
Zajitschek, F, Zajitschek, S and Manier, M

 High-protein paternal diet confers an advantage to sons in sperm competition

http://researchonline.ljmu.ac.uk/id/eprint/12534/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Zajitschek, F, Zajitschek, S and Manier, M (2017) High-protein paternal diet 
confers an advantage to sons in sperm competition. Biology Letters, 13 (2). 
ISSN 1744-957X 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


rsbl.royalsocietypublishing.org
Research
Cite this article: Zajitschek F, Zajitschek S,

Manier M. 2017 High-protein paternal diet

confers an advantage to sons in sperm

competition. Biol. Lett. 13: 20160914.

http://dx.doi.org/10.1098/rsbl.2016.0914
Received: 24 November 2016

Accepted: 20 January 2017
Subject Areas:
behaviour, ecology, evolution

Keywords:
transgenerational effects, gene expression,

parental effects, postcopulatory sexual

selection, RNAseq, transcriptomics
Author for correspondence:
Mollie Manier

e-mail: manier@gwu.edu
†These authors contributed equally to this

study.

Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.fig-

share.c.3679372.

& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Evolutionary biology
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Parental environment can widely influence offspring phenotype, but paternal

effects in the absence of parental care remain poorly understood. We asked if

protein content in the larval diet of fathers affected paternity success and gene

expression in their sons. We found that males reared on high-protein diet had

sons that fared better during sperm competition, suggesting that postcopulatory

sexual selection is subject to transgenerational paternal effects. Moreover,

immune response genes were downregulated in sons of low-protein fathers,

while genes involved in metabolic and reproductive processes were upregulated.
1. Introduction
Parental effects can be triggered by diverse factors and describe non-genetic con-

tributions of parents to offspring developmental phenotypes. Maternal effects are

well documented, but less-understood paternal effects can also significantly

impact offspring phenotypes [1,2], including sexually selected traits [3–5], even

when males contribute only sperm [1,5,6]. Paternal diet, in particular, can influ-

ence offspring traits, if females choosing sperm from males adapted to the local

nutritional environment produce offspring with higher fitness [7]. Molecular

mechanisms of transgenerational paternal diet effects remain poorly understood

but include altered methylation in metabolism-linked loci (reviewed in [8]),

perturbed glucose–insulin homeostasis [9], altered cholesterol biosynthesis [10],

and modified chromatin states related to obesity [6]. Here, we examine how

high- and low-protein paternal larval diet influences postcopulatory sexual

selection and gene expression in sons of Drosophila melanogaster.
2. Material and methods
Experimental D. melanogaster expressed green fluorescent protein (GFP) in sperm

heads and ubiquitously in somatic cells for paternity assignment (focal males) or

red fluorescent protein (RFP; females and competitor males) in sperm heads [11].

GFP larvae were reared on high- (HP; 200 g yeast : 50 g sugar) or low-protein (LP;

50 g yeast : 50 g sugar) diet known to yield 80–96% survival [12]. For each treatment,

10 vials were prepared upon eclosion, each with five CO2-collected males and five

same-stock females reared on standard diet (SD; 100 g yeast : 50 g sugar), housed

in SD vials (see electronic supplementary material for more detailed methods).

Virgin focal sons were transferred to SD until mating. Three-day-old virgin SD

RFP females were first mated with SD RFP competitor males (day 0) in individual

vials and provided 6 h opportunities to remate with a focal son for 4 subsequent

days (days 1–4) under continuous observation. After remating, females oviposited

on fresh SD food vials for 4 days. Paternity of adult offspring [13] was determined

using a Nikon SMZ18 fluorescent stereoscope. P2 was calculated as the proportion of
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Figure 1. Paternity share (P2) of sons from fathers on either high or low
larval diet.
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Figure 2. (a) Downregulated gene clusters with GO (gene ontology) terms in
sons of fathers on low diet. (b) Upregulated gene clusters with GO terms in
sons of fathers on low diet. Nodes with significantly enriched GO terms are
shown in colour.
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GFP-sired progeny, and data were analysed with logistic

regressions with binomial error structure (glm in R v. 3.2.0 [14]).

RNA was extracted from two replicates of 20 7-day-old focal

sons per treatment using an RNeasy kit (Qiagen) and quantified

using Agilent Bioanalyzer. Illumina TruSeq mRNA stranded

libraries were constructed, and 76 bp paired-end sequences

were obtained on an Illumina NextSeq 500, replicated across

two flow cells, with within-sample replicates pooled for further

analysis [15]. We performed RNASeq data analysis using the

Tuxedo Protocol in the DNA Subway online platform [16] with

quality control using FASTX-Toolkit (v. 0.0.13.2). Reads were

mapped to the D. melanogaster transcriptome and genome

(Ensembl r76, BDPG5) using TOPHAT (v. 2.0.11, [17]). Differen-

tially expressed (DE) genes were identified using CUFFDIFF

(v. 2.1.1, [16]) at a q-value , 0.05 after false discovery rate correc-

tion [18]. Results were visualized with CUMMERBUND and

CYTOSCAPE (for biological networks, [19]) in R.
3. Results
P2 of sons from fathers on high larval diet was higher than

that of sons from low larval diet fathers (estimate+
s.e. ¼ 20.216+0.077, Z ¼ –2.80, p ¼ 0.005; figure 1). Of 69

DE genes (q � 0.05; fold change . 1.5), 58 were downregulated

(fold change 1.54–10.6; mean+ s.e. ¼ 2.30+1.46) in LP sons

related to immune response, specifically antimicrobial humoral

response and response to insecticides and other toxins

(figure 2a). Eleven genes were upregulated primarily in repro-

ductive and metabolic functions (fold change 1.66–6.2;

mean+ s.e.¼ 2.83+1.54; see table 1, electronic supplementary

material table S1 and figure 2b).
4. Discussion
Sons of fathers reared on LP diet fared worse in sperm compe-

tition, with associated downregulation of immune response

genes and upregulation of genes involved in metabolism

and reproduction. Non-mutually exclusive mechanisms of

paternal effects on paternity success include seminal fluid

and other ejaculate effects [20] and cryptic female choice

[21]. Females may have been able to detect treatment-induced

variation in male behaviour and may have allocated more

resources into reproduction with descendants of high-diet

males. It is well known that high-quality diet positively affects

male sexual characters [22], fitness [23] and subsequent female
choice [24]. Indeed, the gene paralytic ( para) affects courtship

song [25] and male olfaction in response to female pheromones

[26] and was downregulated in sons of LP fathers. As down-

regulation of para reduces neuronal excitability [27], it is

conceivable that negative fitness effects include lower-quality

courtship song and reduced olfaction ability, which are very

important factors in female precopulatory choice [28]. How-

ever, while higher latency (willingness) to mate and reduced

mating duration for males with low-quality courtship song

and reduced olfactory ability may be expected, we did not

find an effect of paternal diet regime on mating duration,

and we did not investigate more detailed behavioural traits

to confirm correlational outcomes with the expression of

para. Only few studies have so far reported transgenerational

effects in relation to diet quality [29,30]. To our knowledge,

this is the first study reporting on postcopulatory advantages

conferred by parental diet.

Importantly, DE genes confirm the existence of differences

between sons of fathers reared on different diets, enabling

further investigations of transgenerationally affected sexually

selected traits. Antimicrobial peptides (AMPs) are upregulated

by D. melanogaster when challenged by Gram-negative bacteria

[31,32]. Downregulation of these AMPs in sons of LP fathers in

our study might therefore be a form of immunosuppression,

which, according to theory, trades off against sexually selected

traits [33]. Thus, reproductive fitness of LP sons might have

been even lower if immunosuppression had not occurred.
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Indeed, sexually selected male D. melanogaster that showed

higher competitive mating ability had lowered immune

function, compared with control males [34].

The two most upregulated genes in sons of low-diet fathers

are YP1 and YP2. While the suggested functional annotation,

vitellogenesis, is clearly a female-limited function, effects of

YP1 and YP2 in male D. melanogaster [35] and the moth Spodop-
tora littoralis [36] include yolk protein precursors, which

directly interact with spermatozoa. YP2 coats the spermatozoa

and might provide protection or aid in gamete recognition.

However, the functional significance of these proteins has

not been established, and we have no knowledge about how

upregulation of YP1 and YP2 may influence reproductive

fitness in male fruit flies.

The direction of regulation of proteolysis (CG9377), bio-

synthesis of chitin-based cuticle (Cpr92F and dp) and

gamete generation (mei-P26) is consistent with organismal

preparation for a suboptimal nutritional environment, invest-

ing less and recycling more. Intriguingly, CG9377 has been

also found to be upregulated in brains of male D. melanogaster
courting females, compared with non-courting males [37],

establishing another link of our paternal diet treatment to

precopulatory sexual selection (although the direction of the

effect seems to promote courtship, rather than reduce it, as

discussed above). Valtonen et al. [38] found substantial trans-

generational effects of larval diet on development time and
adult body size in D. melanogaster, but not on pathogen resist-

ance. The different findings in immune response between [38]

and the presented study may be due to the efficiency of the

manipulated media. Diet components and protein : carbo-

hydrate ratios are difficult to compare between studies,

owing to use of different protein (P) and carbohydrate (C)

sources. Crude estimates of P : C ratios and the within-

study difference between ratios were much higher in our

study (low ¼ 0.4, high ¼ 8; [38] assuming 100 g of sugar/

litre diet: low ¼ 0.07, standard ¼ 0.14), illustrating the need

to employ a more exact nutritional framework to determine

high-resolution reaction norms of traits of interest [39].
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