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Abstract

Understanding the determinants of ranging patterns in species susceptible to habitat fragmentation is fundamental
for assessing their long-term adaptability to an increasingly human-dominated landscape. The aim of this study
was to determine and compare the influence of ground-based food availability, remotely sensed plant productivity,
and indigenous forest use on the ranging patterns of the endangered samango monkey (Cercopithecus albogularis
schwarzi). We collected monthly ranging data on two habituated samango monkey groups, from February 2012 to
December 2016, from our field site in the Soutpansberg Mountains, South Africa. We used linear mixed models to
explore how food availability, plant productivity, and indigenous forest use influenced monthly ranging patterns,
while controlling for group size, number of sample days and day length. We found that as more areas of high
plant productivity (derived from remotely sensed EVI) were incorporated into the ranging area, both total and
core monthly ranging areas decreased. In addition, both total ranging area and mean monthly daily path length
decreased as more indigenous forest was incorporated into the ranging area. However, we found no effect of either
ground-based food availability or remotely sensed plant productivity on ranging patterns. Our findings demonstrate
the behavioral flexibility in samango monkey ranging, as samangos can utilize matrix habitat during periods of low
productivity but are ultimately dependent on access to indigenous forest patches. In addition, we highlight the
potential of using remotely sensed areas of high plant productivity to predict ranging patterns in a small ranging,
forest-dwelling guenon, over ground-based estimates of food availability.
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INTRODUCTION

Habitat loss and fragmentation are the most significant
causes of global biodiversity loss (Fahrig 2003; Linden-
mayer & Fischer 2006). Within forest biomes, loss and
fragmentation of habitat has accelerated at an unprece-
dented rate due to the anthropogenic conversion of land
for agriculture and urbanization (Haddad et al. 2015).
Many species rely on continuous natural forest patches
for foraging, reproduction, and shelter (Saunders et al.
1991; Fischer & Lindenmayer 2007). Fragmentation of
these patches increases the likelihood of population de-
clines through genetic isolation, microclimate change, de-
creased availability of resources, increased predation risk,
and increased competition (Saunders et al. 1991; Fahrig
2003; Haddad et al. 2015). Understanding how animals
use space in fragmented habitats is central to animal be-
havioral ecology and is key to determining the extent to
which they can persist in an increasingly fragmented and
human-dominated landscape (Fahrig 2007; Wilson et al.
2016).

Resources are often distributed unevenly in time and
space across the landscape, which is exacerbated in frag-
mented environments (Fairgrieve 1995; Fahrig 2003). As
a result, animals may modify their home range size and
use in order to access sufficient resources (Law & Dick-
man 1998). Primates, in particular, have been shown to
have considerable flexibility in their ranging patterns in
response to fluctuations in resource availability (Clutton-
Brock 1975; Di Bitetti 2001; Bartlett 2009). Furthermore,
this relationship is more pronounced in frugivorous pri-
mates than in folivorous primates (Clutton-Brock 1977)
due to the higher spatiotemporal fluctuations in fruit avail-
ability compared to leaves (Janson & Chapman 1999),
and owing to the fact that fruit has a shorter digestion
time than leaves (Demment & Laca 1991). The ability
of a species to adapt to habitat fragmentation may there-
fore depend on their ability to exploit resources within
suitable matrix habitat (Law & Dickman 1998; Fahrig
2007).

Studies exploring ranging patterns in small ranging
species, such as primates, typically use ground-based phe-
nology to determine the influence of resource availability
(Di Bitetti 2001; Kaplin 2001; Twinomugisha & Chap-
man 2007; Albert et al. 2013; Gabriel 2013; Campera
et al. 2014; Santhosh et al. 2015). Ground-based phe-
nology provides detailed and accurate information on the
availability of specific food items, yet often lacks spatial
coverage (Studer et al. 2007). One of the most significant
advances in ecological and conservation studies, however,
has been the application of remotely sensed estimates of

plant productivity, which has greatly enhanced our under-
standing of animal movement patterns (Kerr & Ostrovsky
2003; Turner et al. 2003; Pettorelli et al. 2011; Neumann
et al. 2015).

The Enhanced Vegetation Index (Huete et al. 2002)
(EVI) is a remotely sensed correlate of photosynthetic
activity and has consistently been used as an indicator of
primary productivity (Paruelo et al. 1997), plant phenol-
ogy (Justice et al. 1985) and canopy structure (Gamon
et al. 1995). EVI represents the difference in earth surface
reflectance patterns between the red and near-infrared
parts of the electromagnetic spectrum, while taking into
account the reflectance of the blue band (Eidenshink &
Faundeen 1994). Values range from −1.0 (indicating
non-vegetated areas) to +1.0 (densely vegetated areas)
(Huete et al. 2002). Although remotely sensed estimates
of plant productivity appear to have a complex relation-
ship with ground-based estimates of food availability
(Willems et al. 2009), the strong linear relationship with
leaf cover has led to its application in ranging studies
as an indirect measure of food availability, particularly
in species which consume large proportions of leaves
(Leimgruber et al. 2001; Ito et al. 2006; Willems et al.
2009; Villamuelas et al. 2016).

One of the main advantages of remotely sensed produc-
tivity over ground-based phenology, however, is the abil-
ity to monitor plant productivity over vast geographical
scales and at regular time intervals (Huete et al. 2006; Lu
et al. 2015). Because of this, the majority of studies apply-
ing remotely sensed productivity to animal ecology have
been biased toward wide-ranging species (birds: Evans
et al. 2006, carnivores: Nilsen et al. 2005, ungulates:
Leimgruber et al. 2001; Ito et al. 2006). While the po-
tential benefits of applying remotely sensed productivity
to smaller-ranging species in fragmented habitats are vast,
studies on primates, where there are pressing conservation
concerns (Estrada et al. 2017), are almost entirely lack-
ing (Zinner et al. 2002; Willems et al. 2009). However,
remotely sensed productivity often lacks the spatial reso-
lution and detail of ground-based phenology (Studer et al.
2007), meaning that regions sampled often include areas
of lower productivity which may rarely be utilized or even
inaccessible to forest-dwelling species (Lawes 1992). De-
spite this, the potential of remote sensing to identify areas
of the habitat which are highest in plant productivity may
provide valuable information on the ranging ecology of
forest specialists capable of consuming large proportions
of leaves. While each method of sampling phenology has
its advantages, studies directly comparing their effective-
ness are lacking (but see Gordo 2007; Willems et al. 2009;
Villamuelas et al. 2016).
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Ranging patterns of samango monkeys

The samango monkey (Cercopithecus albogularis
subsp.: Dalton et al. 2015), a forest specialist, is threat-
ened in South Africa (Linden et al. 2016). Their distribu-
tion is largely restricted to areas of tall-canopy, evergreen
indigenous forests such as Afromontane/mistbelt, scarp,
and coastal belt forests (Lawes 1990; Skinner & Chim-
imba 2005), which are becoming increasingly fragmented
as a result of anthropogenic disturbance (Lawes 1992;
Friedmann & Daly 2004; Kingdon et al. 2008). They
are primarily arboreal and form single-male, multifemale
groups (Henzi & Lawes 1987), averaging around 30 indi-
viduals (Lawes et al. 2013; Coleman & Hill 2014a). Un-
like most other forest guenons, which are predominantly
frugivorous (Lambert 2004), samango monkeys display
considerable dietary flexibility and are able to consume
large amounts of leaves (Coleman & Hill 2014a; Lin-
den et al. 2015; Parker 2019). This is largely owing to
their gut morphology and longer caecum (Bruorton &
Perrin 1991), which facilitates the extraction of protein by
breaking down cellulose in plant cell walls (Lawes et al.
1990; Bruorton & Perrin 1991; Lawes 1991). This dietary
flexibility may account for the geographic range of the
samango monkey extending to more southerly latitudes
in comparison to other forest guenons (Wolfheim 1982;
Coleman & Hill 2014a), and also facilitates the ranging
of samangos into matrix habitat during periods of fruit
scarcity (Lawes 1990; Skinner & Chimimba 2005; Nowak
et al. 2017; Wimberger et al. 2017). Despite this, they are
heavily reliant on food items located within patches of
indigenous forest (Nowak et al. 2017; Wimberger et al.
2017) and are therefore reluctant to disperse over large
stretches of open ground and inhabit small or isolated
forest fragments (Lawes 1992, 2002; Lawes et al. 2000;
Madisha et al. 2018). Understanding the factors that influ-
ence ranging patterns of the samango monkey is critical,
therefore, for assessing the extent to which they can per-
sist in an increasingly fragmented and human-dominated
landscape.

The main aim of this study was to determine the
influence of food availability (sampled locally), plant pro-
ductivity (sampled remotely), and indigenous forest use
on the monthly ranging patterns of the samango monkey.
Secondly, in order to broaden the potential applicability of
remotely sensed plant productivity to other small ranging
guenons, we aimed to directly compare the effectiveness
of each of these methods in explaining samango monkey
ranging patterns. As the time available for ranging each
day (Hill et al. 2003), and group size (Takasaki 1981),
are both known to influence ranging patterns, we also
collected data on this information to include as control
variables in our analysis. Similarly, we included the num-

ber of days used to estimate monthly ranging patterns in
our analysis to control for sample size (Getz et al. 2007).
We predicted that the monthly ranging area, monthly core
area and mean monthly daily path length of samango
monkeys would increase during periods of low food
availability and plant productivity, as resources become
more spatially dispersed (Kaplin 2001; Boyle et al. 2009).
We also predicted that monthly ranging patterns would
increase when samango monkeys utilized less indigenous
forest, as a result of monkeys ranging further into ma-
trix habitat in order to access alternate food resources
during periods of low productivity (Nowak et al. 2017;
Wimberger et al. 2017). While remotely sensed plant
productivity may provide an indirect measure of food
availability in species which consume large proportions of
leaves, we predicted that the phenological detail afforded
by ground-based food availability would more accurately
predict ranging patterns in a small ranging species.

MATERIALS AND METHODS

Study site

We conducted fieldwork at the Lajuma Research Cen-
tre in the western Soutpansberg Mountains, South Africa
(23°02′23”S, 29°26′05”E) over a period of five years be-
tween February 2012 and December 2016. The isolated
subpopulation of samango monkeys (C. a. schwarzi; Dal-
ton et al. 2015) living on the mountain range is currently
listed as Endangered (Linden et al. 2016), and represents
the most vulnerable of the three samango monkey sub-
species within South Africa (Linden et al. 2016). Across
the mountain range there is substantial seasonal variation
with cool, dry winters (mean seasonal temperature 16°C
and mean seasonal total rainfall 16 mm) and hot, wet
summers (mean seasonal temperature 20°C and mean
seasonal total rainfall 561 mm), resulting in substantial
variation in the spatial and temporal distribution of re-
sources (Willems 2007). The south-facing cliffs also trap
moisture resulting in fragmented patches of tall-canopy,
evergreen indigenous mistbelt forest (Mucina & Ruther-
ford 2006). These forests have extremely diverse plant
communities, but prominent tall trees include lemonwood
(Xymalos monospora), real yellowwood (Podocarpus lat-
ifolius), mountain wild-quince (Cryptocarya transvaalen-
sis), forest waterberry (Syzygium gerrardii), and black
ironwood (Olea capensis subsp. macrocarpa) (Mucina
& Geldenhuys 2006). These forests are separated both
naturally and anthropogenically by a mosaic of riparian
forests, semi-deciduous woodlands, thicket, montane
grasslands, farmland, and residential gardens, creating a
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diverse matrix habitat (Mostert et al. 2008). Altitude at
the field site ranges from 1150 to 1750 m.

Data collection

We followed two well-habituated groups of samango
monkeys; “Barn” (30–40 individuals) and “House” (60–
70 individuals), for an average of nine complete days
(max: 17, min: 2) every month across the study period.
Complete days were defined as days where a group was
followed from morning sleep site to evening sleep site,
without losing audio-visual contact for more than 60 min-
utes (Coleman & Hill 2014b). Only months containing a
minimum of five complete days were used in subsequent
analyses, which appeared to be the minimum number of
days which was representative of the areas visited by each
group for that month (Seaman et al. 1999). This resulted
in 97 “complete” months across the study period (Barn:
53, House: 44). During each full day we collected instan-
taneous scan samples (Altmann 1974), using a handheld
PDA (Psion Teklogix Workabout Pro 3), on as many indi-
viduals as possible (n = 36625, mean: 6.2, max: 24, min:
1) within a five-minute window, at 20 minute intervals.
General information collected during each scan sample
included date, time and group ID, while we also recorded
data on specific behaviors including feeding (chewing or
ingesting food) and foraging (searching for food, picking/
handling food) which were used to determine the diet
preferences of the study groups. In addition, a GPS point
(Garmin GPSmap 64S) of the group’s location was taken
from the group’s centroid to coincide with the start of
each scan sample, to within an accuracy of 5 m. This
resulted in 113,373 locations for Barn group and 113,458
locations for House group.

Environmental monitoring in the field

We counted the number of leaves, fruit, and seed pods
for 20 individually marked trees of 24 different species
(480 trees in total) (Parker 2019) within the first two
weeks of every month, over the five-year study period
(Coleman & Hill 2014b). Trees were selected to give a
representation of various habitat types, while also being
considered important species in the samango monkey diet
(Coleman 2013; Linden et al. 2015). Items were counted
on an individually marked branch on each tree and then
scaled up to give an estimate for each tree based on the
estimated number of branches for that tree (Coleman &
Hill 2014b). Where there were no items on the marked
branch but items on the tree, either the total number of
items were counted on the tree where possible, or esti-

mates were made for the whole tree based on the number
of items on another branch and the estimated number of
branches for that tree (Coleman & Hill 2014b). In addi-
tion, we used randomly generated 5 m2 vegetation plots
across the study area (n = 702) to estimate the relative
abundance of the 24 tree species monitored. Within each
vegetation plot, all trees with a diameter at breast height
>10 cm (Chapman et al. 1994; Clark & Clark 1999) were
counted and identified where possible.

Remote sensing of the environment

We downloaded EVI composites for each month
across the study period (2012–2016), at a resolution of
30 m2, from the Landsat 7 & 8 databases from Google
Earth Engine (https://earthengine.google.com). Images
were downloaded for the entire western Soutpansberg
Mountains. Monthly composites were used for compa-
rability with the scale of ground-based food availability
estimates. We used EVI in this analysis as it is more
sensitive to changes in areas of high biomass, canopy
differences, canopy structure, and plant phenology com-
pared to other vegetation indices such as the Normalized
Difference Vegetation Index (NDVI) (Huete et al. 2002),
factors which are known to be important for space use in
forest-dwelling species (Emerson et al. 2011; Coleman
& Hill 2014b).

Estimation of ranging area and daily path length

To estimate the monthly ranging area of each group,
we used adaptive localized convex hulls (a-LoCoH: Getz
& Wilmers 2004; Getz et al. 2007), due to its superior
ability of dealing with hard boundaries and its compatibil-
ity of coping with temporally close data points compared
to other home range estimation methods (Getz & Wilmers
2004; Ryan et al. 2006; Getz et al. 2007). Ranging areas
were created within the “t-LoCoH” package (Lyons et al.
2013) in R 3.4 (R Core Team 2017), using the maximum
distance between monthly GPS points for each group
as the a-value to allow correct construction of isopleths
(Getz et al. 2007). We estimated two measures of ranging
area (in hectares) for each group, for each month across
the study period. Total monthly ranging area (monthly
ranging area hereafter) was delineated by the 95% vol-
ume isopleth (Silverman 1986; Worton 1989; Getz et al.
2007), while monthly core ranging area (monthly core
area hereafter) was delineated by the 50% volume iso-
pleth (Börger et al. 2006; Getz et al. 2007). We defined
ranging patterns in this way instead of more common
terminology such as “home range” and “core home
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range,” as a home range is typically determined over
a yearly or multiyear period (Fleming et al. 2015). As
such, monthly “home ranges” may not be representative
of the actual home range. These ranging areas were then
loaded into QGIS 2.18 (QGIS Development Team 2017)
to extract estimates of plant productivity and indigenous
forest use. Using the same method, we also estimated the
overall home range size (overall home range hereafter)
of each group using all GPS points collected across
the study period, which was used to calculate estimates
of food availability. Monthly mean daily path length
(monthly DPL hereafter) was calculated by summing
the straight-line distance (in km) between sequential
GPS points from each scan sample across a complete
day, using the distanceTrack function in the “argosfil-
ter” package in R, and averaging across DPLs for each
month.

Ground-based food availability estimates

We calculated monthly food availability estimates for
leaves, fruit, and seed pods based on the five species
for each food item which collectively contributed to over
60% of the samango monkey diet (Parker 2019). To
do this, we averaged the number of leaves, fruit, and
seed pods counted each month for each tree (n = 20)
across each species (n = 24). This resulted in a monthly
mean value per food item for each species across the
study period. Flowers and other food items were excluded
from analysis as they comprised such a small propor-
tion of the diets of both groups across the study period
(Table S1). We then scaled these values up to give rep-
resentative values across the overall home range of each
group. To do this, we multiplied these values by the esti-
mated number of trees of each species (derived from the
vegetation plots) within each group’s overall home range,
thus giving a representative monthly food availability es-
timate per food item (leaves, fruit and seed pods) for each
of the 24 species sampled. The estimated number of trees
within each group’s range was calculated by dividing the
area of each group’s overall home range by the area of
a vegetation plot (5 m2), and then multiplying this fig-
ure by the mean number of trees per species across all
plots (n = 702). To determine the five species which con-
tributed over 60% of the samango monkey diet for each
food item respectively, we summed the total number of
scans recorded feeding and foraging on each food item
of a particular species and then calculated this as a pro-
portion of the total number of scans recorded feeding and
foraging over the study period. Finally, we summed the
total monthly food availability estimates for the five most

consumed species of each food item respectively, thus
giving an estimate of the monthly availability of the most
commonly eaten fruits, leaves and seed pods respectively.
As only four species of seed were eaten with any regular-
ity across the study period (contributing 98% of all seed
species eaten), we only included four seed species in our
seed availability estimates.

Remotely sensed plant productivity and

indigenous forest use estimates

Monthly EVI composites where cloud cover did not
impede the study area by >30% were used in all analyses.
For months where cloud cover exceeded this threshold,
we selected the clearest image from the 16-day EVI com-
posites. Composites were loaded into QGIS and a mean
EVI value across each group’s monthly ranging area was
calculated for each sample month using the “zonal statis-
tics” plugin, thus giving an indirect estimate for mean leaf
availability across each group’s range. EVI was run with
a zero, 1- and 2-month time lag in subsequent analyses
to allow for any possible lag in leaf availability between
that sampled remotely and that which was available on
the ground (Willems et al. 2009). EVI values for months
where data were missing completely were estimated by
averaging the values between the previous and following
month. While estimating missing values in this way does
not account for other factors that predict variation in EVI
(e.g. ecological or physical factors), only 11 out of 118
sample months were missing and, as such, estimated val-
ues are likely to be representative. As using mean plant
productivity across the ranging area in this way may mask
areas or periods of particularly high or low productiv-
ity, we also identified the areas of each group’s monthly
range which were highest in plant productivity. To do this,
we clipped EVI rasters by values >0.5, a value which
represents dense vegetation (Huete et al. 2006), within
the monthly ranging area using the “Raster Calculator.”
We then calculated these areas as a proportion of each
group’s monthly ranging area using the “LecoS” (Land-
scape ecology Statistics) (Jung 2016) plugin in QGIS, for
each month across the study period. Finally, to calculate
the proportion of monthly ranging area that included in-
digenous forest, we used the “indigenous forest” layer of
the 2014 SANBI (South African National Biodiversity
Institute) landcover map (30 m2 resolution) and calcu-
lated this as a proportion of each group’s monthly ranging
area using the “LecoS” (Jung 2016) plugin in QGIS. The
SANBI indigenous forest layer is derived from a combi-
nation of seasonal maximum NDVI values (from images
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taken between April 2013 and April 2014), forest biome
boundaries (from the SANBI database), and shadow and
altitude terrain parameters (from NASA’s Shuttle Radar
Topography Mission database).

Data analysis

We used linear mixed-effects models with a Gaussian
error structure to determine the effects of food avail-
ability, plant productivity, and indigenous forest use on
the ranging patterns of samango monkeys. For each of
the home range variables (monthly ranging area, monthly
core area, and mean monthly daily path length), we used
separate models to determine the effect of ground-based
food availability, remotely sensed plant productivity, and
proportion of indigenous forest and areas of high plant
productivity incorporated into the monthly ranging area.
We ran separate models in this way due to collinearity be-
tween multiple variables (Bolker et al. 2008), while also
allowing for comparison in explanatory power between
methods. We included day length, group size, and num-
ber of “complete” days used to estimate monthly rang-
ing patterns as control variables, while month and year
were included as random variables. Models were fitted
in R 3.4 (R Core Team 2017) using the lmer function
of the “lme4” package (Bates et al. 2014). We checked
for normality and homogeneity of residuals by visually
inspecting histograms and qqplots of the residuals, and
the residuals plotted against fitted values. Collinearity be-
tween fixed effects were inspected using Variance Infla-
tion Factors (VIF) from the vif function within the “car”
package. VIF values were derived from a standard linear
model excluding the random effects, with all values <1.5
indicating no collinearity between variables (Hair et al.
2014). P-values for the individual effects were based on
likelihood ratio tests comparing the full model with re-
spective reduced models, dropping one fixed effect at a
time (R function drop1), with significance inferred at the
5% level. To allow for likelihood ratio tests we fitted the
models using Maximum Likelihood (Bolker et al. 2008)
and used Akaike’s Information Criterion (Burnham & An-
derson 2002) to infer goodness of fit between separate
models.

Ethical statement

All behavioral data collection followed the Associa-
tion for the Study of Animal Behavior (ASAB) Guide-
lines for the Treatment of Animals in Behavioral Re-
search and Teaching (ASAB 2012) and were covered
by the Liverpool John Moores University’s use of Live

Animals in Unregulated Research Protocol (NK_EP/
2016-10). All fieldwork was approved by the Life Sci-
ences Ethical Review Process Committee and the De-
partment of Anthropology Ethics Committee at Durham
University, UK and was conducted with approved permits
from Limpopo Province Department of Economic Devel-
opment and Tourism (LEDET).

RESULTS

Overall home range size across the study period was
considerably larger for House (123.9 ha) group com-
pared to Barn (89.7 ha), with home ranges between the
groups overlapping significantly (Fig. 1). Visualization
of the home ranges also highlights a clear avoidance
of large open areas, cliff faces, and hard boundaries,
with the core areas focused within the indigenous forest.
While monthly ranging area varied considerably within
each group, ranges were fairly consistent between groups
(Barn group max: 52.0 ha, min: 11.4 ha; House group
max: 58.1 ha, min: 14.3 ha).

We found no effect of ground-based food availability
(Table 1) or remotely sensed plant productivity (Table 2)
on the monthly ranging area, monthly core area, or mean
monthly DPL. This also held when introducing a 1- and
2-month time lag into the analysis to account for possible
delays in remotely sensed plant productivity (Table S2).
We found that both monthly ranging area and mean
monthly DPL significantly decreased as more areas of
high plant productivity were included within the monthly
ranging area, but found no effect on the monthly core area
(Table 3). Similarly, we found that both monthly ranging
area and monthly core area significantly decreased as
more indigenous forest was incorporated into the monthly
ranging area (Fig. 2, Table 4). However, the proportion
of monthly ranging area comprising indigenous forest
was not related to mean monthly DPL. The proportion
of indigenous forest within the monthly ranging area
was also positively correlated with areas of high plant
productivity (likelihood ratio test: t = 4.20, df = 1,
P < 0.001).

Proportion of monthly ranging area containing indige-
nous forest best explained variation in monthly ranging
patterns compared to ground-based food availability and
remotely sensed plant productivity, based on log likeli-
hood ratio tests and model information criterion. In addi-
tion, proportion of areas of high plant productivity within
the monthly ranging area was a better predictor of total
monthly ranging area and mean monthly DPL than food
availability or plant productivity sampled across the rang-
ing area (Table 5).
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Ranging patterns of samango monkeys

Figure 1 Utilization distributions (UDs) showing the overall home range size and location for both (a) Barn and (b) House groups
in the Soutpansberg Mountains, South Africa, across the study period (2012–2016). Outline of House group’s (green dotted line,
image a) and Barn group’s (yellow dotted line, image b) home range are shown to highlight the proximity of each group in relation
to each other and to indicate that home ranges overlapped. Total home range is delineated as isopleths ≤ 0.98. Core home range is
delineated as isopleths ≤ 0.5.

DISCUSSION

Understanding the influence of resource availability
on space use is central to assessing the adaptability of
a species to habitat fragmentation (Fahrig 2007; Wilson
et al. 2016). Here, we explored the influence of food avail-
ability, plant productivity, and indigenous forest use on
the monthly ranging patterns of the endangered samango
monkey in the Soutpansberg Mountains, South Africa.
While we found no effect of ground-based food availabil-
ity or remotely sensed plant productivity sampled across

the ranging area on monthly ranging patterns, we found
that utilization of both areas high in plant productivity
and indigenous forest were significantly associated with
a reduction in some aspects of monthly ranging.

Both total and core monthly ranging area significantly
decreased as more indigenous forest was incorporated
into the ranging area, suggesting that by utilizing more of
this habitat type samango monkeys can increasingly focus
their ranges on this highly productive habitat. Reliance on
natural forest fragments is commonly observed in frugiv-
orous species, such as bats (Ripperger et al. 2015) and
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Figure 2 Effect of proportion of monthly ranging area including indigenous forest on (a) size of monthly ranging area and (b) monthly
core area.

primates (Estrada & Coates-Estrada 1996; Nowak et al.
2017), which typically reduce their ranging area by in-
corporating more natural forest fragments into the home
range (Chaverri et al. 2007; Palminteri & Peres 2012;
Campera et al. 2014). Similarly, our results demonstrate
the importance of the indigenous forest as a highly pro-
ductive habitat to samango monkeys and that in order
to live at reasonable population densities, access to in-
digenous forest patches is key for this species (Linden
et al. 2016; Nowak et al. 2017). The indigenous forest
contains important indigenous fruits, such as figs (Lin-
den et al. 2015), which contribute significantly to the
samango monkey diet (Coleman 2013; Linden et al. 2015;
Parker 2019). For example, samango monkeys in the
Eastern Cape preferentially forage on indigenous fruits
and seeds when available regardless of the availability of
exotic species which provide a higher calorific content
(Nowak et al. 2017; Wimberger et al. 2017). Similarly,
while samangos at Lajuma are capable of utilizing ma-
trix habitat to access alternate resources during periods of
low productivity, access to these natural forest fragments
is clearly key (Wimberger et al. 2017). By incorporating
more indigenous forest into the ranging area, samangos
are able to reduce their ranging and access more preferred
food items in the indigenous forest (Coleman 2013; Lin-
den et al. 2015), thereby reducing the need to exploit the
habitat matrix as intensively.

In contrast, mean monthly DPL was not influenced by
indigenous forest use. While indigenous forest may be
important for daily ranging patterns in terms of connec-
tivity between forest patches (Swart & Lawes 1996), the
daily distance travelled appears to be more influenced by
the time available for foraging (indicated by day length)
in this study (Hill et al. 2003). However, other factors
such as weather (Isbell 1983; Hill 1999), intergroup en-
counters (Yamagiwa & Mwanza 1994), predator avoid-
ance (Willems & Hill 2009; Coleman & Hill 2014b), mat-
ing season dynamics (Erlinge et al. 1990), and sleep site
location (Albert et al. 2011) may also be important. Fur-
thermore, daily path length may not be a reliable mea-
sure when exploring ranging patterns in samango mon-
keys, as their reluctance to traverse open ground (Lawes
1992, 2002; Lawes et al. 2000) may superficially increase
travel paths when going around, rather than through, open
areas.

We also found that as samango monkeys incorpo-
rated more areas of high plant productivity into the rang-
ing area, both the total monthly ranging area and mean
monthly DPL significantly decreased. These areas repre-
sent the most densely vegetated parts of the ranging area
(Huete et al. 2002) which are highest in plant biomass
(Paruelo et al. 1997; Willems et al. 2009). Therefore,
while these areas may include important fruit species
(Nowak et al. 2017; Wimberger et al. 2017), the ability
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Table 1 Coefficient estimates and key statistics of models
predicting effect of availability of leaves, fruit, and seed pods
on total monthly ranging area, core ranging area, and daily path
length

Variable Estimate SE CIlower CIupper t-value P

Ranging area

Intercept 0.291 0.153 −0.024 0.623 (1) (1)

Leaves −0.011 0.011 −0.034 0.012 −1.023 0.329

Fruit −0.005 0.007 −0.020 0.010 −0.673 0.502

Seed pods −0.005 0.008 −0.022 0.012 −0.603 0.554

Day length −0.007 0.013 −0.034 0.019 −0.572 0.568

Days 0.007 0.002 0.002 0.012 2.840 0.006

Group 0.003 0.015 −0.026 0.032 0.183 0.857

Core area

Intercept 0.124 0.051 0.020 0.237 (1) (1)

Leaves −0.007 0.004 −0.015 0.001 −1.758 0.103

Fruit 0.001 0.003 −0.005 0.007 0.336 0.738

Seed pods −0.004 0.003 −0.010 0.003 −1.153 0.271

Day length −0.005 0.004 −0.014 0.003 −1.266 0.213

Days 0.001 0.001 −0.001 0.003 0.815 0.431

Group 0.003 0.006 −0.009 0.014 0.491 0.630

DPL

Intercept −0.365 0.251 −0.861 0.130 (1) (1)

Leaves −0.016 0.023 −0.061 0.029 −0.705 0.483

Fruit −0.023 0.019 −0.061 0.015 −1.217 0.225

Seed pods −0.013 0.021 −0.056 0.029 −0.626 0.535

Day length 0.150 0.020 0.110 0.190 7.464 <0.001

Days 0.007 0.007 −0.007 0.021 1.033 0.321

Group 0.012 0.037 −0.062 0.086 0.316 0.753

Ranging area, total monthly ranging area; core area, monthly
core area; DPL, mean monthly daily path length. (1) not shown
because of having no meaningful interpretation.

of samangos to incorporate a large proportion of leaves
in their diet (Coleman & Hill 2014a; Parker 2019) may
serve to reduce some aspects of ranging patterns by uti-
lizing more areas which are high in plant productivity. The
lack of relationship observed with the monthly core area
is likely a result of the consistency in the spatial and tem-
poral availability and distribution of high plant productiv-
ity areas within the core range, in addition to the location
of important resources such as sufficient sleeping trees
(Kaplin 2001). We also found that the proportion of areas
high in plant productivity and indigenous forest within the
ranging area were positively correlated, indicating that the

Table 2 Coefficient estimates and key statistics of models
predicting effect of mean plant productivity across the ranging
area on total monthly ranging area, core ranging area, and daily
path length

Variable Estimate SE CIlower CIupper t-value P

Ranging area

Intercept 0.387 0.155 0.062 0.719 (1) (1)

Productivity 0.057 0.059 −0.062 0.177 0.958 0.346

Day length −0.018 0.013 −0.047 0.010 −1.346 0.187

Days 0.008 0.002 0.003 0.013 3.410 0.001

Group −0.005 0.013 −0.031 0.021 −0.385 0.701

Core area

Intercept 0.166 (1) 0.054 0.054 (1) (1)

Productivity 0.015 0.406 0.023 −0.031 0.061 0.524

Day length −0.009 3.648 0.005 −0.020 0.000 0.056

Days 0.001 1.128 0.001 −0.001 0.003 0.288

Group −0.001 0.016 0.005 −0.011 0.010 0.900

DPL

Intercept −0.294 0.231 −0.750 0.163 (1) (1)

Productivity −0.085 0.133 −0.351 0.184 −0.636 0.532

Day length 0.148 0.021 0.105 0.190 6.960 <0.001

Days 0.007 0.007 −0.006 0.021 1.125 0.284

Group −0.007 0.034 −0.075 0.061 −0.208 0.836

Ranging area, total monthly ranging area; core area, monthly
core area; DPL, mean monthly daily path length. Productivity,
mean plant productivity (indexed by enhanced vegetation index)
sampled across the total monthly ranging area. (1) not shown
because of having no meaningful interpretation.

most productive areas of the landscape are disproportion-
ately found within this habitat type.

In contrast, neither ground-based food availability
nor remotely sensed plant productivity sampled across
the ranging area influenced samango monkey ranging
patterns, which contradicted our predictions. However,
this is perhaps unsurprising given our previous findings,
in that by utilizing more areas high in plant productivity,
which are disproportionately located within the indige-
nous forest, samangos can reduce aspects of ranging
patterns owing to their dietary flexibility (Coleman &
Hill 2014a; Linden et al. 2015; Wimberger et al. 2017)
(Table S1). By focusing ranging on these areas, samangos
can access sufficient resources either by consuming
indigenous fruits when available, or by increasing con-
sumption of leaves, which are readily available and easily
located (Hemingway & Bynum 2005), when fruit is
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Table 3 Coefficient estimates and key statistics of models
predicting effect of proportion of areas of high plant
productivity within the ranging area on total monthly ranging
area, core ranging area, and daily path length

Variable Estimate SE CIlower CIupper t-value P

Ranging area

Intercept 0.320 0.131 0.044 0.600 (1) (1)

High
productivity

−0.006 0.003 −0.011 −0.001 −2.309 0.029

Day length −0.005 0.011 −0.029 0.018 −0.451 0.652

Days 0.007 0.002 0.002 0.011 2.815 0.006

Group −0.005 0.013 −0.031 0.021 −0.400 0.690

Core area

Intercept 0.151 0.047 0.051 0.256 (1) (1)

High
productivity

−0.001 0.001 −0.003 0.001 −1.086 0.323

Day length −0.007 0.004 −0.016 0.002 −1.636 0.110

Days 0.001 0.001 −0.001 0.003 0.826 0.419

Group −0.001 0.005 −0.011 0.010 −0.121 0.904

DPL

Intercept −0.321 0.219 −0.754 0.112 (1) (1)

High
productivity

−0.013 0.006 −0.024 −0.001 −2.156 0.033

Day length 0.157 0.019 0.119 0.194 8.300 <0.001

Days 0.005 0.007 −0.008 0.019 0.821 0.429

Group −0.005 0.034 −0.071 0.062 −0.135 0.893

Ranging area, total monthly ranging area; core area, monthly
core area; DPL, mean monthly daily path length. High produc-
tivity, proportion of areas of high plant productivity within the
total monthly ranging area. (1) not shown because of having no
meaningful interpretation.

scarce. The ability to utilize a range of resources in these
areas may reduce the need to exploit the habitat matrix
as intensively, thereby masking any influence of food
availability and plant productivity across the ranging
area. Similarly, plant productivity sampled across the
ranging area was also uninformative. This was likely a
consequence of the arboreal nature of samango monkeys,
which are reluctant to disperse over large stretches of
open ground or non-forested habitat (Lawes 1992, 2002;
Lawes et al. 2000), areas which would have influenced
this productivity estimate. Interestingly, Willems et al.
(2009) also found no correlation between NDVI (another
remotely sensed estimate of plant productivity) and either
home range or core home range size in vervet monkeys

Table 4 Coefficient estimates and key statistics of models
predicting effect of proportion of ranging area containing
indigenous forest on total monthly ranging area, core ranging
area, and daily path length

Variable Estimate SE CIlower CIupper t-value P

Ranging area

Intercept 0.564 0.141 0.264 0.854 (1) (1)

Forest use −0.004 0.001 −0.006 −0.002 −4.237 <0.001

Day length −0.004 0.011 −0.027 0.019 −0.357 0.722

Days 0.007 0.002 0.003 0.012 3.413 0.001

Group 0.008 0.013 −0.016 0.034 0.677 0.502

Core area

Intercept 0.248 0.047 0.149 0.344 (1) (1)

Forest use −0.002 0.000 −0.002 −0.001 −4.780 <0.001

Day length −0.004 0.004 −0.012 0.003 −1.178 0.248

Days 0.001 0.001 −0.001 0.002 0.984 0.335

Group 0.005 0.005 −0.004 0.015 1.101 0.277

DPL

Intercept −0.038 0.256 −0.545 0.468 (1) (1)

Forest use −0.004 0.002 −0.009 0.001 −1.618 0.110

Day length 0.149 0.018 0.113 0.186 8.124 <0.001

Days 0.009 0.006 −0.004 0.022 1.369 0.192

Group 0.008 0.035 −0.062 0.077 0.218 0.828

Ranging area, total monthly ranging area; core area, monthly
core area; DPL, mean monthly daily path length. Forest use, pro-
portion of monthly ranging area containing indigenous forest.
(1) not shown because of having no meaningful interpretation.

(Chlorocebus pygerythrus) at the same field site, but
found a negative association with DPL. However, unlike
samangos, vervets are not predominantly forest-dwelling
(Willems et al. 2009) and so daily ranging patterns may
be suitably explained by productivity across the home
range as vervets are more capable of utilizing open habi-
tats which are largely avoided by samangos (Lawes 2002).
Although plant productivity across the ranging area was
uninformative, our findings demonstrate the capacity of
remote sensing to identify areas of the habitat which are
highest in plant productivity, and that these areas appear
much more informative when exploring ranging patterns
in small ranging, forest-dwelling guenons.

Contrary to our predictions, we found that the pro-
portion of indigenous forest within the monthly ranging
area best explained monthly ranging patterns, based on
log likelihood ratio tests and model information crite-
rion. While ground-based estimates of food availability
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Table 5 Candidate model set and model selection results for total ranging area, core ranging area, and daily path length

Ranging variable Model Fixed effects LogLik �LogLik AIC �AICc w

Ranging area 4 Forest use + Day length + Days + Group 133.3 7.8 −250.5 0.0 1.00

3 High productivity+ Day length + Days + Group 127.5 2.0 −238.9 11.6 0.00

1 Productivity + Day length + Days + Group 125.5 0.0 −235.1 15.4 0.00

2 Leaves + Fruit + Seeds + Day length + Days + Group 125.9 0.4 −231.8 18.7 0.00

Core area 4 Forest use + Day length + Days + Group 236.3 9.9 −456.5 0.0 1.00

3 High productivity + Day length + Days + Group 226.7 0.3 −437.4 19.1 0.00

1 Productivity + Day length + Days + Group 226.4 0.0 −436.9 19.6 0.00

2 Leaves + Fruit + Seeds + Day length + Days + Group 227.7 1.3 −435.5 21.0 0.00

Daily path length 3 High productivity + Day length + Days + Group 31.3 1.5 −46.6 0.0 0.24

4 Forest use + Day length + Days + Group 30.3 0.5 −44.6 2.0 0.08

1 Productivity + Day length + Days + Group 29.2 −0.6 −42.4 4.2 0.03

2 Leaves + Fruit + Seeds + Day length + Days + Group 30.1 0.3 −40.3 6.3 0.02

�LogLik, difference in log likelihood compared to the best model; AICc, Akaike information criterion corrected for small sample
size; �AICc, difference in AICc compared to the best model; w, Akaike weight. Ranging area, total monthly ranging area; core area,
monthly core area; DPL, mean monthly daily path length. Forest use, proportion of monthly ranging area containing indigenous
forest; High productivity, proportion of areas of high plant productivity within the total monthly ranging area; Productivity, mean
plant productivity (indexed by enhanced vegetation index) sampled across the total monthly ranging area.

offer greater phenological detail, the dietary flexibility
and reliance of samangos on the indigenous forest ulti-
mately determines the variation in monthly ranging pat-
terns. Conversely, when focusing their range less on these
areas, samangos can exploit alternate resources in the
surrounding matrix habitat. This flexibility may help to
mitigate the effects of habitat loss and fragmentation by
facilitating movement between forest fragments. How-
ever, access to indigenous forest is clearly key to samango
monkey ranging patterns (Nowak et al. 2017). In order
for samango monkeys to persist in an increasingly frag-
mented and human-dominated landscape, proper man-
agement of these forests is essential (Swart & Lawes
1996). Across South Africa, metapopulations are declin-
ing owing to increasing habitat loss and a lack of cor-
ridors connecting suitable habitats (Lawes 2002). This
is particularly relevant for the subpopulations in the
Soutpansberg Mountains which are isolated from neigh-
boring populations (Linden et al. 2016). Management
plans should therefore focus on expanding protected ar-
eas of indigenous forest through reclaiming and restor-
ing non-viable areas (Linden et al. 2016). In addition,
minimizing disturbance in and around large forest patches
(Lawes et al. 2000) and continuing to connect forest
fragments is also crucial in order to facilitate movement
between patches and ensure the long-term viability of
subpopulations (Swart & Lawes 1996).

The results from our study highlight the potential
of using remote sensing to identify areas of the habi-
tat which are particularly high in plant productivity, and
demonstrate the applicability of using this measure to ex-
plore ranging patterns in a small ranging, forest-dwelling
guenon. The ability of samango monkeys to utilize a
range of food items within these areas, which are pre-
dominantly located within the indigenous forest, appears
key to explaining monthly ranging patterns. Therefore, ef-
fective management of these forests is essential in order
to ensure the long-term persistence of the samango mon-
key in an increasingly fragmented and human-dominated
landscape.
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SUPPLEMENTARY MATERIALS

Additional supporting information may be found on-
line in the Supporting Information section at the end of
the article.

Table S1 Monthly range and average time spent feed-
ing (%) on different food items by each samango mon-
key group at Lajuma between 2012 2016. Average val-
ues from Coleman & Hill, 2014 (also collected from Barn
group) also shown to demonstrate values are characteris-
tic of the groups.

Table S2 Coefficient estimates and key statistics of
models predicting effect of mean plant productivity across
the ranging area, with a one and two-month lag, on total
monthly ranging area.
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