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Abstract

We present an analytical description of the motion in the singular loga-

rithmic potential of the form ® = In y/2%/b? + 23, a potential which plays
an important role in the modeling of triaxial systems (like elliptical galax-
ies) or bars in the centers of galaxy disks. In order to obtain information
about the motion near the singularity, we resort to McGehee -type trans-
formations and regularize the vector field. In the axis-symmetric case
(b = 1), we offer a complete description the global dynamics. In the non
axis-symmetric case (b < 1), we prove that all orbits, with the exception of
a negligible set, are centrophobic and retrieve numerically partial aspects
of the orbital structure.
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1 Introduction

The non axis-symmetric logarithmic potential plays an important role in galaxy
dynamics. In the three-dimensional space, the potential:

1’12

b2
(where (z1,x5) are the usual cylindrical coordinates 1 = z, o = R) models an
elliptical galaxy with a dense core of radius R. and with the additional property
of having a flat rotation curve at large radii [2]. In the 2D space, the logarithmic
potential can describe other non axis-symmetric components of galaxies, such as
bars in the centers of galaxy disks.

The study of the orbital structure of the logarithmic potential was initially
motivated by the need to construct self-consistent models of galaxies[I4]. Nu-
merical experiments have proven to be very useful in revealing the rich orbital
structure of this potential, including the major orbit families, the resonances and
the stochastic orbits. For example, in the axis-symmetric case (b = 1), the log-
arithmic potential has been shown to admit only loop orbits, which are regular
and avoid the origin. The non axis-symmetric (b < 1) potential admits two major
families of orbits: box (for p = VR? + 22 < R,) and loop orbits (for p > R,)
([M, [I1). Note that this behavior can be also be retrieved from the two simple
analytical approximations of the potential, one as a sum of two oscillators very
close to the origin and the other one as ~ In(p) at large distances [2].

An interesting change in the orbital behavior has been discovered when the po-
tential becomes singular. In their numerical study, Miralda-Escudé & Schwarzschild
[T0] have found that as R. — 0, a larger fraction of regular box orbits becomes
irregular or “box-like” (i.e. they will admit fewer integrals of motion than the
number of spatial dimensions), with the end result that, in the limit R, = 0,
all box orbits are irregular. The general interpretation of this result is that the
scattering by the singularity renders the box orbits unstable, a similar behavior

1
o = 5 In(R2 + + 57) (1.1)



to that observed in systems which contain a central black hole [6]. In addition,
the singular logarithmic potential admits several families of minor orbits, i.e.,
resonances in terms of the z5:x; frequency ratio: the banana (2:1), fish (3:2) and
pretzel (4:3) orbits [I0]. Numerical studies have also revealed the existence of
some stochastic orbits in a narrow region near the singularity ([10], [I5]). This
has led some to suggest a link between the scattering by the singularity and
the transition to chaos [3], although no rigorous proof has been given to date in
support of this hypothesis.

The present investigation is an analytical approach to the study of the orbital
dynamics (including the behavior near the singularity) in the case of the singular
logarithmic potential:

1 2
@ =2 m(%2 + 152), (1.2)
in both the axis-symmetric and non axis-symmetric cases. The aim of our work is
not only to complement the previous numerical studies performed on this subject,
but also to offer a theoretical basis for interpreting their results.

The main difficulty in investigating the system analytically is due to the pres-
ence of the singularity in the origin, which creates a discontinuity in the equations
of motion. This problem motivates the introduction of a change of coordinates
that regularizes the equations of motion. For this, we resort to McGehee-type
transformations [9], a technique that is frequently used in celestial mechanics for
the study of singularities in the n-body problem (n = 1,2,3,...). The underlying
idea behind this technique is to transform the equations of motions and the time,
such that the singularity is ”blown-up” into a non-trivial manifold (in our case
a torus). By studying the characteristics of the flow on this manifold, one can
extrapolate the information (by continuity with respect to the initial data) about
the orbital dynamics around the singularity [13].

The paper is organized as follows: Sections 2 and 3 provide a brief description
of our system, in terms of the equations of motion and the conservation of energy.
In Section 4, we remove the singularity by regularizing the equations of motion.
In Section 5, we provide a description of the collision manifold and the zero
velocity manifold, two abstract surfaces on which we can visualize the properties
of the flow close to the singularity and at the maximum distance from the source
allowed for a given energy, respectively. Section 6 presents the complete global
dynamics in the axis-symmetric case (b = 1). In Section 7, we extend the analysis
for the case of the non axis-symmetric potential (b # 1), in the restricted limit
in which the anysotropy is small. In this case, we prove theoretically that the
majority of orbits in this case are centrophobic (that is, they avoid the origin) —
a result that has been originally discovered in the numerical study of Miralda-
Escudé & Schwarzschild [I0] — and we discuss the orbital structure in terms of
orbits which preserve or change the sign of their angular momentum. Finally, in
Section 8, we show how several families of resonances can be retrieved through



the numerical integration of the new system of equations.

2 The Equations of Motion

The non axis-symmetric logarithmic problem is a one-parameter Hamiltonian
system with two degrees of freedom. The anisotropic logarithmic singular poten-
tial (L) determines a conservative system with a preserved Hamiltonian given
by:

2
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H(z1,2,91,92) = 5(%2 +4o%) + In( b—12 + 25%) (2.1)

where (21,22) € R3 — {(0,0)} are the generalized coordinates and (y1,y2) € R
are the momenta.

We start by writing the equations of motion in a form that contains the
anisotropy in the kinetic term rather than in the potential. Thus, we substitute
q1 = 33, @2 = T2, and p; = y1/b%, py = ys. Introducing the (standard) notations
for the generalized vector coordinate q = (¢i, ¢2), the generalized momenta p =

(p1,p2), the anisotropy parameter pu = 0 and the mass matrix
_(#n 0
v=(61),
the Hamiltonian writes:
L 7
H(q,p) = 5p" Mp +Inlq| (2.2)
and the anisotropic logarithmic problem is given as the first order system of
ordinary differential equations:
.
{ﬁl P (2.3
P=—_3
lql

When 1 = 1, the above system describes the motion in the axis-symmetric
logarithmic potential. From the point of view of Hamiltonian mechanics this
case is completely integrable, as we have the two integrals of motion given by the
conservation of the total energy and the total angular momentum. However, we
point out that for |q| — 0 the dynamical behavior becomes unknown since the
vector field (q, p) ceases to exist.

Let K be the kinetic energy,

L 7
K = 5P Mp, (2.4)
and V the potential,
V =Inlq]. (2.5)
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The total energy E is then:

H(q,p)=K+V. (2.6)

Since the system (23)) is Hamiltonian the total energy is conserved. That is
H(q, p) is constant along the solution curves of (23] and consequently the level
sets of H(q, p) are invariant under the flow. If h is a certain energy constant (i.e.
H(q,p) = h =constant) then the level set H(q,p) !(h) is a three-dimensional
surface usually called an energy surface, which we denote ¥.

3 'Topological Description of the Energy Sur-
faces

We want to consider in more detail the topology of various surfaces ¥, including
the orbits near the singularity. Let us fix h € R. Using a technique similar to
McGehee’s [9] we introduce the change of variables:

1
=re 2
{q re s (3.1)

p=,u
where r > 0, s is a point on the unit circle S! and u € R2. Our transformation
is a diffeomorphism from R2\ {(0,0)} x R? to (0,00) x S! x R? (where S* is the
unit circle) and can be understood as a passing to some unorthodox kind of polar

coordinates.
The system (3)) becomes:

(. T 17
7= le T 2er-23 Mu
§= —ei? [Mu — (s" M) -s]
7“21 ) (3.2)
u:eﬁ[ (STMH)~11—S}
7+ 2
\
and the conservation of energy transforms to:
1
§uTMu+r21nr—1 =h-rt (3.3)

Notice that the new system (B2) is analytic on the open manifold (0, 00) x
S! x R? and that the regions of motion are constrained by the energy relation
B3). More precisely, since the kinetic term in (B3)) is positive, we have that for
a fixed level of energy h:

hr* —r?Inr +1 > 0. (3.4)



Solving the above relation, it follows that 0 < r < Ry With Ryae = Rimae(h).
In other words the motion is always bounded for any fixed level of energy h.

Also, we can say that the energy surface X; projects onto a disc of radius R4
in R?\ (0,0). Since

1
§uTMu = hr? —r?lnr + 1 (3.5)

it follows that along the r = R,,.. boundary we have u = 0, that is the kinetic
term cancels. For this reason the curve

{T = Lmas (3.6)

u=0

is called the owal of zero velocity in ¥;,. In physical space, this curve represents
the outmost boundary of the orbital structure allowed for a given energy. We
will denote this curve by Z.

PROPOSITION 3.1 For any fixed level of energy h the energy surface X, is
diffeomorphic to an open solid torus (i.e. a solid torus minus its boundary).

Proof The proof follows closely the proof of Proposition 1.1 in [4]. Let B be the

interior of the ellipse
1

—u'Mu=1
2
in the plane. Clearly B is topologically equivalent to S' x (0, Ryaz] (r = 0
corresponds to the missing boundary of the ellipse). Then we define F : ¥ —
S! x B by

F(r;s,u) = (s,u).

F' is just the required diffeomorphism.

4 Regularization of the Vector Field

The objective of this section is twofold: to extend the energy relation to r = 0, and
to regularize system (B3) such that the new vector field becomes differentiable
over the entire interval r € [0, Ryaz]-

The energy relation ([B3) is ill defined at the singularity » = 0. However, the
function r2Inr can be continuously extended for r = 0 by:

r2Inr ifr>0:
- ' 4.1
/() {O ifr=0 (4.1)



The extended function (EJ]) is also differentiable over its domain. Therefore we
are able to extend the energy manifold by

%uTMu + f(r) —1=hr?, (4.2)
for all r € [0, Ryaz)-

Now we will introduce a sequence of transformations of the system (B2) such
that the new system will have no singularity at » = 0. Following the technique
introduced by McGehee [9], we want to paste an invariant manifold onto the
phase space, such that we close the open solid torus that bounds the motion, by
including its boundary » = 0. Also, in order to preserve the continuity of the flow
with respect to the initial data, we have to ensure that the transformed system
has a differentiable vector field. )

We implement a change of the time variable through do = —e2r2dt. This will
have the effect of decreasing the rate of the time intervals near the singularity.
Expressed in the new time derivative -, the system (B2) becomes:

¢ =—-45s"Mu
s = (s Mu)-s— Mu (4.3)
U =7%s — 5i5(s" Mu) - u]

We note that by the above sequence of reparametrizations we have obtained an
analytic vector field for (r,s,u) € [0, Rpaz] X S' x R?, which is coupled with a
differentiable integral relation given by (E2).

It follows from (E2) that each energy surface 3, meets the boundary r = 0
along a submanifold given by

L 7
gu Mu=1 (4.4)
s arbitrary.

This manifold, let us call it A, is diffeomorphic with a two-dimensional torus,
which we shall call the collision manifold. This fictitious torus has no meaning
in the physical space, since the motion ceases to exist in the origin. However,
the behavior of the orbits near the singularity can be extrapolated from similar
properties of the flow on the collision manifold. In this sense, we regard the
differential system of equations as a vector field on the manifold, its solutions
representing the flow.

Note that A is independent of the total energy and therefore we can say that
the time transformations we have applied have the effect of pasting an invariant
boundary onto each ;. Over this boundary the vector field is given by

{s = (s"Mu) - s — Mu (45)

u=0



The solid and now compact torus >, bounds all the orbits and by investigating
its properties, one can obtain a global picture of the motion, including the motion
near the singularity. We emphasize that the orbits of system ([Z3)) are the same
as the orbits of system (E3]), only the parametrization is different. Therefore,
any results concerning the solutions of the first system can be seen as results for
the solutions of the second, as long as one is aware of the fact that the rate at
which solutions move along the orbits is different.

Using the energy integral we can further reduce the dimension of the system.
For this, we express the coordinates (s,u) in terms of the new angle coordinates

6 and :

s = (cosf,sinf)

2 _ f(r Lcos sin
u=/2(hr f()+1)(\/ﬁ W, sin )

(4.6)

Also, in order to further simplify the system, we perform a similar time parametriza-
tion which incorporates a part of the radial dependence in a new time variable:

ds = \/2(hr? — f(r) + 1)do. (4.7)

In these variables, the system (E3]) becomes a first order system for (r,0,v) €
0, Rynaz] x S* x S! with a differentiable vector field:

3

r= _<7’2r+ 2)2(}”2 — f(r) + 1)(y/mcos O cos i) + sin fsin )

0 =2(hr? — f(r) + 1)(\/pecos 1) sin @ — sin v cos 6) (4.8)
) = r?(cos v sin 6§ — /psin b cos ).

Before discussing different aspects of the dynamics of the above system, we
make two more observations:
OBSERVATION (1) Up to this point, no reference was made to the angular
momentum integral. It is well known that in the axis-symmetric case (1 = 1), the
singular logarithmic system admits, besides the total energy, a second conserved
quantity, namely the angular momentum C' := gop; — ¢1p2. In terms of (r, 0, 1)
this reads:

C(s) = e_l/r22[hr2 — f(r) +1][/msinf cos v — cosOsiny], (4.9)

where s is the final time variable introduced in ().
Like the energy relation, C(s) is ill defined at the singularity. In an analogous

way, we extend the function e~/ continuously at r = 0 by defining the function:
eV ifr>0

r) = 4.10

9(r) {0 ifr=0 (4.10)



The angular momentum is now well defined and differentiable for all » > 0. For
the axis-symmetric case (u = 1), the law of conservation of angular momentum
ensures that:

ac
ds
and therefore we have the integral relation:

0 (4.11)

C(s) = g(r)2[hr® — f(r) + 1] sin(d — ¥) = const. (4.12)

In the anisotropic case (@ # 1) the above symmetry is lost. The anisotropy
is responsible for the much more complicated dynamics and, eventually, for the
existence of the chaotic motion. For later purposes, we write the variation of

angular momentum
ac
o (1 — p)pipe, (4.13)

in terms of the new variables and time:

i —1/r25\ _ L—p —1/r2 2 3/2
7 (e 9) = e " 2[hr* — f(r) 4+ 1]*“siny cos 1. (4.14)

OBSERVATION (2) The orbital dynamics of the system (.§]) does not depend
on the level of energy h. More precisely, each different but fixed h gives rise to
the same qualitative phase portrait. The only change is in the value of R, .., as
R4z depends directly on h. Therefore, without losing generality, and in order to
simplify the calculations, we choose from now on to work with h = 0.

5 The Collision Manifold and the Zero Velocity
Manifold

The flow on the invariant collision manifold A is given by imposing the restriction
r =0 to the system (ES):

{9 = 2(y/prcos 1P sin @ — sin ) cos ) (5.1)

b= 0.

We obtain a family of solutions v = 1)y = const, whereas the vector field van-
ishes along the deformed circles {(6, ¢) | ¥ = 1o, /1 cos g sin @ — sin g cos = 0}.
Notice that for ;4 = 1, the curves of equilibria transform into circles given by
{(0,¢) | =g, 0 =1y, 0 =7+ 1)p}. For the general case p # 1, let us denote
by C* the equilibrium curve that passes through # = ¢ = 0 and by C~ the curve
that passes through 6 = v = 7. It is immediate that C'" is a repeller and C~ is
an attractor. The dynamical behavior on the collision manifold A is illustrated
in Figure 1. Since ¢ = 0, the flow follows the parallel lines ¥ = vy = const.

9



Similarly, for r = R,,,, we obtain another invariant manifold €2 = €, for
(@), namely the manifold corresponding to the oval of zero velocity. Recall that
Rynaz is the value which cancels hr? +1 — f(r) =1 — f(r), (h is set to be zero).
The flow on 2 is given by:

f=0
{w = R2,,.(cosysin® — \/usiny cos 6). (5.2)

The dynamical behavior on the zero-velocity manifold is similar to that on the
collision manifold: the torus (r,0,1) € Ry x S* x S' that represents () is
covered by orbits parallel to 6 = 6y = const. There are again, two skewed circles
of equilibria, {(6,) |6 = 6y, costsinf — \/fsintpcosf = 0, }. Denoting by V+
the curve that passes through (0,0) and by V'~ the curve that passes through
(0,7), it follows that V' is an attractor and V'~ is a repeller (see Figure 2).

6 Global Dynamics of the Axis-Symmetric Sys-
tem (pu=1)

We return now the full system (L) and, taking into account that (at least in a
prime analysis) the anisotropy is given by values of u close to 1 but greater than
1, we define the parameter € := /i — 1 > 0, which we will later treat as a small
perturbation to the isotropic system. We also choose to work with the relative
angle ¢ := 0 — 1), instead of the angle #. Then, written in terms of € and (7, ¢, V)
and neglecting the terms of order € and higher, the system (fES) becomes:

(. /r,3
r =

—5 22(1 — f(r))[cos ¢ + ecos(p + ) cos ]

b= 21— £(r)) — 1] sinp+ 61)
—|'—e[2(1 — f(r)) cosapsin(p 4 1) + r*sin v cos(p + )]

Y = r?[sin ¢ — esin 1 cos(p + )]

In the absence of the small perturbation (e = 0), that is in the axis-symmetric
case 4 = 1, the above system reduces to:

\

3

= =521 = f(r) coso

7+ 2
@ =[2(1 — f(r)) — r?]sin ¢ (6.2)
Y =r’sin g

with (r, ¢, ) on the solid torus [0, Rya] X S' x S'. The equilibrium solutions
form two circles along ¢ = 0 and ¢ = 7 and are given by (0,0, %) and (0,7, 1))
where 1y can be any value in [0, 27].

10



There are four invariant manifolds:

- the collision manifold (at » = 0), on which the dynamics is given by:

iz 2

- the zero velocity manifold (at r = R4, ), on which we have:

@ = —R% singp (6.4)
V= Ry, sing ’
d
or just ﬁ =—1;
- the ”sin ¢ = 0” manifolds (when ¢ = 0 or ¢ = 7), with:
=20 (). i
r=—= 2(1— f(r)),ifp=0
rst2 (6.5)

7= mQ(l — f(r)), ifo =m.

Recall that in the unperturbed case the angular momentum is conserved. In
this case (see Observation 1):

C(s) =g(r)2(1 — f(r))singp = C = const, (6.6)
for all r € [0, Ryaz]- It is easy to see that
C':0<:>[rzOorr:Rmamorsing0:O}. (6.7)

In other words, the angular momentum is null (i.e. the motion is rectilinear)
if and only if the orbits are either on the collision manifold, or on the zero
velocity manifold, or connecting the two. From this perspective, we can denote
the surfaces "sin ¢ = 0” as manifolds of zero angular momentum. Thus we have:

PROPOSITION 6.1 In the axis-symmetric singular logarithmic problem the only
orbits reaching the collision are the rectilinear ones.

PROPOSITION 6.2 In the axis-symmetric singular logarithmic problem all orbits
with nonzero angular momentum are bounded, they do not fall/eject into/from
the source, and they do not reach maximum distance with respect to the source.

We return to the analysis of the unperturbed system (E2) and notice that the
system decouples in the sense that the first two equations are independent of .
Thus, if one solves the equations of r and ¢, then ¢ is obtained by replacing the

11



expressions for r and ¢ into the third equation and then integrating. Therefore,
a detailed qualitative analysis of the reduced system:

,,,3

—5 52(1 = f(r)) cosp, (6.8)
& =[201— f()) = r)sin

is extremely useful, as it may be extended to the full (7, ¢, 1) space by introducing
the third coordinate 1) at the end of our investigation.

The reduced system is relatively easy to describe. The motion takes place
on the cylinder [0, Ryq] X St. There are four degenerate saddle equilibria lo-
cated at (0,0), (0,7), (Rmaz,0), (Rmaz, ), and two centers at (Rp,7/2) and
(Ry,3m/2), where Ry is the solution of the equation 2(1 — f(r)) — r? = 0.
A direct computation shows that the eigenvalues for the centers are given by

Mo = +iR} \/2(R§ +2)/(Ro + 2). Also, there are four invariant manifolds {r =

0}, {r = Rz}, { = 0}, and {¢ = 7}, forming two heteroclinic cycles connect-
ing the saddle equilibria (see Figure 3).

P =

We now lift the dynamics from the (r,¢) phase space into the full (r, ¢, )
solid torus by taking into consideration the third 1) € S' coordinate, as well as the
dynamics on the collision manifold, zero velocity manifold and the ” sinp = 0”
zero angular momentum manifolds.

The global flow, which takes place in the solid torus [0, Rye.] X S* x S!, can
be seen in Figure 4 and is represented as follows:

- the outside boundary corresponds to the collision manifold {r = 0};

- the interior boundary corresponds to {r = R4, }. The centered circle of the
torus was "blown up” artificially to an inside torus such that the dynamics on
the zero velocity manifold can be seen (this is just a visual artifact and does not
modify the analysis);

- the motion takes place in between the exterior boundary {r = 0} and the
interior boundary {r = R4z };

- the surface of zero angular momentum ” sin ¢ = 0” divides the space into two
distinct global invariant manifolds: one corresponding to ¢ € (0,7) or, equiva-
lently, to motion with positive angular momentum (C' > 0), and one correspond-
ing to ¢ € (m,27) or simply, to C' < 0; the flow is symmetric with respect to the
horizontal plane C' = 0. In this latter plane, the physical motion is rectilinear
and represents orbits that are ejecting from the collision manifold, reaching the
maximum distance at the zero velocity manifold and falling back on the collision
manifold.

- there are two periodic orbits situated symmetrically with respect to the
horizontal plane (C' = 0), namely: {(r,p,¥)|r = Ry, p = 7/2, % = ¥, +
Rys; 8 >0, g = ¥(0)} and {(r,p,¥) |r = Ry, p = 31/2, ¥ = ¥, — Rys; s >
0, ¥ = ¥(0)}. Around those two periodic orbits, the phase-space is foliated by

12



tori-like surfaces, parametrized by the angular momentum integral (E0);
- the equilibria on the collision manifold are connected with the equilibria on
the zero velocity manifold, through heteroclinic cycles of the form:

a—b—c—d—e—f—9g—h—a,

where a = (0707w0)7 b = (Ovﬂ-uw(])u ¢ = (Rmamuﬂv¢0)7 d = (Rmawvoaw(] + 7T)7
€= (07 07 ¢0 +7T)7 f = (07 T, ¢0 +7T>7 g = (Rmama ™, ¢0 +7T) and h = (Rmamv 07 w(] +
27) = (Ruax, 0,10), for each fixed 1)y fixed in [0, 27| corresponding one cycle.

Let us look at the surfaces with positive values of the angular momentum,
C' > 0 (for negative C, by symmetry, the flow is identical but of opposite sense).
Since each value C' = const represents a tori-like surface, the space contains a
series of invariant manifolds nested one into the other. C' varies from 0 to a
maximal value corresponding to the degenerate torus r = Ry, i.e. a circle (see
Figure 5).

The dynamics will change as one shifts from the tori close to C' = 0 towards
the tori near the periodic orbit r = Ry. In the (i, ) plane, the orbits close to the
collision manifold {r = 0} have very large slopes dy/diy (for example, the orbits
on ¢ in Figure 5). The orbits close to the periodic orbit » = Ry have slopes close
to —1 (e.g. the orbits on ¢3 in Figure 5). In between, there is a smooth transition
in the values of the slopes (one has to keep in mind that the flow is continuous
and therefore orbits which are initially close have to stay close at all times).

For a fixed value of C or, in other words, for a fixed torus, the motion is
bounded between a minimum and a maximum value, which depend directly on
C'. We note that in the real physical space (1, 3), this translates into a bounded
motion between a minimum and a maximum value, representing a loop orbit. The
periodic solutions, (Ry,7/2,1) and (Rg,37/2,1), correspond to the two parent
families of the loop orbits, one counter-clockwise (C' > 0) and the other clockwise
(C < 0) [2]. We shall discuss the family of loop orbits in more detail in Sections
7 and 8.

7 Dynamics of the Non Axis-Symmetric System
(1 #1)

In this section, we proceed to investigate the general form of the non axis-
symmetric system (B). We will limit our analysis to the case in which the
anisotropy is small (1 ~ 1) and therefore we can treat it as a small perturbation
(e = /1t — 1> 0) to the isotropic system.

In the following, we derive the curves of equilibria on the collision manifold
and on the zero velocity manifold. We observe that these curves, located in the

13



horizontal plane (C' = 0), remain upon the perturbation within O(e) distance
of this plane. We then prove that most orbits in the perturbed case avoid the
origin, a result initially discovered in the numerical study of Miralda-Escudé &
Schwarzschild [T0]. For this, we show that the curves of equilibria on the collision
manifold are degenerate saddles, i.e. the equilibrium points on these curves
admit a 2D stable and a 2D unstable manifold. The implication is that, in the
three-dimensional space, the dimension of the set of initial conditions leading to
collision is two (i.e. the Lebesgue measure of the set is zero). In physical space
this translates into a zero probability of finding orbits falling into the source.

LEMMA 7.1 The equilibria of the vector field (61I) consists of four closed curves,
two belonging to the collision manifold and the other two to the zero velocity
manifold. The collision manifolds curves of equilibria are given by:

Cy:={(r,p,) | r =0, ¢ = arctan[(1 — €) tan )] — ¢, ¥ =1y € [0,27) }U

U(0,0,7/2) U (0,0, 3m/2) (7.1)

and

Co:={(r,p,0) |r =0, p =7+ arctan[(1 — €) tan )] — ¥, ¥ = 1)y € [0, 2m) }U

u(0, 7, 7/2) U (0,7, 3m1/2). (7.2)

The curves of equilibria on the zero velocity manifold are given by:

Zy ={(r,0,¥) | r = Rz, ¢ = arctan[(1 + €) tan ] — ¢, ¥ =1y € [0,27) }U

(Rimaz, 0,7/2) U (Rmaz, 0,37/2), (7.3)

and

Zy = {(r,0,¥) | 7 = Rz, © = m+arctan[(1+4€) tan )] — b, ¥ =g € [0,27) U

(Rmaz, ™, 7/2) U (Rpae, T, 37/2). (7.4)

PROOF The proof follows by inspection. One can verify directly that the two
families of curves cancel the vector field. To see that there are no other equilibria,
suppose 7 # 0 and 7 # R,,q.. Then 7 =0 and ¢ = 0 lead to

(1+€)cos(p + 1) cost) = —sin(p + ) siny
(14 ¢€) cos(p + ) sinty = sin(p + 1) cos 1.
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It is easy to check that the above relations cannot coexist.
OBSERVATION 7.2 (4 and Cy are within O(e) distance of the circles

{(r,o,0) |1 =0, =0, ¢ = € [0,27) }

and respectively,

{(7’7%1?)‘7":07 p=Tm, w:¢0€ [0,271') }

Also, on the zero velocity manifold, Z; and Z, are within O(e) distance of the
circles

{(Tv(paw>‘T:Rmam 90:0, w:wo c [0,27’(’)}
and
{(T,@,¢)|T:Rmam, Y =T, ¢:¢0 c [0,27’(’) },

respectively.

LEMMA 7.3 The curves of equilibria Z; and Z; on the zero velocity manifold
are degenerate saddles (see Figure 6). More precisely, for a fixed 1y, the two
corresponding equilibria

(Rma:vv arctan[(l + 6) tan ¢0] - ¢07 7pO) S Zl

and
(Romaz, ™+ arctan[(1 + €) tan vg] — 1o, o) € Za

behave like saddles in the (r, ) plane.

PROOF Recall from Section 6 that on the zero velocity manifold the flow is
degenerate and in the (¢, 1) coordinates it reads:

p = =R} [sin(@ + ) costp — (1 + €) cos(p + ) sin )],
) = Riglsin(p + ) cos ) — (1+€) cos(p + ) sin ¢,

By symmetry, it is sufficient to study the flow around one of the curves of
equilibria, let’s say Z; (around Zs we just have to reverse the arrows). For
simplicity, for a fixed vy, we denote the ¢ component of an equilibria by ¢z (),
i.e. wz(1hy) = arctan[(1 + €) tanyy] — 1y. Observe that (Ruaz, ©z(10), o) are
simple roots for 7 and ¢. Computing the eigenvalues at (Raz, pz(¥0), v0), we
obtain:

M = — s ( - Qf/(Rmax)) [ cos p7(1ho) + € cos(pz (o) + o) cos ]

max

Ay = —2c¢0s (z(th) + o) cos by — esin (¢z (o) + o) sin g
Ay = 0.
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Recall that vy is fixed in [0, 7/2]. If ¥y = 7/2, we obtain pz(1y) = p(7/2) =0
and

A= B (opp g
r T R?n/am—'—2 max )
Ap = —€ <0,

Ay = 0.
Therefore (Ryaz, 0,7/2) is a degenerate saddle. If ¢y € [0, 7/2), we have:

( R3
Ar = = (L4 ) 2 (<2 () = Wf(ff;ﬁ o),
cos (¢z(vo) + o)

A, = —(2cos® g + esin® ¢y)
(A =0,

cos g ’

Since 1y € [0,7/2) and @z (1) = arctan|[(1 + €)tantyg| — 1, it results that
0z (o) + 1o € [0,7/2) and furthermore, cos (gpz(@bo) +wo) > (. Therefore \, > 0
and A\, < 0.

The other cases where ¢y € (7/2,7) U [7,37/2] U (37/2,27) can be treated
similarly, reaching the same conclusion, i.e. the equilibria points Z; are all de-
generate saddles, with:

Ar > 0,
Ay <0,
Ay = 0.

LEMMA 7.4 The curves of equilibria C; and C on the collision manifold are
degenerate saddles (see Figure 6). More precisely, for a fixed 1)y, the two corre-
sponding equilibria

(0, arctan[(1 — €) tan ¢g] — o, o),
(0, + arctan[(1 — €) tan | — 1o, ¥o)

behave like degenerate saddles.

PROOF The equations of the flow on the collision manifold are

b =0

As in the previous proof, it is sufficient to investigate the flow around the
equilibria curve €} (around Cy, by symmetry, we just have to reverse the ar-
rows). Fixing ¢y € [0,27), we denote the corresponding fixed point on C; by

{@ = 2[(1 + ¢€) sin(p + ¥) cosp — cos(y + ) sin ]
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(0, (), o) and proceed to calculate its eigenvalues. We obtain:

A =0,
Ap =2 [(1 + €) cos (e (o) + o) cos g + sin (e (1) + o) sin @Do} :
Ay = 0.

We observe that the vector field (61]) manifests a degeneracy around r = 0. This
means that any fixed point on the curve C; might have a non-hyperbolic character
in the (7, ¢) plane. For the moment, let us discuss the sign of A,. Similar to the
analysis in the case of the curve Z;, we fix ¢ € [0,7/2]. If )y = 7/2, we have
wc(m/2) = 0 and therefore A\, =2 > 0. If ¢y € [0, 7/2), we obtain:

sin (o)
(pc(1ho) + o)

Since (pc(1g)+1o) = arctan [(1—€) tanvy] € (0,7/2), it follows that sin(pc (1) +
¢0) > 0 and therefore A, > 0. The same type of reasoning applies for all the other
cases, i.e. for vy € (w/2,7) U [r,37/2] U (37/2,27). Therefore we have proved
that A, > 0 for any fixed 1 € [0, 27).

In conclusion, the flow around the equilibria (0, pc (), 1) € C is degener-
ate, with eigenvalues:

A, =

A =0
Ap >0
Ay = 0.

Obviously, the linear approximation of the flow does not provide enough in-
formation about the behavior around the fixed points. Let us take a closer look
at the vector field around (0, oc(10g), o) € Ci.

Notice that on the 1 direction the flow is null, as every point on the circle
¥ € [0,2m) is a parameter for a fixed point. It remains that in order to describe
the asymptotical behavior around (0, pc (1), ¥0), one has to investigate the flow
in the (r,¢) coordinates. A, = 0 generates the center manifold £ —the span
of the zero eigenvector ([7], [I6]). The general theory ensures the existence of
an invariant manifold W€ tangent to E¢ at (7, vc(1o)). W° may not be unique
and, usually, it involves a loss of smoothness. Also, around the fixed point, W€ is
described by a one-parameter family of curves, i.e. W, = {(r,¢) | v = ¢3(r), [ €
R}.

In our case, we will compute W€ directly near (r, pc(vy)), as follows (see
for example, [§]): We know that by a proper transformation of coordinates the
equations for (r, ) have the structure

7”3

— 21— S Fi(p. i) -
b= Mol — po(W)) + ...

r =
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Near r = 0, we can make the approximation:

73

1 9 B
mzu —f(r) = 7«35(1 +r2/2+4..02(1 = f(r)) = (7.6)
=13 + higher order terms

(note that we are not expanding f(r), a function that is only differentiable, but
we are merely looking for the dominant term as r goes to zero). Therefore, around

(r, oc(1ho)) we have:

@:A@(QO_SOC(IPO))‘F---a

where a := Fi(pc(10),%0; €) is a positive number. We obtain immediately that:

{7’: _ar3—|—..., (77)

dr ar3
o~ (e poln) (78)

with solutions: o 20?)
) BetertEr ifr>0

where [ € R is a parameter.
We sketch the family of solutions ¢g(r) in Figure 7. As it can be easily seen,
the fixed point (0, pc (1)) is indeed a saddle.

Since the above reasoning applies for any of the points of equilibria, and using
the Lemmas 7.1 and 7.3, we can state the following:

THEOREM 7.5 Let be the system (E1). Then the equilibria are given by the
curves (', Cy Z7 and Z,, as defined in Lemma 7.1, and each of this curves admits
a two-dimensional stable manifold and a two-dimensional unstable manifold.

COROLLARY 7.6 In the anisotropic logarithmic problem the Lebesgue measure
of the set of initial conditions that lead to collision is zero.

The last result states that in the phase space the probability of choosing any
initial conditions that lead to collision is zero. The set of such initial conditions
is formed by a two-dimensional manifold embedded in a three-dimensional phase
space. Since we reach a similar conclusion in the isotropic case, we can conclude
that for the singular logarithmic potential the anisotropy does not increase the
probability of finding orbits falling into the source. In other words, we have proved
analytically that in the non axis-symmetric case all orbits (with the exception
of a set with measure zero) are centrophobic, a result that was also noticed in
previous numerical studies [T0].
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We turn our attention now to the behavior of the angular momentum C'(s).
Recall that C(s) was given in ([Ed). For h = 0 and in terms of € and (r, p, ),
the relation (E9)) becomes:

C(s) =g(r)2[1 — f(r)] [(1 + €)sin (¢ + ) costh — cos(p + V) sinw]. (7.10)

We note that under the perturbation, the horizontal surface C' = 0 (see Figure
4) splits up, and some of its vestiges are to be found along the two-dimensional
stable manifold of €} and along the unstable manifold of C5. In physical space,
this corresponds to the case of rectilinear orbits (C=0), which are falling into or
ejecting from the source.

The variation of angular momentum (fLI4]) reads in our coordinates:

dc = —eg(r)2[1 — f(r)]*/*sin 1) cos1p. (7.11)

ds

Since the derivative of C' is bounded, there are no ”blow-up” type effects in
the evolution of C. Also, since the product g(r) - 2[1 — f(r)] is always positive, it
follows that the critical points of C(s) correspond to ¥ € {0,7/2,7,37/2} (see
Figure 8). These orbits, for which C(s) displays a sinusoidal-type behavior and
admits four critical points, represent the family of loop orbits (see also a similar
result in the study of Touma & Tremaine [T5]).

On the other hand, there are orbits which, under perturbation, will slip in
between the stable manifold of C; and the unstable manifold of C5, switching
the sign of the angular momentum. By the nature of the phase-space, which is
a solid torus, these orbits must wind around indefinitely. These orbits pertain to
the family of "boxlet” orbits discovered by Miralda-Escudé & Schwarzschild [I0].
For large perturbations, more and more orbits will break away from the curves of
equilibria C; and Cs, and become boxlet, a result which was also pointed out in
[T0]. The separatrix that divides the phase-space between loop and boxlet orbits
intersects the (C' = 0) plane at ¢ = 7/2 and ¢ = 37/2 (see [15]). Some of the
orbits that wind up inside the torus will eventually close, becoming the parent
orbits of the resonant families (i.e. banana, fish, pretzel, etc) [10].

We do not present here a rigorous proof for the existence of the boxlet obits or
the resonances, leaving it for a future study. However, we present below a partial
result concerning the orbits which preserve the sign of the angular momentum.

Let us notice that the angular momentum can be regarded as a function of
two arguments, namely as C' = C(s, €). Then, around the equilibrium point (s, 0),
we have the following approximation:

C(s,e) = C(s,0) + e% + O(e?) (7.12)
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or, in our coordinates,
C(s,€) = C(s,0) + eg(r)2[1 — f(r)]sin (¢ + 1) cos . (7.13)

But C(s,0) is a constant, since this is the case of the unperturbed motion, where
the angular momentum is an integral of motion. Denoting Cy := C(s,0), it
follows that:

C(s,e) = Co+ eg(r)2[1 — f(r)]sin(p + ¢) cos . (7.14)

Since €g(r)2[1 — f(r)]sin (¢ + ) cos ¢ is bounded, we conclude that C(s) pre-
serves its sign for large values of Cy and small e. This is best noticed near the
unperturbed periodic orbits, for example, (r,¢,v) = (R, 7/2,%), ¥ € [0,27),
where Cy = e~V Rg?(l — R2In Ry) and where the perturbation induces loop or-
bits (see Figure 9).

8 The Orbital Structure

The orbital structure can also be retrieved numerically, by integrating the general

form of the system (E1I). The return to the initial coordinates in the physical

space, (x1,xs), can then be made through the relations:

w1 =qi/p=(1/p) - e cos(p + ) ®.1)
7y = @2 = reCY ™ sin(p + ), ’

and recalling that the time scale was modified such that both the singularity and
the zero velocity manifold are now reached in an infinite time.

By appropriately choosing the initial conditions and recalling that € = \/p —
1 =1/b—1, one can retrieve the resonance families. For example, we know that
the family of loop orbits (1:1) develops around the two periodic orbits r = Ry
(see Figure 4), i.e. near:

zy = (1/p) - reCY™) cos(m/2 + 1),

2y = e sin( /2 + ), (8.2)
¥ = Rgs + .

and
z1 = (1/p) - e~V cos(3m/2 + 1),
2y = eV sin(3m /2 + ), (8.3)
1 = —RZ%s + .

The two periodic orbits correspond to the two parent orbits of the loop family,
one evolving clockwise (C' < 0), the other counter-clockwise (C' > 0). Integrating
the system (G1I) for the case € = 0, around either (Ry, 7/2,1) or (Ry,3m/2,1),
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one retrieves a circle of radius Ry, as indicated with thick line in Figure 9. The
same figure shows, with dotted line, the orbital structure in the vicinity of the
parent orbit for the case when € = 0.1 (corresponding to b = 0.9).

Besides the loop resonance, several other resonances can be recovered from
the new system of differential equations. We remark that under large pertur-
bations (i.e. large deviations from axis-symmetry), the families of minor orbits
will occupy more and more of the phase-space. We do not attempt here to cover
the entire phase-space, but rather give a few examples of families of minor orbits
found with our new system of equations. For example, Figure 10 shows an exam-
ple of an orbit around the fish (3:2) resonance, in the case ¢ = 0.3 (corresponding
to b = 0.7) and the initial conditions r = 0.9, ¢ = 7/12 and ¢ = /8. Figure 11
shows an orbit around the pretzel (4:3) resonance, when ¢ = 0.1 and r = 0.45,
v =0, ¢ = w/14. Figure 12 shows an orbit near the (5:3) resonance, obtained for
e=03,7r=04, p =x/12, ¢ = w/6. We note however, that these parameters
should be taken only as a guidance for the location of the resonances.

9 Conclusions

Previous numerical studies have revealed several important aspects of the orbital
structure of the logarithmic potential: the division between loop and box orbits,
the presence of resonances, the scattering effect of the singularity (which renders
the box orbits unstable), and the transition to chaos. We have performed an
analytical study of the singular logarithmic potential and proved several of these
results.

We summarize our results as follows:

- we provide a description of the dynamics near the singularity and at the
maximum distance from the source permitted for a given level of energy.

- in the axis-symmetric case, we retrieve the complete global dynamics of the
orbits and describe it on a solid torus bounded by the two surfaces {r = 0}
and {r = Ry }. We find analytically the two periodic orbits r = Ry, which
correspond in physical space to the two parent families of the loop orbits (in
clockwise and respectively, in counter-clockwise motion).

- in the non axis-symmetric case, we prove that all orbits, except a negligible
set, are centrophobic —a result that has been originally discovered in the numerical
study of Miralda-Escudé & Schwarzschild [I0].

- in the same non axis-symmetric case, we show that there exist orbits which
preserve the sign of the angular momentum and retrieve the loop resonance.
Finally, we also show how several other minor family orbits can be obtained from
the our new system of equations.

The analytical description in general non axis-symmetric case remains still
open, several problems requiring further investigation. One of them is the re-
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trieval of the family of boxlet orbits, which are known to dominate the dynamics
near the singularity [I0]. We conclude, however, that under large perturbations
(large deviations from axis-symmetry), most of the phase space is occupied by
orbits that slip in between the stable manifold of C'; and the unstable manifold
of Cy and wind around indefinitely. Most of these orbits pertain to the family of
the boxlet orbits. Some of these winding orbits may be closed and would lie at
the origin of the resonant families observed experimentally. Further work in this
direction will have to include an in-depth analysis of resonances in the (z1,xs)
variables and a Fourier expansion of the periodic solutions for r(s).

Another aspect that remains to be clarified is the existence of the stochastic
orbits near the singularity and the transition to chaos. The analytical study in
this case is hindered by the fact that the system given by the Hamiltonian (E1I)
does not admit any hyperbolic equilibrium points, and therefore, the perturbative
methods which are usually employed in proving the existence of chaos (including
the Melnikov method [9]) become unapplicable. We note that the Melnikov
method has been used in the past in the case of the logarithmic potential [B],
however not on the exact Hamiltonian, but on the integrable Stackel Hamiltonian
[T2]. Understanding the onset of chaos in the singular logarithmic potential is a
very important problem for the construction of galaxy models based on libraries
of orbits (see for example, [T4]) - in which generally, it is a priori assumed that
the stochastic orbits play a negligible role.
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Figure 1: On the collision manifold, the flow follows the parallel lines 1) = 1)y =
const. The flow vanishes on the equilibrium curves C* and C~.

Figure 2: On the zero velocity manifold, the flow follows the parallel lines 8 = 6y =
const. The flow vanishes on the equilibrium curves V' and V.

Figure 3: The reduced phase-space (r, ¢) in the case y = 1. There are six equilibrium
points: two centers, (Rg,7/2) and (R, 37/2), and four saddle equilibria, (0,0), (0, ),
(Rmaxa 0)7 (Rma:w 7T)’

Figure 4: The global flow in the axis-symmetric case (u = 1), described in a solid
torus delineated by the two surfaces {r = 0} and {r = R4, }. The full lines denote
the heteroclinic cycle for the case 19 = 0. The horizontal plane (C' = 0) divides the
phase-space in two symmetric invariant subspaces (see text for details).

Figure 5: Section on the Solid Torus at 1 = 1y. Around the two periodic orbits
r = Ry, the phase-space is foliated by tori-like surfaces of constant angular momentum,
C.

Figure 6: The curves of equilibria Z; and C, located on the collision manifold and
on the zero-velocity manifold, respectively. Each equilibrium point on these two curves
behaves like a degenerate saddle.

Figure 7: Curves in the g(r) family around the saddle point (0, ¢ (%0))-

Figure 8: The curves of equilibria C1, Cy, Z1, Z> under the perturbation e. The
arrows show the behavior of the flow in their neighborhood. The manifolds C7 and C5
intersect transversely along the lines sin = 0 and cos ¢ = 0.

Figure 9: The circle = Ry (thick line) represents one of the parent families of
loop orbits. The dotted line shows the orbital structure that is triggered by applying
a perturbation (e = 0.1), to the periodic orbit (shown here is the integration only over
a finite time).

Figure 10: Orbit around the fish (3:2) resonance.

Figure 11: Orbit around the pretzel (4:3) resonance.

Figure 12: Orbit around the (5:3) resonance.
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