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Parental environment can widely influence offspring phenotype, but paternal
effects in the absence of parental care remain poorly understood. We asked if
protein content in the larval diet of fathers affected paternity success and gene
expression in their sons. We found that males reared on high-protein diet had
sons that fared better during sperm competition, suggesting that postcopulatory
sexual selection is subject to transgenerational paternal effects. Moreover,
immune response genes were downregulated in sons of low-protein fathers,
while genes involved in metabolic and reproductive processes were upregulated.

1. Introduction

Parental effects can be triggered by diverse factors and describe non-genetic con-
tributions of parents to offspring developmental phenotypes. Maternal effects are
well documented, but less-understood paternal effects can also significantly
impact offspring phenotypes [1,2], including sexually selected traits [3—5], even
when males contribute only sperm [1,5,6]. Paternal diet, in particular, can influ-
ence offspring traits, if females choosing sperm from males adapted to the local
nutritional environment produce offspring with higher fitness [7]. Molecular
mechanisms of transgenerational paternal diet effects remain poorly understood
but include altered methylation in metabolism-linked loci (reviewed in [8]),
perturbed glucose—insulin homeostasis [9], altered cholesterol biosynthesis [10],
and modified chromatin states related to obesity [6]. Here, we examine how
high- and low-protein paternal larval diet influences postcopulatory sexual
selection and gene expression in sons of Drosophila melanogaster.

2. Material and methods

Experimental D. melanogaster expressed green fluorescent protein (GFP) in sperm
heads and ubiquitously in somatic cells for paternity assignment (focal males) or
red fluorescent protein (RFP; females and competitor males) in sperm heads [11].
GFP larvae were reared on high- (HP; 200 g yeast : 50 g sugar) or low-protein (LP;
50 g yeast : 50 g sugar) diet known to yield 80-96% survival [12]. For each treatment,
10 vials were prepared upon eclosion, each with five CO,-collected males and five
same-stock females reared on standard diet (SD; 100 g yeast: 50 g sugar), housed
in SD vials (see electronic supplementary material for more detailed methods).
Virgin focal sons were transferred to SD until mating. Three-day-old virgin SD
RFP females were first mated with SD RFP competitor males (day 0) in individual
vials and provided 6 h opportunities to remate with a focal son for 4 subsequent
days (days 1-4) under continuous observation. After remating, females oviposited
on fresh SD food vials for 4 days. Paternity of adult offspring [13] was determined
using a Nikon SMZ18 fluorescent stereoscope. P, was calculated as the proportion of
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Figure 1. Paternity share (P,) of sons from fathers on either high or low
larval diet.

GFP-sired progeny, and data were analysed with logistic
regressions with binomial error structure (glm in R v. 3.2.0 [14]).

RNA was extracted from two replicates of 20 7-day-old focal
sons per treatment using an RNeasy kit (Qiagen) and quantified
using Agilent Bioanalyzer. Illumina TruSeq mRNA stranded
libraries were constructed, and 76bp paired-end sequences
were obtained on an Illumina NextSeq 500, replicated across
two flow cells, with within-sample replicates pooled for further
analysis [15]. We performed RNASeq data analysis using the
Tuxedo Protocol in the DNA Subway online platform [16] with
quality control using FastX-Toolkit (v. 0.0.13.2). Reads were
mapped to the D. melanogaster transcriptome and genome
(Ensembl r76, BDPG5) using TopHat (v. 2.0.11, [17]). Differen-
tially expressed (DE) genes were identified using CUFFDIFF
(v.2.1.1, [16]) at a g-value < 0.05 after false discovery rate correc-
tion [18]. Results were visualized with CumMMERBUND and
Cyroscare (for biological networks, [19]) in R.

3. Results

P, of sons from fathers on high larval diet was higher than
that of sons from low larval diet fathers (estimate +
s.e.= —0216 + 0.077, Z = -2.80, p=0.005; figure 1). Of 69
DE genes (7 < 0.05; fold change > 1.5), 58 were downregulated
(fold change 1.54-10.6; mean + s.e. = 2.30 + 1.46) in LP sons
related to immune response, specifically antimicrobial humoral
response and response to insecticides and other toxins
(figure 2a). Eleven genes were upregulated primarily in repro-
ductive and metabolic functions (fold change 1.66-6.2;
mean + s.e. = 2.83 + 1.54; see table 1, electronic supplementary
material table S1 and figure 2b).

4. Discussion

Sons of fathers reared on LP diet fared worse in sperm compe-
tition, with associated downregulation of immune response
genes and upregulation of genes involved in metabolism
and reproduction. Non-mutually exclusive mechanisms of
paternal effects on paternity success include seminal fluid
and other ejaculate effects [20] and cryptic female choice
[21]. Females may have been able to detect treatment-induced
variation in male behaviour and may have allocated more
resources into reproduction with descendants of high-diet
males. It is well known that high-quality diet positively affects
male sexual characters [22], fitness [23] and subsequent female
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Figure 2. (a) Downregulated gene clusters with GO (gene ontology) terms in
sons of fathers on low diet. (b) Upregulated gene clusters with GO terms in
sons of fathers on low diet. Nodes with significantly enriched GO terms are
shown in colour.
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choice [24]. Indeed, the gene paralytic (para) affects courtship
song [25] and male olfaction in response to female pheromones
[26] and was downregulated in sons of LP fathers. As down-
regulation of para reduces neuronal excitability [27], it is
conceivable that negative fitness effects include lower-quality
courtship song and reduced olfaction ability, which are very
important factors in female precopulatory choice [28]. How-
ever, while higher latency (willingness) to mate and reduced
mating duration for males with low-quality courtship song
and reduced olfactory ability may be expected, we did not
find an effect of paternal diet regime on mating duration,
and we did not investigate more detailed behavioural traits
to confirm correlational outcomes with the expression of
para. Only few studies have so far reported transgenerational
effects in relation to diet quality [29,30]. To our knowledge,
this is the first study reporting on postcopulatory advantages
conferred by parental diet.

Importantly, DE genes confirm the existence of differences
between sons of fathers reared on different diets, enabling
further investigations of transgenerationally affected sexually
selected traits. Antimicrobial peptides (AMPs) are upregulated
by D. melanogaster when challenged by Gram-negative bacteria
[31,32]. Downregulation of these AMPs in sons of LP fathers in
our study might therefore be a form of immunosuppression,
which, according to theory, trades off against sexually selected
traits [33]. Thus, reproductive fitness of LP sons might have
been even lower if immunosuppression had not occurred.
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Indeed, sexually selected male D. melanogaster that showed
higher competitive mating ability had lowered immune
function, compared with control males [34].

The two most upregulated genes in sons of low-diet fathers
are YP1 and YP2. While the suggested functional annotation,
vitellogenesis, is clearly a female-limited function, effects of
YP1 and YP2 in male D. melanogaster [35] and the moth Spodop-
tora littoralis [36] include yolk protein precursors, which
directly interact with spermatozoa. YP2 coats the spermatozoa
and might provide protection or aid in gamete recognition.
However, the functional significance of these proteins has
not been established, and we have no knowledge about how
upregulation of YPI and YP2 may influence reproductive
fitness in male fruit flies.

The direction of regulation of proteolysis (CG9377), bio-
synthesis of chitin-based cuticle (Cpr92F and dp) and
gamete generation (mei-P26) is consistent with organismal
preparation for a suboptimal nutritional environment, invest-
ing less and recycling more. Intriguingly, CG9377 has been
also found to be upregulated in brains of male D. melanogaster
courting females, compared with non-courting males [37],
establishing another link of our paternal diet treatment to
precopulatory sexual selection (although the direction of the
effect seems to promote courtship, rather than reduce it, as
discussed above). Valtonen ef al. [38] found substantial trans-
generational effects of larval diet on development time and

adult body size in D. melanogaster, but not on pathogen resist-
ance. The different findings in immune response between [38]
and the presented study may be due to the efficiency of the
manipulated media. Diet components and protein : carbo-
hydrate ratios are difficult to compare between studies,
owing to use of different protein (P) and carbohydrate (C)
sources. Crude estimates of P:C ratios and the within-
study difference between ratios were much higher in our
study (low = 0.4, high =8; [38] assuming 100 g of sugar/
litre diet: low = 0.07, standard = 0.14), illustrating the need
to employ a more exact nutritional framework to determine
high-resolution reaction norms of traits of interest [39].
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