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Abstract 44 
 45 
We tested the hypothesis that perception of carbohydrate (CHO) availability augments 46 

exercise capacity in conditions of reduced CHO availability. Nine males completed a sleep-47 

low train-model comprising evening glycogen depleting cycling followed by an exhaustive 48 

cycling protocol the next morning in the fasted state (30 minutes steady-state, SS, at 95% 49 

lactate threshold followed by 1-min intervals at 80% peak power output until exhaustion).  50 

After the evening depletion protocol and prior to sleeping, subjects consumed 1) a known 51 

CHO intake of 6 g.kg-1 body mass (TRAIN HIGH), 2) a perceived comparable CHO intake 52 

but 0 g.kg-1 body mass (PERCEPTION) or a known train-low condition of 0 g.kg-1 body 53 

mass (TRAIN LOW). The TRAIN HIGH and PERCEPTION trials were conducted double 54 

blind. During SS, average blood glucose and CHO oxidation were significantly higher in 55 

TRAIN HIGH (4.01 + 0.56  mmol.L-1; 2.17 + 0.70 g.min-1) versus both PERCEPTION (3.30 56 

+ 0.57 mmol.L-1; 1.69 + 0.64 g.min-1, P<0.05) and TRAIN LOW (3.41 + 0.74 mmol.L-1; 1.61 57 

+ 0.59 g.min-1, P<0.05).  Exercise capacity was significantly different between all pairwise 58 

comparisons (P<0.05) where TRAIN LOW (8 + 8 min) < PERCEPTION (12 + 6 min) < 59 

TRAIN HIGH (22 + 9 min).  Data demonstrate that perception of CHO availability augments 60 

high-intensity intermittent exercise capacity under sleep-low, train-low conditions though 61 

perception does not restore exercise capacity to that of CHO consumption.  Such data have 62 

methodological implications for future research designs and may also have practical 63 

applications for athletes who deliberately practice elements of training in CHO restricted 64 

states.  65 

 66 

Keywords: placebo, carbohydrate, train-low, capacity  67 
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Introduction  68 

In addition to its well-documented role as an energy source, it is now recognised that the 69 

glycogen granule exerts regulatory roles in modulating skeletal muscle cell signalling and 70 

transcriptional responses to acute exercise sessions (Bartlett et al., 2015; Hearris et al., 2018).  71 

Accordingly, deliberately commencing and/or recovering from training sessions with reduced 72 

CHO availability (the so-called train-low paradigm) increases markers of mitochondrial 73 

biogenesis (Hansen et al., 2005; Yeo et al., 2008; Morton et al., 2009) and both whole body 74 

and intramuscular lipid oxidation (Yeo et al., 2008; Hulston et al., 2010).   In some instances, 75 

both exercise capacity (Hansen et al., 2005) and exercise performance (Cochran et al., 2015; 76 

Marquet et al., 2016a,b) have also been augmented with short-term (i.e. 3-10 weeks) train-77 

low approaches though it is acknowledged that this is not a consistent finding amongst 78 

chronic training studies.  On this basis, it has therefore been suggested that CHO should be 79 

adjusted day-by-day and meal-by-meal in accordance with the goals of both maximising 80 

training quality (i.e. ability to sustain the desired workload) and skeletal muscle adaptations 81 

(Impey et al., 2018). 82 

Whilst there are multiple research designs used to practically achieve train-low 83 

conditions (i.e. twice per day training protocols, fasted training and or withholding CHO in 84 

the recovery period from acute exercise), the ‘sleep-low, train-low’ model has emerged as a 85 

particularly potent strategy for which to prolong the period of CHO restriction (Bartlett et al., 86 

2013; Lane et al., 2015).  In this approach, participants perform an evening training session, 87 

restrict CHO during overnight recovery, and then complete a fasted training session on the 88 

following morning.  The accumulative time with reduced muscle glycogen could therefore 89 

extend to 12–14 h depending on the timing and duration of the training sessions and sleep 90 

period.  When performed chronically, Marquet et al. (2016a,b) observed that 1–3 weeks of 91 

sleep-low training in elite triathletes and cyclists improves cycling efficiency (3.1%), 20 km 92 
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cycling time-trial performance (3.2%) and 10 km running performance (2.9%) compared with 93 

traditional train-high approaches.   94 

Despite the aforementioned findings, an obvious limitation of the sleep-low, train-low 95 

model is that exercise capacity is likely to be significantly impaired during the morning 96 

training session.  Indeed, we recently observed that stepwise reductions in pre-exercise 97 

muscle glycogen concentration ~100 mmol.kg-1 dry wt (as achieved by the sleep low model) 98 

impaired morning exercise capacity at 80% peak power output (PPO) by ~20 to 50% (Hearris 99 

et al., 2019).  Nonetheless, we acknowledged that lack of blinding between conditions 100 

(subjects were aware of CHO availability given that whole foods were consumed) may have 101 

influenced subjects’ perception of their ability of complete high-intensity workloads.  Indeed, 102 

placebo effects of CHO availability have been reported in conditions of CHO feeding before 103 

(Mears et al., 2018) and during exercise (Clark et al., 2000).  To the authors’ knowledge, 104 

however, the potential placebo effect of CHO availability has not yet been examined under 105 

conditions where exercise is commenced with sub-optimal muscle glycogen concentration.  106 

With this in mind, the aim of the present study was to test the hypothesis that 107 

perception of CHO availability augments exercise capacity.  To this end, we adopted a sleep-108 

low, train-low model of CHO restriction where recreationally active males commenced an 109 

exhaustive morning training session under conditions corresponding to a known prior CHO 110 

intake of 6 g.kg-1 body mass (TRAIN-HIGH), a perceived comparable CHO intake 111 

(PERCEPTION) or a known train-low condition during which no CHO was consumed prior 112 

to sleeping (TRAIN-LOW). We specifically hypothesised that perception of CHO availability 113 

would improve morning exercise capacity compared to known train-low conditions but that 114 

perception would not restore exercise capacity to that of true train-high conditions. 115 

 116 
 117 
 118 
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Methods 119 
 120 

Subjects. Nine recreationally active males who regularly engaged in exercise training 121 

(running, cycling, and intermittent sport) between 3-6 times per week volunteered to 122 

participate in the study (mean ± SD: age, 25 ± 8 years; body mass, 71.6 ± 8.5 kg; height, 1.78 123 

± 0.06 m; VO2peak, 55.3 ± 8.3 ml.kg-1.min-1; peak power output (PPO) 331 ± 41 watts). All 124 

subjects gave written and informed consent after details of the study procedures were 125 

explained. No subject had a history of smoking, cardiovascular, or metabolically related 126 

disease and none were under pharmacological treatment during the study. All subjects 127 

refrained from strenuous exercise and alcohol for at least 24 h before each trial. The study 128 

was approved by the Ethics Committee of Liverpool John Moores University. 129 

Experimental Design. In a randomized, repeated measures design (and after appropriate 130 

baseline testing and familiarization), subjects performed three experimental trials consisting 131 

of a glycogen depleting protocol in the afternoon prior to the main experimental trial the 132 

subsequent morning. At the cessation of the glycogen depleting protocol, subjects consumed 133 

1) a known CHO intake of 6 g.kg-1 body mass (TRAIN-HIGH), 2) a perceived comparable 134 

CHO intake but 0 g.kg-1 body mass (PERCEPTION) or a known train-low condition of 0 135 

g.kg-1 body mass (TRAIN-LOW).  The TRAIN HIGH and PERCEPTION trials were double 136 

blind where blinding of these two solutions were performed by the corresponding author who 137 

was not present for any of the exhaustive exercise sessions on Day 2 (with the exception of 138 

the familiarisation trials).  The following morning subjects arrived at the laboratory in a 139 

fasted state where they then performed a steady-state (SS) (30 min at 95% of lactate 140 

threshold) cycling exercise protocol followed by a high-intensity intermittent (HIT) cycling 141 

protocol to exhaustion (1-min bouts at 80% PPO interspersed with 1-min bouts at 40% PPO). 142 

The primary outcome was exercise capacity during the HIT protocol. Respiratory gas 143 
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exchange, heart rate (HR), rate of perceived exertion (RPE), and fingertip capillary blood 144 

samples were also obtained at regular intervals during the SS exercise protocol and 145 

immediately following HIT protocol to assess for physiological, metabolic, and perceptual 146 

responses to exercise.  An overview of the experimental design is shown in Figure 1. The 147 

participants were informed that the aim of the study was to compare the effects of two CHO 148 

drinks (that differed in composition but not quantity of CHO) on overnight recovery and 149 

subsequent morning exercise capacity versus a known non-caloric sugar free drink.  Upon 150 

completion of the study, all subjects performed an exit interview where they were informed 151 

they had been deceived in the PERCEPTION trial. Whilst no formal questionnaires were 152 

administered, no subject reported that the drinks tasted differently though 3 subjects did 153 

report they felt hungrier in the both the TRAIN LOW and PERCEPTION trials. 154 

Assessment of lactate threshold, lactate turn point, VO2peak and peak power output.  At least 155 

5-7 days prior to the familiarization (FAM) trial, subjects performed a submaximal 156 

incremental cycling protocol to determine lactate threshold (LT), lactate turn point (LTP), 157 

peak oxygen uptake (VO2peak) and peak power output (PPO) on an electronically braked 158 

cycling ergometer (Excalibur Sport; Lode, Groningen, The Netherlands). Following a 5 min 159 

warm up at 75 watts (W) at a self-selected cadence, the submaximal test commenced at 125 160 

W with 25 W increase every 4 min. Twenty μl of fingertip capillary blood samples were 161 

collected in a Biosen capillary tube (EKF Diagnostics, Barleben, Germany) at the end of each 162 

4 min stage.  LT (defined as 1 mmol.L-1 above resting levels) and LTP (defined as the second 163 

inflection point on the lactate curve) were plotted live during the test using Biosen C-Line 164 

lactate analyzer (EKF Diagnostics, Barleben, Germany). Heart Rate (HR) (Polar, F10, 165 

Finland) was monitored continuously and recorded during the final 10 seconds of each stage, 166 

along with RPE (Borg, 1973). Respiratory gas exchange was recorded during the final two 167 

minutes of each stage using an online gas analysis system (CPX Ultima, Medgraphics, 168 
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Minnesota, USA). The submaximal test ended once LTP had been confirmed. Following a 5 169 

min recovery period, VO2peak and PPO were assessed. The test to assess VO2peak and PPO 170 

commenced at 25 W below each subject’s individual LT and consisted of 1-min stages with 171 

25 W increments until volitional exhaustion. HR was monitored throughout the test. VO2peak 172 

referred to the peak value attained in any 10-second period during the last 60 seconds of data 173 

collection and was supported by verification by two or all the following end point criteria (1) 174 

heart rate with 10 b.min-1 of age predicted maximum, (2) RER > 1.1 and (3) plateau of 175 

oxygen consumption despite increasing workload.  176 

Day 1: Glycogen depletion protocol. On the afternoon of Day 1, subjects arrived at the 177 

laboratory (~1500 h) to perform an intermittent bout of cycling to volitional fatigue. Subjects 178 

were asked to record and replicate their energy intake in the 24 h period prior to commencing 179 

the glycogen depletion protocol. Following a 5 min warm up at self-selected intensity, 180 

subjects cycled for 2 min at 90% PPO, immediately followed by 2 min at 50% PPO. Once 181 

subjects could no longer maintain > 60 rpm, the interval was decreased to 90 seconds, then to 182 

1 min at 90% PPO. Subjects repeated this work to rest ratio at 80% PPO, 70% PPO, and 60% 183 

PPO and the exercise protocol was terminated once subjects could no longer maintain > 60 184 

rpm at 60% PPO for 1 min. This protocol has been used previously in our laboratory (Bartlett 185 

et al., 2013; Taylor et al., 2013; Impey et al., 2016) and is a modification of that of Kuipers et 186 

al. (1987) that induces glycogen depletion in both type I and type II fibers. Immediately 187 

following the cessation of glycogen depleting exercise (~1700 h), subjects consumed 30 g of 188 

whey protein isolate (Advanced Whey Isolate, Science in Sport, Nelson, UK) mixed with 250 189 

ml water (in accordance with practical recommendations to promote recovery from 190 

endurance exercise) before adhering to one of three dietary protocols. In the TRAIN HIGH 191 

trial, subjects consumed 1.2 g.kg-1 maltodextrin (Cargill Dry Maltodextrin, UK) mixed with 192 

500 ml water sugar free squash (Tesco, Hertfordshire, UK) per hour for 5 hours.  In the 193 
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PERCEPTION trial, subjects adhered to an identical feeding frequency and volume protocol 194 

but consumed a tasted match placebo solution where they were told contained an identical 195 

amount of CHO as that consumed (or to be consumed) in the TRAIN HIGH trial (sugar free 196 

squash, Tesco, Hertfordshire, UK).  In the TRAIN LOW trial, subjects consumed the same 197 

placebo solution as the PERCEPTION trial but were told the solution contained no CHO. All 198 

drinks were administered in visually opaque bottles and 2.75 L of fluid was consumed over 199 

the 5-hour recovery period in each trial.  Subjects remained in the laboratory to complete the 200 

first 3 h of the recovery protocol before returning to their homes to complete the last 2 h of 201 

recovery (subjects were provided with the additional 2 x 500 ml solutions to take home). 202 

Subjects also slept at their own home. 203 

Day 2: Steady state (SS) and HIT exercise capacity test.  Subjects arrived at the laboratory 204 

between 0800 and 0830h the following morning after an overnight fast. Body mass (Seca, 205 

Hamburg, Germany), motivation to train (using a visual analogue scale, VAS, McCormack et 206 

al., 1988), resting blood lactate and blood glucose were initially measured. Subjects then then 207 

completed 30 min SS cycling at 95% of LT. Breath by breath gas analysis (CPX Ultima, 208 

Medgraphics, Minnesota, USA) was measured for 2 min during 8-10 min, 18-20 min, and 28-209 

30 min and substrate utilization was assessed according to Jeukendrup and Wallis (2005). 210 

Blood glucose and blood lactates samples were obtained at 15 min and 30 min. 211 

Measurements of HR (Polar, F10, Finland) and RPE (Borg, 1973) were recorded at 10 min 212 

intervals during the SS exercise. Following completion of SS exercise, subjects were 213 

provided with 3 min active recovery at 50 W and subsequently commenced the HIT exercise 214 

capacity test consisting of 1 min bouts at 80% PPO interspersed with 1 min bouts at 40% 215 

PPO until volitional exhaustion. A final capillary blood sample was collected at the 216 

termination of the HIT protocol.  217 
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Familiarization. Eight subjects completed the full experimental protocol described above 218 

while adhering to a water only (i.e. no flavoring) familiarization (FAM) condition at least 7 219 

days prior to their first experimental trial (one of the nine subjects withdrew from 220 

familiarization after several minutes of the SS exercise protocol having reported feelings of 221 

muscle soreness). Upon completion of all three experimental trials, we compared each 222 

subject’s exercise capacity during the FAM trial and the TRAIN LOW trial and observed no 223 

significant difference, as evidenced by a t-test for paired samples (FAM = 5 ± 5 min, PLA = 224 

7 ± 6 min, P=0.25).  225 

Blood analyses. Blood samples were obtained via finger prick capillary sampling using a 1.8 226 

mm sterile safety-lancet (Sarstedt AG & Co, Nümbrecht, Germany) after sterilization using a 227 

pre-injection medical swab (Medlock Medical Ltd., Oldham). A 20μl blood sample was 228 

collected in a Biosen capillary tube (EKF Diagnostics, Barleben, Germany) and analyzed 229 

using Biosen C-Line for blood glucose and lactate concentrations (EKF Diagnostics, 230 

Barleben, Germany). 231 

Statistical Analysis. Data were analysed using one or two-way repeated measures general 232 

linear model (GLM) where the within factors were time and condition (TRAIN LOW, 233 

PERCEPTION and TRAIN HIGH). Where significant main effects were found, paired 234 

samples t-tests with Bonferroni adjustment for multiple comparisons were performed to 235 

identify differences. In relation to our primary outcome variable of exercise capacity, we also 236 

report uncertainty of outcomes as 95% confidence intervals (95% CI) and make probabilistic 237 

magnitude based-inferences about the true (large sample) values of outcomes by qualifying 238 

the likelihood that the true effect represents a substantial change, according to (Batterham & 239 

Hopkins, 2006). All data in text, tables and figures are expressed as means + SD with P<0.05 240 
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indicating statistical significance. Statistical analyses were performed using Statistics 241 

Package for the Social Sciences (SPSS) for Windows (version 24, SPSS Inc, Chicago, IL). 242 

 243 

Results 244 

Glycogen depletion protocol 245 

There was no difference (P=0.71) in time to exhaustion during the glycogen depletion 246 

protocol between the TRAIN HIGH (79 ± 20 min), PERCEPTION (75 ± 16 min) or TRAIN 247 

LOW (79 ± 22 min) trials.  248 

 249 

Physiological and perceptual responses during SS exercise  250 

There was no difference (P=0.258) in subjects’ motivation to exercise prior to commencing 251 

the SS protocol (TRAIN HIGH 6.7 ± 2.7 cm; PERCEPTION 6.4 ± 1.7 cm; TRAIN LOW 252 

5.1 ± 2.1 cm).  Subjects’ HR (P=0.006) and RPE (P<0.001) increased during SS though no 253 

difference was apparent between conditions (P=0.299 and 0.273 respectively, see Table 1).  254 

 255 

Metabolic responses during SS exercise and HIT capacity test 256 

During SS, RER (P<0.001) and CHO oxidation rate (P<0.001) decreased while fat oxidation 257 

increased (P<0.001). Average CHO oxidation was higher throughout SS in TRAIN HIGH 258 

than both PERCEPTION (P=0.019) and TRAIN LOW (P= 0.012) while fat oxidation was 259 

lower (P=0.016 and 0.023 respectively).  Blood glucose was higher throughout SS and HIT 260 

in TRAIN HIGH than in PERCEPTION (P=0.002) and TRAIN LOW (P=0.021) and also 261 

decreased during exercise (P<0.001). Blood lactate rose throughout SS and was significantly 262 

increased in TRAIN HIGH compared with both PERCEPTION (P=0.016) and TRAIN LOW 263 

(P= 0.023) after HIT (see Figure 2). 264 

 265 
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Exercise capacity during the HIT test 266 

High-intensity intermittent exercise capacity was different between conditions (P<0.001), 267 

whereby TRAIN HIGH (22 ± 9 min; P=0.005: 95% CI for differences = 3 to 16 min, almost 268 

certainly beneficial) was greater than both PERCEPTION (12 ± 6 min) and TRAIN LOW (8 269 

± 8 min; P=0.001: 95% CI for differences = 7 to 20 min, almost certainly beneficial).   270 

Exercise capacity was also greater in PERCEPTION compared with TRAIN LOW (P=0.025: 271 

95% CI for differences = 1 to 8 min, very likely beneficial: see Figure 3A).  Seven subjects 272 

completed more intervals in PERCEPTION than TRAIN LOW, whilst all nine subjects 273 

completed more intervals in the TRAIN HIGH compared with both non-CHO trials (see 274 

Figure 3B).  There was no trial order effect (P=0.849). 275 

 276 

Discussion 277 

Confirming our hypotheses, we provide novel data by demonstrating that perception of CHO 278 

availability augments high-intensity intermittent exercise capacity under sleep-low, train-low 279 

conditions though perception does not near restore exercise capacity to that of CHO 280 

consumption.  We therefore consider our data to have methodological implications for future 281 

sleep-low train-low research designs by clearly highlighting the requirement for placebo-282 

controlled trials.  Furthermore, when considering that perception of CHO availability can 283 

improve exercise capacity, our data may also have practical applications for those athletes 284 

who deliberately practice CHO periodization strategies in an attempt to strategically enhance 285 

oxidative adaptations of skeletal muscle. 286 

To achieve our sleep low, train low model of CHO restriction, we employed a similar 287 

glycogen depletion and re-synthesis protocol to that recently studied in our laboratory 288 

(Hearris et al., 2019).  Whilst we acknowledge that we did not directly assess muscle 289 

glycogen, evaluations of substrate utilisation during the SS exercise protocol are consistent 290 
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with differences in CHO availability between the TRAIN HIGH trial and the non-CHO trials.  291 

On the basis of the fitness levels of the present subjects (i.e. VO2peak, 55.3 ± 8.3 ml.kg-1.min-1) 292 

and absolute CHO intake (i.e. 6 g.kg-1), we estimate from our previous data (Hearris et al., 293 

2019) and a recent meta-analysis (Areta & Hopkins, 2018) that muscle glycogen 294 

concentration in TRAIN HIGH was in the region of 300-350 mmol.kg-1 dw, as opposed to 295 

100-150 mmol.kg-1 dw in the PERCEPTION and TRAIN LOW trials.   296 

Consistent with the well-documented effect of muscle glycogen availability on 297 

exercise capacity (Bergstrom et al., 1967; Hawley et al., 1997; Impey et al., 2016; Hearris et 298 

al., 2019), it is unsurprising that all nine subjects were able to exercise for significantly longer 299 

during the TRAIN HIGH trial compared with the non-CHO trials.  The magnitude of 300 

improvement observed here (i.e. ~15 minutes) agrees favorably with our recent data (Hearris 301 

et al., 2019) where we observed that small differences in pre-exercise muscle glycogen 302 

concentration (~100 mmol.kg-1 dw) improves high-intensity intermittent exercise capacity at 303 

80% PPO between ~20% and 50% (8–18 min).  In our previous study, however, we 304 

acknowledged that lack of blinding between trials may have influenced subjects’ motivation 305 

and perceived ability to complete high-intensity workloads (Hearris et al., 2019). To 306 

overcome the issue of subjects being visually aware of the quantity of CHO rich foods 307 

consumed (Mears et al., 2018), we deliberately chose to blind CHO availability in the present 308 

study by using taste matched beverages delivered in opaque bottles.  309 

When comparing subjects’ exercise capacity between the TRAIN LOW and water 310 

only FAM trial, it is noteworthy that no significant differences in exercise capacity were 311 

observed.  Such data highlight that when subjects were aware that no prior CHO had been 312 

consumed (despite differences in taste between the TRAIN LOW and FAM trials), exercise 313 

capacity was not affected.   However, when subjects perceived they had consumed CHO 314 

before sleeping in the PERCEPTION trial, 7 of the 9 subjects performed significantly more 315 
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work compared with the known TRAIN LOW trial, despite reporting no significant 316 

differences in their motivation to exercise.  A placebo effect of CHO availability has been 317 

documented previously (in conditions of normal pre-exercise muscle glycogen concentration) 318 

where CHO has been fed before (Mears et al., 2018) and during (Clark et al., 2000) cycling 319 

time trials equating to durations of approximately 20 and 60 minutes, respectively.  In 320 

contrast, no placebo effect of CHO feeding is evident when exercise duration extends beyond 321 

3 hours, likely due to near glycogen depletion and that the metabolic requirement for CHO 322 

dominates over central drive (Hulston & Jeukendrup, 2009).  Nonetheless, the present data 323 

demonstrate that a placebo effect of prior CHO ingestion may also manifest in those 324 

conditions where short term-high intensity intermittent exercise is commenced with 325 

considerably reduced pre-exercise muscle glycogen concentration.   326 

Whilst we acknowledge that the magnitude of effect with perception was less than 327 

that of actual CHO consumption (~5 versus 15 minutes at 80% PPO), the present data are of 328 

practical relevance for reasons related to both research design and practical application with 329 

athletic populations. Indeed, when considering that previous studies reporting decrements in 330 

power output or exercise capacity during acute train-low training sessions (using the twice 331 

per day or sleep low models) have not blinded subjects to the “low CHO availability” 332 

condition (Hansen et al., 2005; Yeo et al., 2008, 2010; Hulston et al., 2010; Hearris et al., 333 

2019), it is possible that such impairments in performance may also be due, in part, to 334 

psychological reasons as opposed to physiological factors per se.  Similarly, given that 335 

Marquet et al. (2016b) observed that just one week of a sleep-low training intervention 336 

(incorporating only 3 train-low sessions) improved 20 km cycling time trial performance by 337 

3.2%, it is possible that such improvements were simply due to subjects beliefs that the sleep 338 

low protocol would lead to superior improvements in performance, as opposed to 339 

physiological or metabolic adaptations.   In relation to practical application, the placebo 340 
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effect of prior CHO intake may also extend the effects of caffeine (Lane et al., 2013) and 341 

CHO mouth rinse (Kasper et al., 2016) as potential tools for which to increase exercise 342 

capacity for those athletes who deliberately practice CHO restriction in an attempt to amplify 343 

training adaptations (Impey et al., 2018). 344 

In summary, we provide novel data by demonstrating that perception of CHO 345 

availability augments high-intensity intermittent exercise capacity under sleep-low, train-low 346 

conditions though perception does not restore exercise capacity to that of CHO consumption.  347 

Such data have implications for future sleep-low train-low research designs by clearly 348 

highlighting the requirement for placebo-controlled trials. In addition, our data may also have 349 

practical applications for those athletes who deliberately incorporate periods of CHO 350 

restriction into their training programmes in an attempt to strategically enhance mitochondrial 351 

related adaptations of skeletal muscle.  352 
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 463 

Figure 1 – Overview of the experimental design.  464 

 465 

Figure 2 – (A) RER, (B) CHO oxidation, (C) lipid oxidation, (D) blood glucose and (E) 466 

blood lactate concentration during the SS exercise protocol (as completed on the morning of 467 

Day 2). *denotes significant difference between TRAIN HIGH and PERCEPTION and 468 

TRAIN LOW trials, P<0.05. a denotes significant difference from 10, b denotes significant 469 

difference from 20, c denotes significant difference from 0, d denotes significant difference 470 

from 15 and 30, all P<0.05. Exh, exhaustion. 471 

 472 

Figure 3 – (A) Exercise capacity (means ± SD) and (B) individual subject’s exercise capacity 473 

during the TRAIN LOW, PERCEPTION and TRAIN HIGH trials. *denotes significant 474 

difference from TRAIN LOW, # denotes significant difference from PERCEPTION, both 475 

P<0.05. 476 

 477 
  478 
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Table 1 – Heart rate, VO2 (as % of VO2peak) and RPE during the SS exercise protocol (as 479 
completed on the morning of Day 2) in the TRAIN LOW, PERCEPTION and TRAIN HIGH 480 
trials.   481 
 482 
 483 
  

Time (min) 

 10 20 30 

HR (b.min-1) 
TRAIN LOW 
PERCEPTION 
TRAIN HIGH 

 
145 + 16 
146 + 11 
142 + 14 

 
147 + 17 
149 + 11 
143 + 14 

 
150 + 19 ab 
151 + 14 ab 
146 + 15 ab 

% VO2peak 
TRAIN LOW 
PERCEPTION 
TRAIN HIGH 

 
61 + 9 
63 + 8 
64 + 9 

 
63 + 7 
64 + 7 
61 + 9 

 
61 + 6  
62 + 6  
63 + 6  

RPE (AU)  
TRAIN LOW 
PERCEPTION 
TRAIN HIGH 

 
12 + 2 
12 + 2 
12 + 2 

 
14 + 2 
13 + 3 
14 + 2 

 
16 + 3 ab 
15 + 3 ab 
15 + 3 ab 

a denotes significant difference from 10, b denotes significant difference from 20, both 484 
P<0.05. 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
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