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ABSTRACT
By comparing the properties of red supergiant (RSG) supernova (SN) progenitors to those of
field RSGs, it has been claimed that there is an absence of progenitors with luminosities L
above log (L/L�) > 5.2. This is in tension with the empirical upper luminosity limit of RSGs
at log (L/L�) = 5.5, a result known as the ‘RSG problem’. This has been interpreted as an
evidence for an upper mass threshold for the formation of black holes. In this paper, we compare
the observed luminosities of RSG SN progenitors with the observed RSG L-distribution in the
Magellanic Clouds. Our results indicate that the absence of bright SN II-P/L progenitors in
this sample can be explained at least in part by the steepness of the L-distribution and a small
sample size, and that the statistical significance of the RSG problem is between 1σ and 2σ .
Secondly, we model the luminosity distribution of II-P/L progenitors as a simple power law
with an upper and lower cut-off, and find an upper luminosity limit of log(Lhi/L�) = 5.20+0.17

−0.11

(68 per cent confidence), though this increases to ∼5.3 if one fixes the power-law slope to be
that expected from theoretical arguments. Again, the results point to the significance of the
RSG problem being within ∼2σ . Under the assumption that all progenitors are the result of
single-star evolution, this corresponds to an upper mass limit for the parent distribution of
Mhi = 19.2 M�, ±1.3 M�(systematic), +4.5

−2.3 M� (random; 68 per cent confidence limits).

Key words: stars: evolution – stars: massive – supergiants.

1 IN T RO D U C T I O N

Linking supernovae (SNe) to their progenitor stars is a powerful
test of stellar evolutionary theory. The first SN for which this
was possible, SN1987A, famously threw up the surprise of a blue
progenitor (Gilmozzi et al. 1987; Sonneborn, Altner & Kirshner
1987; Walborn et al. 1987), whereas theory at the time predicted
that such a star would explode as a red supergiant (RSG). Since then,
it has been realized that SN1987A-like events are relatively rare,
that SN1987A’s progenitor likely had a complicated evolutionary
history (e.g. Podsiadlowski 1992), and in fact the most common
H-rich SNe (classified as either II-P or II-L) do indeed have red
progenitors (Smartt et al. 2009).

Beyond simply predicting the correct colour, one can also
look at the luminosity distribution of II-P/L progenitors and test
theoretical predictions by comparing to the expectations from
population synthesis. Exclusively until now, such comparisons have
involved converting the pre-explosion luminosities Lfin into initial
masses Minit using stellar models, then comparing the inferred Minit

� E-mail: b.davies@ljmu.ac.uk
†Hubble Fellow.

distribution to a Salpeter initial mass function (IMF) with an upper
and lower mass cut-off (Smartt et al. 2009; Smartt 2015; Davies &
Beasor 2018). In the first study of this kind, Smartt et al. (2009,
hereafter S09) determined an upper mass cut-off for the progenitors
of SNe II-P of Mmax = 16 M�. Since evolutionary models at the
time had stars with initial masses of up to 30 M� dying as RSGs,
this tension – and the fate of stars with Minit between 16 and 30 M�
– was termed the ‘RSG problem’. The result has received a great
deal of attention in the literature, due at least in part to the fact that
this possible upper mass cut-off resonates with contemporaneous
numerical work. Specifically, several independent authors have
found that the likelihood of forming a black hole at core collapse
increases dramatically above masses of 16–20 M� (O’Connor &
Ott 2011; Horiuchi et al. 2014; Ertl et al. 2016; Müller et al.
2016; Sukhbold, Woosley & Heger 2018), due to the transition
from convective to radiative core carbon burning near the end of the
star’s life (Sukhbold & Adams 2019).

After the initial study by S09, a larger sample of progenitors
was used by Smartt (2015, hereafter S15) to revise the value of
Mmax upwards to 17 M�. Further, Davies & Beasor (2018, hereafter
DB18) later revisited the complexities of converting a pre-explosion
brightness to bolometric luminosity Lfin, and the conversion of Lfin

to Minit, as well as other sources of systematic errors, and argued that
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Mmax was 21 M� once systematic errors had been taken into account,
but with a 1σ upper error bar that extended up to 30 M�. The
conclusion of DB18 was therefore that the evidence for a population
of ‘missing’ stars had only a minor statistical significance.

The studies of the RSG problem mentioned above (S09, S15,
DB18) tended to work in the mass plane; that is, they infer initial
masses for the progenitors, then compare these masses to the
expectation of a stellar IMF and a constant star formation rate. The
RSG problem itself describes the tension between the inferred value
of Mmax (16–21 M�) and its expectation value, commonly quoted as
being 30 M�. Before continuing, it is worth emphasizing that this
expected value of Mmax is not a theoretical prediction; rather, it is
the observed maximum luminosity of RSGs Lmax, also known as the
Humphreys–Davidson Limit (H–D limit; Humphreys & Davidson
1979), converted to an initial mass. The first measurements of the
H–D limit placed it at log (Lmax/L�) = 5.8. This has subsequently
been revised downwards to log (Lmax/L�) = 5.5 in the Magellanic
Clouds (Davies, Crowther & Beasor 2018, hereafter DCB18); and,
as we will show in this paper, Lmax appears to be the same in
the Milky Way. The value of Mmax is then simply the initial mass
of the evolutionary track that terminates in the RSG phase with
L = Lmax. According to the STARS evolutionary tracks used in S09,
this corresponds to an initial mass of 27 M�, which is the basis for
the expectation value of ∼30 M� quoted in reference to the RSG
problem.

Alternative techniques to study progenitor masses to SN IIP
have been explored, but do not yet provide any additional reliable
information. SN light curves have been modelled by several authors
(e.g. Bersten, Benvenuto & Hamuy 2011; Utrobin & Chugai 2017;
Morozova, Piro & Valenti 2018), the shape and duration of that
should yield information on the ejecta mass, which in turn should
be related to the stellar initial mass. However, it has been shown
that large degeneracies exist in the model parameter space that are
difficult to break (Dessart & Hillier 2019; Goldberg, Bildsten &
Paxton 2019). The progenitor’s surface abundances, as studied
from spectroscopy of the SNe at very early times, can also provide
evidence as to the progenitor mass (Davies & Dessart 2019), but
this work has yet to be empirically road tested. Finally, one may
measure the mass of oxygen in the SN ejecta, which again should
be a function of the progenitor mass (Jerkstrand et al. 2014; Valenti
et al. 2016). However, when exploited on SNe that also have pre-
explosion imaging mass estimates, there is no apparent correlation
between the two independent measurements, implying that either
one or both are flawed (DB18).

When attempting to infer the properties of the progenitor distri-
bution, working in the mass plane (i.e. beginning by converting
Lfin to Minit via stellar models) serves to add in an extra layer
of model dependence, and hence uncertainty, into the results.
Furthermore, the use of a single set of evolutionary tracks neglects
the complexity of ‘real’ stellar evolution. For example, stars have a
broad distribution of rotation rates (Ramı́rez-Agudelo et al. 2013);
they are often in multiples (Sana et al. 2012), and so experience
loss/gain of mass and/or angular momentum (e.g. Eldridge, Izzard &
Tout 2008); and stellar models still rely on highly uncertain input
physics such as mass-loss rates, convective mixing/overshooting
(Jones et al. 2015), plus any other form of ‘weather’ that prevents
two stars with similar bulk properties from following the exact same
evolutionary path. All of these complicating factors are naturally
accounted for by employing an empirical L-distribution with which
to compare the observed luminosities of the SN progenitors.

In S09, the sample of SN progenitors consisted of 20 events,
with seven detections (the rest being upper limits). Of these seven

detections, the most luminous was found to be SN1999ev with
log (L/L�) = 5.1 ± 0.2.1 The absence of progenitors within the
range 5.1 < log (L/L�) < 5.5, corresponding a mass range of 16–
30 M� according to the STARS models in S09, was the basis for the
original claim for ‘missing’ progenitors. In the subsequent papers
S15 and DB18, this sample size of detections grew to 14, the most
luminous of which was SN2009hd with log (L/L�) = 5.24 ± 0.08.
In the following section, we will argue that much of this tension
be explained as being a consequence of a small sample. Later, in
Section 3 will also look at the L-distribution of Type-II progenitors
to estimate the upper L cut-off, which can be directly compared to
the predictions from stellar evolution. Our findings are summarized
in Section 4.

2 A RE-EVA LUATION O F THE ‘MISSING’ R SG
P RO G E N I TO R S

2.1 The input sample

Our sample of II-P and II-L progenitors comes from that of DB18,
which itself was based on that in S15 but with the inclusion of
SN2008cn. To this sample, we have added the following more recent
events:

(i) SN2017eaw: The progenitor for this SN was studied in
Kilpatrick & Foley (2018) and Van Dyk et al. (2019), and was
detected by Hubble Space Telescope (HST) in several bands. Both
studies estimated foreground extinctions of AV = 1.0 ± 0.1,
based on the strengths of the diffuse interstellar bands. Also,
both attempted to obtain bolometric luminosities by modelling
the spectral energy distribution (SED), though both relied upon
MARCS model atmospheres that are known to struggle to fit the
optical and infrared spectra simultaneously (Davies et al. 2013),
and did not have enough photometry in the mid-IR to constrain
the emission from circumstellar dust. As an alternative estimate
of Lbol, we take the F160W photometry, which is closest to the
intrinsic peak of the SED and is less affected by extinction, and
apply a bolometric correction typical of late-type RSGs (see DB18).
Though bolometric corrections (BCs) in the H band were not
discussed in DB18, analysis of the same data set reveals that all
RSGs in that study’s sample have BCF160W = 2.6 ± 0.1 irrespective
of spectral type. The nature of the DB18 study is such that this BC
includes the effect of circumstellar extinction and mid-IR excess.
Using the pre-explosion brightness of mF160W = 19.36 ± 0.01 and
a distance to the host galaxy of NGC 6946 of 7.72 ± 0.32 Mpc (see
discussion in Van Dyk et al. 2019), we find a terminal luminosity
of log L/L� = 4.96 ± 0.11. This is in very good agreement with the
Kilpatrick & Foley (2018) and Van Dyk et al. (2019) studies.

(ii) SN2018aoq: The detection of this SN’s progenitor was
presented in O’Neill et al. (2019). There were detections in the V, I,
and H bands with HST. The foreground reddening was determined
from comparisons to of the light curve to other similar SNe, finding
a value of E(B − V) = 0.03 ± 0.01. Following our methodology
for SN2017eaw, using a pre-explosion brightness of mF160W =
21.89 ± 0.02 and a distance of 18.2 ± 1.2 kpc, we find a terminal
luminosity of log L/L� = 4.63 ± 0.12, which is somewhat lower
than that of O’Neill et al.

1The nature of the progenitor of SN1999ev, as well as others in the S09
sample, is now considered highly uncertain due to its apparent location in
a star cluster (Maund, Reilly & Mattila 2014). The brightest progenitor in
S09, as re-derived by DB18, is SN2006my with log (L/L�) = 4.97 ± 0.18.
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In addition, we have used the revised distance to NGC 6946, mea-
sured from the tip of the red giant branch (7.72 ± 0.32 Mpc; see Van
Dyk et al. 2019), for SN2002hh, SN2004et as well as SN2017eaw.
We have not included the event SN2016cok (≡ASSASN-16fq),
owing to the outstanding uncertainty over the progenitor (Kochanek
et al. 2017).

The main criteria for inclusion in the sample is that it must be
of type II, be located in a galaxy with pre-explosion imaging, be
near enough for the progenitor to be resolved (a distance limit of
∼30 Mpc), and have either a progenitor detection or a meaningful
upper limit. The sample likely has a bias towards higher metallicities
(SMC-like or higher) since it is the more massive Local Group
galaxies that have the more extensive archival imaging. Finally,
there is potential bias in our sample of detections against objects
with high line-of-sight reddening. Specifically, in the case of a
non-detection, we may potentially underestimate the upper limit to
the progenitor’s luminosity if the object is obscured. In the case
of obscuration by circumstellar extinction, in DB18 we attempted
to correct for this bias by adopting empirical bolometric correc-
tions based on observations of reddened late M-type supergiants.
However, this does not account for extra extinction intrinsic to the
host galaxy. Jencson et al. (2017) have argued that there may be
a hidden population of nearby core-collapse SNe that are hidden
by large amounts of extinction intrinsic to the host galaxy, and that
these objects may account for 10–20 per cent of the local SN rate. It
remains to be see if these ‘hidden’ SNe have progenitors different
to those discovered in the optical.

2.2 An empirical L-distribution of RSGs

As our basis for comparison, we take the L-distribution of RSGs,
defined as those with spectral types of K0 or later (K0 +) in the Large
Magellanic Cloud (LMC) as measured by DCB18. By studying the
LMC rather than the Milky Way, we avoid issues such as uncertain
distances and high interstellar reddening that can fatally affect the
sample completeness. The LMC L-distribution in DCB18 was de-
termined by searching, cross-matching, and combining various mul-
tiwavelength catalogues. By studying sources in the optical though
mid-infrared, the authors were able to detect any sources with high
circumstellar extinction that would previously have been missed in
optical-only searches. Bolometric luminosities were determined by
integrating under the observed SED, thus removing any dependence
on uncertain bolometric corrections. The implicit assumption made
was that any flux lost in the optical due to circumstellar extinction
was re-radiated in the mid-IR. We found only one object where
this assumption seemed to have been invalid (WOH G64), where a
more detailed study of the SED by Ohnaka et al. (2008) revealed a
lower luminosity. Here, we have replaced the luminosity listed by
DCB18 for this star by that determined by Ohnaka et al. With this
data point corrected, the luminosity cut-off at log (Lmax/L�) = 5.5
is clear (see fig. 2 in DCB18). Furthermore, population synthesis
analysis in DCB18 has shown that any RSGs above this limit (as
predicted by theory) are unlikely to have been missed.

The majority of the SNe in the sample have metallicities between
12 + log (O/H) = 8.3–8.9, or LMC-like to slightly super-Solar
(S09). Though we do not have a statistically complete L-distribution
for the Galaxy, we will argue in Section 2.5 that there is no evidence
for the HDL Lmax being brighter in the Galaxy than in the LMC.
The benefit of using an empirical L-distribution, as opposed to a
theoretical one, is that we automatically bypass the uncertainties
in stellar evolution, some of which (contribution of post-binary
interaction objects, initial rotation rate distribution, magnetic fields)

Figure 1. The L-distribution of II-P progenitors is shown as the grey-filled
histogram. Overplotted are the observed luminosity distributions of all RSGs
(blue), all M supergiants (green), and all supergiants with spectral type M3 or
later (red) in the Large Magellanic Cloud (LMC). Each LMC L-distribution
has been rescaled to give the same number of objects with log (L/L�) > 4.8
as the SN progenitors.

are almost intractable. For example, the relation between initial mass
and terminal luminosity has been shown to have a great deal of dis-
persion once binarity is taken into account (Zapartas et al., in prep).

In Fig. 1, we plot the luminosity function of all cool supergiants in
the LMC from DCB18. It is important to note that our empirical sam-
ple of RSGs contains stars at all stages of RSG evolution, whereas
the SN progenitors are exclusively RSGs at the very end of the phase.
In DB18, we argued that these late-evolution RSGs tend to have later
spectral types (M3 or later), based on two forms of evidence. First, in
star clusters with large numbers of RSGs, we see the more evolved
stars having later spectral types. Secondly, SNe with multicolour
pre-explosion photometry invariably show that the progenitor was
very red, consistent with having a spectral type of M3 or later (e.g.
SN2003gd, SN2004et). Therefore, in an attempt to isolate the LMC
RSGs that are closest to SN, we have made cuts on spectral type of
M0 or later (which we call M0+) and M3 or later (M3 +).

In Fig. 1, we overplot the L-distributions of the master sample of
RSGs in the LMC, as well as the two subsamples. Each histogram
has been normalized to reproduce the total number of objects as
the II-P progenitors within the range 4.8 < log (L/L�) < 5.6, below
which the LMC RSG sample is likely incomplete (DCB18). No
matter how we slice the sample, in all cases we see a definite
cut-off at log (Lmax/L�) � 5.5. In the total (K0+) sample and
the M0+ subsample, we see overall luminosity distributions that
are very similar in shape, and which match the observed II-P
distribution rather well. In the late-type subsample (M3+), we see
the distribution roll-over to smaller numbers below a brightness of
log (L/L�) � 4.9. This is likely an effect of incompleteness – fainter,
redder objects are more likely to be missing from the DCB18 sample
– though it could also be explained as being caused by fainter (i.e.
lower initial mass) RSGs spending less time at later spectral types
as a fraction of their overall RSG lifetime. The consequences of
these two possible explanations for our conclusions are discussed
in the next section.

2.3 The brightest expected supernova progenitor

Under the assumption that the L-distribution of late-M supergiants
shown in the previous section (labelled M3 +) effectively describes
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Figure 2. The expected luminosity of the brightest supernova progenitor
for a range of sample sizes. The larger the sample, the higher the probability
that the brightest progenitor has a luminosity close to the intrinsic Lmax

(shown by the blue-dashed line). The shaded blue regions indicate the
confidence limits on Lmax as indicated in the legend. The data points show
the observed evolution of Lmax,prog as the sample size has increased over
time.

that of II-P/L SN progenitors, the probability of a given SN
progenitor having a luminosity L can be found simply by randomly
sampling this L-distribution. Obviously, the IMF combined with the
shorter lifetime of more massive stars dictate that one is more likely
to find a faint progenitor than a bright one, and the probability
of finding a bright progenitor increases with increasing sample
size. That is, the larger the sample size, the brighter we expect
the luminosity of our brightest SN progenitor Lmax,prog to be. The
L-distribution in Fig. 1 allows us to quantify this.

We determine the probability distribution function (PDF) of
Lmax,prog for a sample size N by performing a simple Monte Carlo
(MC) experiment. We first randomly sample the luminosities of N
M-supergiants in the LMC with spectral types M3 or later, where
each star’s luminosity is itself sampled randomly from a Gaussian
distribution with a standard deviation equal to the star’s 1σ error. In
each trial, we determine the brightest of the N progenitors, which
we set as Lmax,prog for that trial. We then repeat 104 times for each
value of N to determine the PDF of Lmax,prog at that N. We perform
this same experiment for a range of sample sizes.

The results of this experiment are shown as the shaded region
in Fig. 2, where the different colours indicate the confidence
limits in the legend. As expected, the plot demonstrates that the
smaller the sample size, the fainter the Lmax,prog one expects to
observe. Specifically, at sample sizes below 10 one expects to find
log (Lmax,prog/L�) � 5.2, but with a large dispersion. At sample
sizes greater than 80, the absence of a progenitor brighter than
log (Lmax,prog/L�) � 5.25 starts to become significant at the 3σ level.

In order to compare how the observed Lmax,prog has evolved as
sample size has grown, in Fig. 2 we overplot the brightest SN
progenitor as a function of the sample size at the time that SN
was observed. For small sample sizes (<10), the disagreement
with the expectation appears to be significant. However, as the
sample size grows, the observed trend (the black squares) starts to
follow the results of our MC experiment more closely. Presently, the
discrepancy between the luminosity of the brightest SN progenitor
to date (SN2009hd) and the observed H–D limit has a significance
of 1σ–2σ . However, this does not take into account the error on
SN2009hd, which had a luminosity of log (L/L�) = 5.24 ± 0.08,

or indeed that of SN2009kr (log (L/L�) = 5.13 ± 0.23), which was
less than 2σ from the H–D limit at log (L/L�) = 5.5.

In the previous section, we noted that the luminosity distribution
of the M3+ RSGs is different to that of the total RSG sample. We
also offered two explanations for this – one physical, that it is caused
by relatively shorter durations of the M3+ phase for lower mass
RSGs; and one systematic, that it is caused by greater statistical
incompleteness at lower luminosities for the M3+ subsample. If
the latter explanation is correct, it would introduce a bias into
our results. Specifically, by randomly sampling from a population
that had too few faint objects, we would artificially increase
the likelihood of selecting a bright progenitor in each MC trial.
Correcting for this bias, should it exist, would effectively pull the
blue shaded region in Fig. 2 down to lower luminosities, decreasing
further the statistical significance of the RSG problem.

2.4 Comparisons to previous work

Our result that the statistical significance of the ‘RSG problem’
is below 2σ seems to contradict the conclusions of S09 and S15.
These authors estimated the significance of the ‘missing’ RSGs to
be in the region of 4σ , based on their sample size and the lack of
objects with luminosities between Lmax and that of their brightest
progenitor Lhi. However, we note that S09/S15 did not seem to
account for the uncertainties on the luminosities of the progenitors
when determining this (see previous section).

We can see from Fig. 2 that when the sample size was only ∼10, as
it was in S09, there was the appearance that the result was significant.
However, this was before the events with brighter progenitors
(SN2008cn, SN2009kr, and SN2009hd). Though SN2009kr and
SN2009hd were included in S15, both had their luminosities
revised upwards by DB18, who tuned up the assumptions about the
bolometric corrections and foreground extinctions. Indeed, in DB18
we argued that the significance of the ‘missing’ stars was lower than
claimed in S09 and S15, due to the additional uncertainties in the
theoretical Minit–Lfin relation, plus the small sample size. Therefore,
the conclusions of this part of our current study are consistent with
those of DB18.

2.5 Is the L-distribution of RSGs different in the Milky Way?

The most obvious criticism one might make of this work is that
we employ an empirical L-distribution measured in the LMC,
whereas many of the SNe in the current sample occurred in galaxies
where the metallicity is thought to be closer to Solar (S09). A
statistically complete sample of RSGs in the Milky Way does not
exist at the time of writing. The construction of such a sample
would be extremely difficult, as it would have to overcome the
obstacles of high foreground extinction beyond distances of ∼3kpc,
contamination by foreground red giants, and AGB stars, as well as
uncertain distances. However, we can investigate one key feature of
the Galactic RSG L-distribution; specifically the brightness of the
H–D limit Lmax.

In S09, the expectation value of Lmax was determined by
comparing to the brightest known Galactic RSGs in Levesque
et al. (2005). These bright RSGs were some of the more famous
members of the class, such as VY CMa and μ Cep. The lumi-
nosities of these stars were determined by Levesque et al. by two
methods; the extrapolation of model fits to the optical SED, and
from bolometrically corrected K-band brightnesses. Distances were
inferred by assuming that the RSGs were physically associated with
the nearest OB association, and adopting the appropriate distance
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from the literature. Here, we now re-appraise the luminosities
of the brightest of these RSGs. To do this, we first re-evaluate
their distances and foreground extinctions, then determine their
bolometric luminosities by integrating under their observed SEDs
from the optical to the mid-infrared.

2.5.1 Distances and reddenings

To determine distances to the Galactic RSGs, we employ parallax
measurements. Optical parallaxes of RSGs, such as those measured
by Gaia (Gaia Collaboration 2018), are extremely problematic due
to the stars’ inhomogeneous surfaces and the fact that their sizes
are often comparable to the baseline for the parallax measurement
(i.e. the size of the Earth’s orbit around the Sun; see e.g. Chiavassa
et al. 2011). Fortunately, there are other ways to determine RSG
distances from parallaxes. First, one may employ radio parallax
measurements of circumstellar masers. Secondly, one may take the
average parallax of the neighbouring OB stars, under the assumption
that the RSG is a part of the same association (see also Humphreys
1978; Levesque et al. 2005). Where possible, we employ both
methods here to verify the accuracy of the results.

To measure reddenings, we can again look at the neighbouring
OB stars, and use the colour excess to estimate the average line-
of-sight extinction to the RSGs. Though there may well be extra
extinction to each RSG due to circumstellar material, we can still
obtain a bolometric luminosity by integrating the full SED under
the assumption that any flux lost at short wavelengths is re-radiated
in the infrared (see also DCB18).

For each RSG in our sample, we search the SIMBAD data base
for OB stars with known spectral types within 30 arcmin of the star.
Where there are a large number of OB stars, we take the nearest 50.
From spectral types of the OB stars, we obtain the intrinsic B − V
colours from Martins & Plez (2006) and Fitzgerald (1970), and use
the observed colours to determine E(B − V) for each OB star. We
then take the sigma-clipped mean of these reddenings, clipping at
2σ .

The parallax measurements for the OB stars were obtained from
Gaia DR2 (Gaia Collaboration 2018). We again performed sigma-
clipping with a threshold of 2σ , then took the sigma-weighted mean
of the remaining stars. This mean parallax was converted to a
distance following the procedure described in Davies & Beasor
(2019). The comparisons of these ‘OB star’ distances to those
obtained from maser parallaxes are illustrated in Fig. 3. The data
points all follow the 1:1 line, implying that both methods are
consistent with one another. Formally, analysis of the residuals
reveals a mean offset of 150 ± 240 pc. The standard deviation
on the offset likely represents the absolute precision on the OB star
method since the OB associations and complexes that host the RSGs
could easily be of order ∼100pc.

2.5.2 Luminosities

Bolometric luminosities are determined by first collating broad-
band photometry for each RSG spanning the optical to mid-infrared.
The brightnesses of these stars makes this a non-trivial task, since
many are often saturated in contemporary surveys. We took optical
photometry from Gaia DR2 (Gaia Collaboration 2018), SDSS-
IV DR15 i band (Aguado et al. 2019; Morel & Magnenat 1978),
near-IR photometry from 2MASS (Skrutskie et al. 2006; Morel &
Magnenat 1978), and mid-IR photometry from IRAS and MSX
(Helou & Walker 1988; Price et al. 2001). Having several survey

Figure 3. Comparison between the distances obtained from maser paral-
laxes (x-axis) and those from the Gaia DR2 parallaxes of neighbouring OB
stars (y-axis). The dotted line shows the 1:1 correlation.

sources overlapping in wavelength permits the identification and
rejection of spurious photometric points, due to, e.g. saturation.
For each star, the good photometric data are dereddened and
interpolated in the log (Flux) and log (λ) plane, then integrated to
find the bolometric luminosity. Flux shortwards of B is assumed
to contribute a negligible amount to the bolometric flux (see also
DCB18).

2.5.3 Results

Our revised distances, reddenings, and bolometric luminosities of
the bright Galactic RSGs are listed in Table 1. From the last column,
it can be seen that no star has a luminosity greater than log (L/L�) =
5.5. In terms of how these values compare to previous estimates,
all are roughly consistent with the bolometrically corrected K-band
estimates of Levesque et al. (2005). Any differences with the values
listed in Mauron & Josselin (2011), who like us obtained Lbol by
integrating under the SED, can be attributed to changes in distance
and foreground reddening. The most notable change is for the star
EV Car, which in Mauron & Josselin (2011) had a distance of
4.2kpc. We investigated all known OB stars with spectral types
earlier than B3 in the whole Carina star-forming region, spanning
10◦ in Galactic longitude, and consistently found distances between
2.4–3.0 kpc.

Though we list only 12 stars in Table 1, we emphasize that these
have been previously identified as the brightest optically identified
RSGs in Levesque et al. (2005) and Mauron & Josselin (2011). The
objects in Table 1 are therefore only a subset of optically identified
Milky Way RSGs. The full sample studied by Levesque et al. (2005)
contained over 80 stars, which was by no means complete. A search
of SIMBAD reveals that there are over 100 stars in the Galaxy
with optically identified spectral types later than K0 and luminosity
classes Ib or brighter. With a sample size this large, one can expect
the brightest observed RSG to be sampling close to Lmax (cf. Fig. 2).
We therefore consider the lack of any known RSGs in the Milky
Way with luminosities above log (L/L�) = 5.5 evidence that the H–
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Table 1. Observed properties of luminous Milky Way RSGs.

Star RA Dec. D/kpc D method E(B − V) log (L/L�)

S Per 02 22 51.7 + 58 35 11.5 2.42+0.11
−0.09 Maser 0.69+0.16

−0.51 5.09+0.08
−0.15

VY CMa 07 22 58.3 −25 46 03.2 1.20+0.13
−0.10 Maser 0.06+0.05

−0.05 5.25+0.09
−0.08

CK Car 10 24 25.4 −60 11 29.0 2.92+0.19
−0.15 OB 0.30+0.15

−0.18 5.20+0.10
−0.10

RT Car 10 44 47.1 −59 24 48.1 2.38+0.18
−0.15 Maser 0.53+0.12

−0.12 5.11+0.10
−0.09

EV Car 10 20 21.6 −60 27 15.8 2.96+0.22
−0.20 OB 0.40+0.12

−0.29 5.46+0.10
−0.14

VX Sgr 18 08 04.0 −22 13 26.6 1.56+0.11
−0.10 Maser 0.26+0.40

−0.19 5.44+0.15
−0.09

BC Cyg 20 21 38.5 + 37 31 58.9 1.71+0.04
−0.04 OB 0.80+0.80

−0.60 5.31+0.25
−0.14

RW Cyg 20 28 50.6 + 39 58 54.4 1.62+0.04
−0.04 OB 0.70+0.40

−0.50 5.10+0.16
−0.17

NML Cyg 20 46 25.5 + 40 06 59.4 1.61+0.13
−0.11 Maser 0.50+0.25

−0.25 5.36+0.07
−0.07

μ Cep 21 43 30.5 + 58 46 48.2 0.94+0.14
−0.04 OB 0.46+0.09

−0.09 5.43+0.15
−0.07

MY Cep 22 54 31.7 + 60 49 39.0 3.00+0.35
−0.29 OB 2.04 ± 0.07 5.11+0.08

−0.07

PZ Cas 23 44 03.3 + 61 47 22.2 2.81+0.22
−0.19 Maser 0.51+0.40

−0.11 5.36+0.19
−0.09

D limit at Solar metallicity is similar to that found in the Magellanic
Clouds.

3 A R E-A NA LY SIS O F TH E L-DISTRIBUTI ON
OF II -P /L PROGENITO RS, AND THE U PPER
CUT- OFF IN LU MINOSITY AND MASS

In the previous section, we discussed the statistical significance of
the ‘missing’ RSG progenitors by comparing the luminosities of
the brightest II-P progenitors with that of the RSG luminosity limit
Lmax. However, we may learn more about the properties of II-P
progenitors by studying the observed progenitor sample as a whole.
In this section, we analyse the observed luminosity distribution of II-
P/L progenitors to evaluate the properties of the parent population.
In particular, the aim is to provide the most robust measurement
to date of the upper luminosity boundary Lhi. This in turn can be
used to infer the upper mass boundary Mhi, allowing us to clearly
separate the random errors caused by the finite sample size from
the systematic errors introduced by the theoretical mass–luminosity
relation.

To date, analysis of the underlying population of II-P/L pro-
genitors has focused on the inferred masses, fitting an analytical
function based on the IMF and upper/lower mass limits (S09, S15,
DB18). There are two problems with this analysis, discussed earlier
in this work as well as in DB18. First, it implicitly assumes that
the highest mass progenitor in the sample will have a mass close
to Mhi, which in a finite sample causes one to underestimate Mhi.
Secondly, converting luminosities to masses injects all model errors
and uncertainties into the analysis (see discussion in Section 1).

Here, to circumvent these problems, we present a new analysis
method. First, we study the luminosity distribution, rather than the
mass distribution. Secondly, we employ an MC method to randomly
sample from a master population, which simulates the effects of a
finite and small sample, which we now describe in more detail.

3.1 The observed cumulative luminosity distribution of SN
progenitors

The first step is to create a proper description of the progenitor
cumulative luminosity distribution (CLD) for our N SN progenitors.
Simply plotting the observed progenitors in order of increasing
luminosity (such as in fig. 6 in S15 or fig. 5 in DB18) does not take
into account that the errors on L also affect the ranking. That is,

Figure 4. The cumulative luminosity distribution (CLD) of SN progenitors.
The individual observations, sorted in order of increasing L, are shown in
yellow. The shaded contours show the confidence limits of the underlying
CLD, as determined by the Monte Carlo experiment described in the
text.

perturbing the L of a progenitor to a higher value would also cause
that progenitor to be higher in the ranking, and vice-versa.

We obtain a probability density distribution of the CLD by
performing a simple MC procedure. In each MC trial, we randomly
sample from the probability distribution of each progenitor’s pre-
explosion brightness, distance, extinction, and bolometric cor-
rection to determine that progenitor’s luminosity, then order the
progenitors in increasing L. The probability distribution of the nth
progenitor’s luminosity Pn(L) is determined from the luminosities
of 30 000 MC trials. Note that n does not correspond to an
individual progenitor, but is the most likely nth brightest out of
N progenitors given the observational errors on all objects in the
sample.

The progenitor CLD is shown as the filled contours in Fig. 4.
Also, shown on the this plot are the progenitor measurements in
order of increasing L, to demonstrate the subtle differences between
the two. Specifically, the CLD is narrower in the mid-range than the
individual errors on the data points, but extends to lower/higher L
at the bottom/top, respectively.
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3.2 A grid of model cumulative luminosity distributions

Next, we construct a model grid of CLDs to compare to the observed
CLD. The CLD is modelled as a simple power law, and therefore
has three input parameters: the lower and upper luminosity cut-offs
Llo and Lhi, and the power-law exponent �L. At a given set of {Llo,
Lhi, �L}, we again determine the CLD using MC. We randomly
sample N luminosities from the distribution, and add on random
noise according to the error bars of the observed L distribution. For
example, for the faintest progenitor in our simulated sample, we
apply the same random error as for the faintest observed progenitor.
We again repeat over 30 000 MC trials to determine the posterior
probability distribution for the nth brightest progenitor out of N
objects.

3.3 Finding the best-fitting model

At each point in the grid, we evaluate the best-fitting model via a
maximum-likelihood analysis. The probability P(n) that a model
with parameters { Llo, Lhi, �L} reproduces the luminosity L of the
nth progenitor is

P (n) =
∑

L

(
Pobs,n(L) × Pmod,n(L)

)
, (1)

where Pobs,n is the observed probability density as a function of
luminosity for the nth progenitor (i.e. a horizontal row in Fig. 4),
and Pmod,n is the same but for the model. The likelihood L that
model {Llo,Lhi,�L} fits the observed CLD is then

lnL =
∑

n

ln P (n). (2)

To compare the quality of fits of neighbouring models, the like-
lihoods are converted to χ2 values via, χ2 = −2 lnL. The best-
fitting model is defined to be that with the lowest χ2 value, while
the models within the 68 per cent, 95 per cent, and 99.7 per cent
confidence limits are those χ2 values within 3.53, 8.02, and 14.16
of the minimum,2 respectively.

3.4 Results and discussion

The probability distributions of each model parameter are illustrated
in Fig. 5, while the best-fitting model CLD is shown in Fig. 6. The
best-fitting model parameters, when all are allowed to be free, are

log(Llo/L�) = 4.39+0.10
−0.16,

log(Lhi/L�) = 5.20+0.17
−0.11,

�L = −1.12+0.95
−0.81,

where the quoted errors are the 68 per cent confidence limits. The
optimized value of Lhi is somewhat below the H–D limit (consistent
with the ‘RSG problem’), however, the upper error bar stretches to
quite high luminosities. Specifically, the tension with the observed
H–D limit at log (L/L�) = 5.5 is within the 95 per cent confidence
limit, analogous to a significance of less than 2σ . The large upper
error bar on Lhi is caused in part by the the degeneracy with �L– for
steeper power laws, bright progenitors are expected to be rarer,
meaning there is a stronger bias towards the highest observed
luminosity progenitor being well below the intrinsic Lmax. The
likelihood of the brightest progenitor in a finite sample having a

2These confidence intervals are defined for the 3 degrees of freedom of our
model, following Avni (1976).

luminosity close to Lmax is worse for steeper �L (see centre panel of
Fig. 5). A similar degeneracy exists between Llo and �L. A steeper
power-law slope forces the CLD to be closer to vertical at the
faint end, which pulls Llo to higher values (see right-hand panel of
Fig. 5).

Given these degeneracies with �L, it makes sense to look further
into what the expectation value of the power-law slope might be.
For an IMF dN/dM ∝ M� , and an initial mass–final luminosity
relation (MLR) that scales as L ∝ Mα

init, it can be shown that we
would expect a luminosity function dN/dL ∝ L�L with �L=(1 − α

+ �)/α. For a Salpeter IMF slope of � = −2.35, and an MLR slope
of α = 2,3 we would expect �L = −1.675. Our best-fitting value
of �L is shallower than this, but is within the 1σ confidence limits.
If we constrain �L = −1.675, we find the 2D probability density
function between Llo and Lhi shown in Fig. 7. Here, the optimal
value of Lhi shifts to a higher value of log(Lhi/L�) = 5.28+0.12

−0.06,
though the tension with the H–D limit remains ∼2σ .

3.5 Conversion of Lhi to Minit

With posterior probabilities for Llo and Lhi, we can convert these
grids from luminosity-space to mass-space by simply using the
MLRs of various stellar models. In Table 2, we list the best-fitting
mass ranges and 68 per cent confidence intervals for several single-
star evolution models: Geneva (both rotating and non-rotating;
Ekström et al. 2012), KEPLER (Woosley & Heger 2007), STARS
(Eldridge et al. 2008), and MIST (Choi et al. 2016). Of these models,
we note that the MIST and Geneva models are only evolved as far
as the end of C-burning, and so may not accurately reproduce the
properties within a few years of SN. Furthermore, we caution that
we are only considering single-star evolution, and that the MLR
may have a different slope and a large degree of variance once
binary evolution is included (Zapartas et al., in preparation).

Using the STARS models, we find Mlo = 7.1+0.9
−1.2 M� and Mhi =

17.9+3.7
−2.1 M�, again quoting 68 per cent confidence limits, consistent

with the 19 M� (+ 2 M� systematic) that we found in DB18. Mass
limits for other suites of stellar models are listed in Table 2. In
general, the results show agreement for Mhi within the range 17.9–
20.5 M�, implying that perhaps the best fit is Mhi = 19.2 M� with
a systematic error of ±1.3 M�. However, the random error is much
larger, with typical 68 per cent confidence limits of +4.5/−2.5 M�.
Though again these numbers do not contradict the existence of the
‘RSG problem’, we caution that at present the significance of this
result is within 2σ .

4 C O N C L U S I O N S

We have taken a fresh look at the RSG problem in two ways.
First, we compared the observed luminosities L of II-P/L SN
progenitors to those of late-type RSGs in the field, to assess
whether we could reasonably expect to have sampled close to the
upper luminosity boundary (i.e the H–D limit, at log (L/L� = 5.5)
given the current sample size of progenitors. This is in contrast to
previous studies, which convert the luminosities to masses, then
compare to the expected mass distribution given the stellar IMF
and a theoretical estimate of the MLR. By looking at the problem
in this new way, we are able to eliminate the uncertainties and
model dependencies that are introduced when one first converts

3All single-star evolutionary models we investigated
(Geneva/STARS/Kepler) had α between 1.9 and 2.1.
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Figure 5. 2D probability distributions from the CLD fitting, plotted as pairs of parameters for the three parameters in our grid. The best-fitting parameters are
indicated by the cross in each panel.

Figure 6. The observed CLD (the yellow points and the error bars,
corresponding to the 68 per cent limits in Fig. 4) and the best-fitting model
CLD (the shaded contours).

the pre-explosion luminosities to initial mass before comparing
to expectation values. Our results indicate that the difference in L
between the brightest progenitor and the H–D limit of evolved RSGs
can be explained in part by the small sample size. Quantitatively,
the statistical significance of the RSG problem is below 2σ .

Secondly, we model the observed L-distribution of II-P/L pro-
genitors as a simple power law with a slope �L, and upper/lower
luminosity limits Lhi and Llo. Our best-fitting value of the upper
luminosity boundary is log(Lhi/L�) = 5.20+0.17

−0.11, again lower than
the observed H–D limit, but again with a statistical significance
of less than 2σ . The lower luminosity cut-off is measured to be
log(Llo/L�) = 4.39+0.10

−0.16. Our best-fitting value for the slope of the
power law (�L) is somewhat shallower than would be expected
for a Salpeter IMF and an MLR of Lfin ∝ M2

init, though again
the significance of this is low (<1σ ). When forcing �L to be the
expected value of −1.675, we find the upper luminosity cut-off
increases to log(Lhi/L�) = 5.28+0.12

−0.08, but the statistical significance
of the tension with the H–D limit is still within ∼3σ .

The limits on the terminal luminosities of II-P and II-L progen-
itors can be translated to initial masses using evolutionary models.

Figure 7. Probability density as a function of Llo and Lhi when the power-
law slope is constrained to �L = −1.675, which is the expected value for
this parameter when assuming a Salpeter IMF and an MLR of Lfin ∝ Minit

2.

Table 2. Upper and lower limits to the progenitor
mass ranges, with 95% confidence intervals, for three
different stellar evolution models.

Model Mlo/ M� Mhi/ M�

Geneva-nr 7.8+1.0
−1.3 20.5+4.5

−2.5

Geneva-r 6.4+0.9
−1.2 17.9+4.2

−2.3

KEPLER 7.7+1.0
−1.3 20.3+4.5

−2.5

STARS 7.1+0.9
−1.2 17.9+3.7

−2.1

MIST 7.0+1.0
−1.3 19.5+4.6

−2.5

By comparing several single-star codes, we find a lower mass limit
between of Mlo = 6–8 M� and an upper mass limit Mhi = 18–20 M�.
The 68 per cent confidence limits on Mhi are (+ 4.5, −2.3) M�. The
best-fitting value on Mhi is therefore very close to the prediction of
various evolutionary codes that stars with initial masses greater than
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20 M� form black holes at core-collapse. However, we caution that
the empirical uncertainties on Mhi are still very large, a situation
that will not change until the sample size is at least doubled.
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