
Bui, T, Nguyen, TT and Hasegawa, H

 Opposition-based learning for self-adaptive control parameters in differential
evolution for optimal mechanism design

http://researchonline.ljmu.ac.uk/id/eprint/12560/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Bui, T, Nguyen, TT and Hasegawa, H (2019) Opposition-based learning for
self-adaptive control parameters in differential evolution for optimal
mechanism design. Journal of Advanced Mechanical Design, Systems and
Manufacturing, 13 (4). ISSN 1881-3054

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Bulletin of the JSME

Journal of Advanced Mechanical Design, Systems, and Manufacturing
Vol.13, No.4, 2019

Paper No.18-00526
© 2019 The Japan Society of Mechanical Engineers[DOI: 10.1299/jamdsm.2019jamdsm0072]

Opposition-based learning for self-adaptive control parameters
in differential evolution for optimal mechanism design

Tam BUI∗,∗∗, Trung NGUYEN∗∗ and Hiroshi HASEGAWA∗
∗ Shibaura Institute of Technology

Fukasaku 307, Minuma-ku, Saitama-shi, 337-8570, Japan
E-mail: tambn@shibaura-it.ac.jp

∗∗ Hanoi University of Science and Technology
No.1 Dai Co Viet Road, Hai Ba Trung District, Hanoi, Vietnam

Abstract
In recent decades, new optimization algorithms have attracted much attention from researchers in both gradient-
and evolution-based optimal methods. Many strategy techniques are employed to enhance the effectiveness of
optimal methods. One of the newest techniques is opposition-based learning (OBL), which shows more power
in enhancing various optimization methods. This research presents a new edition of the Differential Evolution
(DE) algorithm in which the OBL technique is applied to investigate the opposite point of each candidate of self-
adaptive control parameters. In comparison with conventional optimal methods, the proposed method is used to
solve benchmark-test optimal problems and applied to real optimizations. Simulation results show the effectiveness
and improvement compared with some reference methodologies in terms of the convergence speed and stability of
optimal results.

Keywords : Optimization algorithm, Opposition-based learning, Differential evolution, Global search, Local search

1. Introduction

Opposition-based learning (OBL), a new searching principle in optimization, was first proposed by Hamid R.
Tizhoosh (2005a), who discovered a better candidate solution by comparing the current particle and its corresponding
opposition estimate. In the process of the evolutionary algorithm (EA), candidates are generated randomly in the search
domain at the beginning of the process. After that, the EA estimates the new better candidate solution by searching the
current individual’s neighborhood. This principle depends on each kind of various metaheuristic algorithms, such as the
Genetic Algorithm (GA) (Holland, 1992), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), Differential
Evolution (DE) (Storn and Price, 1997), Ant Colony Optimization (ACO) (Dorigo, 1992), Artificial Bee Colony (ABC)
(Karaboga and Basturk, 2006), and Gravitational Search Algorithm (GSA) (Shaw, et al., 2012). The basic idea in OBL
is that the searching neighborhood tries to discover a better particle by comparing an estimated particle and its opposite
point. Experiments have shown that an opposition candidate solution might provide a higher chance of getting better
solutions that are closer to the global optimal one.

S. Rahnamayan et al. (2008a) proposed an improvement of the DE algorithm in which the OBL principle was used
to search for a new candidate during the algorithm. Experiment results showed that the proposed algorithm was more
effective than the old one by changing from random initialization to OBL initial populations. Furthermore (Rahnamayan
et al., 2007, 2008b), mathematically and experimentally proved this advantage as, when there is no prior knowledge of the
candidate solution, it is impossible to make the best initial guess. In general, we should be simultaneously exploring all
dimensions, and one of these works is expanding in the opposite direction. The gain of the OBL strategy over the random
strategy is also shown more clearly, based on Euclidean distance to the global optimal solution; more details can be seen
in (Rahnamayan et al.,2007).

Received: 5 December 2018; Revised: 30 May 2019; Accepted: 26 September 2019

1

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

In recent years, many proposed methods have discovered the advantage of applying the opposite particle in the
population-initialization step and the generation-jumping stage to accelerate many kinds of metaheuristic evolutionary
optimization algorithms, such as PSO (Wang, et al., 2011a), ABC (El-Abd, 2012), Harmony Search (HS) (Saha et al.,
2013), DE (Wang et al., 2011b), and Gravitational Search Algorithm (Shaw et al.,2012). The OBL principle is also used
to improve artificial-intelligence algorithms, including strengthening the learning process and back-propagation train-
ing in artificial neural networks (ANNs). Opposition-based reinforcement learning (ORL) was proposed by using the
opposite-state and opposite-action functions (Tizhoosh, 2005b). Simulation results showed that ORL increases reinforce-
ment learning. Similarly, by applying OBL to opposite weights and transfer functions, opposite-based ANNs were also
proposed to strengthen their learning speed and stability (Ventresca and Tizhoosh, 2006, 2007, 2008).

Based on the theorem of No Free Lunch for Optimization, there is no optimal algorithm that can perfectly solve all
kinds of objective functions. Its performance depends on the complexity of each problem, such as unimodal or multimodal,
convex or nonconvex, and integer, real, or mixed variables. Therefore, we need to discover more methods to overcome
this drawback. Inspired by the advantage of OBL, this paper presents applied OBL to improve the performance of self-
adaptive control parameters in a differential evolution algorithm (Bui et al., 2013). The new proposed algorithm solved
nineteen numerical optimizations in the literate benchmark test and four real-world optimal engineerings. Simulation
results in the experiments showed effectiveness and improvement compared with the original DE and some reference
algorithms. In the proposed OBL–self-adaptive control parameters in differential evolution (ISADE) algorithm, we apply
the principle of OBL to both initialization populations and elite particles in the main process of DE.

The ISADE that automatically generate control parameters such as the Number of the Population (NP, NP), scaling
factor (F), and crossover control (Cr) do not need to be tuned during the algorithm process. Experimental simulation
results on benchmark-test problems showed that OBL-ISADE can perform outstandingly on many of the test problems in
comparison with the original DE and other well-known algorithms.

The rest of this paper is organized as follows: Section 2 reviews the original DE, ISADE, and the theory of opposition-
based learning. In Section 3, the proposed method is described. The experiments and simulation results are shown in
Section 4. Section 5 concludes this paper.

2. Review of differential evolution and opposition-based learning
2.1. Review of differential evolution

DE, first proposed by Storn and Price (1997), is an optimization algorithm that belongs to the evolutionary-algorithm
field. Similar to other evolutionary algorithms, DE tries to improve a candidate solution to the global optimum by using
crossover, mutation, and selection operators at each generation. Algorithm 1 shows pseudocode DE algorithms.

Algorithm 1: Differential evolution.
1: Initialization : Generate and randomly initialize all NP particles within the boundary.
2: Mutation operation: Compute mutation vector V using one of Eq. (1) to Eq. (3) depending on which mutation scheme is

in this step.
3: Crossover operation: Compute trial vector U using Eq. (9).
4: Selection Operation: In this step, the fitness value is used to evaluate for trial vector UG

i and target vector XG
i . The better

one is selected for reproducing new offspring by Eq. (10).
5: Repeat Steps 1 to 4 until the terminal condition.

Many experiment simulations (in the literature) show that DE algorithm is outstanding in terms of convergence speed,
computation complexity, and robustness compared with many other metaheuristic approaches such as GA (Holland, 1992)
and ACO (Dorigo, 1992). However, the effect of DE is mainly dependent on appropriately selecting the control parameters
such as population size NP, scaling factor F, and crossover rate CR. Many aforementioned studies focused on finding
suitable control parameters are given, and we know that it is important to set up the best DE learning strategies in DE
and other DE control parameters. To overcome this difficulty, the author of this research (Bui, et al., 2013) proposed the
improvement of self-adapting control parameters in differential evolution—a modification and improvement of DE. The
main operations in ISADE are shown below:

Adaptive DE mutation-scheme operator: In this step, we automatically choose three kinds of mutation schemes
based on the random section: The three DE mutation schemes to be selected are DE/best to 1 Eq. (1), DE/best to 2
Eq. (2), and DE/rand to best/1 Eq. (3). The two first schemes have good convergence (good at local search), while
DE/rand to best/1 has good population diversity (global searchability). We apply the same probability to these strategies

2

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

(rand1 = rand2 = rand3 = 1/3).

DE/best to 1: V iter
i, j = Xiter

best, j + F ∗ (Xiter
p1, j − Xiter

p2, j) (1)

DE/best to 2: V iter
i, j = Xiter

best, j + F ∗ (Xiter
p1, j − Xiter

p2, j) + F ∗ (Xiter
p3, j − Xiter

p4, j) (2)

DE/rand to best/1: V iter
i, j = Xiter

p1, j + F ∗ (Xbest, j − Xiter
p1, j) + F ∗ (Xiter

p2, j − Xiter
p3, j) (3)

Where X, current vector; V , mutation vector; Xbest, best fitness of current vector; iter, number of iterations (generation);
i, index of number of particles in population i = 1, · · · ,NP; j, index of the number of dimensions j = 1, · · · ,D; p1, p2,
p3, and p4 are different elements chosen randomly from [1,NP]; and NP, D, number of populations and dimensions,
respectively.

Adaptive scaling factor F: estimating scaling factor F is very important in DE and it greatly affects the nearby
search of the current particles. We propose an adaptive form of this parameter to achieve better DE performance. From
the experiment, we see that a large-value scale factor F at the beginning of the processing loop allows better exploration,
and this value gradually decreases to the end of the loop to allow appropriate exploitation. This can be modeled by some
mathematic equation such as linear function, sin or cosine function, hyperbolic tangent, and sigmoidal function. The
sigmoid function is widely used in many nonlinear applications, for example, as a transfer function in artificial neural
network, or to control the variable neighborhood range on APGA/VNC (Tooyama and Hasegawa, 2009). Inspired by the
above ideas, ISADE uses a sigmoid function to calculate scaling factor F as shown in Eq. (4).

Fi =
1

1 + exp
(
α ∗

i− NP
2

NP

) (4)

Where α is the parameter that controls the value of scaling factor F. We can see this more clearly in Figure 1.

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

F

Scale factor F

alpha<0
alpha>0

Bad fitnessRank numberHigh fitness

Fig. 1 Value of scale factor F depends on rank number i and α
.

Fmean
iter = Fmin + (Fmax − Fmin)

(
itermax − iter

itermax

)niter

(5)

Where Fmax and Fmin are the lower and upper limitation of F, respectively. From our experiment, it is recommended to
use values of Fmax and Fmin 0.8 and 0.15, respectively. itermax, and niter denote the maximum iteration, and the nonlinear
modulation index as in Eq. (5); nmax and nmin are typically chosen in the [0, 15] range. Recommended values for nmin and
nmax are 0.2 and 6.0, respectively.

The trend of scaling factor Fmean
iter mainly depends on nonlinear modulation niter and iteration number iter. We can

see this more clearly in Fig. 2.
We separately calculate scale factor F for each particle in each iteration. The value of F iter

i is the difference for all
particles in the population. If we call F iter

i an average value of Fi and Fmean
iter , we assign it to each iteration. Then, the

suitable value of scale factor for each particle in every iteration is determined in Eq. (6):

F i
iter =

Fi + Fmean
iter

2
(6)

3

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

From now, we use particle scale factor F i
iter in the proposed algorithm instead of general scale factor F in Eq. (1) to Eq.

(3) for generating mutation vector V .
Adaptive crossover control parameter: ISADE can automatically detect the Cr value. The large value of Cr is used

if the test problem is dependent (nonseparable functions), while a small value of Cr is suitable for independent problems
(separable functions). A minimum base for Cr around its median value is incorporated to avoid stagnation around a
single value. Figure 3 shows this approach, so we propose the ideas behind this adaptive mechanism for crossover control
parameter Cr, which is assigned as in Eq. (7).

CRiter+1
i =

 rand2 if rand1 ≤ τ

CRiter
i otherwise.

(7)

where rand1 and rand2 are generated randomly in ∈ [0, 1], and τ represents probabilities to adjust Cr, which is also
updated using Eq. (8).

The value of CR is adjusted as in Eq. (8).

CRiter+1
i =

 CRmin if CRmin ≤ CRiter+1
i ≤ CRmed

CRmax if CRmed ≤ CRiter+1
i ≤ CRmax .

(8)

where Crmin, Crmed, and Crmax are the small, median, and large value of crossover parameter Cr, respectively. From our
experimentation, we suggest using the values of Crmin = 0.05, Crmed = 0.50, Crmax = 0.95, and τ = 0.10.

Crossover operation: In this process, current vector X and mutation vector V are used to generate a trial vector U
as in Equation (9).

U iter
i =

 V iter
i, j if rand j ≤ CRiter

i or j = jrand

Xiter
i, j otherwise.

(9)

Where jrand is a random integer number in [1,D], and rand j(0, 1) is a uniform random real number in [0, 1]. Because of
using jrand, trial vector U differs from target vector X.

Selection operation: The better fitness between target vector X and trial vector U are selected for the next generation.

XG+1
i =

 U iter
i if f (U iter

i) ≤ f (Xiter
i)

Xiter
i otherwise.

(10)

We propose adaptive particle scaling factor F and adaptive crossover control parameter Cr in this research. Therefore,
a user has no need to tune the suitable values for both of F and Cr. Therefore, the new proposed algorithm is simpler
and less time-consuming than the original DE algorithm. It is easier for a user to apply this modified DE to real-world
problems.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 46 91 13
6

18
1

22
6

27
1

31
6

36
1

40
6

45
1

49
6

54
1

58
6

63
1

67
6

72
1

76
6

81
1

85
6

90
1

94
6

99
1

10
36

10
81

11
26

11
71

12
16

12
61

13
06

13
51

13
96

14
41

14
86

sc
al

e
fa

ct
or

Scale factor depend on generation

varying n_i

n_min=0.2

n_max=6.0

generation

Fig. 2 Scale factor depending on generation.

Highly suggested

Highly suggested

CR=0 CR=1

CRmax CRmedium CRmin

Not recommended

Not recommended

Independent Problems

Dependent Problems

Fig. 3 Suggested to calculate CR values

2.2. OBL review
Opposition-based learning, first proposed by Hamid R. Tizhoosh (2005a), tries to get a better candidate solution by

comparing the current particle and its corresponding opposite estimate. This technique provides a new way to find a better
solution that can reach the global optimum. Some definitions of opposition-based learning are introduced that include
opposition number in mathematics and opposite particle in evolutionary optimizations, as follows:

4

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

Definition of opposite number in mathematics: If variable x is a real number within its boundary [lb,ub], the
opposition of x is ox, where ox = lb + ub − x. We can extend the concepts of the opposite number to the multidimension.

Definition of opposite particle in evolutionary optimization: given p (x1, x2, . . . , xD) be a particle in D-dimensional
space, where x1, x2, . . . , xD are real numbers and xi ∈ [lbi, ubi]. Then, the opposition of particle p (x1, x2, . . . , xD) is defined
as in Eq. (11).

oxi = lbi + ubi − xi (11)

where lbi and ubi are the lower and upper boundary of xi.
Figure 4 illustrates an example of an opposite number and its corresponding opposition in both one- and two-

dimensional spaces.
Opposition-Based Learning: In OBL, both the particle and its corresponding opposition point are simultaneously

evaluated based on their fitness value. The better one in term of fitness wins and is selected for reproduction in the next
generation. Let f (x) be the objective function and f it(x) be the fitness function. If particle p ∈ [a, b] is the current one
in the searching population and op is its corresponding opposition, then in every generation of the evolutionary algorithm
we compare the fitness value between f it(p) and f it(op). If f it(p) ≥ f it(op), then particle p wins over op and continues
to the next generation for the production new candidates; otherwise, with op.

3. Proposed new evolutionary algorithm based on OBL

In this section, we proposed two schemes of using OBL to improve the performance of the modified DE. The first
scheme is jumping OBL (JOBL-DE), and the other one is elite OBL (EOBL-DE).

3.1. Proposed JOBL-DE
We enhance two main core impotence steps in ISADE, namely, the initialization population and reproducing new

candidates for the next generation by evolutionary operators such as mutation, crossover, and selection. In the first step,
OBL is applied for all particles (100%) at the initialization population. Different from the first step, in the second step,
each particle has a chance to generate its opposition if a random number in [0, 1] is less than jumping rate (Jr). The new
proposed JOBL-DE implementation process is as in Algorithm 2.

Algorithm 2: JOBL-DE.
1: Initialization—Opposition-Based Learning operation: Generate and randomly initialize all NP numbers of populations

within the boundary. After that, calculate their corresponding opposition. We have a total of 2NP number of populations.
2: Evaluate and rank population: Evaluate and rank all populations by their fitness value. After that, select first best NP

particles for the next generation.
3: Adaptive scaling factor: Calculate adaptive scale factors F as in Eq.(4) to Eq. (6).
4: Mutation operation: Apply adaptive selection learning strategy to create mutation vector V in Eq. (1) to (3).
5: Adaptive crossover control parameter Cr: Calculate adaptive crossover rate Cr in Eq. (7) and Eq. (8).
6: Crossover operation: Trial vector U is computed in this step using Eq. (9).
7: Selection Operation: In this step, the fitness value is used to evaluate for trial vector UG

i and target vector XG
i . The better

one is selected for reproducing new offspring by Eq. (10).
8: Jumping Opposition-Based Learning operation: Each particle is selected randomly to perform opposition-based learning.

After that, both the particle and its estimate opposition are compared to each other, and the better one in term of fitness value
survives and Is selected for the next generation. Different from opposite-based learning of initialization, the detail about this
step can see in the procedure of EOBL-DE Fig. 6.

9: Repeat Steps 2 to 8 until terminal condition.

3.2. Proposed EOBL-DE
To increase local searchability, we applied OBL to the top elite particles after evaluating the fitness of all particles.

Therefore, the best nearby elite particles can be discovered and a new better candidate is selected for the next generation.
In Fig 5, the position of the elite particle (blue circle symbol) and its corresponding opposition (red star symbol) can
be seen. By applying OBL to elite particles (top best particles with the highest fitness value), we can enhance local
searchability in this strategy. The new proposed EOBL-DE implementation process is presented as Algorithm 3.

5

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

𝑏𝑏𝑎𝑎 𝑥𝑥 𝑜𝑜𝑥𝑥

𝑎𝑎 + 𝑏𝑏
2

𝑥𝑥1 𝑜𝑜𝑜𝑜1

𝑥𝑥2

𝑜𝑜𝑜𝑜2

𝑝𝑝

𝑜𝑜𝑜𝑜

Fig. 4 Illustration of opposition theory.

LB UB

f(Xelite)

Xelite Xnew

f(X)

x
f(Xnew)

Fig. 5 Elite strategy-based opposition.

Random Initialization
(1) DE creates initial population p(NP)
(2) Calculates Opposite Population op (NP)

Evaluation rank pupolation
(1) Calculate fitness value
(2) sort population by their descent fitness
(3) Selecte NP best particles candidate to ward

Adaptive crossover control parameter CR

Crossover Operator
DE creates a trial vector

Termianal?

Adaptive scaling factor F

Mutation Operator
Apply adaptive selection learning strategies
creates a mutation vector in Eq. (2) to Eq. (7)

Y

N

Stop

Opposite-based Learning
(1) Calculate Oppositon of particles (NP)
(2) Fitness Evaluate
(3) Selecte better one in term of fitness for the next generation.

rand<Jr

Fig. 6 Jumping OBL (JOBL-DE) procedure.

Random Initialization
(1) DE creates initial population p(NP)
(2) Calculates Opposite Population op (NP)

Evaluation rank pupolation
(1) Calculate fitness value
(2) sort population by their descent fitness
(3) Selecte NP best particles candidate to ward

Adaptive crossover control parameter CR

Crossover Operator
DE creates a trial vector

Termianal?

Adaptive scaling factor F

Mutation Operator
Apply adaptive selection learning strategies
creates a mutation vector in Eq. (2) to Eq. (7)

Y

N

Stop

Opposite-based Learning
(1) Calculate Oppositon of a certain top best number of particles
(2) Fitness Evaluate
(3) Selecte better one in term of fitness for the next generation.

Fig. 7 Elite OBL (EOBL-DE) procedure.

Algorithm 3: EOBL-DE.
1: Steps 1–7 operations are the same as Algorithm 2.
2: Elite Opposition-Based Learning operation: The top best particles (elite particles in the populations) are selected after

ranking all populations by their fitness value. After that, we apply OBL to these elite particles in this step. Both the particle
and its corresponding opposite point are evaluated and compared to each other; the better one in term of fitness is selected
for the next generation. As a difference from opposite-based initialization learning, there is only some certain amount of
best fitness whose opposition is calculated. Details about this step can be seen in the procedure in Fig. 7.

3: Repeat Steps 2 and 3 until terminal condition.

Figure 7 shows the procedure of elite opposition-based learning for modified differential evolution. By considering
to use opposite-based learning to our optimization algorithm, the searching process benefits more in terms of convergence
speed, stability, and less time consumption. During the simulation, we ran some benchmark tests and real engineering
applications to verify the robustness of the new proposed algorithm.

6

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

4. Numerical experiment simulation

In this section, to show the effects of the proposed method in terms of convergence speed (time consumption),
stability, and accuracy, we compare our new method with other methodologies, including the original DE and an improved
version of DE for the robustness of optimization processing.

4.1. Benchmark-test problems
To evaluate the convergence speed and stability of each method, 19 well-known benchmark-test problems were

used. These benchmarks are multiple dimensions (Molga, 2005) that contain multidimensional unimodal and multimodal
functions: Sphere or first De Jong (f1), the Rosenbrock function known as "Banana" (f2), Griewank (f3), Rastrigin
(f4), Ackley (f5), Ridge or Schwefel’s Problem 1.2 (f6), Levy (f7), Schawefel or Schwefel function 2.22 (f8), Schaffer
function (f9), Alpine function (f10), Pathological function (f11), Axis Parallel Hyper-Ellipsoid (f12), Sum of Different
Power (f13), Zakharov Function (f14), Exponential Problem (f15), Salomon Problem (f16), Bent Cigar Function (f17),
Expanded Schaffer’s F6 Function (f18), and Schwefel Function (f19). The details of all benchmarks are summarized in
Appendix A.

All benchmark-test functions are continuous. They can be divided into groups as follows:
Group 1: Unimodal, convex, and multidimensional.
Group 2: Multimodal, nonconvex, multidimensional, with a few local optimums.
Group 3: Multimodal, nonconvex, multidimensional, with many local optimums.
Group 4: Independent functions: If the function is independent, each variable xi can be optimized independently. Func-
tions of this category are easy to solve.
Group 5: Dependent functions: If the function is dependent (nonseparable), then all its variables have a strong relation-
ship with each other and cannot be independently optimized. Such functions are relatively difficult to solve.

All benchmark tests are formulated hereinafter as minimization problems, but this does not lose generality that can
also be applied for maximization problems by the simple converting sign of the objective function.

4.2. Comparing the robustness of the new proposed algorithm and reference approaches
We compare the robustness of the two new proposed algorithms (JOBLDE and EOBLDE) with the original DE

(Storn and Price, 1997) and reference methods ISADE (Bui et al., 2013) by measuring the number of function evaluation
calls (FE) and the success rate. The number of FE is the most popular parameter that is used to evaluate the convergence
speed of an optimization method. The smaller the FE is, the higher the convergence speed is. The second parameter that
is used to show the stability of each algorithm is success rate (S R); one simulation is a success (S R = 1) if it can reach the
termination-error value (ε) before reaching FEmax. Each test function is used to calculate both S R and FE. Terminate
before reaching FEmax if the error in the function value is ε = 10−8 or less.

In the experiment, we set a parameter such as number of dimensions D = 30, number of populations NP = 100,
accurate ε = 108, and maximum number of function evaluation calls FEmax = 10000 ∗D = 300000 for a fair performance
comparison. We also used F = 0.5 and Cr = 0.9 for the original DE algorithm. Our decision for using those values was
based on proposed values from the literature DE (Storn and Price, 1997) and ISADE (Bui et al., 2013). All simulations
were independently given 50 runs per test function. We used the same uniform random initialization for comparison pairs.
This can be achieved by using a fixed seed for a random-number generator in MATLAB software.

The simulation results of the two new proposed algorithms (JOBLDE and EOBLDE) with the original DE and
reference method ISADE to solve all benchmark problems are given in Table 1 and Figure 8. As can be seen, ISADE,
JOBLDE, and EOBLDE could reach the global optimal solutions for all benchmark-test problems except for f10, the
success rate equaled 100%, and DE was not stable to reach the termination-error value (ε = 10−8). The success rate of
DE was equal to zero on test problems f2, f4, f9, f16, f18, and f19. Therefore, we can say that the new methods, JOBLDE
and EOBLDE, were more stable than DE and ISADE.

In terms of comparing number of function calls FE, JOBLDE and EOBLDE also reached the global solution at
fewer function calls than the reference in all benchmark functions except test function f10. From the above comparisons,
comments, and evaluations, we can see that the proposed methods could reach the global optimal optimum with fewer
function evaluation calls than of the reference. With the nine benchmark tests, f4, f5, f8, f9, f11, f14, f16, f18 and f19,
new approaches are much robust. Convergence speed to the global optimum solution can be significantly improved than
that in EAs for the same termination-error value.

7

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

Table 1 Results for comparing robustness of the new proposed algorithm.

Function ID DE ISADE JOBLDE EOBLDE
SR FE SR FE SR FE SR FE IR

f1 1.00 35688 1.00 34163 1.00 39255 1.00 16222 54.54%
f2 0.00 300000 0.84 179307 1.00 193766 1.00 176237 41.25
f3 0.34 38641 0.50 49687 1.00 40759 1.00 22064 42.90%
f4 0.00 300000 1.00 144068 1.00 107351 1.00 85710 71.43%
f5 0.82 54385 1.00 58290 1.00 46712 1.00 22047 59.46%
f6 1.00 126046 0.96 138338 1.00 42267 1.00 14995 88.10%
f7 0.76 33618 0.94 46556 1.00 37269 1.00 17972 46.54%
f8 1.00 57898 1.00 95701 1.00 68416 1.00 25377 56.17%
f9 0.00 300000 0.00 300000 1.00 99038 1.00 85059 71.65%
f10 1.00 58682 0.98 132938 0.58 186813 0.62 135331 -130.62%
f11 0.00 300000 0.00 300000 1.00 112790 1.00 90963 69.68%
f12 1.00 33614 1.00 46457 1.00 37413 1.00 15102 55.07%
f13 1.00 8322 1.00 9644 1.00 10181 1.00 4610 44.61%
f14 1.00 182620 1.00 172252 1.00 39307 1.00 13932 92.37%
f15 1.00 24942 1.00 42009 1.00 31603 1.00 12198 51.09%
f16 0.00 300000 0.00 300000 1.00 108121 1.00 85172 71.61%
f17 1.00 61828 1.00 113429 1.00 75826 1.00 25981 57.98%
f18 0.00 300000 0.00 300000 1.00 112636 1.00 88738 70.42%
f19 0.00 300000 1.00 94849 1.00 112648 1.00 84745 71.75%

In the final review of the result, the last column of Table 2 shows the improvement rate of EOBLDE over reference
DE. EOBLDE could improve the convergence speed by more than 40% of the improvement rate (IR) for all benchmark
functions except test function f10. Comparing between the two new proposed algorithms (JOBLDE and EOBLDE),
EOBLDE converged faster and more stably than JOBLDE.

Figures 9 to 14 show the behavior of all algorithms for six test problems, f2, f3 f5, f7, f12, and f13. The horizontal
axis presents the number of iterations, while the vertical axis presents the function value. These graphs show that our
algorithms (EOBLDE and JOBLDE) converged to the global optimum minimum value with accurate ε = 108 at fewer
iterations than the renaming reference algorithms.

0
10

00
00

20
00

00
30

00
00

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19

N
um

be
r o

f f
un

ct
io

n
ev

al
ua

tio
n

Benchmark function name

Function Evaluation Call

DE

ISADE

JOBLDE

EOBLDE

Fig. 8 Comparison of function calls and success rate on all benchmarks.

Last consideration in this section is the contribution of opposition-based learning in the EOBLDE; we used OBL
at two different processes: the first is the creation of the initial population and the other is the creation of new particles
during the evolution of the ISADE algorithm. To see the contribution of each process in the EOBLDE, we investigated
which one is important to improve computational performance. In order to do that, we separated the two processes into
two cases: in the first case, EOBLDE only uses OBL in the initial population and is called EOBLDE1; in the second case,
EOBLDE only uses OBL in the main process to create new particles and it is called EOBLDE2. All sets of benchmarks

8

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

0 500 1000 1500 2000 2500 3000

 iteration

10-10

10-8

10-6

10-4

10-2

100

102

104

 f
it

n
es

s-
va

lu
e

 Rosenbrock function (f2)

DE
ISADE
JOBLDE
EOBLDE

Fig. 9 Convergence graph for f2.

0 100 200 300 400 500 600

 iteration

10-10

10-8

10-6

10-4

10-2

100

102

104

 f
it

n
es

s-
va

lu
e

Griewank function (f3)

DE
ISADE
JOBLDE
EOBLDE

Fig. 10 Convergence graph for f3.

0 100 200 300 400 500 600 700

 iteration

10-10

10-8

10-6

10-4

10-2

100

102

 f
it

n
es

s-
va

lu
e

 Ackley function (f5)

DE
ISADE
JOBLDE
EOBLDE

Fig. 11 Convergence graph for f5.

0 50 100 150 200 250 300 350 400 450 500

 iteration

10-10

10-8

10-6

10-4

10-2

100

102

104

 f
it

n
es

s-
va

lu
e

 Levy function (f7)

DE
ISADE
JOBLDE
EOBLDE

Fig. 12 Convergence graph for f7.

0 50 100 150 200 250 300 350 400 450 500

 iteration

10-10

10-8

10-6

10-4

10-2

100

102

104

 f
it

n
es

s-
va

lu
e

Axis Parallel Hyper-Ellipsoid function (f12)

DE
ISADE
JOBLDE
EOBLDE

Fig. 13 Convergence graph for f12.

0 10 20 30 40 50 60 70 80 90 100

 iteration

10-10

10-8

10-6

10-4

10-2

100

 f
it

n
es

s-
va

lu
e

Sum of Different Power function (f13)

DE
ISADE
JOBLDE
EOBLDE

Fig. 14 Convergence graph for f13.

and parameters, same as above, are used to perform simulations for ISADE, EOBLDE1, EOBLDE2, and EOBLDE.
Table 2 shows the improvement-rate (IR), function-evaluation-call (FE), and success-rate (S R) values obtained by all
algorithms in 50 runs for each function.

As shown in Table 2, both EOBLDE1 and EOBLDE2 could improve computational performance compared with
the reference IASDE, but EOBLDE2 was much better than EOBLDE1 in terms of average improvement rate (IR), that
is, 56.07% compared with 0.35%. We also see that EOBLDE was better than both EOBLDE1 and EOBLDE2, so using
opposition-based learning at two different processes of EOBLDE was the best choice in this study.

9

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

Table 2 Results of comparing EOBLDE1 and EOBLDE2.

Function ID ISADE EOBLDE1 EOBLDE2 EOBLDE
SR FE SR FE IR SR FE IR SR FE IR

f1 1.00 34163 1.00 33768 1.16% 1.00 16531 51.61% 1.00 16222 52.52%
f2 0.84 179307 0.90 176733 1.44% 1.00 175134 2.33% 1.00 176237 1.71%
f3 0.50 49687 0.44 49456 0.46% 1.00 25268 49.15% 1.00 22064 55.59%
f4 0.00 144068 1.00 144494 -0.30% 1.00 90112 37.45% 1.00 85710 40.51%
f5 0.82 58290 1.00 58186 0.18% 1.00 22839 60.82% 1.00 22047 62.18%
f6 0.96 138338 1.00 135260 2.23% 1.00 15223 89.00% 1.00 14995 89.16%
f7 0.94 46556 0.98 46800 0.12% 1.00 16028 65.57% 1.00 17972 61.40%
f8 1.00 95701 1.00 97648 0.06% 1.00 25558 73.29% 1.00 25377 73.48%
f9 0.00 300000 0.00 300000 0.00% 1.00 90140 69.95% 1.00 85059 71.65%
f10 0.98 132938 1.00 131928 0.76% 0.68 143576 -8.00% 0.62 135331 -1.80%
f11 0.00 300000 0.00 300000 0.00% 1.00 96681 67.77% 1.00 90963 69.68%
f12 1.00 46457 1.00 46549 -0.20% 1.00 15202 67.28% 1.00 15102 67.49%
f13 1.00 9644 1.00 11297 0.48% 1.00 4119 57.29% 1.00 4610 52.20%
f14 1.00 172252 1.00 171098 0.67% 1.00 13314 92.27% 1.00 13932 91.91%
f15 1.00 42009 1.00 42151 -0.34% 1.00 12214 70.93% 1.00 12198 70.96%
f16 0.00 300000 0.00 300000 0.00% 1.00 91156 69.61% 1.00 85172 71.61%
f17 1.00 113429 1.00 113770 -0.30% 1.00 26038 77.04% 1.00 25981 77.09%
f18 0.00 300000 0.00 300000 0.00% 1.00 94055 68.65% 1.00 88738 70.42%
f19 1.00 94849 1.00 94639 0.22% 1.00 91639 3.38% 1.00 84745 10.65%
Average 0.75 - 0.75 - 0.35% 0.98 - 56.07% 0.98 - 57.29%

4.3. Applying newly proposed method for solving real-world applications
To show the ability of the newly proposed method, some real-world constrained problems were used in this section.

EOBLDE is very robust compared with JOBLDE and other methods.
A set of four well-known mechanical-design optimization problems were selected in this experiment. A more de-

tailed description of these constrained engineering-design optimization problems is presented in Appendix B. These test
problems have previously been used to evaluate the efficacy of many other methodologies in the optimization literature.

Some parameters were set for all experiments: number of population NP = 8 ∗ D, and the terminal stopped at
maximum function evaluations FEmax. All simulations were independently given 50 runs per test problem.

To handle the constrained optimization problems, we first applied penalty methods (Alice and David,1996) to convert
a constrained optimization problem to unconstrained problems. The basic formulas are shown below:
Constrained objective function: Minimize f (X)
Where X ∈ D is a vector of design variables of dimension D, and f is a scalar objective function.
- Inequality constraints: gi(X) ≤ 0 i = 1 . . . q
- Equality constraints: h j(X) = 0 j = q + 1 . . .m
Where q is the number of inequality constraints, m − q is the number of equality constraints, gi(X) and h j(X) are the
functions of inequality and equality constraints.
Boundary on variables: LB ≤ X ≤ UB
Where LB and UB are the lower and upper boundary of the variable
Unconstrained objective function: Minimize F(x) = f (X) + cP(X)
Where ci is a positive constant, and term P(X) is the penalty function as in Eq. (12).

P(X) =
1
2

m∑
i=1

max{0, gi(X)}2 (12)

Experiment results for the Welded Beam problem (E01): Some methods are given for making comparisons
for this problem, such as the coevolutionary differential evolution method (CDE) (Huang et al., 2007), coevolutionary
particle-swarm optimization (CPSO) (He and Wang, 2006), the GA-based coevolution model (CGA) (Coello, 2000), and
study method EOBLDE. The best solutions found by the above methods are listed in Table 3, and their statistical objective
values are shown in Table 4. From Table 3, it can be seen that the best solution found by EOBLDE was the best between
those of all methods. From Table 4, we can see that the average searching quality of EOBLDE and the standard deviation
of the objective function were also better than those of the others.

Experiment results for the Pressure Vessel problem (E02): We continued applying the methods of CDE, CPSO,
CGA, and our EOBLDE to this problem. The best solutions obtained by the above approaches are listed in Table 5, and

10

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

Table 3 Best solutions found for the Welded Beam.

D.V CDE CPSO CGA EOBLDE
x1 0.203137 0.202369 0.208800 0.205729
x2 3.542998 3.544214 3.420500 3.470488
x3 9.033498 9.048210 8.99750 9.036623
x4 0.206179 0.205723 0.210000 0.205729
g1 -44.57856 -12.83979 -0.337812 -1.4790E-7
g2 -44.66353 -1.247467 -353.9026 -1.8863E-7
g3 -0.003042 -0.001498 -0.001200 -9.7584E-11
g4 -3.423726 -3.429347 -3.411865 -3.432983
g5 -0.078137 -0.079381 -0.083800 -0.080729
g6 -0.235557 -0.235536 -0.235649 -0.235540
g7 -38.02826 -11.68135 -363.2323 -4.4691E-8
f (X) 1.733462 1.728024 1.748309 1.724852

Table 4 Statistical results for the Welded Beam.

Methods Best Mean Worst Std
CDE 1.733461 1.768158 1.824105 0.022
CPSO 1.728024 1.748831 1.782143 0.013
CGA 1.748309 1.771973 1.785835 0.011
EOBLDE 1.724852 1.724856 1.725001 2.131E-5

their statistics of objective-function values are shown in Table 6. From Table 5, it can be seen that the best solution found
by EOBLDE was the best between those of all approaches. From Table 6, it can be found that the average searching
quality of EOBLDE was also better than those of reference methods.

Table 5 Best solutions found for the Pressure Vessel.

D.V CDE CPSO CGA EOBLDE
x1 0.812500 0.812500 0.812500 0.812500
x2 0.437500 0.437500 0.437500 0.437500
x3 42.098411 42.091266 40.323900 42.098445
x4 176.637690 176.746500 200.000000 176.636595
g1 -6.677E-07 -0.000139 -0.034324 -1.1102E-16
g2 -0.035881 -0.035949 -0.052847 -0.035800
g3 -3.683016 -116.382700 -27.105845 -2.3283E-10
g4 -63.36231 -63.253500 -40.000000 -63.363400
f (X) 6059.7340 6061.0777 6288.7445 6059.7143

Experiment results for the Speed Reducer problem (E03): Some well-known methods are given for making
comparisons for this problem, such as the Adaptive Penalty Method, include AIS-GAH and APMbc (Bernardino et al.,
2008), the simple real-coded steady-state genetic algorithm APMrc (Afonso et al., 2010), and our method EOBLDE. Table
7 shows the best solution found by our proposed algorithm and others from the literature, and their statistical objective-
function values are shown in Table 8. In these experiments, we set the maximum number of function evaluations to 36,000.
From the test result, we can observe that all methods could essentially reach the same optimal design variables. The best
value was found by our EOBLDE, APMbc, and APMrc, the same at (2996.3480). Table 7 shows the final values of the
objective function for 50 independently runs (all solutions were feasible). As seen in Table 7, the best solution found by
our method EOBLDE was the same as those found by the reference methods. The comparison of the statistical results of
the different methods in Table 8 shows that the average searching quality of EOBLDE was also better than those of the
other methods, and even the worst solution found by EOBLDE was better than the best solution found by the references.

Experiment results for Tension/compression Spring problem (E04): The four methods applied to this problem
were CDE, CPSO, CGA, and our study method EOBLDE. The best solutions obtained by the above approaches are listed
in Table 9, and their objective-function value is shown in Table 10. From Table 9, it can be seen that the best solution
found by EOBLDE was the best among those of all approaches. From Table 10, it can be found that the average searching
quality of EOBLDE was also better than those of others.

11

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

Table 6 Statistical results for the Pressure Vessel.

Methods Best Mean Worst Std
CDE 6059.7340 6085.2303 6371.0455 43.013
CPSO 6061.0777 6147.1332 6363.8041 86.454
CGA 6288.7445 6293.8432 6308.1497 7.413
EOBLDE 6059.7143 6093.8431 6370.7797 83.671

Table 7 Best solutions found for the Speed Reducer.

DV AIS-GAH APMbc APMrc EOBLDE
x1 3.500001 3.500000 3.500000 3.500000
x2 0.700000 0.700000 0.700000 0.700000
x3 17 17 17 17
x4 7.300008 7.300000 7.300000 7.300000
x5 7.800001 7.800000 7.800000 7.713888
x6 3.350215 3.350215 3.350215 3.350215
x7 5.286684 5.286683 5.286683 5.285353
f (X) 2996.3483 2996.3482 2996.3482 2.993.6132

Table 8 Statistical results for the Speed Reducer.

Methods Best Mean Worst Std
AIS-GAH 2996.3483 2996.3501 2996.3599 7.45E-3
APMbc 2996.3482 3033.8807 3459.0948 1.10E+2
APMrc 2996.3482 2997.4728 3051.4556 7.87
EOBLDE 2993.6132 2993.6165 2993.6296 0.33E-2

Table 9 Best solutions found for the Tension/Compression.

DV CDE CPSO CGA EOBLDE
x1(d) 0.051609 0.051728 0.051480 0.051689
x2(D) 0.354714 0.357644 0.351661 0.356718
x3(N) 11.410831 11.244543 11.632201 11.288947
g1(X) -0.000039 -0.000845 -0.002080 -2.220E-16
g2(X) -0.000183 -1.2600E-05 -0.000110 -1.1102E-16
g3(X) -4.048627 -4.051300 -4.026318 -4.053785
g4(X) -0.729118 -0.727090 -4.026318 -0.727728
f (X) 0.0126702 0.0126747 0.0127048 0.012665

Table 10 Statistical results for the Tension/Compression.

Methods Best Mean Worst Std
CDE 0.012670 0.012703 0.012790 2.70E-5
CPSO 0.012674 0.012730 0.012924 5.19E-5
CGA 0.012704 0.012769 0.012822 3.93E-5
EOBLDE 0.012665 0.012669 0.012713 9.01E-6

5. Conclusions

In this research, the two new schemes of applying OBL to improve the performance of self-adaptive control param-
eters in difference-evaluation algorithms have been proposed to solve complex high-dimension optimization problems.
The main idea is that we used the principle of opposition-based learning to generate a better candidate in the process of
searching for the optimal solution in DE.

Nineteen benchmark problems and four real constrained mechanical optimizations were used to validate the ro-
bustness of the new approaches. The new approaches performed well in all test benchmarks, and both the required
function-evaluation calls (FE) and the success rate to the solutions were found. The simulation results show that the new
approaches, especially EOBLDE, outperformed in all the objective test functions. The convergence speed of EOBLDE
was better and more stable than that of DE and ISADE.

The new method, EOBLDE, is a powerful optimal algorithm. We can use this method as a tool for solving many
real-world applications in the optimization design area. By proposing this new approach of the optimization algorithm, it
gives more options to researchers and engineers in suitable optimal algorithms in their work.

12

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

6. Appendix A

f01 Shere function(1st De Jong): f (x) =
∑n

i=1 x2
i

f02 Rosenbrock function (Rosenbrock valley): f (x) =
∑n

i=1[b(xi+1 − x2
i)2 + (a − xi)2]

f03 Griewank function: f (x) = 1 +
∑n

i=1
x2

i
4000 −

∏n
i=1 cos(xi√

i
)

f04 Rastrigin function: f (x) = 10n +
∑n

i=1(x2
i − 10cos(2πxi))

f05 Ackley function: f (x) = −a.exp(−b
√

1
n

∑n
i=1 x2

i) − exp(1
n

∑n
i=1 cos(cxi)) + a + exp(1)

f06 Ridge function (Schwefel Problem 1.2): f (x1 · · · xn) =
∑n

i=1(∑i
j=1 x j)2

f07 Levy function: f (x) = sin2(4πx1) +
∑n−1

i=1 (xi − 1.0)2(1.0 + sin(3πxi+1)2) + (xn − 1)2(1 + sin2(4πxn))
f08 Schawefel function (Schwefel 2.22 function): f (x) =

∑n
i=1 |xi| +

∏n
i=1 |xi|

f09 Schaffer function: f (x, y) = 0.5 +
sin2(
√

x2+y2)−0.5
[1+0.001·(x2+y2)]2

f10 Alpine function: f (x) =
∑n

i=1 |xisin(xi) + 0.1xi|

f11 Pathological function: f (x) =
∑n−1

i=1 0.5 +
(sin
√

100x2
i +x2

i+1)2−0.5
1+0.001(x2

i +x2
i+1−2xi xi+1)2

f12 Axis Parallel Hyper-Ellipsoid: f (x) =
∑n

i=1 ix2
i

f13 Sum of Different Power: f (x) =
∑n

i=1 |xi|
i+1

f14 Zakharov Function: f (x) =
∑n

i=1 x2
i + (∑n

i=1 0.5ixi)2 + (∑n
i=1 0.5ixi)4

f15 Exponential Problem: f (x) = −exp(−0.5 ∑n
i=1 x2

i)

f16: Salomon Problem: steepness: f (x) = 1 − cos(2π
√∑D

i=1 x2
i) + 0.1

√∑D
i=1 x2

i

f17 Bent Cigar Function: f18: Schwefel Function: f (x) = 418.9829d − ∑n
i=1 xisin(

√
|xi|)

f19: Schwefel Function: f (x) = f (x1, x2, ..., xn) = 418.9829d − ∑n
i=1 xisin(

√
|xi|)

7. Appendix B
7.1. Welded-beam design problem (E01)

The problem is to design a welded beam for minimal cost, subject to some constraints (Ragsdell and Phillips, 1976).
Figure 15 shows the welded-beam structure. The objective is to find the minimal fabrication cost, considering four design
variables: x1(h), x2(l), x3(t), x4(b) and constraints of shear stress τ, bending stress in beam σ, buckling load on bar Pc ,
and end deflection on beam δ. The optimization model is summarized in the next equation:
Minimize: f (x) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2)
subject to: g1(x) = τ(x) − 13, 600 ≤ 0 ; g2(x) = σ(x) − 30, 000 ≤ 0 ; g3(x) = x1 − x4 ≤ 0 ; g4(x) = 0.10471x2

1 +

0.04811x3x4(14.0 + x2) − 5.0 ≤ 0 ; g5(x) = 0.125 − x1 ≤ 0 ; g6(x) = δ(x) − 0.25 ≤ 0 ; g7(x) = 6, 000 − Pc(x) ≤ 0
With

τ(x) =

√
(τ,)2 + (2τ,τ,,) x2

2R + (τ,,)2 ; τ, = 6,000
√

2x1 x2
; τ,, = MR

J

M = 6, 000
(
14.0 + x2

2

)
; R =

√
x2

2
4 +

(
x1+x3

2

)2
; J = 2

{
x1x2

√
2
[

x2
2

4.0 +
(

x1+x3
2

)2
]}

σ(x) = 504,000
x4 x2

3
; δ(x) = 65,856,000

(30×106)x4 x3
3

Pc(x) =
4.013(30×106)

√
x2
3 x6

4
36.0

196.0

(
1 −

x3

√
30×106

4(12×106)

28.0

)
With 0.1 ≤ x1, x4 ≤ 2.0, and 0.1 ≤ x2, x3 ≤ 10.0.

7.2. Pressure-vessel design problem (E02)
Designing an air-storage tank that works under high-compression pressure of 3000 psi (Sandgren,1990). The initial-

ization design is a cylindrical vessel with both ends by hemispherical heads Fig. 16. The objective is to get the lowest
total cost. Design variables are end thickness x1(T s), head thickness x2(Th), inner radius x3(R), and length of cylindrical
length x4(L). This design is constrained to single-objective optimization as below:
Minimize: f (x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3

subject to: g1(x) = −x1 + 0.0193x3 ≤ 0; g2(x) = −x2 + 0.00954x3 ≤ 0;
g3(x) = −πx2

3x4 −
4
3πx3

3 + 1, 296, 000 ≤ 0; g4(x) = x4 − 240 ≤ 0
1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625, and 10 ≤ x3, x4 ≤ 200.

13

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

4.3 The Welded Beam design

The objective is to minimize the costC(h, l, t, b) of the beam whereh ∈ [0.125, 10], and
0.1 ≤ l, t, b ≤ 10. The objective and constraints readDeb(2000)

C(h, l, t, b) = 1.10471h2l + 0.04811tb(14.0 + l)

g1(τ) = 13, 600−
√
(τ ′)2 + (τ ′′)2 + lτ ′τ ′′/α ≥ 0

g2(σ) = 30, 000− 504000/(t2b) ≥ 0

g3(b, h) = b− h ≥ 0 g4(Pc) = Pc − 6, 000 ≥ 0

g5(δ) = 0.25− 2.1952/(t3b) ≥ 0

τ
′
=

6000√
2hl

α =
√

0.25(l2 + (h+ t)2)

Pc = 64746.022(1− 0.0282346t)tb3

τ
′′
=

6000(14 + 0.5l)α

2(0.707hl(l2/12 + 0.25(h+ t)2))

C(h, l, t, b) = 1.10471h2l + 0.04811tb(14.0 + l)

g1(τ) = 13, 600− τ ≥ 0 g2(σ) = 30, 000− σ ≥ 0

g3(b, h) = b− h ≥ 0 g4(Pc) = Pc − 6, 000 ≥ 0

g5(δ) = 0.25− δ ≥ 0

The expressions forτ , σ, Pc, andδ are given by:

τ =
√

(τ ′)2 + (τ ′′)2 + lτ ′τ ′′/α τ
′
=

6000√
2hl

α =
√

0.25(l2 + (h+ t)2) σ =
504000

t2b

τ =
2(0.707hl(l2/12 + 0.25(h+ t)2))

l h

t

F

b

Figure 4: The Welded Beam

The Table5 shows a comparison of results where the best value found (final cost equal to
2.38122) corresponds to the AIS-GAC presented in the referenceBernardino et al.(2007). The
Table6 shows the design variables corresponding to the best solution found by each technique.
All the solutions are feasible and the number of function evaluations was set to 320,000 (200
individuals in the population).

Mecánica Computacional Vol XXIX, págs. 9287-9303 (2010) 9295

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Fig. 15 Welded-beam design-optimization problem

R

L
ST

R

hT

Figure 5: The Pressure Vessel.

Best Median Average St.Dev Worst fr ne

AIS-Coello 6061.123 − 6734.085 − 7368.060 − 150, 000
AIS-GA 6060.368 − 6743.872 − 7546.750 − 80, 000
AIS-GAC 6060.138 − 6385.942 − 6845.496 − 80, 000
AIS-GAh 6059.855 6426.710 6545.126 1.24E+ 2 7388.160 50 80, 000
APMbc 6065.822 6434.435 6632.376 5.15E + 2 8248.003 50 80, 000
SR 6832.584 7073.107 7187.314 2.67E + 2 8012.651 50 80, 000
APMrc 6059.715 6288.529 6344.079 2.78E + 2 6928.386 49 80, 000

Table 7: Values of the weight found for the Pressure Vessel design

AIS-Coello AIS-GA AIS-GAC AIS-GAH APMbc SR APMrc

Ts 0.8125 0.8125 0.8125 0.8125 0.8125 1.1250 0.8125
Th 0.4375 0.4375 0.4375 0.4375 0.4375 0.5625 0.4375
R 42.0870 42.0931 42.0950 42.0973 42.0492 58.1267 42.0984
L 176.7791 176.7031 176.6797 176.6509 177.2522 44.5941 176.6368
W 6061.1229 6060.3677 6060.138 6059.8546 6065.8217 6832.5836 6059.715

Table 8: Design variables found for the best solutions for the Pressure Vessel design

Mecánica Computacional Vol XXIX, págs. 9287-9303 (2010) 9297

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Fig. 16 Pressure-vessel design-optimization problem.

7.3. Speed-reducer design problem (E03)
The design of the speed reducer (Golinski,1973) shown in Fig. 17, is considered with face width x1(l), module of

teeth x2(z1), number of teeth on second gear x3(z2), length of first shaft between bearings x4(l1), length of second shaft
between bearings x5(l2), diameter of first shaft x6(d1), and diameter of second shaft x7(d2) (all variables continuous except
x3, that is, integer). The weight of the speed reducer is to be minimized subject to constraints on bending stress of the
gear teeth, surface stress, transverse deflections of the shafts, and stresses in the shaft. The mathematical formulation of
this problem is:
Minimize: f (x) = 0.7854x1x2

2(3.3333x2
3 +14.9334x3−43.0934)−1.508x1(x2

6 + x2
7)+7.4777(x3

6 + x3
7)+0.7854(x4x2

6 + x5x2
7)

subject to: g1(x) = 27.0
x1 x2

2 x3
− 1 ≤ 0; g2(x) = 397.5

x1 x2
2 x2

3
− 1 ≤ 0 g3(x) =

1.93x3
4

x2 x3 x2
6
− 1 ≤ 0; g4(x) =

1.93x3
5

x2 x3 x4
7
− 1 ≤ 0

g5(x) = 1
110.0x3

6

√(
745x4
x2 x3

)2

+ 16.9 × 106 − 1 ≤ 0 g6(x) = 1
85.0x3

7

√(
745.0x5

x2 x3

)2

+ 157.5 × 106 − 1 ≤ 0 g7(x) =
x2 x3
40.0 − 1 ≤ 0;

g8(x) = 5.0x2
x1
− 1 ≤ 0; g9(x) = x1

12.0x2
− 1.0 ≤ 0 g10(x) =

1.5x6+1.9
x4

− 1 ≤ 0 ; g11(x) = 1.1x7+1.9
x5

− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6; 0.7 ≤ x2 ≤ 0.8; 17 ≤ x3 ≤ 28; 7.3 ≤ x4 ≤ 8.3; 7.8 ≤ x5 ≤ 8.3; 2.9 ≤ x6 ≤ 3.9; and 5.0 ≤ x7 ≤ 5.5.

7.4. Tension/compression-spring design problem (E04)
We designed a tension/compression spring (Belegundu,1982). The objective function was minimal weight, while

constraints were minimal deflections, shear stress, surge frequency, and limits on outside diameter and on design variables.
The design variables were wire diameter x1(d), outer diameter x2(D), and number of turns x3(N), as seen in Fig. 18. This
design was constrained to single-objective optimization as below:
Minimize: f (x) = (x3 + 2)x2x2

1

constraints: g1(x) = 1− x3
2 x3

7,1785x4
1
≤ 0; g2(x) =

4x2
2−x1 x2

12,566(x2 x3
1−x4

1) +
1

5,108x2
1
−1 ≤ 0; g3(x) = 1− 140.45x1

x2
2 x3

≤ 0; g4(x) = x1+x2
1.5 −1 ≤ 0

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, and 2 ≤ x3 ≤ 15.

1l

l2
z1 z2 d2

d1

Figure 3: The Speed Reducer

Best Median Average St.Dev Worst fr

ES-Coello 3025.0051 − 3088.7778 − 3078.5918 −
AIS-GA ∗ 2996.3494 2996.356 2996.3643 4.35E − 3 2996.6277 50
AIS-GAC ∗ 2996.3484 2996.3484 2996.3484 1.46E− 6 2996.3486 50
AIS-GAH 2996.3483 2996.3495 2996.3501 7.45E − 3 2996.3599 50
APMbc 2996.3482 2996.3482 3033.8807 1.10E + 2 3459.0948 19
SR 2996.3483 2996.3488 2996.3491 1.01E − 3 2996.3535 50
APMrc 2996.3482 2996.3482 2997.4728 7.87E + 0 3051.4556 49

Table 3: Values found for the Speed Reducer design

ES-Coello AIS-GA ∗ AIS-GAC ∗ AIS-GAH APMbc SR APMrc

x1 3.506163 3.500001 3.500000 3.500001 3.500000 3.500000 3.500000
x2 0.700831 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000
x3 17 17 17 17 17 17 17
x4 7.460181 7.300019 7.300001 7.300008 7.300000 7.300001 7.300000
x5 7.962143 7.800013 7.800000 7.800001 7.800000 7.800001 7.800000
x6 3.362900 3.350215 3.350215 3.350215 3.350215 3.350215 3.350215
x7 5.308949 5.286684 5.286684 5.286683 5.286683 5.286683 5.286683
W 3025.0051 2996.3494 2996.3484 2996.3483 2996.3482 2996.3483 2996.3482

Table 4: Design variables found for the best solutions for the Speed Reducer design

A. LEMONGE, H. BARBOSA, C. BORGES, F. SILVA9294

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

l

Fig. 17 Speed Reducer.

1
.5

C
la

ss
ifi

ca
ti

o
n

o
f

O
p

ti
m

iz
at

io
n

P
ro

b
le

m
s

2
3

w
h

er
e

G
is

th
e

sh
ea

r
m

o
d
u

lu
s,

F
th

e
co

m
p

re
ss

iv
e

lo
ad

o
n

th
e

sp
ri

n
g

,
w

th
e

w
ei

g
h
t

o
f

th
e

sp
ri

n
g
,
ρ

th
e

w
ei

g
h
t

d
en

si
ty

o
f

th
e

sp
ri

n
g

,
an

d
K

s
th

e
sh

ea
r

st
re

ss
co

rr
ec

ti
o

n
fa

ct
o

r.

A
ss

u
m

e
th

at
th

e
m

at
er

ia
l

is
sp

ri
n

g
st

ee
l

w
it

h
G

=
1
2

×
1
0

6
p
si

an
d

ρ
=

0
.3

lb
/i

n
3
,

an
d

th
e

sh
ea

r
st

re
ss

co
rr

ec
ti

o
n

fa
ct

o
r

is
K

s
≈

1
.0

5
.

S
O

L
U

T
IO

N
T

h
e

d
es

ig
n

v
ec

to
r

is
g
iv

en
b

y

X

  

x
1

x
2

x
3

  

=

  

d D N





s



an
d

th
e

o
b

je
ct

iv
e

fu
n

ct
io

n
b
y f

(X
)
=

w
ei

g
h

t
=

π
d

2

4
π

D
N
ρ

(E
1
)

T
h

e
co

n
st

ra
in

ts
ca

n
b

e
ex

p
re

ss
ed

as

d
efl

ec
ti

o
n

=
F k

=
8
F

D
3
N

d
4
G

≤
0
.1

th
at

is
,

g
1
(X

)
=

d
4
G

8
0

F
D

3
N

>
1

(E
2
)

sh
ea

r
st

re
ss

=
K

s

8
F

D

π
d

3
≤

1
0
,0

0
0

N(number of turns)

Fig. 18 Tension/Compression Spring.

References

Alice, S.E., David, C.W., Penalty functions Handbook of Evolutionary Computation, Section C 5.2. Oxford University
Press and Institute of Physics Publishing, (1996).

Afonso C.C. Lemongea, Helio J.C. Barbosab, Carlos C.H. Borgesc and Francilene B.S. Silvad., constrained optimization
problems in mechanical engineering design using a real-coded steady-state genetic algorithm, Mecanica Computa-
cional Vol.XXIX, pages. 9287-9303 (articulo completo), Argentina, 15-18 November (2010).

14

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

Bernardino H., Barbosa H., and Lemonge A., A hybrid genetic algorithm for constrained optimization problems in me-
chanical engineering. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation,Singapore:IEEE
Press, (2007) pp.646-653.

Bernardino H., Barbosa H., Lemonge A., and Fonseca L., A new hybrid AIS-GA for constrained optimization prob-
lems inmechanical engineering. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hong
Kong:IEEE Press, (2008) pp.1455-1462.

Belegundu, A., A Study of Mathematical Programming Methods for Structural Optimization, PhD thesis, Department of
Civil Environmental Engineering, University of Iowa, Iowa, (1982).

Bui, T. Pham, H. Hasegawa, H., Improve self-adaptive control parameters in differential evolution for solving constrained
engineering optimization problems. J Comput Sci Technol Vol.7, No.1 (2013), pp.59-74. DOI:10.1299/jcst.7.59.

Coello, C.A.C., Use of a self-adaptive penalty approach for engineering optimization problems, Computers in Industry 41
(2000), pp.113-127.

David, H. W. and William, G.M., No Free Lunch Theorems for Optimization, IEEE TRANSACTIONS ON EVOLU-
TIONARY COMPUTATION, APRIL, Vol.1, No.1 (1997), pp.68-82.

Dorigo, M., Optimization, Learning, and Natural Algorithms, PhD thesis, Politecnico di Milano, (1992).
El-Abd, M., Generalized opposition-based artificial bee colony algorithm, in 2012 IEEE Congress on Evolutionary Com-

putation (CEC), (2012), pp.1-4.
Golinski, J., An Adaptive Optimization System Applied to Machine Synthesis, Mech. Mach. Theory, Vol.8, No.4 (1973),

pp.419-436.
Holland J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Michigan; re-issued

by MIT Press (1992).
Huang, F. Wang, L. He, Q., An effective co-evolutionary differential evolution for constrained optimization, Applied

Mathematics and Computation 186 (2007), pp.340-356.
He, Q. Wang, L., An effective co-evolutionary particle swarm optimization for constrained engineering design problems,

Engineering Applications of Artificial Intelligence Vol.19, No.7 (2006), doi:10.1016/j.engappai.2006.03.003.
Karaboga, D. Basturk, B., An artificial bee colony algorithm for numeric function optimization, in Proc. of the IEEE

Swarm Intelligence Symposium May (2006), Indiana, USA, pp.12-14.
Kennedy J, Eberhart R., Particle swarm optimization, [J] IEEE International Conference on Neural Networks Conference

Proceedings. Perth, Aust, (1995), pp.1942-1948.
Molga, M. Smutnicki, C., Test functions for optimization needs. (online), available from:

<http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf>, (accessed, 2005).
Rahnamayan, H. Tizhoosh, R. and Salama, M. A., Opposition-Based Differential Evolution Algorithms, in IEEE Congress

on Evolutionary Computation, 2006. CEC 2006, (2006), pp.2010-2017.
Ragsdell, K,. and Phillips, D., Optimal Design of a Class of Welded Structures using Geometric Programming, J. Eng.

Ind, Vol.98, No.3 (1976), pp.1021-1025.
Rahnamayan, S. Tizhoosh, H. R. and Salama, M. M. A., Opposition-Based Differential Evolution, U.K. Chakraborty

(Ed.): Advances in Differential Evolution, SCI 143, (2008), pp.155-171.
Rahnamayan, S. Tizhoosh, H. R. and Salama, M. M. A., A novel population initialization method for accelerating evolu-

tionary algorithms, Comput. Math. Appl., Vol.53, No.10 (2007), pp.1605-1614.
Rahnamayan, S. Tizhoosh, H. R. and Salama, M. M. A., Opposition versus randomness in soft computing techniques,

Appl. Soft Comput., vol.8, No.2 (2008), pp.906-918.
Storn R. , and Price K., Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous

Spaces, Journal Global Optimization, Vol.11 (1997), pp.341-359.
Shaw, B. Mukherjee, V. and Ghoshal, S. P., A novel opposition-based the gravitational search algorithm for combined

economic and emission dispatch problems of power systems, Int. J. Electr. Power Energy Syst., Vol.35, No.1 (2012),
pp.21-33.

Saha, S. K. Dutta, R. Choudhury, R. Kar, R. Mandal, D. and Ghoshal, S. P., Efficient and Accurate Optimal Linear Phase
FIR Filter Design Using Opposition-Based Harmony Search Algorithm, The Scientific World Journal, vol.2013,
Article ID 320489, 16 pages (2013). https://doi.org/10.1155/2013/320489.

Shaw, B. Mukherjee, V. and Ghoshal, S.P., A novel opposition-based gravitational search algorithm for combined eco-
nomic and emission dispatch problems of power systems, Int. J. Electr. Power Energy Syst., Vol.35, No.1 (2012),
pp.21-33.

15

2
© 2019 The Japan Society of Mechanical Engineers

Bui , Nguyen and Hasegawa, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.4 (2019)

[DOI: 10.1299/jamdsm.2019jamdsm0072]

Tizhoosh H. R., Opposition-Based Learning: A New Scheme for Machine Intelligence, in International Conference on
Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce, Vol.1 (2005) pp.695-701.

Tizhoosh, H.R., Reinforcement Learning Based on Actions and Opposite Actions, presented at the ICGST International
Conference on Artificial Intelligence and Machine Learning (AIML-05), Cairo, Egypt, (2005) pp.94-98.

Tooyama, S. Hasegawa, H., Adaptive plan system with genetic algorithm using the variable neighborhood range control.
IEEE Congress on Evolutionary Computation, CEC’09. (2009), pp.846-853, DOI:10.1109/CEC.2009.4983033.

Sandgren, E., Nonlinear Integer and Discrete Pro-gramming in Mechanical Design Optimization, J.Mech. Des.-T. ASME,
Vol.112, No.2 (1990), pp.223-229.

Ventresca, M. and Tizhoosh, H. R., Improving the Convergence of Backpropagation by Opposite Transfer Functions, in
International Joint Conference on Neural Networks, 2006. IJCNN’06, (2006), pp.4777-4784.

Ventresca, M. and Tizhoosh, H. R., Numerical condition of feedforward networks with opposite transfer functions, in
IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computa-
tional Intelligence),(2008), pp.3233-3240.

Ventresca, M. and Tizhoosh, H.R., Opposite Transfer Functions and Backpropagation Through Time, in IEEE Symposium
on Foundations of Computational Intelligence, (2007), pp.570-577.

Wang, H. Wu, Z. Rahnamayan, S. Liu, Y. and Ventresca, M., Enhancing particle swarm optimization using generalized
opposition-based learning, Inf. Sci., Vol. 181, No. 20 (2011), pp.4699-4714.

Wang, H. Wu, Z. and Rahnamayan, S., Enhanced opposition-based differential evolution for solving high-dimensional
continuous optimization problems, Soft Comput., Vol.15, No.11 (2011), pp.2127-2140.

16

