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Abstract
Metal powder-bed fusion additive manufacturing technologies offer numerous benefits to the manufacturing industry. How-
ever, the current approach to printability analysis, determining which components are likely to build unsuccessfully, prior to
manufacture, is based on ad-hoc rules and engineering experience. Consequently, to allow full exploitation of the benefits
of additive manufacturing, there is a demand for a fully systematic approach to the problem. In this paper we focus on the
impact of geometry in printability analysis. For the first time, we detail a machine learning framework for determining the
geometric limits of printability in additive manufacturing processes. This framework consists of three main components.
First, we detail how to construct strenuous test artefacts capable of pushing an additive manufacturing process to its limits.
Secondly, we explain how to measure the printability of an additively manufactured test artefact. Finally, we construct a
predictive model capable of estimating the printability of a given artefact before it is additively manufactured. We test all
steps of our framework, and show that our predictive model approaches an estimate of the maximum performance obtainable
due to inherent stochasticity in the underlying additive manufacturing process.

Keywords Additive manufacturing · Machine learning · Powder bed fusion · Electron beam melting · Printability analysis

Introduction

Additive manufacturing technologies are critical drivers for
innovation and offer potential business benefits to the indus-
trial sector (Azam et al. 2018; Mueller 2012; Santos et al.
2006). High value manufacturing companies aim to produce
additively manufactured parts that form critical components
for numerous industries. Not only are such technologies ideal
for rapid prototyping and building bespoke components, but
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they also allow for the formation of geometries that may
be difficult or impossible to construct via more conven-
tional technologies. Consequently, additive manufacturing
technologies can be used to produce parts capable of greater
performance.

One of the key challenges to make this technology robust
and cost-effective is to ensure that the designed components
are additively manufacturable. This is typically decomposed
into two properties, printability and fragility. The printability
of an object is the ability of a given additive manufacturing
process to produce a faithful realization of the object. The
fragility of the manufactured part is the ability of the object
to withstand post-printing processing and normal usage.

At the present time, metal powder bed fusion technol-
ogy is state-of-the-art for additively manufacturing high-
performance components (King et al. 2015). Such machines
operate by repeatedly spreading a thin layer of powdered
material across the build plate andmelting thismaterial using
a heat source. In this study we focus on electron beam melt-
ing (EBM), a process that can build parts at a relatively high
speed due to electromagnetic-driven mechanisms directing
the beam and is capable of maintaining simultaneous melt
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spots on the powder bed while preheating the entire layer
if needed. This extra heat applied can in turn contribute to
anneal parts, minimising residual stresses. Once the build
process is complete, unsintered powder is removed from
built surfaces and recovered for further sieving and reuse.
The resulting part can then be checked for printability and
fragility.

The printability defects encountered when using this tech-
nology can be classified into two distinct groups. The first of
these consists of the large-scale deformations such as warp-
ing and twisting due to the stresses on the part during the
build process (Denlinger andMichaleris 2016; Li et al. 2018).
Such deformations frequently arise when building large flat
regions, or regions where the component thickness changes
rapidly. The second group contains the small-scale defects,
where small regions are visibly damaged, deformed, or fail
to print all together.

The large-scale defects are reasonably well understood
and can be predicted using physics based modelling
(Schoinochoritis et al. 2015). In this paperwe focus primarily
on the small-scale defects. It is well known that many geo-
metric features tend to impact the small-scale printability
and fragility of the build part. Problematic geometric fea-
tures include overhanging regions, small holes, thin walls
and wires, sharp edges and curved features.

To add to the complexity, the problems of printability and
fragility are not separable at the level of the geometry: while
geometric features exhibiting one of these properties in isola-
tionmay build without defects, a geometric feature involving
multiple of these properties may not. For example, inclined
planes typically need a larger thickness as the inclination
increases.

Due to the underlying physics involved in the build
process, printability and fragility properties are extremely
stochastic. As an example, the exact sizes, shapes and ori-
entations of the scattered material particles can affect the
build process in non-trivial ways. This complexity renders
physics-based simulations infeasible.

At present, manufacturing companies rely on engineer-
ing know-how and ad-hoc rules (Jee and Witherell 2017;
Mani et al. 2017) to determinewhich geometric structures are
additively manufacturable and to set operating conditions for
the manufacturing processes. Moreover, due to the time and
expense needed for such processes, these rules often err on
the side of caution, necessarily limiting performance of the
component. There is thus a need for a systematic approach to
predicting performance of additivemanufacturing processes.

Over the last decade, a vast body of literature has emerged
of contexts where machine learning algorithms, algorithms
which learn from data, have been able to achieve or exceed
human-level performance (Libbrecht and Noble 2015; Pham
and Afify 2005; Monostori et al. 1996). Modern machine
learning algorithms are able to learn highly complex non-

linear relationships between predictor and target variables,
even in highly stochastic environments.

Recent applications of machine learning to additive man-
ufacturing (Aminzadeh and Kurfess 2018; Kwon et al.
2018) have focused on quality detection during or post-
manufacturing or on optimisation problems around build
process parameters (Panda et al. 2016; Yicha et al. 2015).
To the best of our knowledge, a fully systematic approach to
printability analysis, allowing identification of problematic
regions before manufacture does not exist.

In this paper we detail an end-to-end data-driven frame-
work for determining the geometric limits of printability
in additive manufacturing processes. Firstly, we detail a
methodology for constructing test artefacts exhibiting a wide
range of geometric features: some straightforward and oth-
ers beyond the horizon of printability. Secondly, we devise a
metric to assess how faithfully a component has built within
a region of interest. We can use this metric to label parts as
having built successfully or unsuccessfully. Finally, we use
a collection of handcrafted geometric features and suitable
machine learning techniques to estimate the printability of
our test artefact. A schematic of our framework is shown
in Fig. 1. We show that the performance of our predictive
model approaches an estimate of the obtainable limit due
to inherent stochasticity of the underlying additive manu-
facturing process in both a cross-validated sense and on a
disjoint hold-out set. Since all components are from the same
build, it is possible that slight bias to build idiosyncrasies has
occurred, although we expect these to be small. In future
work, we intend to validate these results on a wide range of
test artefacts, including those from separate builds, of varying
complexities and thus theoretical performance limits.

Problem formulation

As discussed, printability is a complicated property which
depends on a multitude of factors including the substance
and quality of powderedmaterial, the additivemanufacturing
technology, the build process parameters and the geometry.
In this paper, we fix all but one of these factors and focus on
the impact of the geometry on the surface printability.

To make our problem tractable, we make the following
assumptions about the small-scale printability. Given the
physics underlying the build process, these assumptions seem
reasonable.

1. Printability is a property of a small neighbourhoodaround
the region in question. In other words, geometries far
from our region of interest do not affect its printability.

2. Printability is a property of the region’s surface. Thus,
any defects will be visible by studying the surface of the
built component.
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Fig. 1 Workflows for our algorithm for training (dotted and solid lines)
and classification (solid lines). Rectangles denote variables and dia-
monds denote processing units

The inherent stochasticity andmultitudeof factors involved
in the manufacturing process renders a physics-based mod-
elling approach infeasible, and so we shall apply a data-
driven strategy to understand the causes and also predict
small-scale defects arising in additive manufacturing pro-
cesses.

This strategy combined with our printability assumptions
swiftly leads to a supervised learning model which takes
numerical descriptors of the geometry of small regions of
our computer-aided design (CAD) as input and outputs a
quantitative printability measure for that region.

Methodology

A supervised machine learning algorithm requires data from
which it is able to learn to impact of the predictor variables on
the target variables. First, wemust construct the parts we will
use to generate our data. This process involves building and
scanning bespoke custom components which are designed to
contain a broad range of local geometries, the geometry in
a small neighbourhood around a point of interest, including
those sufficiently intricate to infer the limits of the additive
manufacturing process.

Once we have designed our custom components, we
extract invariants which describe our geometry in regions
of interest and will form the input to our machine learning
algorithm. To assess the printability of a given geometry,
we measure the difference between our CAD and a com-
puted tomography (CT) scanof themanufacturedobject. This
quantity is the target output of our algorithm.

Armed with these geometric descriptors and measures of
printability, we look to construct a predictive model. We
discuss which machine learning algorithms will be most
applicable to our problem and determine appropriate mea-
sures to evaluate the predictive performance.

Data generation and processing

In order to study the printability of various geometries, we
must build the geometries and then obtain a detailed sur-
face scan in order to compare them to our ground truth, the
corresponding CAD. Since the additive manufacturing and
scanning processes are both expensive and time-consuming,
we seek to do this efficiently, gaining maximal information
about the printability of various geometries for a small num-
ber of builds and scans. In this section, we detail the methods
we use to generate our data.
Test artefacts To determine the capabilities of an additive
manufacturing process, it is common to build a standard
part which exhibits various of the aforementioned problem-
atic features (Moylan et al. 2012). Such a part is commonly
referred to as a test artefact and many examples exist in
the literature (Mahesh et al. 2004; Kruth et al. 2005; Del-
gado Sanglas 2009; Moylan et al. 2014).

However, all test artefacts in the literature exhibit only a
small number of geometric features in isolation. This is partly
intentional; the test artefacts have been designed to ensure
that standard parts will build successfully, rather than push
the process to its geometric limits. While it is impossible to
design an artefact containing all possible local geometries,
we can hope to construct an artefact which covers this space
in the sense that any possible local geometry is in some sense
‘nearby’ a local geometry exhibited in the artefact.

Computer designed components for additive manufactur-
ing processes are typically specified as polyhedra: a solid
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with flat polygonal faces and straight edges. For inspiration
in how to construct a complex test artefact, we recall that
any polyhedron can be decomposed as the union of convex
polyhedra (Szilvási-Nagy 1986). The theory of random con-
vex polyhedra is well established (Schneider 2008) and by
taking unions of such objects we can generate random (not
necessarily convex) polyhedra.

One model (Schneider 2008) of a random convex poly-
hedron is the convex hull of n points sampled from a ball
of radius r . Typically, we draw n from a Poisson distribution
and r froman exponential distribution. To construct a random
polyhedron T , we can generate N such convex polyhedrons,
apply random translations and then take the union.

The inherent stochasticity in this process produces extre-
mely intricate geometries. Moreover, since any polyhedron
can be decomposed as a union of convex polyhedra (Chazelle
1981) this process covers the space of local geometries in the
sense that the support of the probability distribution contains
all local geometries. To add reasonable constraints, such as
ignoring parts with close to zero thickness which will def-
initely not print, we can exclude the convex polyhedra not
meeting appropriate properties from the union.
Alignment The problem of aligning CT scan data with our
CAD is non-trivial. The conventional method used for such
an alignment is the iterative closest point (ICP) algorithm
(Besl and McKay 1992), with initial transformation given
by applying Procrustes analysis (Gower 1975) to a set of
hand-picked landmark points.

In additive manufacturing processes, global deformation
can be fairly common, especially when components are not
suitably stress relieved after manufacture. While this effect
is fairly well understood and predictable via finite element
modelling, it makes the alignment process more complex as
it can preclude the existence of a global alignment transfor-
mation.

As we are interested only in local measures of printabil-
ity, we wish to find the optimal alignment of our CAD with
our CT scan in a neighbourhood of our point of interest. To
this end, we propose the following procedure. First, obtain
an approximate global transformation by Procrustes analy-
sis and the ICP algorithm. Then for every point of interest,
extract the surface from the CT scan which falls within some
distance r and then use the ICP algorithm to optimally align
this local region with our CAD.

Finding the optimal choice of distance parameter r is the
usual bias-variance trade-off: if r is too small then every
region can be aligned perfectly, even in the presence of
defects and if r is too large then the global deformations
preclude being able to find the optimal local alignment.

Another advantage of this local alignmentmethod is it per-
mits having variable scaling factors across different regions
of the object. Due to inaccuracies of the CT scanning pro-
cess, the measurement scale is only approximately constant

across the range of the scan and using a variable scaling fac-
tor allows us to correct for this. The best method for defining
the uncertainty in CT spatial measurements is still debated,
but inaccuracies can arise from a range of sources. These
include beam hardening, cone beam effects and inaccuracies
in stage movement.

Geometric descriptors

Our desired input to our machine learning algorithm is a
description of the local geometry around our point of inter-
est and in this section we define some appropriate invariants.
The industry standard for a CAD in additive manufacturing
processes is a stereolithography file. This specifies a finite tri-
angulated mesh ∂T ⊆ R

3: a collection of vertices V , edges
E and triangular faces F . This triangulation is required to
satisfy two conditions. Firstly, it is manifold in that there is
no one-dimensional boundary. Secondly, our triangulation
must be orientated, i.e. have a well-defined interior and exte-
rior. We shall write T for the union of ∂T together with this
interior.

The first geometric property we discuss is a measure
encoding the similarity of vertices. We then discuss geo-
metric invariants defined at the point of interest and finally,
voxelisations around the point of interest.

Intuitively, the printability of a region should be invariant
under rotations around the z-axis and reflections in a plane
containing the z-axis as gravity is the only force acting during
the build process. Thus, in order to impose this constraint
on our machine learning algorithm, it is desirable that our
descriptors are invariant under the action of the orthogonal
group O(2), acting on R3 by fixing the z-axis.

Vertex similarity A spherical polygon is a closed, connected
geometric figure on the surface of the unit sphere S2 = {x ∈
R
3 | ||x ||2 = 1} (where ||(x1, x2, x3)||2 = (x21 + x22 + x23 )

1/2

denotes the Euclidean norm) whose boundary is formed by
finitely many arcs of great circles. we denote the set of spher-
ical polygons by P(S2) and the area of P ∈ P(S2) by |P|.

The infinitesimal geometry of a given vertex v ∈ V is
uniquely determined by a spherical polygon Pv as follows.
Since V is a finite set, we can find a spherical neighbourhood,
Bε(v) = {x ∈ R

3 | ||x − v||2 < ε} such that all faces which
intersect this neighbourhood contain v as a vertex. The inter-
section ∂T ∩ ∂Bε(v), projected onto the unit sphere, forms
a spherical polygon which we denote Pv (Fig. 2).

Recall the Lebesgue space L2(S2), a Hilbert space con-
sisting of square integral functions on the sphere. We have a
canonical embedding P(S2) ↪→ L2(S2), mapping P to the
indicator function on P given by χP (x) = 1 if x ∈ P and
0 otherwise. The induced inner product on P(S2) is given
by 〈P, P ′〉 = |P ∩ P ′|. Unfortunately for our purposes,
we do not have 〈τ(P), P ′〉 = 〈P, P ′〉 for τ ∈ O(2); this
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Fig. 2 Two spherical polygons (blue, orange) formed by vertices where
three and four faces meet respectively. Also shown is the intersection
(green), defining the vertex similarity (Color figure online)

inner product is not invariant under the action of O(2) of
P(S2). However, using this inner product as motivation we
can define a normalised, O(2)-invariant similarity measure
on our set of vertices.

We define the similarity of vertices u, v ∈ V by

κ(u, v) = sup
τ∈O(2)

|τ(Pu) ∩ Pv|2
|Pu ||Pv| . (1)

Curvature The theory of estimating the curvature of a tri-
angulated mesh has a vast quantity of literature (Panozzo
et al. 2010; Chen and Schmitt 1992; Rusinkiewicz 2004).
We choose to work with the definitions in Cohen-Steiner and
Morvan (2003) since the constructions are easy to compute,
intrinsic to properties of the triangulated mesh and apply
immediately to any point in ∂T .

The vertex defect at a vertex v ∈ V , denoted g(v), is
defined to be 2π minus the sum of the interior angles (at v) of
the faces which contain v. The signed angle at an edge e ∈ E ,
written β(e), is the angle between the two faces which share
the edge e taken to be positive if this angle is convex (w.r.t. the
orientation) and negative otherwise. Denote the length of a
line segment s by l(s). For a radius r , theGaussian curvature
measure at x ∈ ∂T is given by

φG
r (x) =

∑

v∈V∩Br (x)

g(v) (2)

and the mean curvature measure by

Fig. 3 Constructions of our ray thickness Tl , sphere thickness Ts , over-
hang nz , and complexity γr

φM
r (x) =

∑

e∈E
β(e)l(e ∩ Br (x)). (3)

Thickness and reach The question of what is meant by the
thickness of a triangulated mesh can be interpreted in many
different ways resulting in many constructions and different
properties (Patil and Ravi 2006; Yezzi and Prince 2003). We
focus on the methods of the maximal inscribed sphere, and
the maximal length of a ray cast into the object. In Inui et al.
(2016), an efficient algorithm from computing the maximal
inscribed sphere is provided.

The sphere thickness of ∂T at x is the diameter of the
maximal sphere inscribed in T which is tangent to ∂T at x .
The ray thickness is the maximal length of a ray cast from x
in the opposite direction of the outward facing normal at x
which does not intersect ∂T . We define the sphere reach and
the ray reach of ∂T at x to be the thickness of ∂(R3 − T ) at
x (Fig. 3).

Overhang and complexity The overhang of a region is
known to correlate highlywith printability (Mani et al. 2017).
This is encoded by the average z-component of the normal
to the surface. Additionally, the amount of surface area of
the mesh nearby a point encodes the local complexity of a
region. Explicitly, letting nz(y) denote the z-component of
the surface normal at y ∈ ∂T , we define the r -overhang of
∂T at x by

ηzr (x) = 1

|∂T ∩ Br (x)|
∫

∂T∩Br (x)
nz(y)dy (4)

and the r -complexity by

γr (x) = |∂T ∩ Br (x)|
πr2

(5)

where |X | denotes the area of X . Since our surfaces are tri-
angulated meshes, it is computationally efficient to exactly
compute these properties.
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Fig. 4 An example mesh and realisation of a voxel map produced by
the subdivision algorithm

Voxels While we expect the geometric features discussed
to correlate with printability, they are far from producing
a complete descriptor of the local geometry at non-vertex
points. While triangulated meshes are a popular combinato-
rial data structure for describing a three-dimensional object,
there is no method to describe the neighbourhood of a point
as a fixed length vector. An alternative common data struc-
ture to describe three-dimensional objects is via voxel maps,
three-dimensional analogues of pixels (Fig. 4).

A voxel map is a subset V ⊆ Z
3, together with an origin

o ∈ R
3, and a pitch ε ∈ R. The realisation of a voxel map

R(V , o, ε) ⊆ R
3 is the union of the set of cubes enumerated

by v ∈ V with side length ε and centre v + o. Explicitly, we
define R(V , o, ε) to be the set

{x ∈ R
3 | ∃v ∈ V s.t. ||x − o + v

ε
||∞ ≤ ε/2} (6)

where |−|∞ denotes the supremumnorm: ||(x1, x2, x3)||∞ =
max(|x1|, |x2|, |x3|).

There are numerous algorithms for producing voxel maps
from triangulated meshes (Jones 1996; Huang et al. 1998).
A simple, efficient algorithm which preserves connectivity
is the subdivision algorithm: repeatedly subdivide the mesh
until every edge is shorter than half the pitch and then snap
each of the vertices of the resultant mesh to the nearest point
on the 3D lattice o + εZ3. A simple adaptation of this algo-
rithm allows us to give a description of the geometry in the
neighbourhood of a point of interest.

Given a point x ∈ T , a radius r and a pitch ε we define
the voxel neighbourhood N (x; r , ε) ∈ {0, 1}×(2r+1)3 ⊆
R

(2r+1)3 by applying the subdivision algorithm with origin
x and pitch ε to voxelise ∂T . Denoting the resultant voxel
map by V , we define N (x; r , ε) by

N (x; r , ε)i, j,k =
{
1 if (i, j, k) ∈ V

0 if (i, j, k) /∈ V
(7)

where |i |, | j |, |k| ≤ r . We define rε to be the size of the
neighbourhood.

For a fixed neighbourhood size, these neighbourhoods
become more complete descriptors of the local geometry as
ε tends to zero. Unfortunately, this causes r , and thus the
dimension of our feature space to tend to infinity. Consequen-
tially, finding our optimal values of r and ε for our learning
task will be the usual bias-variance trade-off encountered in
supervised learning problems.

These voxel neighbourhoods are not invariant under our
action of O(2) and there is no natural action of O(2) on the
space of voxel neighbourhoods. However, the space of voxel
neighbourhoods admits an action of the group of symmetries
of the square D4 ⊆ O(2) in the obvious fashion. This will
allow us to encode invariance under the action of D4 via the
technique of data augmentation.

Printability measure

To assess the printability of a part, we need a numerical quan-
tity which encodes the difference between our CAD ∂T and
the corresponding build P . We assume that the CT scan pro-
duces a faithful representation of the built component and
that we have already locally aligned our scan with our CAD
as described in “Data generation and processing” section.

For each point x ∈ ∂T , we define theHausdorff printabil-
ity measure, illustrated in Fig. 5, by

ρ(x) = inf
y∈P

||y − x ||2 ∈ [0,∞). (8)

For a fixed threshold t , we define a point as problematic if
ρ(x) > t and printable if ρ(x) ≤ t .

The main advantages of this printability measure are its
simplicity, computational ease and interpretability. The obvi-
ous drawback is that it is a point-wisemeasure of printability;
while we might have ρ(x) = 0, we may still have a printing
defect in the region of x . However, when sampling points
at random from M this will in general provide an accurate
measure of the (lack of) printability at the given point.

We choose to focus on the classification problem of pre-
dicting whether a point will be printable or problematic,
rather than the regression problem of estimating the exact
value of ρ(x). Our motivation for this is twofold: it allows us
to distinguish genuine build defects from the natural surface
roughness producedbyadditivemanufacturingprocesses and
moreover there are often industrial requirements; for many
applications it is simply desired that components comply
with a given specification. Our printability threshold t can be
adjusted by the end-user as appropriate for the given appli-
cation, for example to meet functional constraints.
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Fig. 5 Illustration of our printability measure ρ at a point, the CAD
model and build are represented by solid and dotted lines respectively

Machine learning techniques

There is an abundance of literature onmachine learning algo-
rithms and techniques for applying them. In this section, we
discuss which algorithms are most suited to handle our geo-
metric invariants and provide references for the precise inner
workings of such algorithms.

Support vector machines Certain machine learning algo-
rithms naturally take as input a similarity measure, such as
our vertex similarity measure. SVMs (Bishop 2013) are a
computationally efficient such algorithm which can learn
complex classification rules via the kernel trick, implicitly
mapping the inputs into a high, or infinite, dimensional space
where distances correspondence to a precomputed similarity
measure (Chen et al. 2009). A major advantage of support
vectormachines is their sparsity, tomake predictionswe only
need to compute our similarity measure with a small subset
of the training data.

Random forests Random forests (Hastie 2009) are built
as an ensemble of extremely simple rule based classifiers,
known as decision trees, which require limited data pre-
processing and are easily interpretable. However, to learn
complex structure decision trees must be grown very deep
and often have poor generalisation performance. A random
forest combats this by building many decision trees on ran-
dom subsets of the data and making classifications based on
majority vote.

Principal component analysis Many classification algo-
rithms are subject to the curse of dimensionality. Moreover,
many of our geometric invariants are highly correlated and
so the dimensionality of our feature space is high, even if the
data tends to lie in a lower dimensional subspace. To this end,
we employ principal component analysis (PCA) (Bishop
2013), a linear technique which transforms observations
of possibly correlated variables into uncorrelated variables
known as principal components. The transformation is
defined so that the first principal component has the largest
possible variance, and each following component has the
highest possible variance subject to being orthogonal to the

proceeding components. This is used as a dimensionality
reduction technique by retaining only the first N principal
components.

Autoencoders Our voxel invariants, while being close to
complete descriptors of the local geometry, are inherently
high-dimensional.Moreover, important geometric properties
are likely to be non-linear. A powerful non-linear dimension-
ality reduction technique is the autoencoder (Goodfellow
2016). Autoencoders are neural networks forwhich the target
output is the same as the input. Their architecture forces them
to compress the input into a compact latent representation,
before reconstructing the output with minimal information
loss. Convolutional layers can be used with the neural net-
work to encode translational invariance of features. These
have been shown to produce exceptional performance on 2
and 3 dimensional image data, i.e. voxel maps.

Data augmentation An additional technique which shall
use for two different purposes is data augmentation. Firstly,
as we shall discuss, out of the box supervised learning
algorithms often struggle with imbalanced datasets. A sim-
ple way to combat this is to oversample or overweight
under-represented classes to augment the data set. A more
sophisticated method of oversampling we employ is the syn-
thetic minority over-sampling technique (SMOTE) (Bowyer
et al. 2011). Another application of data augmentation is the
problem of learning invariance under group actions (Gao and
Ji 2017), such as our action of D4 on our voxel descriptors.
Augmenting the predictor variables with their images under
the actions of the group assists an algorithm in learning this
invariance.

Model selection

To study which particular predictive models and correspond-
ing hyperparameters perform best on our classification task,
we need a metric by which we can assess the resulting per-
formance. For reasons we shall discuss, traditional metrics
are not well-suited to our problem and so we generalise these
to formulations more appropriate to our context.

The problem of labelling areas of our CAD as printable or
problematic is an example of an imbalanced learning prob-
lem (He and Garcia 2009): the number of printable regions
will in general drastically outweigh the number of problem-
atic regions. The conventional measure of performance for
classification problems is accuracy, the percentage of exam-
ples that are classified correctly. In the imbalanced situation,
this metric is ill-suited: an algorithm that simply predicts the
modal class for every example will achieve a high accuracy,
but is useless for prediction. Metrics derived from the confu-
sion matrix are much more appropriate in this setting.

123



Journal of Intelligent Manufacturing

Suppose our confusion matrix has true and false positives
and true and false negatives denoted by tp, fp, tn and fn
respectively. The recall is defined by tp/(tp + fp) and the
precision by tp/(tp + fn). The standard way of combining
these two metrics is by the Fβ -measure, given by

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

. (9)

The parameter β controls the relative importance of recall
and precision. The choice of value of β is very important
from a business perspective; increasing β will increase the
likelihood of correctly capturing all problematic regions, at
the additional time expense of having to handle additional
false positives.

By construction, the Fβ -measures are well-suited to
imbalanced learning problems as they are insensitive to large
quantities of negative points. However, our context admits
extra structure: a spatial component of our data points, not
present in the feature space.

Consider the situation of a component with two problem-
atic regions, one significantly larger than the other. If we
were to naively apply a combination of precision and recall
to points sampled from our object, we could obtain good per-
formance by correctly labelling all points in the large region
and ignoring the small region. However, from the point of
view of the end-user, these problematic regions could be just
as important as each other. The following definitions address
this alternative source of imbalance.

Let xi denote a set of points and yi denote whether the
point is printable or problematic. For a given predictive
model, let ŷi denote the prediction of the printability of the
point. For a fixed radius parameter r , define the true and
predicted problematic regions by

Br = ∂T ∩
⋃

i : yi=1

Br (xi ) (10)

B̂r = ∂T ∩
⋃

i : ŷi=1

Br (xi ) (11)

respectively. We now define the spatial true positives, false
negatives and false positives by

tp = |Br ∩ B̂r |, fn = |Br − B̂r | and fp = |B̂r − Br |.

where | − | denotes the area of the region. Armed with these
definitions we define the spatial recall, spatial precision and
spatial Fβ in the obvious fashion. In practice we can estimate
these values by counting the number of points in each region
rather than computing the area.

The question remains of which subset of our data we
should use to evaluate this metric. Typically, performance is

assessed using a hold-out validation set, or by using a cross-
validation scheme. In our context, we have a high degree of
spatial autocorrelation: nearby points look similarly geomet-
rically and have similar printability measures. Thus, to avoid
leakage of information from our training set to our validation
set we must be careful how we select our validation sets. Our
solution is to select spatially disjoint validation sets, such as
taking points lying in horizontal slices of our test artefact.

Results

Test artefact

Computer aided designWeused the process detailed in “Data
generation and processing” section, with translations uni-
formly sampled from a 100mm× 100mm× 10mm cuboid
to generate a random polyhedron. To help keep track of
the orientation we added 1 cm3 cubes at 3 of the bound-
ing box vertices. The resulting CAD had a bounding box of
117mm × 116mm × 29mm.

Build process The manufacturing of the test artefact was
carried out using an electron beam melting (EBM) system,
ARCAM S12. Loaded with Ti–6Al–4V prealloyed powder
as feedstock material, the size distribution was reported to be
45–106µm under the batch 1250 specifications supplied by
ARCAM Gothenburg Sweden.

Prior to EBM manufacturing, CAD drawings were con-
verted into a stereolithography file in order to be adapted
for processing. Two-dimensional representation in layers of
50µmwas performed using the ARCAM build assembler in
order to be processed by the EBM control software. Standard
ARCAM themes for 50 rmum layer thickness were used,
with high power, speed, and defocused beam during pre-
heating together with lower power, lower speed and a more
focused beam to melt the powder (Hernández-Nava et al.
2016). Upon build completion, the artefact was extracted
from the build tank to further be cleaned using compressed
air in a contained volume, a powder recovery system.

Scanning procedure Following manufacture, the geometry
of the sample was analysed byX-ray Computed Tomography
(CT) in the HenryMoseley X-ray Imaging facility at the Uni-
versity of Manchester. To obtain a suitable resolution, it was
necessary to slice the build using electron discharge machin-
ing to obtain a sample of dimensions 12 cm×3 cm×3 cm.The
sample was clamped in a rotating stage in a Nikon Metrol-
ogy 225/320 kVCustomBaymachine. To avoid interference
from the clamp mechanism only the upper half of the sample
was imaged. However, by scanning the sample twice, and
inverting the sample between scans, it was possible to image
the entire volume.
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Fig. 6 The CAD, (slice of the) build and CT scan of our test artefact

The systemwas equippedwith a 225 kV staticmulti-metal
reflection anode source (Cu,Mo,Ag, andW)with aminimum
focal spot size of 3µm and a Perkin Elmer 2048×2048 pix-
els 16-bit amorphous silicon flat panel detector with 200µm
pixel size. An accelerating voltage of 160 kV and current of
110mA was used to generate the X-ray beam. Prior to inter-
acting with the sample the beam was filtered with a 1.5mm
copper source to remove low energy photons. An exposure
time of 1.415s was used to collect 2000 radiographs, with
around 15% of the photons being absorbed when passing
through the sample.

3D data was reconstructed from the 2D radiographs using
a filtered back projection algorithm and proprietary Nikon
software. The data was downsampled from 32 bit to 8 bit
in Avizo 9.0 prior to analysis. However, given the large dif-
ferences in absorption between the titanium test object and
the surrounding air, the effect of the down-sampling on the
accuracy of feature detection can be assumed to be min-

imal (Landis and Keane 2010). The voxel size calculated
automatically by the Nikon software was 40µm. Given the
machine used in this study was not calibrated for metrol-
ogy, it is likely that the stage movement inaccuracies will
result in a voxel size distinct from that calculated using the
stated (uncalibrated) source to object and source to detec-
tor distance. However, in other studies (Villarraga-Gómez
et al. 2018) comparisons between other metrology methods
such as contact measurements, e.g. CMM (often assumed
to have minimal uncertainty), and X-ray CT, have returned
uncertainties similar to the difference between theNikon pro-
vided voxel size and the compensated calculated voxel size
observed in this work. In addition, the difference between
CMM and CT measurements is often variable across the
data set as found in (Villarraga-Gómez et al. 2018). We com-
pensate for this uncertainty during the alignment procedure
as detailed in “Data generation and processing” section. By
visual inspection, we found using a value of r = 10mm for
the radius of regions to align locally worked well. A more in
depth discussion of possible CT errors is provided by Maire
and Withers (Maire and Withers 2014). Illustrations of the
CAD, build and CT scan are shown in Fig. 6.

Vertex printability

We now turn our attention to our main question of interest,
that of predicting printability. As discussed, both the thresh-
old t for marking a point as printable or problematic and the
value of β to optimise our Fβ -metric are heavily application
dependant and will be determined by business requirements.
We fix t = 0.5mm and β = 2.0 for all our predictive
experiments. We chose t to distinguish genuine build defects
from natural surface roughness due to the AM process, and
β to encourage our model to detect problematic regions, at
the expense of an increased number of false positives. We
use 4-fold cross-validation to optimise our hyper-parameters
according to the scheme discussed in “Model selection” sec-
tion before evaluating our algorithmon the test set, consisting
of the final 1/4 of the artefact and data not used during cross-
validation.

Before studying the general question of printability, we
first tackle the sub-problem of predicting the printability of
the independent vertices: vertices v more than some distance
d away from any face not containing v. As discussed in “Geo-
metric descriptors” section, we have a complete invariant
describing the local geometry: the spherical polygon asso-
ciated to the vertex as well as an appropriate measure of
similarity between two such polygons.

We build our predictive algorithm by taking the distance
to mark a vertex as independent as d = 1mm, and training a
support vector machine on our similarity matrix. To combat
our class imbalance, we weight each class according to the
relative frequencies in the training data. We choose the reg-
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ularisation coefficient to maximise the mean cross-validated
F2-score on our training data.

To assess the performance of our algorithmwe compare to
two simple benchmark algorithms and a theoretical approx-
imate upper bound of our performance. For the benchmark
algorithms we consider a naive model, making random pre-
dictions according to ratio of problematic to printable points
in the training data and a nearest neighbourmodel,which pre-
dicts the same class as the most similar point in the training
data.

It is well known within the additive manufacturing indus-
try, that printability results are not entirely replicable. Indeed,
printing a strenuous component several times will see sev-
eral different results. Thus, any classification algorithm will
be subject to an upper bound of performance, due to theBayes
error: the smallest possible error rate due to the underlying
stochasticity. After consulting industry experts, we believe
that, due to the complexity of the part, this error rate will be
relatively large. It is well known in the industry, that when a
component significantly exceeds the limits of printability, the
build process generates a lot of random noise due to swelling
of components and from fragments beingmanipulated by the
over-coater. Given the lack of a full reproducibility study, we
attempt to estimate this limit via the following procedure.

For each vertex, we assume the printability is given by a
randomvariable taking values of ‘printable’ or ‘problematic’.
To estimate the probability distributions of these randomvari-
ables we study cliques: groups X of vertices with pairwise

normalised overlap of at least 90%, i.e. κ(xi , x j )
1
2 ≥ 0.9

for all xi , x j ∈ X . For each clique Xi , we can estimate the
probability distribution Ci = P(ρx |x ∈ Xi ); the probabil-
ity a vertex x from that clique is printable or problematic,
denoted by the random variable ρx . Then, for an arbitrary
vertex x with observed printability ρ0, we estimate the true
printability distribution via the formula

P(ρx |ρ0) =
∑

i

P(ρx |ρx ∼ Ci )P(ρx ∼ Ci |ρ0) (12)

where ρx ∼ Ci denotes ρx having probability distribution
Ci .

An example of this procedure is detailed in Fig. 7. From
our data, if we observe a vertex to be problematic, we esti-
mate it to be problematic with probability 56.4% and if we
observe a vertex to be printable, we estimate it to be printable
with probability 97.1%.We now estimate the upper bound of
performance of any algorithm by taking the observed print-
ability classifications as our prediction and comparing to the
values sampled according to these probabilities. This proce-
dure estimates the scorewewould achieve if wewere to build
the artefact again and make predictions based on the values
we observed originally.

If ρ0 ∈ {+ (printable), − (problematic)} is the observed
printability of the vertex x, then writing

Ci = (P(ρx = +|x ∈ Xi),P(ρx = −|x ∈ Xi))

Pi|ρ0
= (Pi|+, Pi|−)

= (P(ρx ∼ Ci|ρ0 = +),P(ρx ∼ Ci|ρ0 = −))

for 4 cliques X1, X2, X3, X4 we have

X1 = {+,+}
X2 = {+, −}
X3 = {+, −, −}
X4 = {−, −, −}

=⇒
C1 = (1, 0)
C2 = (12 , 1

2 )
C3 = (13 , 2

3 )
C4 = (0, 1)

,

P1|ρ0
= (24 , 0)

P2|ρ0
= (14 , 1

6 )
P3|ρ0

= (14 , 2
6 )

P4|ρ0
= (0, 3

6 )

and therefore,

P(ρx = +|ρ0 = +) =
i

P(ρx = +|ρx ∼ Ci) · Pi|+

= 1 · 2
4
+

1
2

· 1
4
+

1
3

· 1
4
+ 0 · 0

4
=

17
24

P(ρx = −|ρ0 = +) = 1 − P(ρx = +|ρ0 = +) =
7
24

P(ρx = +|ρ0 = −) =
i

P(ρx = +|ρx ∼ Ci) · Pi|−

= 1 · 0
6
+

1
2

· 1
6
+

1
3

· 2
6
+ 0 · 3

6
=

7
36

P(ρx = −|ρ0 = −) = 1 − P(ρx = +|ρ0 = −) =
29
36

Fig. 7 Example of our method of estimating the Bayes’ error

The performance of our predictive model and the bench-
marks is shown in Fig. 8 on our 4 hold-out sets used in the
cross-validation process and the additional test set. The con-
fusion matrices for the deterministic algorithms (our support
vector machine and the nearest neighbour benchmark) can
be seen in Table 1. As we can see the performance of our
model compares favourably with the theoretical upper
bound even on unseen data. The theoretical upper bound
is determined by the complexity of the build component. It
seems that our test artefact is far beyond the geometric limits
of printability and consequently we have introduced a lot of
noise into the AM process.

General printability

We construct our general predictive model as illustrated in
Fig. 1. We first predict problematic vertices using our sup-
port vector machine as above. For our non-vertex points, we
construct a feature matrix consisting of two 7× 7× 7 voxel
invariants, at pitches 0.5mm and 1mm, each autoencoded to
an 8-dimensional latent space together with our geometric
invariants: curvature, roughness, overhang (each computed
at radii 1mm, 2mm, 5mm and 10mm) and our sphere and
ray thickness and reach measures. As some reach measures
may be infinite, we truncate them at 5mm. This provides us
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Fig. 8 F2-scores for the random, nearest neighbour (NN), support vec-
tor machine (SVM) and estimated performance upper bound (Bayes) on
the 4 cross-validation sets and our test artefact. For the non-deterministic
algorithms, the error bars illustrate one standard deviation

Table 1 Confusionmatrices for the two deterministic models evaluated
on the test set

Predicted Actual
Printable Problematic

(a) Nearest Neigbour

Printable 162 92

Problematic 24 8

Predicted Actual
Printable Problematic

(b) Support vector machine

Printable 125 129

Problematic 8 24

with a 36-dimensional descriptor of the local geometry. As
there is a large amount of correlation between several of our
predictors, we apply PCA to reduce the dimension of our
feature space. To combat the class imbalance problem, we
apply the SMOTE technique and we use data augmentation
to assist ourmodel learning the invariance under the action of
D4 on our voxel invariants. Finally, we train a random forest
on this resultant dataset to make our predictions. As before,
we use 4-fold cross-validation to select the optimal combi-
nation of hyperparameters, according to our spatial metric
of “Model selection” section with a radius of r = 1mm.

Once again, we consider two benchmark algorithms as
before. For the nearest neighbour algorithm, we first scale
our features by subtracting the median and dividing by the
inter-quartile range to robustly normalise across units and
use the supremum norm to compute distances. The perfor-
mance of our predictive model and the benchmarks is shown
in Fig. 9. Once again, we outperform our benchmarks.
Unfortunately, due to the lack of a suitable similarity mea-

Fig. 9 Spatial F2-scores for the random, nearest neighbour (NN), our
PCA, SMOTE, random forest model (Model) on the 4 cross-validation
sets and our test artefact. For the non-deterministic algorithm, the error
bars illustrate one standard deviation

sure and issues stemming from spatial autocorrelation we
are unable to estimate the theoretical upper bound of perfor-
mance. However, we hope that future work, with a complete
reproducibility study, will be able to confirm these results as
close to the inherent limit.

Conclusions and further work

We have detailed a framework for predicting the printability
of small-scale geometric features in additive manufactur-
ing processes. This framework consists of numerous original
components. Firstly, we provided an algorithm for construct-
ing informative test artefacts which can be used to evaluate
the geometric limits of additive manufacturing technologies.
We detailed a method for measuring small-scale printabil-
ity even on strenuous components containing large-scale
defects. We provided several descriptors of local geome-
try which correlate with printability and are suitable inputs
for many machine learning algorithms. Finally, we con-
structed predictive models which significantly outperform
naive benchmarks and approach an estimate of the maxi-
mum performance obtainable due to inherent stochasticity
in the underlying additive manufacturing process.

In further work, we intend to follow up with two key stud-
ies. First, we will test our predictive model on less stressful
components with less inherent noise and see if we are still
able to approach the (higher) theoretical performance limit.
Secondly, we will test our predictive model on components
from separate builds and analyse the effect of build-specific
idiosyncrasies.

Another interesting avenue to explore is to study the print-
ability as a regression problem. That is to say, attempt to
quantify, up to uncertainty caused by the variability, the
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printability ρ(x) as a continuous variable. Our performance
metrics of “Model selection” section, should have natural
generalisations to the continuous setting following the work
of Torgo and Ribeiro (2009). A similar avenue would be to
attempt to measure the printability as a probability distribu-
tion and thus be able to concretely estimate the inherent noise
in the additive manufacturing process.

To generalise this work, it would be useful to study the
effects of different materials and process parameters on the
printability. Given sufficient data, it may be possible to
exploit similarities between materials and process param-
eters and be able to obtain a universal algorithm capable of
taking these parameters as additional inputs.

Another direction for future work would be a data-driven
study of the impact of geometric features on density. The
density of the material in an additively manufactured compo-
nent is not always constant throughout the part.Moreover, the
density is closely related tomaterial propertieswhich directly
impact the performance. It is well known in the industry that
certain geometries are prone to having lower than optimal
density. Thus, a potential direction for future research would
be to replace the printability measure with a measure of the
density of a region and retrain our models.
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