, and traffic will be more evident in the near future. 

More activities in the Arctic means more experience and lessons-learnt. Hence, there 

might be the hope of including more experts in future work; this suggestion will help to 

reduce the thoughts of bias if present in the current research subjective judgements. 

This research only analysed one of the most critical risk factors in AMSSO namely “lack 

of situational awareness”. It appears beneficial to take into consideration other risk factors 

in AMSSO, and include other important threats influencing oil and gas E&P in the Arctic 

seas. Preventing and controlling threats such as policy implication, political, socio–
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economic, environmental, and managerial concerns and threats to marine lives are 

suggested for further research. 

However, the proposed risk management framework and models in this research have the 

ability to expedite the risk analysis of a system from the design stage to the process 

(operation) stage. The framework and models will need to be suitably fitted to study other 

new and trendy topics in and outside the maritime industry to provide practical help on 

the steps taken to implement an action plan for best practice. Thus, enhancing the risk 

management efficiency of the whole system. 
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Chapter 7– Conclusion 
 

The pressure on the Arctic oil and gas resources, inevitably, attract human safety issues. 

Even though the operational safety and efficiency of exploring natural oil and gas in this 

region have been dealt with in previous chapters, it is fair to mention that the political, 

environmental and socio-economic impacts of Arctic resource exploration activity are as 

worrisome as the former. 

The operational safety and efficiency of AMSSO as carried out in this research depended 

on a set of a thorough risk management strategy, taking into account the lack of historical 

accident/failure data, shortage of primary observations, hazard data uncertainty and 

uncertainty inherent in the AMSSO risk diagnostic models. The robust risk management 

strategy as utilised in this research has been achieved through an integration of a modern 

risk-based methodology and a set of MCDM techniques.  

It is, therefore, appropriate to recap on the previous chapters in hierarchical order to 

ensure that the aims and objectives of this research have been realised, thus revealing the 

purpose behind every technique chosen in fulfilling the aim and objectives of this 

research.  

The aim and objective of this research can be summarised thus: 

1. Review the complex activities in the AMSSO to identify all critical hazard events 

including human factors influencing risks to AMSSOs. 

2. Review the risk assessment and decision-making methods, that are capable of 

dealing with uncertainty and incompleteness of risk data both qualitatively and 

quantitatively, which have extensively been developed and used in the maritime 

domain. 
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3. Develop a bespoke advanced risk analysis model to support the proposed research 

objective. 

4. Apply a bespoke technique to allocate scarce resources more practically and cost-

effectively. 

5. Analyse data to validate the risk management framework and techniques both for 

risk analysis and risk prevention via a trial application of the proposed framework 

and models. 

6. Validate the risk outcome as well as the risk analysis and the decision-making 

models via sensitivity tests and logicalities. 

Chapter 2 reviews the complex activities in the AMSSO as well as the statistical accident 

data from high-quality reference materials and publications. Several risk factors including 

those originating from the environment, human, technical, management and political 

factors were identified in Chapter 2. Also revealed in Chapter 2, are the intolerable risks 

of AMSSO. Besides, reports and statistics from 2009 to 2018 show over 486 cases, 

including 15 reported total vessels lost within the Arctic Circle. 

It is revealed in Chapter 2 that integrating thinking offers one of the most reliable 

solutions to tackle some of the drawbacks of conventional risk analysis methodologies, 

and in the decision- making of the best allocation of scarce resources to prevent and 

reduce risks.  

In Chapters 3 and 4, novel hybrid risk-based methodologies are presented to solve the 

main issues with the risk analysis of a complex system. In Chapter 5, a robust ready-to-

use hybrid technique is offered to sensibly allocate resources for risk prevention and 

control.  
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An FRBN– a Bayesian Belief Network with fuzzy logic in FMEA methodology in 

Chapter 3–, has demonstrated the efficacy of the novel hybrid methodology in 1) treating 

failure data uncertainties, 2) permitting the dependability of hazard events and 3) taking 

into account multiple risk parameters. This last can take into account, the dynamic nature 

of the hazard events in the AMSSO.  

The AHP-ER methodology, used in Chapter 4 to measure the global safety performance 

of AMSSO, agreed largely with the accident reports and statistics from Chapter 2, as 

AMSSO safety level is seen far above the ALARP region of the developed FRBN 

benchmark risk in Chapter 3. 

AHP-TOPSIS methodology utilised in Chapter 5, has proved its efficacy in selecting the 

most suitable RCO in the presence of several criteria, in reducing the critical risks in 

AMSSO to a tolerable limit. The most suitable RCO with their matched criteria in the 

present study agrees– to a great extent–, with other similar studies carried out in similar 

fields. 

Several approaches were reviewed to validate the knowledge-based risk analysis and 

control techniques; however, common sense and sensitivity analysis were a preferred 

option, since subjective data were mostly used in the risk management of the AMSSO 

system.  

In conclusion, the risk management framework presented in this research can assist safety 

engineers to measure their safety performance and to ensure that important steps are not 

overlooked in AMSSO risk management projects. 

The combination of more than one risk-based methodologies as used in this research, 

offered a more realistic approach to describe input hazard data and facilitated an easy 
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update of the risk analysis, and real-time safety evaluation of AMSSO. This combination 

not only offers a means to tackle major risk analysis concerns (such as dynamic event risk 

analysis, hazard data uncertainties, and hazard event dependencies) but helped to dilute 

the possibility of misjudgement in the risk data and offered a more thorough strategy to 

assess and control the risks in AMSSO. 

Since it was necessary to obtain a suitable balance among benefits, costs, and resources 

for risk reduction and prevention, it became inevitable to apply a hybrid MCDM 

methodology, capable of offering a non-monotonic utility output. AHP-TOPSIS hybrid 

methodology was utilised to offer a non-monotonic utility output, having a maximum 

utility located somewhere in the middle of the RCOs’ range. This consequently 

guaranteed a cost effective RCO to reduce and prevent the critical risks in AMSSO. 

Roughly, 600 websites and PDFs results were found in the course of this study. Criteria 

for the AMSSO risk-management topic search via an advanced Google search on the 8th 

of January 2019 included: 

 all these words: accident analysis risk management of Arctic operation 

 this exact word or phrase: "Arctic seismic exploration" 

 any of these words: Arctic geo-data acquisition OR Arctic oil and gas exploration. 

However, most of the results highlighted Arctic navigation, Arctic shipping and 

operations, and Arctic drilling, but none dedicated to AMSSO risk management. 

Therefore, the scope of the work presented has not only been drawn from Arctic oil and 

gas explorations but also, in studies related to other complex systems, including marine 

and nuclear domains. 
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Abstract: 

Arctic marine accidents are important failure events, which significantly affect Arctic 

navigation and Arctic oil and gas exploration. A review of accident statistics within the 

Arctic Circle from 2009 to 2018 reveals 486 accidents/incidents and 15 total losses of 

vessels over 100GT. The consequences and magnitude of these accidents can be 

catastrophic for Arctic Marine Seismic Survey Operation (AMSSO), society, and the 

environment. This highlights the significance of an appropriate risk management 

framework for analysing and preventing the associated risks. Through an extensive 

literature review on various formal-risk analysis methodologies, it can be inferred that 

integrating thinking offers one of the most reliable approaches to understand, tackle and 

mitigate the high risks in a complex system such as AMSSO. This concept offers a viable 

option to close the gap between theory and practical risk management. A structured 

methodological framework– FSA methodology–, issued by the International Maritime 

Organization (IMO) is adopted in this paper to reduce and prevent the possible 

catastrophic accidents in AMSSO as an economically viable strategy. It is worth 

mentioning that the literature herein is only intended to provide a framework for the risk 

management of AMSSO. 

Keywords: Arctic Marine Seismic Survey Operation, Risk modelling, Decision-making, 

Formal Safety Assessment, Risk management 

 

 

  



260 
 

APPENDICES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



261 
 

Appendix 1-1: FRB with Belief Structures for Chapter 3 
 

Rules Four risk parameters in the IF portion DoB in the THEN portion 

No (L) (C) (P) (I) V.Low 

(R1) 

Low 

(R2) 

Medium 

(R3) 

High 

(R4) 

1 V.Low 

(L1) 

V.Low (C1) V.Low 

(P1) 

V.Low (I1) 1 0 0 0 

2 V.Low 

(L1) 

V.Low (C1) V.Low 

(P1) 

Low (I2) 0.75 0.25 0 0 

3 V.Low 

(L1) 

V.Low (C1) V.Low 

(P1) 

Medium 

(I3) 

0.75 0 0.25 0 

4 V.Low 

(L1) 

V.Low( C1) V.Low 

(P1) 

High (I4) 0.75 0 0 0.25 

5 V.Low 

(L1) 

Low (C2) V.Low 

(P1) 

V.Low (I1) 0.75 0.25 0 0 

6 V.Low 

(L1) 

Low (C2) V.Low 

(P1) 

Low (I2) 0.5 0.5 0 0 

7 V.Low 

(L1) 

Low (C2) V.Low 

(P1) 

Medium 

(I3) 

0.5 0.25 0.25 0 

8 V.Low 

(L1) 

Low (C2) V.Low 

(P1) 

High (I4) 0.5 0.25 0 0.25 

9 V.Low 

(L1) 

Medium 

(C3) 

V.Low 

(P1) 

V.Low (I2) 

(I1) 

0.75 0 0.25 0 

10 V.Low 

(L1) 

Medium 

(C3) 

V.Low 

(P1) 

Low (I2) 0.5 0.25 0.25 0 

11 V.Low 

(L1) 

Medium 

(C3) 

V.Low 

(P1) 

Medium 

(I3) 

0.5 0 0.5 0 

12 V.Low 

(L1) 

Medium 

(C3) 

V.Low 

(P1) 

High (I4) 0.5 0 0.25 0.25 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

13 V.Low 

(L1) 

High (C4) V.Low 

(P1) 

V.Low (I1) 0.75 0 0 0.25 

14 V.Low 

(L1) 

High (C4) V.Low 

(P1) 

Low (I2) 0.5 0.25 0 0.25 

15 V.Low 

(L1) 

High (C4) V.Low 

(P1) 

Medium 

(I3) 

0.5 0 0.25 0.25 

16 V.Low 

(L1) 

High (C4) V.Low 

(P1) 

High (I4) 0.5 0 0 0.5 

17 V.Low 

(L1) 

V.Low (C1) Low (P2) V.Low (I1) 0.75 0.25 0 0 

18 V.Low 

(L1) 

V.Low (C1) Low (P2) Low (I2) 0.5 0.5 0 0 

19 V.Low 

(L1) 

V.Low (C1) Low (P2) Medium 

(I3) 

0.5 0.25 0.25 0 

20 V.Low 

(L1) 

V.Low (C1) Low (P2) High (I4) 0.5 0.25 0 0.25 

21 V.Low 

(L1) 

Low (C2) Low (P2) V.Low (I1) 0.5 0.5 0 0 

22 V.Low 

(L1) 

Low (C2) Low (P2) Low (I2) 0.25 0.75 0 0 

23 V.Low 

(L1) 

Low (C2) Low (P2) Medium 

(I3) 

0.25 0.5 0.25 0 

24 V.Low 

(L1) 

Low (C2) Low (P2) High (I4) 0.25 0.5 0 0.25 

25 V.Low 

(L1) 

Medium 

(C3) 

Low (P2) V.Low (I1) 0.5 0.25 0.25 0 

26 V.Low 

(L1) 

Medium 

(C3) 

Low (P2) Low (I2) 0.25 0.5 0.25 0 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

27 V.Low 

(L1) 

Medium 

(C3) 

Low (P2) Medium 

(I3) 

0.25 0.25 0.5 0 

28 V.Low 

(L1) 

Medium 

(C3) 

Low (P2) High (I4) 0.25 0.25 0.25 0.25 

29 V.Low 

(L1) 

High (C4) Medium 

(P3) 

V.Low (I1) 0.5 0 0.25 0.25 

30 V.Low 

(L1) 

High (C4) Medium 

(P3) 

Low (I2) 0.25 0.25 0.25 0.25 

31 V.Low 

(L1) 

High (C4) Medium 

(P3) 

Medium 

(I3) 

0.25 0 0.5 0.25 

32 V.Low 

(L1) 

High (C4) Medium 

(P3) 

High (I4) 0.25 0 0.25 0.5 

33 V.Low 

(L1) 

V.Low (C1) Medium 

(P3) 

V.Low (I1) 0.75 0 0.25 0 

34 V.Low 

(L1) 

V.Low (C1) Medium 

(P3) 

Low (I2) 0.5 0.25 0.25 0 

35 V.Low 

(L1) 

V.Low (C1) Medium 

(P3) 

Medium 

(I3) 

0.5 0 0.5 0 

36 V.Low 

(L1) 

V.Low (C1) Medium 

(P3) 

High (I4) 0.5 0 0.25 0.25 

37 V.Low 

(L1) 

Low (C2) Medium 

(P3) 

V.Low (I1) 0.5 0.25 0.25 0 

38 V.Low 

(L1) 

Low (C2) Medium 

(P3) 

Low (I2) 0.25 0.5 0.25 0 

39 V.Low 

(L1) 

Low (C2) Medium 

(P3) 

Medium 

(I3) 

0.25 0.25 0.5 0 

40 V.Low 

(L1) 

Low (C2) Medium 

(P3) 

High (I4) 0.25 0.25 0.25 0.25 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

41 V.Low 

(L1) 

Medium 

(C3) 

Medium 

(P3) 

V.Low (I1) 0.5 0 0.5 0 

42 V.Low 

(L1) 

Medium 

(C3) 

Medium 

(P3) 

Low (I2) 0.25 0.25 0.5 0 

43 V.Low 

(L1) 

Medium 

(C3) 

Medium 

(P3) 

Medium 

(I3) 

0.25 0 0.75 0 

44 V.Low 

(L1) 

Medium 

(C3) 

Medium 

(P3) 

High (I4) 0.25 0 0.5 0.25 

45 V.Low 

(L1) 

High (C4) High (P4) V.Low (I1) 0.5 0 0 0.5 

46 V.Low 

(L1) 

High (C4) High (P4) Low (I2) 0.25 0.25 0 0.5 

47 V.Low 

(L1) 

High (C4) High (P4) Medium 

(I3) 

0.25 0 0.25 0.5 

48 V.Low 

(L1) 

High (C4) High (P4) High (I4) 0.25 0 0 0.75 

49 V.Low 

(L1) 

V.Low (C1) High (P4) V.Low (I1) 0.75 0 0 0.25 

50 V.Low 

(L1) 

V.Low (C1) High (P4) Low (I2) 0.5 0.25 0 0.25 

51 V.Low 

(L1) 

V.Low (C1) High (P4) Medium 

(I3) 

0.5 0 0.25 0.25 

52 V.Low 

(L1) 

V.Low (C1) High (P4) High (I4) 0.5 0 0 0.5 

53 V.Low 

(L1) 

Low (C2) High (P4) V.Low (I1) 0.5 0.25 0 0.25 

54 V.Low 

(L1) 

Low (C2) High (P4) Low (I2) 0.25 0.5 0 0.25 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

55 V.Low 

(L1) 

Low (C2) High (P4) Medium 

(I3) 

0.25 0.25 0.25 0.25 

56 V.Low 

(L1) 

Low (C2) High (P4) High (I4) 0.25 0.25 0 0.5 

57 V.Low 

(L1) 

Medium 

(C3) 

High (P4) V.Low (I1) 0.5 0 0.25 0.25 

58 V.Low 

(L1) 

Medium 

(C3) 

High (P4) Low (I2) 0.25 0.25 0.25 0.25 

59 V.Low 

(L1) 

Medium 

(C3) 

High (P4) Medium 

(I3) 

0.25 0 0.5 0.25 

60 V.Low 

(L1) 

Medium 

(C3) 

High (P4) High (I4) 0.25 0 0.25 0.5 

61 V.Low 

(L1) 

High (C4) V.Low 

(P1) 

V.Low (I1) 0.75 0 0 0.25 

62 V.Low 

(L1) 

High (C4) V.Low 

(P1) 

Low (I2) 0.5 0.25 0 0.25 

63 V.Low 

(L1) 

High (C4) V.Low 

(P1) 

Medium 

(I3) 

0.5 0 0.25 0.25 

64 V.Low 

(L1) 

High (C4) V.Low 

(P1) 

High (I4) 0.5 0 0 0.5 

65 Low (L2) V.Low (C1) V.Low 

(P1) 

V.Low (I1) 

(C1) 

0.75 0.25 0 0 

66 Low (L2) V.Low (C1) V.Low 

(P1) 

Low (I2) 0.5 0.5 0 0 

67 Low (L2) V.Low (C1) V.Low 

(P1) 

Medium 

(I3) 

0.5 0.25 0.25 0 

68 Low (L2) V.Low (C1) V.Low 

(P1) 

High (I4) 0.5 0.25 0 0.25 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

69 Low (L2) Low (C2) V.Low 

(P1) 

V.Low (I1) 

(C1) 

0.5 0.5 0 0 

70 Low (L2) Low (C2) V.Low 

(P1) 

Low (I2) 0.25 0.75 0 0 

71 Low (L2) Low (C2) V.Low 

(P1) 

Medium 

(I3) 

0.25 0.5 0.25 0 

72 Low (L2) Low (C2) V.Low 

(P1) 

High (I4) 0.25 0.5 0 0.25 

73 Low (L2) Medium 

(C3) 

V.Low 

(P1) 

V.Low (I1) 

(C1) 

0.5 0.25 0.25 0 

74 Low (L2) Medium 

(C3) 

V.Low 

(P1) 

Low (I2) 0.25 0.5 0.25 0 

75 Low (L2) Medium 

(C3) 

V.Low 

(P1) 

Medium 

(I3) 

0.25 0.25 0.5 0 

76 Low (L2) Medium 

(C3) 

V.Low 

(P1) 

High (I4) 0.25 0.25 0.25 0.25 

77 Low (L2) High (C4) Low (P2) V.Low (I1)  0.25 0.5 0 0.25 

78 Low (L2) High (C4) Low (P2) Low (I2) 0 0.75 0 0.25 

79 Low (L2) High (C4) Low (P2) Medium 

(I3) 

0 0.5 0.25 0.25 

80 Low (L2) High (C4) Low (P2) High (I4) 0 0.5 0 0.5 

81 Low (L2) V.Low (C1) Low (P2) V.Low (I1)  0.5 0.5 0 0 

82 Low (L2) V.Low (C1) Low (P2) Low (I2) 0.25 0.75 0 0 

83 Low (L2) V.Low (C1) Low (P2) Medium 

(I3) 

0.25 0.5 0.25 0 

84 Low (L2) V.Low (C1) Low (P2) High (I4) 0.25 0.5 0 0.25 

85 Low (L2) Low (C2) Low (P2) V.Low (I1)  0.25 0.75 0 0 

86 Low (L2) Low (C2) Low (P2) Low (I2) 0 1 0 0 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

87 Low (L2) Low (C2) Low (P2) Medium 

(I3) 

0 0.75 0.25 0 

88 Low (L2) Low (C2) Low (P2) High (I4) 0 0.75 0 0.25 

89 Low (L2) Medium 

(C3) 

Low (P2) V.Low (I1)  0.25 0.5 0.25 0 

90 Low (L2) Medium 

(C3) 

Low (P2) Low (I2) 0 0.75 0.25 0 

91 Low (L2) Medium 

(C3) 

Low (P2) Medium 

(I3) 

0 0.5 0.5 0 

92 Low (L2) Medium 

(C3) 

Low (P2) High (I4) 0 0.5 0.25 0.25 

93 Low (L2) High (C4) Medium 

(P3) 

V.Low (I1)  0.25 0.25 0.25 0.25 

94 Low (L2) High (C4) Medium 

(P3) 

Low (I2) 0 0.5 0.25 0.25 

95 Low (L2) High (C4) Medium 

(P3) 

Medium 

(I3) 

0 0.25 0.5 0.25 

96 Low (L2) High (C4) Medium 

(P3) 

High (I4) 0 0.25 0.25 0.5 

97 Low (L2) V.Low (C1) Medium 

(P3) 

V.Low (I1)  0.5 0.25 0.25 0 

98 Low (L2) V.Low (C1) Medium 

(P3) 

Low (I2) 0.25 0.5 0.25 0 

99 Low (L2) V.Low (C1) Medium 

(P3) 

Medium 

(I3) 

0.25 0.25 0.5 0 

100 Low (L2) V.Low (C1) Medium 

(P3) 

High (I4) 0.25 0.25 0.25 0.25 

101 Low (L2) Low (C2) Medium 

(P3) 

V.Low (I1)  0.25 0.5 0.25 0 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

102 Low (L2) Low (C2) Medium 

(P3) 

Low (I2) 0 0.75 0.25 0 

103 Low (L2) Low (C2) Medium 

(P3) 

Medium 

(I3) 

0 0.5 0.5 0 

104 Low (L2) Low (C2) Medium 

(P3) 

High (I4) 0 0.5 0.25 0.25 

105 Low (L2) Medium 

(C3) 

Medium 

(P3) 

V.Low (I1)  0.25 0.25 0.5 0 

106 Low (L2) Medium 

(C3) 

Medium 

(P3) 

Low (I2) 0 0.5 0.5 0 

107 Low (L2) Medium 

(C3) 

Medium 

(P3) 

Medium 

(I3) 

0 0.25 0.75 0 

108 Low (L2) Medium 

(C3) 

Medium 

(P3) 

High (I4) 0 0.25 0.5 0.25 

109 Low (L2) High (C4) High (P4) V.Low (I1)  0.25 0.25 0 0.5 

110 Low (L2) High (C4) High (P4) Low (I2) 0 0.5 0 0.5 

111 Low (L2) High (C4) High (P4) Medium 

(I3) 

0 0.25 0.25 0.5 

112 Low (L2) High (C4) High (P4) High (I4) 0 0.25 0 0.75 

113 Low (L2) V.Low (C1) High (P4) V.Low (I1)  0.5 0.25 0 0.25 

114 Low (L2) V.Low (C1) High (P4) Low (I2) 0.25 0.5 0 0.25 

115 Low (L2) V.Low (C1) High (P4) Medium 

(I3) 

0.25 0.25 0.25 0.25 

116 Low (L2) V.Low (C1) High (P4) High (I4) 0.25 0.25 0 0.5 

117 Low (L2) Low (C2) High (P4) V.Low (I1)  0.25 0.5 0 0.25 

118 Low (L2) Low (C2) High (P4) Low (I2) 0 0.75 0 0.25 

119 Low (L2) Low (C2) High (P4) Medium 

(I3) 

0 0.5 0.25 0.25 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

120 Low (L2) Low (C2) High (P4) High (I4) 0 0.5 0 0.5 

121 Low (L2) Medium 

(C3) 

High (P4) V.Low (I1)  0.25 0.25 0.25 0.25 

122 Low (L2) Medium 

(C3) 

High (P4) Low (I2) 0 0.5 0.25 0.25 

123 Low (L2) Medium 

(C3) 

High (P4) Medium 

(I3) 

0 0.25 0.5 0.25 

124 Low (L2) Medium 

(C3) 

High (P4) High (I4) 0 0.25 0.25 0.5 

125 Low (L2) High (C4) V.Low 

(P1) 

V.Low (I1)  0.5 0.25 0 0.25 

126 Low (L2) High (C4) V.Low 

(P1) 

Low (I2) 0.25 0.5 0 0.25 

127 Low (L2) High (C4) V.Low 

(P1) 

Medium 

(I3) 

0.25 0.25 0.25 0.25 

128 Low (L2) High (C4) V.Low 

(P1) 

High (I4) 0.25 0.25 0 0.5 

129 Medium 

(L3) 

V.Low (C1) V.Low 

(P1) 

V.Low (I1)  0.75 0 0.25 0 

130 Medium 

(L3) 

V.Low (C1) V.Low 

(P1) 

Low (I2) 0.5 0.25 0.25 0 

131 Medium 

(L3) 

V.Low (C1) V.Low 

(P1) 

Medium 

(I3) 

0.5 0 0.5 0 

132 Medium 

(L3) 

V.Low (C1) V.Low 

(P1) 

High (I4) 0.5 0 0.25 0.25 

133 Medium 

(L3) 

Low (C2) V.Low 

(P1) 

V.Low (I1)  0.5 0.25 0.25 0 

134 Medium 

(L3) 

Low (C2) V.Low 

(P1) 

Low (I2) 0.25 0.5 0.25 0 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

135 Medium 

(L3) 

Low (C2) V.Low 

(P1) 

Medium 

(I3) 

0.25 0.25 0.5 0 

136 Medium 

(L3) 

Low (C2) V.Low 

(P1) 

High (I4) 0.25 0.25 0.25 0.25 

137 Medium 

(L3) 

Medium 

(C3) 

V.Low 

(P1) 

V.Low (I1)  0.5 0 0.5 0 

138 Medium 

(L3) 

Medium 

(C3) 

V.Low 

(P1) 

Low (I2) 0.25 0.25 0.5 0 

139 Medium 

(L3) 

Medium 

(C3) 

V.Low 

(P1) 

Medium 

(I3) 

0.25 0 0.75 0 

140 Medium 

(L3) 

Medium 

(C3) 

V.Low 

(P1) 

High (I4) 0.25 0 0.5 0.25 

141 Medium 

(L3) 

High (C4) Low (P2) V.Low (I1)  0.25 0.25 0.25 0.25 

142 Medium 

(L3) 

High (C4) Low (P2) Low (I2) 0 0.5 0.25 0.25 

143 Medium 

(L3) 

High (C4) Low (P2) Medium 

(I3) 

0 0.25 0.5 0.25 

144 Medium 

(L3) 

High (C4) Low (P2) High (I4) 0 0.25 0.25 0.5 

145 Medium 

(L3) 

V.Low (C1) Low (P2) V.Low (I1)  0.5 0.25 0.25 0 

146 Medium 

(L3) 

V.Low (C1) Low (P2) Low (I2) 0.25 0.5 0.25 0 

147 Medium 

(L3) 

V.Low (C1) Low (P2) Medium 

(I3) 

0.25 0.25 0.5 0 

148 Medium 

(L3) 

V.Low (C1) Low (P2) High (I4) 0.25 0.25 0.25 0.25 

150 Medium 

(L3) 

Low (C2) Low (P2) V.Low (I1)  0.25 0.5 0.25 0 

151 Medium 

(L3) 

Low (C2) Low (P2) Low (I2) 0 0.75 0.25 0 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

152 Medium 

(L3) 

Low (C2) Low (P2) Medium 

(I3) 

0 0.5 0.5 0 

153 Medium 

(L3) 

Low (C2) Low (P2) High (I4) 0 0.5 0.25 0.25 

154 Medium 

(L3) 

Medium 

(C3) 

Low (P2) V.Low (I1)  0.25 0.25 0.5 0 

155 Medium 

(L3) 

Medium 

(C3) 

Low (P2) Low (I2) 0 0.5 0.5 0 

156 Medium 

(L3) 

Medium 

(C3) 

Low (P2) Medium 

(I3) 

0 0.25 0.75 0 

157 Medium 

(L3) 

Medium 

(C3) 

Low (P2) High (I4) 0 0.25 0.5 0.25 

158 Medium 

(L3) 

High (C4) Medium 

(P3) 

V.Low (I1)  0.25 0 0.5 0.25 

159 Medium 

(L3) 

High (C4) Medium 

(P3) 

Low (I2) 0 0.25 0.5 0.25 

160 Medium 

(L3) 

High (C4) Medium 

(P3) 

Medium 

(I3) 

0 0 0.75 0.25 

161 Medium 

(L3) 

High (C4) Medium 

(P3) 

High (I4) 0 0 0.5 0.5 

162 Medium 

(L3) 

V.Low (C1) Medium 

(P3) 

V.Low (I1)  0.5 0 0.5 0 

163 Medium 

(L3) 

V.Low (C1) Medium 

(P3) 

Low (I2) 0.25 0.25 0.5 0 

164 Medium 

(L3) 

V.Low (C1) Medium 

(P3) 

Medium 

(I3) 

0.25 0 0.75 0 

165 Medium 

(L3) 

V.Low (C1) Medium 

(P3) 

High (I4) 0.25 0 0.5 0.25 

166 Medium 

(L3) 

V.Low (C1) Medium 

(P3) 

V.Low (I1)  0.5 0 0.5 0 



272 
 

Rules Four risk parameters in the IF portion DoB in the THEN portion 

167 Medium 

(L3) 

Low (C2) Medium 

(P3) 

Low (I2) 0 0.5 0.5 0 

168 Medium 

(L3) 

Low (C2) Medium 

(P3) 

Medium 

(I3) 

0 0.25 0.75 0 

169 Medium 

(L3) 

Low (C2) Medium 

(P3) 

High (I4) 0 0.25 0.5 0.25 

170 Medium 

(L3) 

Low (C2) Medium 

(P3) 

V.Low (I1)  0.25 0.25 0.5 0 

171 Medium 

(L3) 

Medium 

(C3) 

Medium 

(P3) 

Low (I2) 0 0.25 0.75 0 

172 Medium 

(L3) 

Medium 

(C3) 

Medium 

(P3) 

Medium 

(I3) 

0 0 1 0 

173 Medium 

(L3) 

Medium 

(C3) 

Medium 

(P3) 

High (I4) 0 0 0.75 0.25 

174 Medium 

(L3) 

Medium 

(C3) 

High (P4) V.Low (I1)  0.25 0 0.5 0.25 

175 Medium 

(L3) 

High (C4) High (P4) Low (I2) 0 0.25 0.25 0.5 

176 Medium 

(L3) 

High (C4) High (P4) Medium 

(I3) 

0 0 0.5 0.5 

177 Medium 

(L3) 

High (C4) High (P4) High (I4) 0 0 0.25 0.75 

178 Medium 

(L3) 

High (C4) High (P4) V.Low (I1)  0.25 0 0.25 0.5 

179 Medium 

(L3) 

V.Low (C1) High (P4) Low (I2) 0.25 0.25 0.25 0.25 

180 Medium 

(L3) 

V.Low (C1) High (P4) Medium 

(I3) 

0.25 0 0.5 0.25 

181 Medium 

(L3) 

V.Low (C1) High (P4) High (I4) 0.25 0 0.25 0.5 

182 Medium 

(L3) 

V.Low (C1) High (P4) V.Low (I1)  0.5 0 0.25 0.25 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

183 Medium 

(L3) 

Low (C2) High (P4) Low (I2) 0 0.5 0.25 0.25 

184 Medium 

(L3) 

Low (C2) High (P4) Medium 

(I3) 

0 0.25 0.5 0.25 

185 Medium 

(L3) 

Low (C2) High (P4) High (I4) 0 0.25 0.25 0.5 

186 Medium 

(L3) 

Low (C2) High (P4) V.Low (I1)  0.25 0.25 0.25 0.25 

187 Medium 

(L3) 

Medium 

(C3) 

High (P4) Low (I2) 0 0.25 0.5 0.25 

188 Medium 

(L3) 

Medium 

(C3) 

High (P4) Medium 

(I3) 

0 0 0.75 0.25 

189 Medium 

(L3) 

Medium 

(C3) 

High (P4) High (I4) 0 0 0.5 0.5 

190 Medium 

(L3) 

Medium 

(C3) 

V.Low 

(P1) 

V.Low (I1)  0.5 0 0.5 0 

191 Medium 

(L3) 

High (C4) V.Low 

(P1) 

Low (I2) 0.25 0.25 0.25 0.25 

192 Medium 

(L3) 

High (C4) V.Low 

(P1) 

Medium 

(I3) 

0.25 0 0.5 0.25 

193 High (L4) High (C4) V.Low 

(P1) 

High (I4) 0.25 0 0 0.75 

194 High (L4) High (C4) V.Low 

(P2) (P1) 

V.Low (I1)  0.5 0 0 0.5 

195 High (L4) V.Low (C1) V.Low 

(P2) (P1) 

Low (I2) 0.5 0.25 0 0.25 

196 High (L4) V.Low (C1) V.Low 

(P2) (P1) 

Medium 

(I3) 

0.5 0 0.25 0.25 

197 High (L4) V.Low (C1) V.Low 

(P2) (P1) 

High (I4) 0.5 0 0 0.5 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

198 High (L4) V.Low (C1) V.Low 

(P2) (P1) 

V.Low (I1)  0.75 0 0 0.25 

199 High (L4) Low (C2) V.Low 

(P2) (P1) 

Low (I2) 0.25 0.5 0 0.25 

200 High (L4) Low (C2) V.Low 

(P2) (P1) 

Medium 

(I3) 

0.25 0.25 0.25 0.25 

201 High (L4) Low (C2) V.Low 

(P2) (P1) 

High (I4) 0.25 0.25 0 0.5 

202 High (L4) Low (C2) V.Low 

(P2) (P1) 

V.Low (I1)  0.5 0.25 0 0.25 

203 High (L4) Medium 

(C3) 

V.Low 

(P2) (P1) 

Low (I2) 0.25 0.25 0.25 0.25 

204 High (L4) Medium 

(C3) 

V.Low 

(P2) (P1) 

Medium 

(I3) 

0.25 0 0.5 0.25 

205 High (L4) Medium 

(C3) 

V.Low 

(P2) (P1) 

High (I4) 0.25 0 0.25 0.5 

206 High (L4) Medium 

(C3) 

Low (P2) V.Low (I1)  0.25 0.25 0.25 0.25 

207 High (L4) High (C4) Low (P2) Low (I2) 0 0.5 0 0.5 

208 High (L4) High (C4) Low (P2) Medium 

(I3) 

0 0.25 0.25 0.5 

209 High (L4) High (C4) Low (P2) High (I4) 0 0.25 0 0.75 

210 High (L4) High (C4) Low (P2) V.Low (I1)  0.25 0.25 0 0.5 

211 High (L4) V.Low (C1) Low (P2) Low (I2) 0.25 0.5 0 0.25 

212 High (L4) V.Low (C1) Low (P2) Medium 

(I3) 

0.25 0.25 0.25 0.25 

213 High (L4) V.Low (C1) Low (P2) High (I4) 0.25 0.25 0 0.5 

214 High (L4) V.Low (C1) Low (P2) V.Low (I1)  0.5 0.25 0 0.25 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

215 High (L4) Low (C2) Low (P2) Low (I2) 0 0.75 0 0.25 

216 High (L4) Low (C2) Low (P2) Medium 

(I3) 

0 0.5 0.25 0.25 

217 High (L4) Low (C2) Low (P2) High (I4) 0 0.5 0 0.5 

218 High (L4) Low (C2) Low (P2) V.Low (I1)  0.25 0.5 0 0.25 

219 High (L4) Medium 

(C3) 

Low (P2) Low (I2) 0 0.5 0.25 0.25 

220 High (L4) Medium 

(C3) 

Low (P2) Medium 

(I3) 

0 0.25 0.5 0.25 

221 High (L4) Medium 

(C3) 

Low (P2) High (I4) 0 0.25 0.25 0.5 

222 High (L4) Medium 

(C3) 

Medium 

(P3) 

V.Low (I1)  0.25 0 0.5 0.25 

223 High (L4) High (C4) Medium 

(P3) 

Low (I2) 0 0.25 0.25 0.5 

224 High (L4) High (C4) Medium 

(P3) 

Medium 

(I3) 

0 0 0.5 0.5 

225 High (L4) High (C4) Medium 

(P3) 

High (I4) 0 0 0.25 0.75 

226 High (L4) High (C4) Medium 

(P3) 

V.Low (I1)  0.25 0 0.25 0.5 

227 High (L4) V.Low (C1) Medium 

(P3) 

Low (I2) 0.25 0.25 0.25 0.25 

228 High (L4) V.Low (C1) Medium 

(P3) 

Medium 

(I3) 

0.25 0 0.5 0.25 

229 High (L4) V.Low (C1) Medium 

(P3) 

High (I4) 0.25 0 0.25 0.5 

230 High (L4) V.Low (C1) Medium 

(P3) 

V.Low (I1)  0.5 0 0.25 0.25 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

231 High (L4) Low (C2) Medium 

(P3) 

Low (I2) 0 0.5 0.25 0.25 

232 High (L4) Low (C2) Medium 

(P3) 

Medium 

(I3) 

0 0.25 0.5 0.25 

233 High (L4) Low (C2) Medium 

(P3) 

High (I4) 0 0.25 0.25 0.5 

234 High (L4) Low (C2) Medium 

(P3) 

V.Low (I1)  0.25 0.25 0.25 0.25 

235 High (L4) Medium 

(C3) 

Medium 

(P3) 

Low (I2) 0 0.25 0.5 0.25 

236 High (L4) Medium 

(C3) 

Medium 

(P3) 

Medium 

(I3) 

0 0 0.75 0.25 

237 High (L4) Medium 

(C3) 

Medium 

(P3) 

High (I4) 0 0 0.5 0.5 

238 High (L4) Medium 

(C3) 

High (P4) V.Low (I1)  0.25 0 0.25 0.5 

239 High (L4) High (C4) High (P4) Low (I2) 0 0.25 0 0.75 

240 High (L4) High (C4) High (P4) Medium 

(I3) 

0 0 0.25 0.75 

241 High (L4) High (C4) Medium 

(P3) 

Medium 

(I3) 

0 0 0.5 0.5 

242 High (L4) High (C4) High (P4) V.Low (I1)  0.25 0 0 0.75 

243 High (L4) V.Low (C1) High (P4) Low (I2) 0.25 0.25 0 0.5 

244 High (L4) V.Low (C1) High (P4) Medium 

(I3) 

0.25 0 0.25 0.5 

245 High (L4) V.Low (C1) High (P4) High (I4) 0.25 0 0 0.75 

246 High (L4) V.Low (C1) High (P4) V.Low (I1)  0.5 0 0 0.5 

247 High (L4) Low (C2) High (P4) Low (I2) 0 0.5 0 0.5 
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Rules Four risk parameters in the IF portion DoB in the THEN portion 

248 High (L4) Low (C2) High (P4) Medium 

(I3) 

0 0.25 0.25 0.5 

249 High (L4) Low (C2) High (P4) High (I4) 0 0.25 0 0.75 

250 High (L4) Low (C2) High (P4) V.Low (I1)  0.25 0.25 0 0.5 

251 High (L4) Medium 

(C3) 

High (P4) Low (I2) 0 0.25 0.25 0.5 

252 High (L4) Medium 

(C3) 

High (P4) Medium 

(I3) 

0 0 0.5 0.5 

253 High (L4) Medium 

(C3) 

High (P4) High (I4) 0 0 0.25 0.75 

254 High (L4) Medium 

(C3) 

Medium 

(P3) 

V.Low (I1)  0.25 0 0.5 0.25 

255 High (L4) High (C4) Medium 

(P3) 

Low (I2) 0 0.25 0.25 0.5 

256 High (L4) High (C4) High (P4) High (I4) 0 0 0 1 
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Appendix 2-1: Questionnaire Used for hazard events evaluation in 

Chapter 3 
 
 

School of Engineering, Technology and Maritime Operations  

Liverpool John Moores University 
Byrom Street 

L3 3AF UK 

Phone : 07405734158 
Fax :  

Email : G.Asuelimen@2014.ljmu.ac.uk  

18 October 2017 

Survey Title: Advanced Risk Management of an Arctic Marine Seismic Survey Operation 

A research project at Liverpool John Moores University is currently being carried out with regards 

to the Arctic shipping safety, and it is specific on the Arctic offshore seismic survey (geo-data 

gathering) operation. This subject would become a critical topic in the maritime community 

internationally, due to the world’s rising demand on natural oil and gas in untested environments 

such as the Arctic region. 

The aim of this study is to investigate and examine the current safety level of offshore exploration 

in the Arctic, and to evaluate the most significant failure events on the safety management of a 

desired arctic seismic operation. At the end of this research, a theoretical methodology and an 

advanced model would be generated that can be used by geologists and safety engineers to 

investigate and mitigate the risk of ship-Ice Collison affecting the operation of the seismic vessel 

and its associated vessels (ships), and to obtain a cost effective strategy to reduce and prevent 

risks. To achieve the above aim, the research objectives are as follows: 

1. To tackle the issue of failure data uncertainty in risk analysis of AMSSO. 

2. To investigate the high significant failure events in ship-Ice collision influencing the safety 

level of the arctic offshore seismic operation by using a probable risks or root cause technique. 

A number of evaluation criteria have been determined in this research. All the evaluation criteria 

need to be measured by using the two techniques that have been mentioned above. This process 

is required to provide reliable data by identifying an expert opinion of each evaluation parameter. 

A set of questionnaires is compiled in this letter. 

I will be most grateful if you could kindly spend your valuable time to complete the accompanying 

questionnaire and email it at the address shown above. Your vital feedback will greatly benefit 

and contribute to the formulation of an industry wide opinion. I can assure you that the 

confidentiality of your response will be honoured and respected. 

Regards, 

Gregory Asuelimen 

PhD researcher, school of engineering, technology and maritime operations 

Liverpool Logistics Offshore and Marine Research Institute 

mailto:G.Asuelimen@2014.ljmu.ac.uk
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Room 2.23, LOOM Research Institute. 

The procedures and plans for answering this set of questionnaires are explained as follows: 

Definition of parameters 
Table 1: Likelihood assignment 

 

Table 2: Consequence assignment 

Assigned Rating If the consequence is: 

Insignificant Very Low: Injury requiring little or no first aid, no 

significant harm to people, vessel and environment 

Minor Low: Minor damage (dents and scratches) 

degradation of the vessel strength (local damage to 

the structure), or causing between 1 and 9 major 

injuries or causing injury requiring more than first 

aid 

Major Medium: Major damage/ degradation of the vessel 

strength, or causing between 10 and 100 major 

injuries 

Catastrophic High: Total loss of life, vessel or severe damage to 

the environment 

 

 
Table 3: Probability of a hazard being undetected definition 

Assigned Rating If the probability to detect a failure is: 

Very Low Possible to be detected through regular checks or 

easily observed with less attention 

Low Possible to be detected through mere diagnosis or 

observed with proper attention  

Medium Difficult to be detected through mere diagnosis or 

proper attention 

Assigned Rating If the frequency is: 

Extremely Remote Very Low: Might occur every 6 to 10 years and 

beyond 

Remote Low: Might occur once every 7 months to once 

every 1 to 5 years 

Reasonably Probable Medium: Might occur once in 2 months to twice a 

year 

Frequent High: Might occur monthly or weekly or daily 
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Assigned Rating If the probability to detect a failure is: 

High Impossible to be detected through mere diagnosis or 

regular checks or proper attention 

 

Table 4: Impact of hazard to operation 

Assigned Rating If the impact of failure to operation is: 

Very Low Negligible impact on operations capability of the 

vessel 

Low Little impact on the operations capability of the 

vessel 

Medium Degraded operations capability or readiness to halt 

operation 

High Loss of ability to accomplish the operations or 

operation failure in the vessel 

 

An expert is required to give a possible judgement to all questions based on his/her expertise and 

experience in Marine Arctic Seismic Survey Operation. The total assessment for each parameter 

(likelihood, consequence severity, probability of failure undetected, and impact of failure to 

operation) must not exceed 10. The judgment process should be focused on how to achieve the 

assessment goal.  

In the below example, the goal is to evaluate the identified hazard “Brake Failure" of a moving 

vehicle. The description of the qualitative judgement "very Low", "Low", "Medium", and "High" 

is explained above. 

Example of an answered questionnaire 

                      Attribute 

 

 

 

Likelihood (L) Consequent 

severity (C) 

Probability of 

failures being 

undetected (P) 

Impact of failure 

to operation (I) 

Failure 

Event 

V
er

y
 L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

V
er

y
 L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

V
er

y
 L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

V
er

y
 L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

A1. Risk related to a  

moving vehicle  

Brake failure 

 

1 2 4 3 0 0 2 8 5 3 1 1 1 1 2 6 

 

Must not exceed 10 Must not exceed 10 Must not exceed 10 Must not exceed 10 
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Explanation of the above example 

 The likelihood of having a brake failure in a moving car is not very likely to occur 

assumed it is brand vehicle hence a low score of 3 is given for “High”. It is 4 “Medium” 

which is occasionally possible. “Low” and “Very Low” have the lowest scores (2, 1) 

respectively because it is not very common to have a brake failure incident. 

 The consequence severity of having a brake failure in a moving car is 8 “high” because 

of the catastrophic outcome. It is 2 for “Medium” because it is possible that the 

consequence severity of the incident is not catastrophic, it is 0 for both “Low” and “Very 

Low” because it is impossible for any brake failure of a moving car not to result in some 

amount of significant penalties. 

 The probability of detecting a brake failure is somewhat unnoticed until brakes are being 

applied so the score of 5 for “very low” was allotted. “High”, “Medium” and “Low” have 

been scored 1, 1 and 3 respectively because it is very likely to have brake failure and not 

notice it until it is applied. 

 Impact of brake failure to operation is 6 “High” which is above average, meaning in the 

event of brake failure, work could eventually stop. It is 2, 1, 1 for “Medium”, “Low” and 

“Very Low” respectively because the impact of brake failure cannot be undermined. 

 

Questionnaire 

Twenty-One hazard events have been identified in a ship-Ice collision scenario. Please estimate 

your rating using the linguistic rating variables described above. 

The Attributes description 

“L” describes the failure occurrence probability. It suggests the rate of failure occurring in a 

chosen period, which directly represents the number of failure frequencies during the design life 

span of a particular system. 

“C” describes the consequences/ severity of a failure. It suggests the magnitude of possible loss 

when risk happens, which is graded according to the severity of failure effects. 

“P” describes the probability of failures being undetected (P). It refers to the probability that 

possible failure can be undetected before occurrence. 

“I” defines the influence of a failure to the operation. It refers to the chance of Arctic Marine 

Seismic Operation being disrupted due to a failure or the probability that possible disruption 

happens given the occurrence of a failure event. 

Note: The Probability of the failure mode should be set on an annual basis. 
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                      Attribute 

 

 

 

Likelihood Consequent 

severity 

Probability of 

hazard being 

undetected 

Impact of hazard 

to operation 

Failure 

Event 

V
er

y
 L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

V
er

y
 L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

V
er

y
 L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

V
er

y
 L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

A1. Risk related to Vessel  

navigation system  

Limited radio 

communication 

                

Limited sophisticated 

electronic navigation 

equipment (such as  

radar, sonar, infrared, 

and microwave 

radiation sensors on-

board satellite) 

                

Failure in 

establishment and 

maintenance of 

external aids to 

navigation 

                

Poor ice chart (Not 

updated) 

                

 

Faults in winch/ cable 

 

                

Insufficient 

manoeuvring 

characteristics of 

vessel not specifically 

built for ice breaking 

or quick manoeuvring 

for rapid change of ice 

conditions. 

                

Insufficient hull 

strength/ horsepower 
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                      Attribute 

 

 

 

Likelihood Consequent 

severity 

Probability of 

hazard being 

undetected 

Impact of hazard 

to operation 

Operational 

incapacitation of other 

vessels (such as 

icebreaker, tugs) 

                

 

Snow accumulation on 

the seismic equipment 

and super structures 

                

Poor visibility as a 

result of fog, prolong 

Polar night 

                

Machinery seize up 

with low temperatures 

                

Sea sickness caused by 

sea state 

                

 

Ice restrictions which 

affects the vessel’s 

movement and force to 

change direction and 

speed 

                

Pieces of floating 

multiyear ice/icebergs 

causing machinery 

damage 

                

Streamer, air hose 

entangled in ice 

                

 

Practical 

incompetency for duty 

such as experience, 

skills, local knowledge 

of waters, usage of 

devices. 
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                      Attribute 

 

 

 

Likelihood Consequent 

severity 

Probability of 

hazard being 

undetected 

Impact of hazard 

to operation 

Inappropriate design 

of task or operation 

such as night 

navigation, route 

planning, anchoring 

etc. 

                

Available warning 

mechanism is 

insufficiently 

developed and used. 

                

Work load-causing 

stress, fatigue, bad 

mood as a result of 

very short daylight 

                

Situation awareness 

and bad decision 

making  

                

Inadequate 

communication 
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Appendix 2-2: All Experts Evaluation Table in Chapter 3 
 

Hazards Experts Likelihood Consequence severity Probability of failure 

undetected 

Impact of failure to 

operation 

Limited radio 

communication 

 VL L M H VL L M H VL L M H VL L M H 

A 30 30 20 20 10 30 50 10 40 50 10 0 10 20 50 20 

B 0 20 50 30 80 20 0 0 80 20 0 0 0 30 70 0 

C 20 30 30 20 30 40 30 10 10 10 50 30 50 30 20 0 

D 60 20 20 0 40 30 20 10 50 50 0 0 10 40 40 10 

E 50 30 0 20 0 30 70 0 70 30 0 0 0 0 20 80 

 

Av Prior 

probability 32 26 24 18 32 30 34 6 50 32 12 6 14 24 40 22 

Limited 

sophisticated 

electronic 

navigation ( radar, 

on board satellite) 

A 50 30 20 0 0 10 30 60 80 10 10 0 0 0 10 90 

B 0 30 60 10 70 30 0 0 80 20 0 0 0 30 70 0 

C 20 30 40 10 40 20 30 10 60 40 0 0 0 10 30 60 

D 60 20 20 0 30 30 30 10 70 20 10 0 10 40 40 10 

E 80 20 0 0 0 0 30 70 70 30 0 0 0 0 20 80 

Ave Prior 

probability 42 26 28 4 28 18 24 30 72 24 4 0 2 16 34 48 

Failure to 

establish and 

maintain external 

aids to navigation 

A 70 20 10 0 0 10 20 70 70 20 10 0 0 10 10 80 

B 0 60 40 0 0 30 70 0 60 30 10 0 0 20 70 10 

C 40 30 20 10 10 20 20 50 70 20 10 0 0 10 30 60 

D 20 30 30 20 0 40 40 20 20 30 30 20 10 30 40 20 

E 50 50 0 0 0 20 80 0 0 40 60 0 0 40 60 0 

Av Prior 

probability 36 38 20 6 2 24 46 28 44 28 24 4 2 22 42 34 

Poor ice chart 

( Ice chart not 

updated) 

A 30 30 20 10 10 10 30 40 20 50 20 10 0 0 20 80 

B 20 70 10 0 20 70 10 0 80 20 0 0 10 70 20 0 

C 20 30 30 20 0 10 30 60 50 30 10 10 10 10 30 50 

D 40 40 20 0 0 30 50 20 10 30 30 30 10 20 50 20 

E 50 50 0 0 0 20 80 0 0 40 60 0 0 40 60 0 

Prior 

probability 32 44 16 6 6 28 40 24 32 34 24 10 6 28 36 30 

Faults in winch/ 

cable 

A 40 30 20 0 10 30 40 20 80 20 0 0 20 30 30 20 

B 0 70 30 0 10 50 30 10 50 30 20 0 0 20 70 10 

C 50 30 10 10 20 10 30 40 10 10 30 50 0 20 20 60 
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Hazards Experts Likelihood Consequence severity Probability of failure 

undetected 

Impact of failure to 

operation 

D 10 60 20 10 0 20 70 10 10 50 30 10 20 20 30 30 

E 0 0 20 80 80 20 0 0 10 80 10 0 0 0 30 70 

Prior 

probability 20 38 20 20 24 26 34 16 32 38 18 12 8 18 36 38 

Insufficient 

manoeuvring 

characteristics of 

vessel not 

specifically built 

for ice breaking or 

quick 

manoeuvring for 

rapid change ice 

conditions 

A 60 20 10 10 0 10 20 70 70 20 10 0 0 10 10 80 

B 0 60 30 10 50 30 20 0 50 30 20 0 0 0 80 20 

C 50 40 10 0 20 20 20 40 60 20 10 10 10 10 20 60 

D 60 30 10 0 10 20 40 30 30 30 30 10 10 20 30 40 

E 80 20 0 0 0 0 30 70 90 10 0 0 0 0 20 80 

GM 

probability 43 31 12 10 16 16 25 36 56 20 14 10 10 11 25 50 

Prior 

probability 50 34 12 4 16 16 26 42 60 22 14 4 4 8 32 56 

Insufficient hull 

strength 

A 90 10 0 0 0 0 10 90 80 20 0 0 0 0 20 80 

B 0 80 20 0 50 20 20 10 60 30 10 0 10 60 20 10 

C 40 40 20 0 30 30 20 20 50 40 10 0 10 20 20 50 

D 60 30 10 0 10 20 40 30 30 30 30 10 10 20 30 40 

E 80 20 0 0 0 0 20 80 90 10 0 0 0 0 20 80 

Prior 

probability 54 36 10 0 18 14 22 46 62 26 10 2 6 20 22 52 

Operational 

incapability of 

other vessels 

( tugs, 

icebreakers) 

A 80 20 0 0 80 20 0 0 80 20 0 0 0 50 50 0 

B 0 80 20 0 70 20 10 0 0 0 20 80 0 20 70 10 

C 30 30 20 20 20 20 40 20 50 30 20 0 10 20 40 30 

D 50 40 10 0 0 30 40 30 60 20 20 0 0 30 40 30 

E 10 50 20 20 60 40 0 0 0 0 10 90 0 0 20 80 

Prior 

probability 34 44 14 8 46 26 18 10 38 14 14 34 2 24 44 30 

Snow 

accumulation on 

the seismic 

equipment and 

super structures 

A 30 30 40 0 40 30 20 10 90 10 0 0 40 30 20 10 

B 0 80 20 0 70 20 10 0 0 0 60 40 10 20 60 10 

C 20 20 30 30 40 30 20 10 50 50 0 0 20 20 30 30 

D 0 30 30 40 20 50 30 0 60 40 0 0 20 30 30 20 

E 0 0 10 90 0 10 30 60 100 0 0 0 0 20 30 50 

Prior 

probability 10 32 26 32 34 28 22 16 60 20 12 8 18 24 34 24 

Poor visibility as a 

result of fog, 

prolong polar 

night 

A 20 30 40 10 20 20 30 30 20 20 40 20 20 30 40 10 

B 0 0 40 60 0 80 20 0 0 0 70 30 20 50 30 0 

C 10 20 40 30 10 10 40 40 10 0 0 0 10 20 30 40 
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Hazards Experts Likelihood Consequence severity Probability of failure 

undetected 

Impact of failure to 

operation 

D 0 50 50 0 0 50 50 0 80 20 0 0 0 30 60 10 

E 0 0 10 90 0 0 10 90 10 0 0 0 0 0 0 100 

Prior 

probability 6 20 36 38 6 32 30 32 24 8 22 10 10 26 32 32 

Machinery seize 

up with low 

temperatures 

A 80 20 0 0 0 0 20 80 100 0 0 0 0 0 30 70 

B 0 0 30 70 20 70 10 0 10 50 30 10 30 60 10 0 

C 70 30 0 0 0 0 30 70 80 20 0 0 0 10 30 60 

D 10 10 80 0 10 30 30 30 60 40 0 0 20 40 40 20 

E 60 40 0 0 0 0 50 50 40 60 0 0 0 0 20 80 

Prior 

probability 44 20 22 14 6 20 28 46 58 34 6 2 10 22 26 46 

Sea sickness 

caused by sea 

state 

A 0 0 50 50 50 30 20 0 90 10 0 0 20 40 30 0 

B 0 30 70 0 30 50 20 0 0 30 50 20 0 30 70 0 

C 20 20 40 20 40 30 20 10 80 20 0 0 40 30 10 10 

D 50 30 10 10 0 10 80 10 0 50 50 0 20 20 50 20 

E 0 0 30 70 20 80 0 0 100 0 0 0 10 70 10 10 

Prior 

probability 14 16 40 30 28 40 28 4 54 22 20 4 18 38 34 8 

Ice restrictions 

which affects the 

vessel’s 

movement and 

force to change 

direction and 

speed 

A 80 20 0 0 0 0 20 80 100 0 0 0 0 0 30 70 

B 0 10 60 30 30 60 10 0 0 10 60 30 0 20 60 20 

C 0 30 30 40 40 40 10 10 60 40 0 0 0 10 30 60 

D 0 60 40 0 0 50 50 0 40 60 0 0 10 40 40 10 

E 0 0 20 80 50 50 0 0 100 0 0 0 0 0 50 50 

GM 

probability 15 20 27 25 23 36 16 15 47 19 14 12 10 15 40 33 

Prior 

probability 16 24 30 30 24 40 18 18 60 22 12 6 2 14 42 42 

Pieces of floating 

multi-year 

ice/icebergs 

causing 

machinery 

damage 

A 100 0 0 0 0 0 0 100 100 0 0 0 0 0 0 100 

B 0 70 30 0 0 70 30 0 30 60 10 0 0 60 40 0 

C 30 30 20 20 20 30 30 20 40 40 10 10 10 10 40 40 

D 0 60 40 0 10 10 50 30 0 20 70 10 0 20 50 30 

E 90 10 0 0 0 20 80 0 60 40 0 0 0 0 0 100 

Prior 

probability 44 34 18 4 6 26 38 30 46 32 18 4 2 18 26 54 

Streamer, Air 

hose entangled in 

ice 

A 10 30 40 20 10 30 40 20 100 0 0 0 20 20 30 30 

B 0 30 60 10 30 60 10 0 20 60 20 0 0 40 60 0 

C 30 30 30 10 40 40 20 0 40 40 10 10 30 30 30 10 
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Hazards Experts Likelihood Consequence severity Probability of failure 

undetected 

Impact of failure to 

operation 

D 10 50 40 0 30 30 30 10 40 50 10 0 20 20 50 10 

E 0 0 10 90 0 20 80 0 100 0 0 0 0 0 0 100 

Prior 

probability 10 28 36 26 22 36 36 6 60 30 8 2 14 22 34 30 

Practical 

incompetency for 

duty such as 

experience, skills, 

local knowledge 

of waters, usage 

of devices 

A 10 20 50 20 0 20 30 50 50 30 20 0 20 30 50 0 

B 0 60 30 10 50 40 10 0 30 50 20 0 0 60 40 0 

C 20 40 30 10 10 10 40 40 20 20 30 30 20 20 30 30 

D 30 40 30 0 0 50 50 0 10 40 30 20 20 30 30 20 

E 0 30 60 10 0 20 80 0 50 50 0 0 10 40 40 10 

Prior 

probability 12 38 40 10 12 28 42 18 32 38 20 10 14 36 38 12 

Inappropriate 

design of task or 

operation such as 

night navigation, 

route planning 

A 100 0 0 0 0 0 20 80 100 0 0 0 0 10 20 70 

B 0 60 30 10 60 30 10 0 30 50 20 0 0 70 30 0 

C 30 40 20 10 10 10 40 40 40 30 30 0 20 20 30 30 

D 20 50 30 0 0 20 50 30 0 80 20 0 0 10 70 20 

E 20 80 0 0 0 20 80 0 0 10 80 10 0 0 50 50 

Prior 

probability 34 46 16 4 14 16 40 30 34 34 30 2 4 22 40 34 

Available 

warning 

mechanism is 

insufficiently 

developed and 

used 

A 70 20 10 0 0 20 40 30 80 20 0 0 0 10 20 70 

B 0 70 30 0 70 20 10 0 40 50 10 0 20 70 10 0 

C 20 20 30 30 20 20 30 30 20 10 30 40 0 10 30 60 

D 20 40 40 0 10 40 40 10 0 50 50 0 20 50 20 10 

E 20 80 0 0 0 30 70 0 0 20 80 0 0 30 30 40 

Prior 

probability 26 46 22 6 20 26 38 14 28 30 34 8 8 34 22 36 

Prolong night and 

work load causing 

stress, fatigue 

A 20 30 40 10 20 20 30 30 20 20 40 20 20 30 40 10 

B 0 60 30 10 50 30 20 0 0 60 30 10 10 40 50 0 

C 30 30 30 10 20 20 30 30 30 30 30 10 30 20 30 20 

D 10 40 40 10 0 30 50 20 10 50 20 20 0 30 50 20 

E 0 0 0 100 0 0 20 80 70 30 0 0 0 0 50 50 

Prior 

probability 12 32 28 28 18 20 30 32 26 38 24 12 12 24 44 20 

Situation 

awareness and 

bad decision 

making 

A 40 30 30 0 10 20 30 40 20 30 40 10 10 20 30 40 

B 0 50 30 20 40 50 10 0 0 10 60 30 0 20 70 10 

C 30 40 20 10 10 10 30 50 10 20 30 40 10 20 20 50 

D 30 30 30 10 10 30 40 10 20 30 40 10 0 30 40 30 
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Hazards Experts Likelihood Consequence severity Probability of failure 

undetected 

Impact of failure to 

operation 

E 0 0 0 100 0 0 0 100 70 30 0 0 0 0 0 100 

Prior 

probability 20 30 22 28 14 22 22 40 24 24 34 18 4 18 32 46 

Inadequate 

communication 

A 20 40 30 10 10 40 30 20 40 30 20 10 10 30 30 30 

B 0 20 50 30 20 60 20 0 20 60 10 10 10 50 40 0 

C 40 20 20 20 20 10 30 40 30 30 20 20 10 10 40 40 

D 40 30 20 10 30 30 30 10 0 30 60 10 10 20 50 20 

E 0 0 10 90 10 10 20 80 0 40 50 10 10 20 50 20 

Prior 

probability 20 22 26 32 18 30 26 30 18 38 32 12 10 26 42 22 
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Appendix 3-1: The Questionnaire used for AHP Technique in 

Chapter 4 
 
 

School of Engineering, Technology and Maritime Operations  

Liverpool John Moores University 
Byrom Street 

L3 3AF UK 

Phone : 07405734158 
Fax :  

Email : G.Asuelimen@2014.ljmu.ac.uk  

30 May 2018 

Survey Title: Advanced Risk Management of an Arctic Marine Seismic Survey Operation 

A research project at Liverpool John Moores University is currently being carried out with regards 

to the Arctic shipping safety, and it is specific on the Arctic offshore seismic survey (geo-data 

gathering) operation. This subject would become a critical topic in the maritime community 

internationally, due to the world’s rising demand on natural oil and gas in untested environments 

such as the Arctic region. 

The aim of this study is to investigate and examine the current safety level of offshore exploration 

in the Arctic, and to evaluate the most significant failure events on the safety management of a 

desired arctic seismic operation. At the end of this research, a theoretical methodology and an 

advanced model would be generated that can be used by geologists and safety engineers to 

investigate and mitigate the risk of ship-Ice Collison affecting the operation of the seismic vessel 

and its associated vessels (ships), and to obtain a cost effective strategy to reduce and prevent 

risks. To achieve the above aim, the research objectives are as follows: 

1. To tackle the issue of failure data uncertainty in risk analysis of AMSSO. 

2. To investigate the most important risk factor(s) influencing the safety of AMSSO by using a 

“pair-wise comparison” technique. 

A number of evaluation criteria have been determined in this research. All the evaluation criteria 

need to be measured by using the technique specified above. This process is required to provide 

reliable data by identifying an expert opinion of each evaluation parameter. A set of 

questionnaires is compiled in this letter. 

I will be most grateful if you could kindly spend your valuable time to complete the accompanying 

questionnaire and email it at the address shown above. Your vital feedback will greatly benefit 

and contribute to the formulation of an industry wide opinion. I can assure you that the 

confidentiality of your response will be honoured and respected. 

Regards, 

Gregory Asuelimen 

PhD researcher, school of engineering, technology and maritime operations 

Liverpool Logistics Offshore and Marine Research Institute 

mailto:G.Asuelimen@2014.ljmu.ac.uk
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Room 2.23, LOOM Research Institute. 

Introduction to Pair-wise Comparison Technique 

The goal of this study is to determine which risk factor(s) have greater influence on the ship-Ice 

Collision risk model of Arctic Marine Seismic Survey Operation. The risk criteria focus on five 

risk factors, namely 

i) the risk related to vessel navigation system,  

ii) the risk related to vessel operational system,  

iii) the risk related weather,  

iv) the risk related to ice and  

v) the risk related to human factor.  

This part of the questionnaire consists of a Pairwise Comparison of the risk criteria mentioned 

above. The risk factors leading to ship-Ice Collision in Arctic Marine Seismic Survey Operation 

are outlined in figure 1 

 
   

 
Figure 1: Risk factors leading to ship-Ice Collision in Arctic Marine Seismic Survey Operation 

 

To proceed with the Pair-wise Comparison technique, one should first understand the weighting 

measurement used in the study. Table 1 contains two weighting scales for “IMPORTANT” and 

“UNIMPORTANT”, along with an explanation of what each weighting denotes.  

 

 

Risk related to 
vessel navigation 

(A1)

Risk related to 
vessel 

operational 
system (A2)

Risk related to 
weather (A3)

Risk related to 
ice (A4)

Ris related to 
human factor 

(A5)

Ship-Ice Collision
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Table 1: Weighting scale for the Pair-wise Comparison 

IMPORTANT UNIMPORTANT 

Numerical 

Weighting 
Explanation 

Numerical 

Weighting 
Explanation 

1 
Equally 

important 
1 

Equally 

important 

3 
A little 

important 
 1/3 

A little 
unimportant 

5 Important  1/5 Unimportant 

7 
Very 

important 
 1/7 

Very 

unimportant 

9 
Extremely 

important 
 1/9 

Extremely 

unimportant 

2, 4, 6, 8 

Intermediate 

important 

values 

1/2, 1/4, 1/6, 
1/8, 

Intermediate 

unimportant 

values 

 

Using Table 1 as a reference, it is required that possible judgement to all questions is to be given 

based upon one’s expertise and experience in the Arctic Marine Seismic Surveying /Arctic 

shipping. The judgement provided should be focused on the objective presented for each section, 

and to do this please ‘mark’ (*) the importance weighting of each general attribute or intermediate 

hazard event in the presented column. The following is a brief example of how to apply Table 1. 
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Objective: To select the most important elements of a car. 

 

 

Explanation of the given example: 

 The Steering Wheel is 9 times more IMPORTANT that the Radio/Sound System. This is 

because it is still possible to operate the car if the Radio/Sound System is not functioning. 

 The Steering Wheel is 3 times more IMPORTANT than the Rear View Mirror. This is 

because, while it is harder to operate a car without the rear view mirror, one can still navigate 

with the side mirrors and moving ones head to see traffic. 

 The Steering Wheel is 1/9 times more UNIMPORTANT that the Engine. This is because 

without the engine, the car would not function. 

 

 

 

Questionnaire 

General Attributes 

Objective: To select the most important general attributes relating to the Ship-Ice Collision. 

 

1) The Steering Wheel  

    Unimportant 
Equally 

Important 
Important 

  
 

1/9 

 

1/8 

 

1/7 

 

1/6 

 

1/5 

 

1/4 

 

1/3 

 

1/2 
1     2     3     4     5     6     7     8     9     

To achieve the 

stated objective, 

how important 

is a Steering 

Wheel, 

compared to the 

Radio/Sound 
System? 

                                * 

To achieve the 

stated objective, 

how important 

is a Steering 

Wheel, 

compared to a 

Rear View 

Mirror? 

                    *             

To achieve the 

stated objective, 

how important 

is a Steering 
Wheel, 

compared to the 

Engine? 

*                                 
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    Unimportant 
Equally 

Important 
Important 

  1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1     2     3     4     5     6     7     8     9     

To achieve the stated 

objective, how important 

is risk related to vessel 

navigational system 

compared to risk related 

to vessel operational 

system?  

                                  

To achieve the stated 

objective, how important 

is risk related to 

navigational system 

compared to risk related 

to weather? 

                 

To achieve the stated 

objective, how important 

is vessel navigational 

system compared to risk 

related to ice? 

                 

To achieve the stated 

objective, how important 

is vessel navigational 

system compared to risk 

related to human factor? 

                 

To achieve the stated 

objective, how important 

is risk related to vessel 

operational system 

compared to risk related 

to weather? 

                 

To achieve the stated 

objective, how important 

is risk related to vessel 

operational system 

compared to risk related 

to ice? 

                 

To achieve the stated 

objective, how important 

is risk related to vessel 

operational system 

compared to risk related 

to human factor? 
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    Unimportant 
Equally 

Important 
Important 

  1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1     2     3     4     5     6     7     8     9     

To achieve the stated 

objective, how important 

is risk related to weather 

compared to risk related 

to ice? 

                 

To achieve the stated 

objective, how important 

is risk related to weather 

compared to risk related 

to human factor? 

                 

To achieve the stated 

objective, how important 

is risk related to ice 

compared to risk related 

to human factor? 
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Appendix 4-1: The Questionnaire used for AHP-TOPSIS 

Technique in Chapter 5 
 

School of Engineering, Technology and Maritime Operations  
Liverpool John Moores University 

Byrom Street 

L3 3AF UK 

Phone : 07405734158 
Fax :  

Email : G.Asuelimen@2014.ljmu.ac.uk  

7 November 2018 

Survey Title: Advanced Risk Management of an Arctic Marine Seismic Survey Operation 

A research project at Liverpool John Moores University is currently being carried out with regards 

to the Arctic shipping safety, and it is specific on the Arctic Marine Seismic Survey Operation. 

This subject would become a critical topic in the maritime community internationally, due to the 

world's rising demand on natural oil and gas in untested environments such as the Arctic region. 

At the end of this research, a conceptual model would be generated that can be used by geologists 

and safety engineers to prevent and mitigate the risk putting in danger the safe Arctic Marine 

Seismic Survey Operation. To achieve the above aim, the research objective is as follows: 

1. To support the decision-making system by selecting the optimal measure/s to mitigate the risk 

of Ship-Ice Collision in Arctic Marine Seismic Survey Operation. 

Your vital feedback will greatly benefit and contribute to the formulation of an industry wide 

opinion. I can assure you that the confidentiality of your response will be honoured and respected.  

Any refusal or incomplete questionnaire will be excluded without any responsibility on the 

participant. Completion of the questionnaire will indicate your willingness to participate in this 

study. If you require additional information or have questions, please contact me at the above 

addresses. 

If you are not satisfied with the manner in which this study is being conducted, you may report 

any complaints to the LJMU-LOOM research centre with the link below: 

(https://www.ljmu.ac.uk/research/centres-and-institutes/faculty-of-engineering-and-technology-

research-institute/loom) 

Regards, 

Gregory Asuelimen 

PhD researcher, school of engineering, technology and maritime operations 

Liverpool Logistics Offshore and Marine Research Institute 

Room 2.23, LOOM Research Institute. 

 

mailto:G.Asuelimen@2014.ljmu.ac.uk
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Introduction to questionnaire 

The aim of this study is to support the decision-making model in order to select the appropriate 

Arctic Marine Seismic Survey Operation safety plan to optimise the operational efficiency. The 

most significant hazard events in the Arctic Marine Seismic Survey Operation safety level 

operations have been investigated both locally (for each individual hazard) and globally (for all 

hazard events combined collectively). As a result, the most critical hazard event capable of putting 

in danger an Arctic Marine Seismic Survey Operation is the “lack of situation awareness” due to 

human error. 

A number of alternatives or Risk Control Options (RCOs) have been determined in this research. 

All the RCOs criteria need to be measured by using AHP and TOPSIS techniques. This process 

is required to provide reliable data by identifying an expert opinion of each evaluation parameter. 

The procedures and guidelines for answering this set of questionnaire are given in Sections 1 and 

2 below: 

Section 1: Part A- Introduction 

The goal of this study is to determine which criteria have greater influence in causing the “lack 

of situation awareness” in Arctic Marine Seismic Survey Operation. The below risk criteria focus 

on preventing or reducing the risk of “lack of situation awareness” in Arctic Marine Seismic 

Survey Operation: 

1. Risk reduction 

2. Cost of implementing RCO (procurement and training costs) 

3. Duration of implementing RCO 

4. Implementation difficulty 

5. Financial benefit of risk reduction  

This part of the questionnaire consists of a Pair-wise Comparison of the five risk criteria 

mentioned above.  

To proceed with the Pair-wise Comparison technique, one should first understand the weighting 

measurement used in the study. Table 1 contains two weighting scales for “IMPORTANT” and 

“UNIMPORTANT”, along with an explanation of what each weighting denotes. 
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Table 1: Weighting scale for the Pairwise Comparison 

IMPORTANT UNIMPORTANT 

Numerical 

Weighting 
Explanation 

Numerical 

Weighting 
Explanation 

1 Equally important 1 Equally important 

3 A little important  1/3 
A little 

unimportant 

5 Important  1/5 Unimportant 

7 Very important  1/7 Very unimportant 

9 
Extremely 

important 
 1/9 

Extremely 

unimportant 

2, 4, 6, 8 
Intermediate 

important values 
1/2, 1/4, 1/6, 1/8, 

Intermediate 
unimportant 

values 

 

Using Table 1 as a reference, it is required that possible judgement to all questions is to be given 

based upon one’s expertise and experience in ship building, repairs and controls. The judgement 

provided should be focused on the objective presented for each section, and to do this please 

‘mark’ (+) the importance weighting of each general attribute or intermediate unwanted event in 

the presented column. The following is a brief example of how to apply Table 1. 

Objective: To select the most important elements of a car. 
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Explanation of the example: 

 The Steering Wheel is 9 times more IMPORTANT that the Radio/Sound System. This is 

because it is still possible to operate the car if the Radio/Sound System is not functioning. 

 The Steering Wheel is 3 times more IMPORTANT than the Rear View Mirror. This is 

because, while it is harder to operate a car without the rear view mirror, one can still navigate 

with the side mirrors and moving ones head to see traffic. 

 The Steering Wheel is 1/9 times more UNIMPORTANT that the Engine. This is because 

without the engine, the car would not function.

1) The Steering Wheel  

    Unimportant 
Equally 

Important 
Important 

   1/9  1/8  1/7  1/6  1/5  1/4  1/3  1/2 1     2     3     4     5     6     7     8     9     

To achieve the 

stated objective, 

how important is a 

Steering Wheel, 

compared to the 

Radio/Sound 

System? 

                                + 

To achieve the 

stated objective, 

how important is a 

Steering Wheel, 

compared to a Rear 

View Mirror? 

                    +             

To achieve the 

stated objective, 

how important is a 

Steering Wheel, 

compared to the 

Engine? 

+                                 
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Section 1: Part B - Pairwise Comparison   

Note: Your judgement should be centred on an average size (76.8m x 16m) polar class seismic 

vessel having approximately 40-crew unit. 

Objective: To select the most important criteria to control or mitigate the “lack of situation 

awareness” hazard event. 

    Unimportant 
Equally 

Important 
Important 

  1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1     2     3     4     5     6     7     8     9     

To achieve the 

stated objective, 

how important is 

risk reduction 

compared to cost 

of implementing 

RCO? 

                      

To achieve the 

stated objective, 

how important is 

risk reduction 

compared to 

duration of 

implementing 

RCO? 

                 

To achieve the 

stated objective, 

how important is 

risk reduction 

compared to 

implementation 

difficulty? 

                

 

 

 

 

 

 

To achieve the 

stated objective, 

how important is 

risk reduction 

compared to 

financial benefit of 

risk reduction? 

                 

To achieve the 

stated objective, 

how important is 

cost of 

implementing 

RCO compared to 

duration of 

implementing 

RCO? 

                 

To achieve the 

stated objective, 

how important is 

cost of 

implementing 

RCO compared to 
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    Unimportant 
Equally 

Important 
Important 

  1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1     2     3     4     5     6     7     8     9     

implantation 

difficulty? 

To achieve the 

stated objective, 

how important is 

cost of 

implementing 

RCO compared to 

financial benefit of 

risk reduction? 

                 

To achieve the 

stated objective, 

how important is 

duration of 

implementing 

RCO compared 

risk related to 

implementation 

difficulty? 

                 

To achieve the 

stated objective, 

how important is 

duration of 

implementing 

RCO compared to 

financial benefit of 

risk reduction? 

                 

To achieve the 

stated objective, 

how important is 

implementation 

difficulty 

compared to 

financial benefit of 

risk reduction? 

                 

 

Section 2: Part A- Introduction 

The goal of section 2 is to compare each of the five criteria mentioned above in section 1 with the 

identified alternatives or RCOs to reduce “situation awareness” hazard event in Marine Arctic 

Seismic Survey Operation (MASSO). The below alternatives or RCOs focus on reducing 

“situation awareness” hazard event: 

1. Training crew to improve knowledge and competence 

2. Teaching English language to improve communication  

3. Providing quality foods and exercise facilities to improve crew’s health and wellbeing 

4. Use of durable and readable material for on board information display 

5. Automating the operation of the vessel 

6. Provide physical barriers to restrict unintended access to important controllers 
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7. The design and installation of equipment should consider the user body size to avoid 

awkward posture 

8. Improved navigation and communication equipment 

9. Improved recruitment procedure 

10. Providing education in cultural awareness and cultural sensitivity training 

11. Assigning personnel to monitor roles and responsibilities of each crew 

12. Allocate resources for strategic planning 

13. Assign personnel to monitor work-load distribution 

14. Non-operational use of cell phone/ entertainment device 

15. Training of crew on how to react to rough weather situations 

 

Section 2: Part B- Questionnaire 

Select the most appropriate alternative or RCO that eliminates and/or mitigates the hazard of 

“situation awareness” during marine Arctic seismic survey operation. 

1. What would be the implementation difficulty if you decide to apply the following 

alternatives or RCOs? 

S/N Alternative or RCO Very 

Low 

Low Medium High Very 

High 

0 1 2 3 4 5 6 7 8 9 10 

1 Training to improve knowledge and 

competence 

           

2 Teaching English language to improve 

communication 

           

3 Providing quality foods and exercise 

facilities to improve crew’s health and 

wellbeing 

           

4 Use of durable and readable material 

for on board information display 

           

5 Automating the operation of the vessel            

6 Provide physical barriers to restrict 

unintended access to important 

controllers 

           

7 The design and installation of 

equipment should consider the user 

body size to avoid awkward posture 

 

           

8 Improved navigation and 

communication equipment 

           



303 
 

S/N Alternative or RCO Very 

Low 

Low Medium High Very 

High 

0 1 2 3 4 5 6 7 8 9 10 

9 Improved recruitment procedure 

 

           

10 Providing education in cultural 

awareness and cultural sensitivity 

training 

           

11 Assigning personnel to monitor roles 

and responsibilities of each crew 

           

12 Allocate resources for strategic 

planning 

           

13 Assign personnel to monitor work-

load distribution 

           

14 Non-operational use of cell phone/ 

entertainment device 

           

15 Training crew on how to react to rough 

weather situations 

           

 

2. What would be the cost of implementing the alternative or RCO/year if you decide to 

apply the following alternatives or RCOs? 

S/N Alternative or RCO Cost (£) S/N Alternatives Cost (£) 

1 Training to improve 

knowledge and competence 

 9 Improved recruitment 

procedure 

 

2 Teaching English language 

to improve communication 

 10 Providing education in 

cultural awareness and 

cultural sensitivity training 

 

3 Providing quality foods and 

exercise facilities to improve 

crew’s health and wellbeing 

 11 Assigning personnel to 

monitor roles and 

responsibilities of each crew 

 

4 Use of durable and readable 

material for on board 

information display 

 12 Allocate resources for 

strategic planning 

 

5 Automating the operation of 

the vessel 

 13 Assign personnel to monitor 

work-load distribution 

 



304 
 

S/N Alternative or RCO Cost (£) S/N Alternatives Cost (£) 

6 Provide physical barriers to 

restrict unintended access to 

important controllers 

 14 Non-operational use of cell 

phone/ entertainment device 

£5,000 

7 The design and installation 

of equipment should 

consider the user body size to 

avoid awkward posture 

 15 Training crew on how to 

react to rough weather 

situations 

£20,000 

8 Improved navigation and 

communication equipment 

    

 

3. What would be the duration of implementing the alternative or RCO if you decide to 

apply the following alternatives or RCOs? 

S/N Alternative or RCO Duration in 

months 

 Alternative or RCO Duration in months 

1 Training to improve 

knowledge and 

competence 

 14 Non-operational use of 

cell phone/ entertainment 

device 

 

2 Teaching English language 

to improve communication 

 15 Providing education in 

cultural awareness and 

cultural sensitivity 

training 

 

3 Providing quality foods 

and exercise facilities to 

improve crew’s health and 

wellbeing 

    

4 Use of durable and 

readable material for on 

board information display 

    

5 Automating the operation 

of the vessel 

    

6 Provide physical barriers 

to restrict unintended 

access to important 

controllers 

    

7 The design and installation 

of equipment should 

consider the user body size 

to avoid awkward posture 

    

8 Improved navigation and 

communication equipment 
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S/N Alternative or RCO Duration in 

months 

 Alternative or RCO Duration in months 

9 Improved recruitment 

procedure 

    

10 Providing education in 

cultural awareness and 

cultural sensitivity training 

    

11 Assigning personnel to 

monitor roles and 

responsibilities of each 

crew 

    

12 Allocate resources for 

strategic planning 

    

13 Assign personnel to 

monitor work-load 

distribution 

    

 

4. What would be the risk reduction if you decide to apply the following alternatives or 

RCOs? 

S/N Alternative or RCO Very 

Low % 

Low % Medium % High % Very 

High % 

0 10 20 30 40 50 60 70 80 90 100 

1 Training to improve 

knowledge and 

competence 

           

2 Teaching English 

language to improve 

communication 

           

3 Providing quality 

foods and exercise 

facilities to improve 

crew’s health and 

wellbeing 

           

4 Use of durable and 

readable material for 

on board 

information display 

           

5 Automating the 

operation of the 

vessel 
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S/N Alternative or RCO Very 

Low % 

Low % Medium % High % Very 

High % 

0 10 20 30 40 50 60 70 80 90 100 

6 Provide physical 

barriers to restrict 

unintended access to 

important 

controllers 

           

7 The design and 

installation of 

equipment should 

consider the user 

body size to avoid 

awkward posture 

           

8 Improved 

navigation and 

communication 

equipment 

           

9 Improved 

recruitment 

procedure 

           

10 Providing education 

in cultural 

awareness and 

cultural sensitivity 

training 

           

11 Assigning personnel 

to monitor roles and 

responsibilities of 

each crew 

           

12 Allocate resources 

for strategic 

planning 

           

13 Assign personnel to 

monitor work-load 

distribution 

           

14 Non-operational use 

of cell phone/ 

entertainment 

device 

           

15 Training crew on 

how to react to 
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S/N Alternative or RCO Very 

Low % 

Low % Medium % High % Very 

High % 

0 10 20 30 40 50 60 70 80 90 100 

rough weather 

situations 
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Appendix 4-2: Calculation of  𝐷2
+to  𝐷15

+ for fourteen RCOs in 

Chapter 5 
 

 𝐷2
+=√∑  (𝑉2𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉2,1 −  𝑉1
+)2 +  (𝑉2,2 −  𝑉2

+)2 +  (𝑉2,3 −  𝑉3
+)2 +  (𝑉2,4 −  𝑉4

+)2 +  (𝑉2,5 −  𝑉5
+)2 

= √ (0.0021 −  0.0004)2 +  (0.0443 −  0.0541)2 +  (0.1274 −  0.1556)2 +  (0.0265 −  0.0112 )2 +  (0.0073 −  0.0055)2 

= 0.0336 

 𝐷3
+=√∑  (𝑉3𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉3,1 −  𝑉1
+)2 +  (𝑉3,2 −  𝑉2

+)2 +  (𝑉3,3 −  𝑉3
+)2 +  (𝑉3,4 −  𝑉4

+)2 +  (𝑉3,5 −  𝑉5
+)2 

= √ (0.0183 −  0.0004)2 +  (0.0373 −  0.0541)2 +  (0.1074 −  0.1556)2 +  (0.0149 −  0.0112 )2 +  (0.0270 −  0.0055)2 

= 0.0583 

 𝐷4
+=√∑  (𝑉4𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉4,1 −  𝑉1
+)2 +  (𝑉4,2 −  𝑉2

+)2 +  (𝑉4,3 −  𝑉3
+)2 +  (𝑉4,4 −  𝑉4

+)2 +  (𝑉4,5 −  𝑉5
+)2 

= √ (0.0181 −  0.0004)2 +  (0.0376 −  0.0541)2 +  (0.1081 −  0.1556)2 +  (0.0332 −  0.0112 )2 +  (0.0145 −  0.0055)2 

= 0.0584 

 𝐷5
+=√∑  (𝑉5𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉5,1 −  𝑉5
+)2 +  (𝑉5,2 −  𝑉2

+)2 +  (𝑉5,3 −  𝑉3
+)2 +  (𝑉5,4 −  𝑉4

+)2 +  (𝑉5,5 −  𝑉5
+)2 

= √ (0.2180 −  0.0004)2 +  (0.0340 −  0.0541)2 +  (0.0977 −  0.1556)2 +  (0.0112 −  0.0112 )2 +  (0.0321 −  0.0055)2 

= 0.2276 
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 𝐷6
+=√∑  (𝑉6𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉6,1 −  𝑉1
+)2 +  (𝑉6,2 −  𝑉2

+)2 +  (𝑉6,3 −  𝑉3
+)2 +  (𝑉6,4 −  𝑉4

+)2 +  (𝑉6,5 −  𝑉5
+)2 

= √ (0.0022 −  0.0004)2 +  (0.0420 −  0.0541)2 +  (0.1208 −  0.1556)2 +  (0.0345 −  0.0112 )2 +  (0.0191 −  0.0055)2 

= 0.0457 

 

 𝐷7
+=√∑  (𝑉7𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉7,1 −  𝑉7
+)2 +  (𝑉7,2 −  𝑉2

+)2 +  (𝑉7,3 −  𝑉3
+)2 +  (𝑉7,4 −  𝑉4

+)2 +  (𝑉7,5 −  𝑉5
+)2 

= √ (0.0022 −  0.0004)2 +  (0.0541 −  0.0541)2 +  (0.0898 −  0.1556)2 +  (0.0280 −  0.0112 )2 +  (0.0055 −  0.0055)2 

= 0.0679 

 𝐷8
+=√∑  (𝑉8𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉8,1 −  𝑉8
+)2 +  (𝑉8,2 −  𝑉2

+)2 +  (𝑉8,3 −  𝑉3
+)2 +  (𝑉8,4 −  𝑉4

+)2 +  (𝑉8,5 −  𝑉5
+)2 

= √ (0.0089 −  0.0004)2 +  (0.0508 −  0.0541)2 +  (0.1461 −  0.1556)2 +  (0.0333 −  0.0112 )2 +  (0.0270 −  0.0055)2 

= 0.0335 

 𝐷9
+=√∑  (𝑉9𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉9,1 −  𝑉9
+)2 +  (𝑉9,2 −  𝑉2

+)2 +  (𝑉9,3 −  𝑉3
+)2 +  (𝑉9,4 −  𝑉4

+)2 +  (𝑉9,5 −  𝑉5
+)2 

= √ (0.0009 −  0.0004)2 +  (0.0430 −  0.0541)2 +  (0.1237 −  0.1556)2 +  (0.0172 −  0.0112 )2 +  (0.0093 −  0.0055)2 

= 0.0345 
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 𝐷10
+=√∑  (𝑉10𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉10,1 −  𝑉10
+)2 +  (𝑉10,2 −  𝑉2

+)2 +  (𝑉10,3 −  𝑉3
+)2 +  (𝑉10,4 −  𝑉4

+)2 +  (𝑉10,5 −  𝑉5
+)2 

= √ (0.0012 −  0.0004)2 +  (0.0316 −  0.0541)2 +  (0.0909 −  0.1556)2 +  (0.0120 −  0.0112 )2 +  (0.0078 −  0.0055)2 

= 0.0685 

 𝐷11
+=√∑  (𝑉11𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉11,1 −  𝑉11
+)2 +  (𝑉11,2 −  𝑉2

+)2 +  (𝑉11,3 −  𝑉3
+)2 +  (𝑉11,4 −  𝑉4

+)2 +  (𝑉11,5 −  𝑉5
+)2 

= √ (0.0056 −  0.0004)2 +  (0.0340 −  0.0541)2 +  (0.0977 −  0.1556)2 +  (0.0112 −  0.0112 )2 +  (0.0066 −  0.0055)2 

= 0.0615 

 𝐷12
+=√∑  (𝑉12𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉12,1 −  𝑉12
+)2 +  (𝑉12,2 −  𝑉2

+)2 +  (𝑉12,3 −  𝑉3
+)2 +  (𝑉12,4 −  𝑉4

+)2 +  (𝑉12,5 −  𝑉5
+)2 

= √ (0.0067 −  0.0004)2 +  (0.0418 −  0.0541)2 +  (0.1201 −  0.1556)2 +  (0.0322 −  0.0112 )2 +  (0.0073 −  0.0055)2 

= 0.0435 

 𝐷13
+=√∑  (𝑉13𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉13,1 −  𝑉13
+)2 +  (𝑉13,2 −  𝑉2

+)2 +  (𝑉13,3 −  𝑉3
+)2 +  (𝑉13,4 −  𝑉4

+)2 +  (𝑉13,5 −  𝑉5
+)2 

= √ (0.0041 −  0.0004)2 +  (0.0420 −  0.0541)2 +  (0.1208 −  0.1556)2 +  (0.0133 −  0.0112 )2 +  (0.0055 −  0.0055)2 

= 0.0371 

 𝐷14
+=√∑  (𝑉14𝑗 −  𝑉𝑗

+)2
5

𝑗=14
=

√ (𝑉14,1 −  𝑉1
+)2 +  (𝑉14,2 −  𝑉2

+)2 +  (𝑉14,3 −  𝑉3
+)2 +  (𝑉14,4 −  𝑉4

+)2 +  (𝑉14,5 −  𝑉5
+)2 
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= √ (0.0004 −  0.0004)2 +  (0.0359 −  0.0541)2 +  (0.1033 −  0.1556)2 +  (0.0113 −  0.0112 )2 +  (0.0055 −  0.0055)2 

= 0.0554 

 𝐷15
+=√∑  (𝑉15𝑗 −  𝑉𝑗

+)2
5

𝑗=1
=

√ (𝑉15,1 −  𝑉1
+)2 +  (𝑉15,2 −  𝑉2

+)2 +  (𝑉15,3 −  𝑉3
+)2 +  (𝑉15,4 −  𝑉4

+)2 +  (𝑉15,5 −  𝑉5
+)2 

= √ (0.0024 −  0.0004)2 +  (0.0512 −  0.0541)2 +  (0.1471 −  0.1556)2 +  (0.0247 −  0.0112 )2 +  (0.0093 −  0.0055)2 

= 0.0168 
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Appendix 4-3: Calculation of  𝐷2
−to  𝐷15

− for the fourteen RCOs 

in Chapter 5 
 

 𝐷2
−=√∑  (𝑉2𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉2,1 −  𝑉1
−)2 +  (𝑉2,2 −  𝑉2

−)2 +  (𝑉2,3 −  𝑉3
−)2 +  (𝑉2,4 −  𝑉4

−)2 +  (𝑉2,5 −  𝑉5
−)2 

= √ (0.0021 −  0.218 )2 +  (0.0443 −  0.0312)2 +  (0.1274 −  0.0898)2 +  (0.0265 −  0.0444 )2 +  (0.0073 −  0.0356 )2 

= 0.2221 

 𝐷3
−=√∑  (𝑉3𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉3,1 −  𝑉1
−)2 −  (𝑉3,2 −  𝑉2

−)2 −  (𝑉3,3 −  𝑉3
−)2 −  (𝑉3,4 −  𝑉4

−)2 −  (𝑉3,5 −  𝑉5
−)2 

= √ (0.0183 −  0.218 )2 +  (0.0373 −  0.0312)2 +  (0.1074 −  0.0898)2 +  (0.0149 −  0.0444 )2 +  (0.0270 −  0.0356 )2 

= 0.2029 

 𝐷4
−=√∑  (𝑉4𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉4,1 −  𝑉1
−)2 −  (𝑉4,2 −  𝑉2

−)2 −  (𝑉4,3 −  𝑉3
−)2 −  (𝑉4,4 −  𝑉4

−)2 −  (𝑉4,5 −  𝑉5
−)2 

= √ (0.0181 −  0.218 )2 +  (0.0376 −  0.0312)2 +  (0.1081 −  0.0898)2 +  (0.0332 −  0.0444 )2 +  (0.0145 −  0.0356 )2 

= 0.2023 

 𝐷5
−=√∑  (𝑉5𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉5,1 −  𝑉5
−)2 −  (𝑉5,2 −  𝑉2

−)2 −  (𝑉5,3 −  𝑉3
−)2 −  (𝑉5,4 −  𝑉4

−)2 −  (𝑉5,5 −  𝑉5
−)2 

= √ (0.2180 −  0.218 )2 +  (0.0340 −  0.0312)2 +  (0.0977 −  0.0898)2 +  (0.0444 −  0.0444 )2 +  (0.0321 −  0.0356 )2 

= 0.0091 
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 𝐷6
−=√∑  (𝑉6𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉6,1 −  𝑉1
−)2 −  (𝑉6,2 −  𝑉2

−)2 −  (𝑉6,3 −  𝑉3
−)2 −  (𝑉6,4 −  𝑉4

−)2 −  (𝑉6,5 −  𝑉5
−)2 

= √ (0.0022 −  0.218 )2 +  (0.0420 −  0.0312)2 +  (0.1208 −  0.0898)2 +  (0.0345 −  0.0444 )2 +  (0.0191 −  0.0356 )2 

= 0.2191 

 𝐷7
−=√∑  (𝑉7𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉7,1 −  𝑉7
−)2 −  (𝑉7,2 −  𝑉2

−)2 −  (𝑉7,3 −  𝑉3
−)2 −  (𝑉7,4 −  𝑉4

−)2 −  (𝑉7,5 −  𝑉5
−)2 

= √ (0.0022 −  0.218 )2 +  (0.0312 −  0.0312)2 +  (0.0898 −  0.0898)2 +  (0.0280 −  0.0444 )2 +  (0.0356 −  0.0356 )2 

= 0.2164 

 𝐷8
−=√∑  (𝑉8𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉8,1 −  𝑉8
−)2 −  (𝑉8,2 −  𝑉2

−)2 −  (𝑉8,3 −  𝑉3
−)2 −  (𝑉8,4 −  𝑉4

−)2 −  (𝑉8,5 −  𝑉5
−)2 

= √ (0.0089 −  0.218 )2 +  (0.0508 −  0.0312)2 +  (0.1461 −  0.0898)2 +  (0.0333 −  0.0444 )2 +  (0.0270 −  0.0356 )2 

= 0.2179 

 𝐷9
−=√∑  (𝑉9𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉9,1 −  𝑉9
−)2 −  (𝑉9,2 −  𝑉2

−)2 −  (𝑉9,3 −  𝑉3
−)2 −  (𝑉9,4 −  𝑉4

−)2 −  (𝑉9,5 −  𝑉5
−)2 

= √ (0.0009 −  0.218 )2 +  (0.0430 −  0.0312)2 +  (0.1237 −  0.0898)2 +  (0.0172 −  0.0444 )2 +  (0.0093 −  0.0356 )2 

= 0.2233 

 𝐷10
−=√∑  (𝑉10𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉10,1 −  𝑉10
−)2 −  (𝑉10,2 −  𝑉2

−)2 −  (𝑉10,3 −  𝑉3
−)2 −  (𝑉10,4 −  𝑉4

−)2 −  (𝑉10,5 −  𝑉5
−)2 

= √ (0.0012 −  0.218 )2 +  (0.0316 −  0.0312)2 +  (0.0909 −  0.0898)2 +  (0.0120 −  0.0444 )2 +  (0.0078 −  0.0356 )2 
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= 0.2210 

 𝐷11
−=√∑  (𝑉11𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉11,1 −  𝑉11
−)2 −  (𝑉11,2 −  𝑉2

−)2 −  (𝑉11,3 −  𝑉3
−)2 −  (𝑉11,4 −  𝑉4

−)2 −  (𝑉11,5 −  𝑉5
−)2 

= √ (0.0056 −  0.218 )2 +  (0.0340 −  0.0312)2 +  (0.0977 −  0.0898)2 +  (0.0444 −  0.0444 )2 +  (0.0066 −  0.0356 )2 

= 0.2145 

 𝐷12
−=√∑  (𝑉12𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉12,1 −  𝑉12
−)2 −  (𝑉12,2 −  𝑉2

−)2 −  (𝑉12,3 −  𝑉3
−)2 −  (𝑉12,4 −  𝑉4

−)2 −  (𝑉12,5 −  𝑉5
−)2 

= √ (0.0067 −  0.218 )2 +  (0.0418 −  0.0312)2 +  (0.1201 −  0.0898)2 +  (0.0322 −  0.0444 )2 +  (0.0073 −  0.0356 )2 

= 0.2159 

 𝐷13
−=√∑  (𝑉13𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉13,1 −  𝑉13
−)2 −  (𝑉13,2 −  𝑉2

−)2 −  (𝑉13,3 −  𝑉3
−)2 −  (𝑉13,4 −  𝑉4

−)2 −  (𝑉13,5 −  𝑉5
−)2 

= √ (0.0041 −  0.218 )2 +  (0.0420 −  0.0312)2 +  (0.1208 −  0.0898)2 +  (0.0133 −  0.0444 )2 +  (0.0356 −  0.0356 )2 

= 0.2186 

 𝐷14
−=√∑  (𝑉14𝑗 −  𝑉𝑗

−)2
5

𝑗=14
=

√ (𝑉14,1 −  𝑉1
−)2 −  (𝑉14,2 −  𝑉2

−)2 −  (𝑉14,3 −  𝑉3
−)2 −  (𝑉14,4 −  𝑉4

−)2 −  (𝑉14,5 −  𝑉5
−)2 

= √ (0.0004 −  0.218 )2 +  (0.0359 −  0.0312)2 +  (0.1033 −  0.0898)2 +  (0.0113 −  0.0444 )2 +  (0.0356 −  0.0356 )2 

= 0.2206 

 𝐷15
−=√∑  (𝑉15𝑗 −  𝑉𝑗

−)2
5

𝑗=1
=

√ (𝑉15,1 −  𝑉1
−)2 −  (𝑉15,2 −  𝑉2

−)2 −  (𝑉15,3 −  𝑉3
−)2 −  (𝑉15,4 −  𝑉4

−)2 −  (𝑉15,5 −  𝑉5
−)2 
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= √ (0.0024 −  0.218 )2 +  (0.0512 −  0.0312)2 +  (0.1471 −  0.0898)2 +  (0.0247 −  0.0444 )2 +  (0.0093 −  0.0356 )2 

= 0.2264  
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Appendix 4-4: Calculation of  𝑅𝐶2
+

 to  𝑅𝐶15
+

 in Chapter 5 
 

 𝑅𝐶2
+ = 

 𝐷2
−

 𝐷2
++  𝐷2

− = =  
0.2221

0.0336 + 0.2221
= 0.868596 

 𝑅𝐶3
+ = 

 𝐷3
−

 𝐷3
++  𝐷3

− = =  
0.2029

0.0583 + 0.2029
= 0.776799 

 𝑅𝐶4
+ = 

 𝐷4
−

 𝐷4
++  𝐷4

− = =  
0.2023

0.0584 + 0.2023
= 0.775988 

 𝑅𝐶5
+ = 

 𝐷5
−

 𝐷5
++  𝐷5

− = =  
0.0091

0.2276 + 0.0091
= 0.038445 

 𝑅𝐶6
+ = 

 𝐷6
−

 𝐷6
++  𝐷6

− = =  
0.2191

0.0457 + 0.2191
= 0.827417 

 𝑅𝐶7
+ = 

 𝐷7
−

 𝐷7
++  𝐷7

− = =  
0.2164

0.0679 + 0.2164
= 0.761168 

 𝑅𝐶8
+ = 

 𝐷8
−

 𝐷8
++  𝐷8

− = =  
0.2179

0.0335 + 0.2179
= 0.866746 

 𝑅𝐶9
+ = 

 𝐷9
−

 𝐷9
++  𝐷9

− = =  
0.2233

0.0345 + 0.2233
= 0.866175 

 𝑅𝐶10
+ =  

 𝐷10
−

 𝐷10
++  𝐷10

− = = 
0.2210

0.0685 + 0.2210
= 0.763385 

 𝑅𝐶11
+ =  

 𝐷11
−

 𝐷11
++  𝐷11

− = = 
0.2145

0.0615 + 0.2145
= 0.777174 

 𝑅𝐶12
+ =  

 𝐷12
−

 𝐷12
++  𝐷12

− = = 
0.2159

0.0435 + 0.2159
= 0.832305 

 𝑅𝐶13
+ =  

 𝐷13
−

 𝐷13
++  𝐷13

− = = 
0.2186

0.0371 + 0.2186
= 0.854908 

 𝑅𝐶14
+ =  

 𝐷14
−

 𝐷14
++  𝐷14

− = = 
0.2206

0.0554 + 0.2206
= 0.799275 

 𝑅𝐶15
+ =  

 𝐷15
−

 𝐷15
++  𝐷15

− = = 
0.2264

0.0168 + 0.2264
= 0.930921 
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