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Abstract 

At the 2019 annual meeting of the European Environmental Mutagen and Genomics Society a 

workshop session related to the use of read across concepts in toxicology was held. The goal of 

this session was to provide the audience an overview of general read-across concepts. From 

ECHA’s read across assessment framework, the starting point is chemical similarity. There are 

several approaches and algorithms available for calculating chemical similarity based on 

molecular descriptors, distance/similarity measures and weighting schemata for specific 

endpoints. Therefore, algorithms that adapt  themselves to the data (endpoint/s) and provide a 

good ability to distinguish between structural similar and not similar molecules regarding specific 

endpoints are needed and their use discussed. Toxico-dynamic end points are usually in the 

focus of read across cases. However, without appropriate attention to kinetics and metabolism 

such cases are unlikely to be successful. To further enhance the quality of read across cases 

new approach methods can be very useful. Examples based on a biological approach using 

plasma metabolomics in rats are given. Finally, with the availability of large data sets of structure 

activity relationships, in silico tools have been developed which provide hitherto undiscovered 

information. Automated process is now able to assess the chemical – activity space around the 

molecule target substance and examples are given demonstrating a high predictivity for certain 

endpoints of toxicity. Thus, this session provides not only current state of the art criteria for good 

read across, but also indicates how read-across can be further developed in the near future.   
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Introduction 

 

‘Read-across and grouping’, or ‘read-across’, is one of the most commonly used alternative 

approaches for data gap filling in registrations submitted under the REACH Regulation. Read-

across entails the use of relevant information from analogous substances (the ‘source’ 

information) to predict properties for the ‘target’ substance(s) under consideration. The conditions 

under which ‘Read-across and grouping’ can be used to adapt the standard testing regime are 

listed in Annex XI, 1.5 of the REACH Regulation. It has to be ensured that prediction of a property 

based on read-across is reliable, can be used for risk assessment and/or classification and 

labelling, and complies in general with the provisions in REACH for the substance under 

consideration. Registrants are obligated to consider and, where they can, use appropriate 

alternative approaches to fulfil applicable REACH information requirements concerning vertebrate 

animal studies. If read-across which meets the information requirements is applied, unnecessary 

animal testing may be avoided as there will be no need to carry out one-by-one testing of all their 

substances to fulfil the information requirements (ECHA RAAF (2015). 

Guidance on how to build appropriate read across cases is also given in ECHA’s Read-Across 

Assessment Framework (RAAF). Using this guidance is theoretically not too difficult, however in 

practice, experience has shown that only a few solid cases could be built to significantly reduce 

animal testing for repeated dose studies (systemic toxicity studies with a duration > 4 weeks and 

reproductive toxicity).  

ECHA has attempted to address such issues in a workshop in which new approach methods 

(encompassing classical in vitro alternative methods, in silico approaches and new technologies) 

were evaluated for their practical use in regulatory decision making. 

ECHA’s Topical Scientific Workshop (19-20 April 2016) addressed the use of data and 

information from new approach methodologies (NAMs) to support regulatory decisions for the use 

of chemical substances. An international audience considered three themes representing the use 

of NAMs for read-across (Theme 1), for screening and prioritisation (Theme 2) and for future 

prospects (Theme 3). The main deliberations and conclusions of the workshop are summarised in 

this document.  

NAMs were taken in a broad context to include in silico approaches, in chemico and in vitro 

assays, as well as the inclusion of information from the exposure of chemicals in the context of 

hazard assessment. They also include a variety of new testing tools, such as “high-throughput 

screening” and “high-content methods” e.g. genomics, proteomics, metabolomics; as well as 

some “conventional” methods that aim to improve understanding of toxic effects, either through 

improving toxicokinetic or toxicodynamic knowledge for substances.  

 

Three read-across case studies were presented, including an evaluation of the read-across, and 

the contributions of NAMs to reduce uncertainty, using ECHA’s Read-across assessment 

framework (RAAF). 

  



 

 

NAMs were found to support read-across, especially by providing information on toxicodynamics, 

which increased confidence in mechanistic hypotheses and justification. However, the NAM 

approaches considered in this workshop were found to be less useful to provide evidence on 

toxicokinetics to support a read-across argument. NAMs were also shown to be applied in a 

variety of scenarios for screening and prioritisation with examples from various regions. The 

future prospects for the use of NAMs were outlined through presentations on current and 

anticipated practice. The workshop recognised the usefulness of the NAMs for a number of 

regulatory uses.  

 

Three years later, progress and knowledge about read-across in general and the use of NAMs in 

this context has advanced, but communication has been rather limited. Therefore, a workshop 

was organized by ECETOC (the European Centre for Ecotoxicology and Toxicology of 

Chemicals) – a Brussels based science institute, at the 2019 EEMGS (European Environmental 

Mutagen and Genomics Society) to promote communication and discussion of read across 

concepts to reduce animal testing. 

 

The workshop consisted of 5 presentations and a concluding discussion, as shown below. 

Session III ECETOC Workshop Read across   

Nicholas Ball: Read across – a regulatory perspective based on the RAAF  

Judith Madden: Kinetics and PBPK modelling as a component for read across   

Miriam Mathea: Structural similarities and molecular design  

Saskia Sperber: The use of metabolomics to improve the quality of read across  

Thomas Hartung: Big Data In silico tools for read across  

The essentials of the individual presentations are summarized in the following. 

 

  



 

 

1. Read across – a regulatory perspective based on the read across 

assessment framework (RAAF), with particular emphasis on Mutagenicity  

 

Why use read across for genotoxicity / mutagenicity ? 

Nicholas Ball presented how the assessment of genotoxicity and the potential for mutagenicity 

using a tiered approach to testing, beginning with in silico assessment of potential structural alerts 

for known mechanisms of DNA interaction can be done. It moves through a suite of in vitro 

assays which typically comprise bacterial mutagenicity, mammalian cell clastogenicity and 

mutagenicity, and finally, and if warranted, a broader array of in vivo assays to determine the 

specific genotoxic/mutagenic effects being produced and their potential relevance to humans. 

Beyond this, it may be also necessary to follow up with more extensive testing to further 

characterise the outcome associated with mutagenicity, such as assessing carcinogenicity or 

transgenerational effects on reproduction [1, 2] Consequently, the assessment of genotoxic and 

mutagenic potential can evolve into a complex and resource intensive (including animal use) 

exercise. In addition, no assay is perfect and therefore there is also the possibility that a false 

positive or negative assay triggers an assessment and further testing which is ultimately 

inappropriate. It is therefore important to utilize as much information as possible as part of a 

weight of evidence when determining how to characterize this endpoint and focus effort on those 

substances where it is most appropriate. 

One way to achieve this is to group structurally similar substances together and utilize read-

across of data from one or more members of the group to the others. This provides an 

opportunity to make the most out of the data you have access to and potentially limits the need 

for testing to only a subset of group members. It also offers a way to interrogate positive and 

negative results in the context of the broader group of substances to assess whether the results 

of an assay are reliable or perform a more in-depth mechanism of action assessment without 

generating data on every substance. As such the use of read-across can play an important role in 

the assessment of a substance’s genotoxicity and mutagenicity. 

One of the key criteria when forming a category of substances is the members should be 

structurally similar. As such, the use of read-across within categories of substances is well suited 

to assess mutagenicity due to the strong link between chemical structure and ability to interact 

with DNA. The close association between chemical structure (presence or absence of ‘active 

functional groups) and the ability to interact with DNA is also why the prediction of genotoxicity 

using QSAR tools is so well developed versus other endpoints with a more complex mechanism 

of action where chemical structure is less clearly associated with the final adverse outcome.   

 

Use of read across to assess mutagenicity in a Regulatory context – the EU REACH regulation 

 

Read-across of hazard data between structurally similar analogues and within categories plays a 

critical role within the EU REACH regulation as it offers a way to identify potential hazards of the 

substance subject to this regulation while reducing the need for generating new studies on every 

substance. However, due to the importance of performing a reliable and robust hazard 

assessment to demonstrate a chemical substance can be used safely, the use of read-across 

must be supported with a robust scientific justification. In the absence of such a justification there 

is too much uncertainty associated with the hazard characterization. 



 

 

A substantial amount of guidance and published papers are available on the subject of read-

across to guide a practitioner through the process of grouping substances and formulating a 

robust justification [3, 4, 5, 6, 7] and on the side of the regulatory agency (the European 

Chemicals Agency), a guide for assessors has been developed, the Read-across Assessment 

Framework (RAAF) [8]. This guide was developed to support the assessment of read-across 

justifications, promoting a consistent approach and resulting in a transparent judgement on their 

adequacy and acceptability. In situations where the read-across justification is deemed to be 

insufficient, it also provides a clear basis for whether and how it can be improved.  

At a high level, the RAAF is set up to take an assessor through a read-across justification such 

that the critical elements are assessed and given a score, allowing the assessor to conclude 

whether the overall justification is OK and, if not, what are the aspects of the justification which 

are insufficient or scientifically invalid. To accomplish this, the RAAF puts read-across 

justifications into six different scenarios depending on whether a category or analogue approach 

is used, what is the main rationale/hypothesis underpinning the read-across justification and is 

the prediction for a similar versus difference potency. For example, read-across within a category 

of structurally similar but different compounds having the same kind of effect and with a similar 

potency. Within each scenario several assessment elements (AEs) have been defined. These 

AEs represent critical aspects of a read-across justification that must be addressed and 

supporting information provided. For each AE a series of questions have been defined to prompt 

the assessor to look whether the necessary supporting information has been provided, or whether 

a concern has been addressed. For example, where metabolism is an important aspect of the 

read-across justification, one of the AEs guides the assessor through the determination of 

whether information on metabolism has been provided and is sufficient. These AEs are scored by 

the assessor with a score of 1-5; a score of 1 or 2 is given where assessor considers the 

information provided to be invalid or insufficient. A score of 3-5 indicates the information provided 

is accepted but with varying degrees of confidence/certainty – 5 indicating that the AE is accepted 

with low uncertainty. The culmination of the assessment is a series of scores for each AE and if 

any of these is 1 or 2 then the read-across justification is rejected. The AEs where scores of 1 or 

2 are given form the basis of feedback to the registrant on whether their approach is considered 

scientifically valid and whether it is deemed possible to improve the justification by providing more 

information.  

One critical aspect of the use of read-across within the context of REACH is that a read-across 

justification should be specific to each endpoint where read-across is used. For example, if read-

across is used to address genotoxicity, repeated dose toxicity, environmental fate, etc. then for 

each endpoint there should be a specific justification provided to justify the use of read-across. 

These endpoint specific justifications can have common elements, but it should be specifically 

stated how structural similarities between analogues or category members allows the prediction 

of the specific endpoint in question. This has not always been clearly understood in the past and 

led to situations where read-across was accepted for one endpoint but not another [9].  

The RAAF was originally intended to be a guide for the European Chemical Agency (ECHA) to 

use as part of dossier evaluations, however it is also a useful resource for practitioners preparing 

read-across justifications [10]. By identifying the most appropriate read-across scenario, the 

relevant AEs can be identified, and a practitioner can then ensure enough information is available 

to support them. Several published case studies are available where this approach has been 

employed along with attempts to characterize uncertainty associated with the use of read-across 

[11, 12, 13]. While making use of the RAAF to prepare a read-across justification should result in it 

being more robust, it does not guarantee acceptance of the approach by ECHA. There is still 



 

 

room for expert judgement with respect to the interpretation of information provided and the 

uncertainty associated with the approach. 

 

 

 

 

2. Kinetics and PBPK modelling as a component for read across  

The need for ADME/TK data in read-across 

Read-across, the process by which information from known (source) chemical(s) is used to infer 

the activity of unknown (target) chemical(s), is important for chemical safety assessment across 

multiple industrial sectors (food, drugs, pesticides, household products, cosmetics etc.) as it 

provides a means to reduce animal testing, supporting the 3Rs philosophy as presented by Judith 

Madden and Alicia Paini. Whether it is to be used for internal decision-making, research and 

development or in regulatory submissions, determines the extent of justification required or level 

of uncertainty that is acceptable for the prediction, with regulatory applications being the most 

demanding. 

In predicting true potential to elicit a biological response it is not only the intrinsic activity of the 

chemical that is relevant, but also its ability to reach the site of action in sufficient concentration  

i.e. the internal exposure of the chemical needs to be characterised. Hence, full justification of a 

read-across prediction requires consideration of the absorption, distribution, metabolism and 

elimination (ADME) properties of source and target chemicals, and ideally their time-dependent 

(toxicokinetic (TK)) profile.  In order to assist read-across practioners to provide adequately 

justified predictions, guidance has been published on how these should be reported and 

documented, including how to incorporate relevant ADME/TK information. The Read-Across 

Assessment Framework from ECHA [2] defines a specific scenario for read-across, on the basis 

of conversion to a common metabolite. The OECD guidance on grouping of chemicals stipulates 

credibility of read-across is enhanced where similarity in ADME can be demonstrated and 

proposes that kinetic data may be used to demonstrate that source and target chemicals are 

dealt with by the body in a similar (or predictable) manner [26]. The document also provides an 

example data matrix for organising information used in the prediction. Similarly, the strategy for 

structuring and reporting a read-across prediction published by Schultz et al. provides template 

tables for inclusion of ADME data that may support a read across prediction [24]. 

In building a category, or identifying individual analogues for read-across, chemicals must be 

selected based on appropriate similarity metrics, with any dissimilarities identified. Whilst the 

argument centers on the similarity driving the read-across prediction, any dissimilarities that may 

moderate, or obviate, activity must be considered. It is a truism that no chemical can be 

absolutely similar to another – only similar with respect to a given property. Therefore, there are 

many properties that may be used to compare chemicals: structural similarity, biological similarity, 

physico-chemical properties, mechanism of action, metabolite formation etc. To have confidence 

in the read-across prediction, it is essential either to select only those analogues that have similar 

(or predictably differing) ADME/TK properties, or to moderate the prediction with any known or 

predicted ADME/TK data (for the source or target chemicals). Differences in testing scenario may 



 

 

require additional modifications e.g. extrapolation between different dose levels (low to high dose; 

single to multiple dose) exposure routes (oral, dermal or inhalational) and inter-species 

differences. Increasingly, there is interest in predicting intra-species differences as, for example, 

the response seen in a healthy adult may be significantly different to that seen in a neonate or 

aging person/animal (vide infra). Identifying the most sensitive individuals in a population is also 

important, as chemical safety assessment must establish safe levels for normal, population-wide, 

use.  

 

Sources of ADME/TK data 

Knowledge of ADME/TK parameters for source and target, notably extent of tissue or plasma 

protein binding, metabolic profile or elimination rate/half-life, is key to a well-justified read-across 

argument. With advances in experimental methods to generate data and an expansion in 

resources for storage (often in the public domain) there is an ever-growing knowledgebase for 

ADME/TK data. General collations such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) with 

extensive data on 96 million compounds or ChemSpider (http://www.chemspider.com/) with data 

on 74 million compounds now provide vast amounts of information, rapidly searchable for target 

chemicals or potential source chemicals, identified using integral routines to identify structurally 

similar chemicals. Another major resource is the Computational Chemistry Dashboard 

(https://comptox.epa.gov/dashboard) that contains extensive in vitro assay data for 875, 000 

compounds (at time of writing). With respect to collating ADME data specifically, Przybylak et al 

(2018) [22] compiled 140 ADME-related datasets. To assist with predicting values, Patel et al 

(2018) [19] reviewed over 80 published quantitative structure-activity relationship (QSAR) models 

for ADME-related properties. A subsequent paper by Madden et al (2019) [17] includes over 200 

resources for obtaining or predicting ADME/TK properties. A more comprehensive review of over 

950 in silico toxicology data resources to support read-across and (Q)SAR has been published by 

Pawar et al (2019) [20]. Metabolism data is arguably one of the most important factors to consider 

and there are multiple packages available to predict metabolites e.g. Meteor Nexus (Lhasa 

limited) and the OECD QSAR Toolbox (https://qsartoolbox.org) which has modules for predicting 

and/or retrieving metabolites in skin or liver, in rat or human. Toxtree 

(http://toxtree.sourceforge.net/) also possesses a module to predict potential sites of CYP 450 

metabolism and putative metabolites. Although several packages exist to predict possible 

metabolites, a shortfall of these is their inability to predict the rate and extent of production of 

individual metabolites. If a read–across argument is based on metabolic similarity, generally this 

will be reliant upon inclusion of experimental data.  

 

Examples of incorporating ADME/TK data in read-across 

Case studies are useful to demonstrate the utility of new methods in resolving contemporary 

problems. In order for read-across to become a more accepted methodology, particularly with 

respect to regulatory submissions, example case studies are being developed and reviewed at 

the OECD level. One example of a read-across case study incorporating TK data is for sub-

chronic repeated-dose toxicity of simple aryl alcohol alkyl carboxylic esters [27]. In this example 

three subcategories of aryl alkanoates were investigated: benzyl alkanoates, 2-phenylethyl 

alkanoates and 3-phenyl propyl alkanoates. The read-across argumentation for the category 



 

 

members (for chain lengths in the category from C2-C12) was that the ADME processes were 

well characterised i.e. that the alkanoates were metabolised to the corresponding alcohol which 

drives the toxicity (non-specific interactions with cell membranes; non-polar narcosis) and to 

carboxylic acids with little local and no systemic toxicity. The argument for read-across between 

the esters and the common metabolites, based on both toxicodynamic (TD) and toxicokinetic (TK) 

similarity, was supported with in silico, in vitro and in vivo metabolic data with the available in vivo 

data reducing uncertainty. An OECD report (OECD, 2018b), reviewing this and other case 

studies, concluded that using additional elements for the read-across i.e. going beyond 

structurally similarity and including TK and other data types strengthened the hypothesis. One 

caveat reported, however, was concern over the quality of the experimental data. This is an 

important issue for all read-across cases where a limited amount of in vivo data may have 

significant weighting on the overall argument. The report [28] proposed three areas for further 

development. These related to guidance on generating further in vitro data to support the 

argument; guidance for evaluating data reliability (for both TK and TD data); and guidance on 

addressing uncertainty. This third recommendation was the subject of a subsequent paper by 

Schultz et al (2019) [25]  in which six case studies for repeated-dose toxicity were reviewed to 

identify, evaluate and assess the nature of uncertainty associated with the read-across 

arguments contained therein. From this analysis a series of 30 questions were proposed to help 

address the different types of uncertainty identified. The authors concluded that “similarity in 

toxicokinetics, especially in ADME properties, is seen as crucial in assessing uncertainty. 

Metabolism is often seen as the most contentious of the toxicokinetic similarity justification”. Two 

of the 30 questions addressed this issue specifically: (i) Is there sufficient ADME information 

provided to establish toxicokinetic similarity for the derivatives used in the read-across? (ii) Are 

any dissimilarities in ADME properties (and, as appropriate, metabolism / degradation) 

toxicologically relevant? 

Other initiatives, aimed at increasing awareness of the role of toxicokinetic information in read-

across, include the European Partnership for Alternative Approaches to Animal Testing (EPAA) 

Partners' Forum on Toxicokinetics and Read-Across. Lack of TK data was identified as an 

impediment to read-across and the authors proposed generating such data using in vitro and in 

silico tools. The report summarised the strategies for inclusion of TK data that are being 

employed by research organisations and industries internationally with specific examples of 

working practices being reported by European Commission Joint Research Centre (JRC), OECD 

and representatives from the cosmetics, fragrance, agrochemical, chemical sectors as well 

organisations representing the food and pharmaceutical industries. Overall recommendations 

from the forum included collating available tools for TK, providing guidance on the TK parameters 

necessary to support read-across and further use of case studies. It was recognised that 

physiologically-based kinetic (PBK) modelling was used more in some areas than others. In 

response to this report, the paper of Madden et al (2019) [17] provides an extensive list of tools 

that are available to predict TK properties and that may be used to support development and 

evaluation of PBK models. 

 

Using data from physiologically-based kinetic (PBK) models in read-across 

In a physiologically-based kinetic model, the body is divided into a series of compartments 

connected by blood flow. Effectively these models require a series of differential equations to be 

solved for individual organs relating to the concentrations entering and leaving each organ over 



 

 

time, taking into consideration factors such as organ volume, blood flow and the potential for 

excretion, metabolism and storage. The models can be adapted to different individuals within a 

population enabling physiological and anatomical differences to be taken into account. For 

example, metabolic difference are often responsible for observed differences in activity within a 

population as metabolic capacity in neonates, or those suffering age-related liver degeneration, 

are different to healthy adults. Other factors such as differences in gastro-intestinal transit, 

secretory processes, membrane permeability, plasma protein binding, total body water, 

glomerular filtration, renal tubular secretion/reabsorption also lead to age-related differences in 

the population [14]. In addition to the anatomical and physiological information, chemical specific 

information (e.g. physico-chemical properties) are also included, these are adapted for different 

chemicals. PBK models enable more accurate derivation of the concentration of a chemical within 

individual tissues over time for different members of the population. The models can be readily 

adapted for different species, routes of exposure and different dosing scenarios. Whilst 

incorporation of general TK parameters are important for supporting read-across, using data from 

PBK models provides a more holistic view of the internal exposure and hence potential effect, 

enabling effects to be correlated with dose at the target site rather than an association with an 

arbitrary external dose.  

One drawback of the models is that they are highly data hungry, requiring optimisation of multiple 

factors in order to accurately reproduce concentrations within blood or other tissues. Leveraging 

information from existing models to make predictions for new chemicals would therefore be 

beneficial. Lu et al (2016) [16] developed a Knowledgebase of existing PBK models for 307 

unique chemicals, suggesting these could provide templates from which PBK models for new 

chemicals could be derived. The information on time-concentration comparisons between target 

and source chemicals could be used to support a read-across hypothesis. As for all read-across 

argumentation, the selection of the most similar analogue(s) to use as a template is critical to the 

case. In the analysis of Lu et al physico-chemical properties were used to identify the most similar 

chemicals. However, it has been demonstrated, that using different similarity metrics will result in 

different chemicals being selected as “most similar”. As a proof-of-principle, five chemicals were 

investigated here. One chemical was selected at random from each of three databases 

representing drugs (www.drugbank.ca), cosmetic-related ingredients (https://cosmbosdb.eu) and 

food additives (http://foodb.ca) in addition to the two case study chemicals investigated by Lu et 

al. The five chemicals were: indinavir (drug); ethylparaben (anti-fungal preservative); allyl 

heptanoate (fruit flavoring);  ethylbenzene and gefitinib - the case study chemicals from Lu et al. 

Nine similarity metrics (Morgan, feat Morgan, Torsion, Avalon, Layered, AtomPair, RDKit, 

MACCS and Pattern) from RDKit were used to find the most similar chemicals to these five target 

chemicals (considering only those chemicals for which an existing PBK model is available in the 

Lu et al Knowledgebase) [16].   

As anticipated the use of different similarity metrics resulted in different chemicals being selected 

as most similar. Interestingly the chemical selected by Lu et al as being most similar to gefitinib, 

according to physico-chemical properties, never appeared in the top three most similar according 

to the nine RDKit similarity metrics. Typically, the same chemicals were identified as being most 

similar by three or four of the nine metrics, whereas the other metrics selected different 

chemicals. This is important as it demonstrates a fundamental issue in read-across i.e. the use of 

different similarity metrics to identify “similar” analogue(s) for read-across will result in different 

analogue(s) being selected. Hence, expert judgement and additional justification are required to 

ensure the most appropriate analogue(s) are chosen. This issue has already been widely 

reported [18] and different criteria for analogue selection have previously been proposed [29]. At 



 

 

the OECD level, in an international effort to promote the regulatory use of PBK models based on 

non-animal data [23] studies have been undertaken to evaluate PBK model predictions, where 

data from appropriate analogues have been used to assist model development. In effect, an 

existing PBK model is used to provide a PBK model template that can then be adapted using 

(physico-chemical) information for an alternative chemical of interest. The aim is to develop a 

strategy to assist chemical safety assessment where in vivo data are lacking; this work is on-

going.  

Future work on analogue selection will need to consider the most appropriate similarity metrics to 

use, these may include measures of chemical similarity, biological similarity or a combination of 

the two. Novel similarity metrics are discussed further below.   

  



 

 

3. Structural similarities and molecular design  

 

 

Background 

Read-across (RA) is a technique for inferring endpoint information for one substance (target 

substance), by using data from the same endpoint from another substance or substances, 

(source substance), that has similar properties than the target substance. “Endpoints” can have 

different meanings depending on the context. In the context of the REACH information 

requirements, endpoints are described either as a property itself (e.g. skin irritation, long-term 

toxicity to sediment organisms) and/or as a type of study (e.g. carcinogenicity study, fish early life 

stage test) [14]. A key assumption is that molecules with high structural similarity produce similar 

toxic effects [15] and under REACH, any read-across approach must be based on structural 

similarity between the source and target substances [14]. 

 

Introduction 

Computational methods as presented by Miriam Mathea and Andrew David Palmer provide 

chemical similarity measures are important for several fields of computational toxicology, because 

they can be used to predict the molecular properties of structurally close compounds. One very 

important application of chemical similarity measurements is the read-across approach [32]. 

Recent large benchmarking studies, such as the Tox21 challenge from the NIH, have made 

computer-readable assay data for ~10K compounds available and quantified a signification 

improvement in the quality of predictive models [20]. Almost all computational approaches require 

a step where a molecule is translated from a chemical structure into a linear digital 

representation, called a molecular fingerprint, which contains the information used to build a 

model. Therefore, any model with a high predictive value must be based on a fingerprint which 

captures the toxicological information. Structural similarity measures evaluate how alike pairs of 

molecules are based on their fingerprints. These similarity measures are important for 

computational toxicology, because they can be used to calculate which compounds are 

‘structurally close’ and therefore likely to share toxicological properties, which is the essence of 

the read-across approach [61]. 

 

There are several approaches and algorithms available for calculating chemical similarity 

[16],[17]. They can be divided in different combinations of available molecular descriptors, 

distance/similarity measures and weighting schemata for specific endpoints [61] but it is not 

obvious which measures of structural similarity correlate with toxicological similarity. Hence, it is 

not straightforward for the user to select a method for his specific endpoint/s. It would be 

advantageous to have a molecular fingerprint that “adapts itself” to the data (endpoint/s) and 

provides good ability to distinguish between toxicological similar and not similar molecules. 

 



 

 

In this study we will benchmark a Neural Representation method [19] with state of the art 2D 

fingerprints and physicochemical descriptors regarding their applicability for read across [17],[18].  

 

In general a molecular fingerprint consists of a fixed length bit string in which the presence or 

absence of an attribute (i.e. substructure) is encoded by a hashing algorithm. In comparison to 

the applied physicochemical descriptor which is based on a combination of 117 physicochemical 

properties (Rdkit) [22]. We compare these two chemical descriptors with a Neural 

Representation, that learns the molecular representation, regarding their ability to identify relevant 

similar compounds for a given dataset. We use a k-nearest neighbor classification method to 

evaluate the discriminative power of the different descriptors. This method searches the closest 

molecules to the target molecules in the dataset and then compares their major vote over the 

label of the endpoints with the label of the target compound. In this example label of endpoint 

means “active” or “inactive” on a specific endpoint/target. 

 

Dataset and Method 

 

The dataset we used in this study was provided by the U.S. department of Health and Human 

services within the Tox21 challenge [20]. It includes the assay measurements for 12 different 

endpoints. In order to compare different techniques a training and a test set was provided to the 

participants. See [20] for details. 

 

Physicochemical properties of the molecules were calculated with the 117 descriptors of RDKit 

[22], an open-source cheminformatics tool. These define type and number of atoms, bonds and 

rings present in the molecule, polarity and solubility, among other molecular properties. The 

topology of molecules was described by 1024 bit Morgan Fingerprints (ECFP) [23], 2D 

fingerprints encoding circular atom neighborhood in a hashed bit string. Thus, each bit of the 

fingerprint represents the presence or absence of a substructure.  

 

Furthermore, a graph based neural networks were employed to define a learned molecular 

representation. This is constructed by operating on the graph structure of the molecule, i.e. it is 

an own feature representation learned directly from the data. The model we used has two 

distinctive features. The first one is it operates over a hybrid representation that combines 

convolutions and molecular descriptors. This design offers it flexibility in learning an endpoint 

specific encoding, while providing a strong prior with the help of fixed descriptors. The second 

one is it learns to construct molecular encodings by using convolutions centered on bonds 

instead of atoms [19]. 

 



 

 

In order to evaluate the performance of these three different molecular descriptor types, the k-

nearest neighbor classification was used. The parameter k defines the number of neighbors the 

algorithm should select und was varied from 1 to 50 and Euclidean distance was used to 

measure the distance between pairs of molecular descriptors. For each molecule in the test set: 

the k nearest neighbors from the training set partition were obtained and either the major vote, 

weighted average or maximum over the neighbors’ labels was computed.  

To compare the different descriptor types the accuracy (correct classification rate), sensitivity 

(true positive rate) and specificity (true negative rate) were computed. The correct classification 

rate is the percentage of molecules which class label was correctly assigned to (“active” or 

“inactive”). The true positive rate describes in this example the number of active molecules that 

were correctly classified as active molecules and the true negative rate vice versa. Additionally, 

analysis using 2D Uniform Manifold Approximation and Projection (UMAP)[62] was performed 

and colored by the measured activity in the assay. Plotting the UMAP embedding is designed to 

provide a good visual overview how well the molecular descriptor might be able to distinguish 

between the labels as well as the coverage of the chemical space (Figure 1). 

 

Results and Discussion 

 

In principal, molecular similar molecules should cluster together when applying a principal 

component analysis based on a descriptor. But the quality of the clustering differs dependent on 

the type and the accuracy of the molecular descriptor encoding the molecules. Hence, the more 

detailed the molecular representation is the better the separation of the molecules when plotting 

the first two principal components. Following the principal of read-across that molecular similar 

molecules should lead to similar toxic effects, the best molecular descriptor should be the one 

that best clusters molecules together that have the same toxic effect, so in this case are active or 

inactive on a specific target. The analysis will be shown exemplarily for the estrogen nuclear 

receptor alpha [homo sapiens]. The results are shown in Figure 1. The graphic on the left-hand 

side represents the first two principal components based on the Morgan Fingerprint. The violet 

dots are the molecules that are active on the estrogen receptor and the red dots the molecules 

that are inactive. The graphic on the right-hand side shows the first two principal components 

based on the graph convolutional fingerprints. The active molecules in the plot of the graph 

convolutional fingerprints cluster closer together than in the plot of the Morgan fingerprint. Hence 

the graph convolutional fingerprint can better distinguish between the active and inactive 

molecules.  

 

Figure 1 near here 

 

 



 

 

Since the UMAP analysis only gives a visual impression of the performance of the molecular 

descriptors, the k-nearest neighbor analysis was applied to get more detailed insights about their 

characteristics.  

 

We simulate a read-across situation for estrogen nuclear receptor activity using k-nearest 

neighbors analysis, where we infer the class of a test molecule based on the activity of similar 

molecules (where similarity depends on both the molecular representation and the distance 

measure). As we know the true class of the test molecules we can evaluate the most appropriate 

performance of all combinations. By varying the number of neighbors (k) we increase the number 

of molecules that must be considered for evaluation. The Tox21 dataset of biological activity 

contains far more inactive compounds than actives, and so in an imbalanced dataset. Hence 

specificity is important, as the statistical likelihood of picking an inactive compound is high. We 

can see from Figure 2 that for the weighted distance measure (see Figure 3 for all combinations) 

that the neural fingerprint consistently equals or outperforms the other two descriptors in terms of 

accuracy, sensitivity and specificity, regardless of how many neighbors are considered for 

analysis.  

 

 

 

 

Figure 2 near here 

 

 

 

Figure 3 near here 

 

 

 

Conclusion 

 

Defining molecular similarity in a toxicological context remains a challenging task and this pilot 

study illustrates that choice of fingerprinting approach is a critical aspect. The most appropriate 



 

 

molecular descriptor should capture sub-structural element that enable differentiation between 

active and inactive compounds. Our analysis shows that describing the latent molecular space 

using Neural Representations increases the read-across success rate. We attribute this to the 

fingerprints being learned from the underlying dataset and so producing an endpoint specific 

dense representation. Hence, they are customized for the specific read-across questions and can 

better distinguish between the active and inactive molecules. The trade-off is that the toxicological 

fingerprint is dependent on both the molecular and toxicological spaces whereas 2D fingerprints 

and physicochemical descriptors are dataset independent. As the read-across exercise takes 

place in the context of molecules with known toxicological properties it should be possible though 

collaborative efforts to establish a broad toxicological space which can be expanded as needed.  

 

  



 

 

4. The use of metabolomics to improve the quality of read across  
 

Read-across, as described in the ECHA read-across assessment framework (RAAF), is based on 

structural similarity of the target and source substance. Structural similarity does not necessarily 

lead to similar toxicological effects. A prominent example indicating differential toxicological effects 

despite high structural similarity, are 2-Acetylaminofluorene (2-AAF) and 4-Acetylaminofluorene (4-

AAF). 2-AAF is a strong liver enzyme inducer thereby inducing tumor formation in the liver, whereas 

4-AFF is only a mild liver enzyme inducer and non-carcinogenic (Table 1) (ToxNet 2-AAF, ToxNet 

4-AAF; https://toxnet.nlm.nih.gov/). 

 

Table 1 near here 

 

Since already small changes in the structure of a molecule can lead to differential biological effects, 

an inherited insecurity is present for every read-across approach. Therefore, every read-across 

submitted to ECHA needs to be supported by further data proving that also on a biological level the 

substances behave similarly. Nevertheless, most applicant fail to provide this kind of supportive 

data in a sufficient manner leading to a high dismissal rate of submitted read-across cases [42].  

Saskia Sperber introduced Metabolomics as a data-rich ‘omics-technology, describing analogous 

to other ‘omics-technologies, such as transcriptomics or proteomics, the analysis of the complete 

set of small-molecule metabolites (metabolome) that specific cellular processes leave behind within 

a biological sample [39]. The metabolome has the advantage that it is placed downstream of the 

transcriptome and proteome, integrating the regulatory steps of upstream levels of organization, 

thereby reflecting the actual phenotype better than other ‘omics techniques [40]. Furthermore, the 

metabolites can be analyzed in a relatively non-invasive manner in different body fluids, such as, 

urine or blood, giving information about numerous organs at the same time as well as enabling 

time-resolved analysis in the same animal to confirm toxicological manifestation or adaption 

processes on a single animal basis [41]. Metabolomics, due to the above-mentioned reasons, is a 

suitable technique to add valuable biological data as supporting information for structure based 

read-across approaches. 

BASF SE has already started in 2004 to build up a database, called MetaMap® Tox, with metabolic 

profiles resulting from highly standardized 28-day toxicity studies with now more than 1000 

chemicals, agrochemicals and pharmaceuticals. The study protocol has been described by van 

Ravenzwaay et al. and is most similar to an OECD 407 guideline study to enable integration of the 

procedure into these without need for further animal testing [42]. Thereby, the evaluation process 

for a new test compound is conducted in a three step process: 1) The biochemical analysis of the 

changed metabolites 2) A comparison of the metabolic profile of interest with all other available 

metabolite profiles available in the database (Profile comparison) and 3) a comparison with end-

point specific metabolite patterns created from well characterized reference compounds, as 

described in detail by Sperber et al. [43]. With the obtained data from this analysis target organs 

and toxicological modes of action can be predicted. However, the biggest advantage of the 

MetaMap®Tox database for read-across are the more than 1000 metabolic profiles for different 

treatments available in the database and the direct comparison between these. This algorithm 

enables us to identify the most similar treatment in the database regarding their effects on the 

plasma metabolome. 

https://toxnet.nlm.nih.gov/


 

 

As a proof-of-concept study van Ravenzwaay et al. published a hypothetical read-across scenario 

with phenoxy herbicides in 2016 [44]. In this case study Mecoprop (MCPP) was pretended to be 

the target substance with missing data for a 90-day study (OECD 408 guideline study), whereas 

these data were available for Dichlorprop (2,4-DP) and MCPA, the designated source substances. 

For all three treatments toxicological data from a 28-day study (OECD 407 guideline study) as well 

as metabolome data was available. Van Ravenzwaay et al. showed that all three treatments 

induced very similar metabolic changes and could correctly identify the liver by peroxisome 

proliferation and the kidney by inhibition of the organic anion transporter (OAT1) as the target 

organs. Nevertheless, the above described profile comparison, a principal component analysis 

(PCA) as well as a direct comparison of the individual metabolite changes all confirmed 2,4-DP to 

be the best source substance for a read-across approach, which was well confirmed by the actual 

findings of the 90-day study for MCPP. 

In 2019 Sperber et al. published a follow up study with 2-aminoethanol (MEA) (source substance) 

and 3-aminopropanol (3AP) (target substance) delivering all relevant data for a real read-across 

approach as it could be submitted under REACh [43]. It could be shown, that 2-aminoethanol, from 

all available treatments in MetaMap® Tox is the most similar one and that other structurally similar 

chemicals, such as Diethanolamine and Triethanolamine, induced significantly different effects in 

the metabolome of treated rats. Interestingly Sperber et al. also took into account the quantitative 

aspect and could show that even though the induced effects were overall similar at comparable 

dose levels stronger effects were observed for the source substance. 

Metabolomics can thereby also help to proof our hypothesis on which source substance might be 

the most suitable for a respective target substance. Based on structural similarity, BASF Substance 

2 was hypothesized to represent the best read-across option for the target substance BASF 

Substance 1. However, the available metabolome data told a different story and only minimal 

commonly induced metabolite changes could be detected for both treatments (Figure 4). BASF 

Substance 3 and 4, which also share a highly similar chemical structure with BASF Substance 1 

were found in the highest ranks of the profile comparison sharing a large fraction of commonly 

changed metabolites. These findings show metabolomics to be able to confirm biological similarity 

of different treatments and how it can be used to support decision making on the best source 

substance for a potential read-across. 

 

Figure 4 near here 

As well as indicating biological similarity of different treatments, metabolomics can also be used to 

identify differences between toxicological modes of action as shown by Langsch et al. [8]. An in 

vitro study by Campioli et al. suggested Hexamoll® DINCH, an important non-phthalate plasticizer, 

to lead to similar perturbances in fat storing as Diethylhexylphthalate (DEHP) ultimately causing 

obesity [46]. Langsch et al. combined classical in vivo toxicity studies with in vivo metabolome data 

to disprove this hypothesis. Metabolomics could clearly show Hexamoll® DINCH to induce 

significantly different metabolic changes compared to DEHP, clustering even close to control 

animals. 

Overall, metabolomics was shown to be a valuable tool to add supportive biological information to 

structure-based read-across approaches, especially in the context of BASF’s MetaMap® Tox 

database including metabolite profiles for more than 1000 different treatments. Biological 

comparison of treatment effects can thereby significantly reduce the inherited insecurity of 

structure-based read-across approaches. 



 

 

 

 
5. Big Data In silico tools for read across 

 

Read-across, i.e. the inference of toxicological properties from similar chemicals, has become a 

key data-gap-filling approach over the last two decades, especially in the context of the European 

REACH legislation. In contrast, in silico and in vitro approaches have not been used to a large 

extent. Originally, read-across was a pragmatic, manual process, which depended strongly on the 

expert involved varying strongly in data, which happened to be available, and in execution and 

documentation. Not astonishingly, the acceptance rates in the REACH context were rather low [5] 

Thomas Hartung and colleaguesof the Center for Alternatives to Animal Testing (CAAT) at Johns 

Hopkins University, became active in this field in 2013, starting with assembling an expert group 

from industry, regulators and academia. A white paper [4] was elaborated to map needs and 

opportunities in the area. It became clear that a key problem was that guidance how to do read-

across properly was missing and expertise was with few individuals. Many of these were recruited 

for a taskforce to develop to develop Good Read-Across Practice (GRAP) [5]. This guidance was 

presented and endorsed in two stakeholder fora in Brussels and Washington with more than 400 

participants. GRAS complements ECHA’s RAAF, published in September 2015.  It became clear 

that an enormous potential lies to go beyond chemical structural similarity and include also 

biological similarity. However, consensus was reached that no general guidance could be 

developed for biological read-across. An accompanying document [60] was therefore created to 

illustrate with promising examples, how biological read-across could be set into practice. 

The process identified as a main hurdle for high-quality the availability and accessibility of data on 

similar chemicals. Only few large companies can rely on sufficient in-house data. Most data on 

chemicals in the past have been proprietary and those publicly available are biased toward 

pharmaceuticals, few intensively studied ones with interesting (complex) mechanisms of action 

and especially toxic substances. We rarely see publications that a substance has no effect, also 

given the impossibility to exclude action (“absence of evidence, is no evidence of absence”). The 

very legislation, REACH, which fueled the interest and use of read-across also included as a first 

world-wide that registration comes with making at least summary data on the safety assessments 

publicly available. However, at the time, the respective dashboard of the European Chemical 

Agency (ECHA) provided these as little structured, not machine-readable information, accessible 

only one chemical at the time in a manual process. The download of these data was explicitly 

prohibited. We felt that this treasure trove of chemical safety data needs to be available for 

computational toxicology and read-across. We downloaded the public data in December 2014 in 

a way that data flow on the website was not impaired. Using natural language processing, data 

from 800,000 toxicological studies on almost 10,000 chemicals were obtained in a machine-

readable database [51] The European Commission and ECHA were informed about the 

upcoming publication of four publications analyzing these data [51]. This resulted initially in some 

irritation by ECHA [47], which resulted in their request not to publish the database as originally 

intended. We complied and the papers were published without the database. In a number of high-

profile press coverages, the value of the database was praised, e.g. see Rabesandratana (2016) 

[56]. 

 

In a meeting two months later at ECHA, common ground was found. We agreed that availability 

of such data is in the best interest of chemical safety sciences and animal welfare. However, 



 

 

following ECHA’s concerns, we have not published the database ourselves but make it available 

to interested parties in “collaborations”. A planned joint press activity around ECHA making the 

data officially available through us faltered as University legal counsel was not willing to accept 

liability for this indemnifying ECHA. ECHA did publish therefore about a year later a database on 

an enlarged number of 15,000 chemicals, though redacted with respect to some information on 

the website. Most importantly, ECHA clarified separately that these data can be used in 

aggregate manner to generate information for registration purposes: Chemical Watch 5 July 2017 

- “ECHA gives clarity on IP issues for QSAR predictions … A registrant would need permission to 

use protected data to read-across from a single substance to the target substance, … But they 

would not need this to make a Qsar prediction.”   

This opened up for the development of predictive tools using these data. Seeing the enormous 

value of such registration data, through our European policy program, we worked with members 

of the European Parliament toward broader release of agencies of registration data. The 

Environment Committee of the European Parliament adopted this position unanimously in fall 

2017 and held a hearing with the heads of the relevant agencies in early 2018. The process has 

not been completed but following some positive responses a pilot project is currently in 

preparation.  

Already the initial publications [51] illustrated the potential for an automated read-across. Different 

to a traditional read-across, where a formula is derived from chemical descriptors to make a 

prediction, which often only holds for relatively small parts of the chemical universe [48], the new 

approach is looking only into the similar chemicals to derive a prediction, similar to a read-across. 

We termed this a RASAR (read-across-based structure/activity relationship). Teaming up with 

Underwriters Laboratories (UL), a safety standard and testing organization and creating the spin-

off ToxTrack LLC, this approach was further developed. The process is documented in a number 

of articles [49, 52, 53]. Informed choices had to be made as to how to expand the database, 

express chemical similarity, which requires chemical finger printing, the integration of (different 

types of) information on neighboring chemicals, the machine learning approach and the 

expression of results. Briefly, we combined several reliable data sources (PubChem, ECHA, 

ICE...). We used the most common Chemical Similarity (PubChem2d) with Tanimoto (Jaccard) 

metric; we tested 11 different metrics and remarkably Tanimoto gave best results as a stand-

alone, but combinations of different metrics appear to have potentials for future improvements. 

We employed network features using proximity to positive and negative neighbors. Ultimately, 

Data Fusion was applied making use of other toxicity, biological and chemophysical endpoints not 

only the property to be predicted; in total 74 properties were included, which means that each 

chemical is characterized by a 222-dimensional vector (74 for the chemical itself and 74 for 

closest negative and positive neighbor, each). Machine Learning (logistic regression, random 

forest) gives probabilistic hazard estimates using Computing Clusters (Apache Spark pipeline) 

allowing massive scale computing. To illustrate the enormous computational effort, it took 180 

core Amazon cloud server two days to calculate this similarity map for 10 million structures in our 

database [53] at about $5,000 in computing costs. More than 10 trillion one-to-one comparisons 

had to be made. The resulting map has chemicals, which are similar to each other close and 

those less similar distant to each other. Now, any chemical included in the 10 million structures or 

not can be placed into the map with about with “only” half a billion operations in less than a 

second.  

 

To evaluate the quality of predictions, all chemicals with known classification were predicted in a 

five-fold cross-validation, which means that 190,000 predictions were made pretending we had no 



 

 

information on the substance and then comparing prediction and known result. This was done for 

all chemicals, even where no close or contradictory information on neighbors was available. A 

remarkable 87% correct results were obtained for nine common hazards.  

 

In parallel, the original ECHA database was scrutinized for chemicals, for which multiple animal 

test results were available. 350-750 chemicals with repeat tests each were found for the six most 

commonly used toxicity tests. They were on average 81% reproducible, but this number is 

inflated by the non-toxic substances, which typically remain negative in re-tests. Only 69% 

reproducibility was found for toxic chemicals [53]. This apparent outperforming of the animal test 

with a computational method (81% vs 87% correct results) spurred a lot of media attention, e.g. 

Zainzinger (2018) [59]  and van Noorden (2018) [57], though we have to admit that to some extent 

apples and organs are compared (not the same chemicals, 6 vs. 9 tests, animal test results vs. 

classifications). However, animal test reproducibility is a rather optimistic proxy for the reliability of 

test results anyway as all species differences are left aside in this analysis. 

 

Further corroboration for the relevance of the approach comes from a type of sensitivity analysis 

provided in the publication: Analyzing which information contributed most to the prediction of the 

nine hazards, many of these made obvious sense. A key feature of the approach is, that a 

probability of the result can be calculated as well. The computer can analyze based on quality 

and quantity of results on the substance and its neighbors, how often the 190,000 predictions 

were correct or not. This allows to predict accuracy for any constellation of data. Already earlier 

we had seen for skin sensitization that the closer the next neighbor, the more likely the two 

substances were sharing the classification as toxic or non-toxic [49]. If we required 75% similarity, 

the prediction was 80% accurate, if we required 95% or more similarity, we obtained the same 

property in 92% of the cases. Defining the applicability of the approach based on the probability 

of an accurate result would boost the quality of predictions but on the expense of more and more 

substances, for which no prediction can be made. The other way around, the predictive power 

can obviously be improved adding more and more data, increasing the likelihood to have close 

chemicals with neighbors. Simulations show [53] that relatively small numbers of chemicals with 

data, talking hundreds to few thousands, allow to have similar chemicals for large parts of the 

chemical universe. The approach is allowing to work with very sparse datasets. 

 

The potential for use for example in Green Toxicology [55] is obvious. The database also allows 

to derive improved thresholds of toxicological concern [58]. Since the publication, a number of 

extensions, improvements and validation efforts took place. Agencies such as FDA announced 

evaluation plans, but to our surprise we could not yet gain interest by International validation 

bodies to enter formal validation. The respective publications are in preparation. Altogether, the 

project represents an illustration of the potential of Big Data and Artificial Intelligence, which 

obviously goes far beyond safety sciences [37]. With a larger scientific community adopting and 

further developing the RASAR approach, this promises to be a major addition to the toolbox of 

safety sciences.  



 

 

DISCUSSION AND CONCLUSION 
 

 

The first goal of the workshop was to provide general information about the use of chemical 

grouping for read across purposes. The basic framework is laid out by ECHA’s 2015 RAAF. 

Further guidance was provided by a taskforce which developed a guidance paper related to Good 

Read-Across Practice (GRAP) [6]. This guidance was presented and endorsed in two stakeholder 

fora in Brussels and Washington and complements ECHA’s Read-Across Assessment 

Framework 

Subsequently examples were given for classical read across for mutagenicity. Mutagenicity is 

usually related to reactivity (i.e. interaction of the chemical with the DNA) and as such has a 

higher likelihood of having a chemical structure-based similarity than for other toxicological end 

points such as systemic toxicity or reproduction toxicity. In the second presentation the 

toxicokinetic and metabolism aspects which need to be considered were highlighted. It is 

particularly noted this area that is often less well addressed, and its complexity underestimated. 

Therefore, insufficient ADME information may be a frequent cause for regulatory non-acceptance 

of proposed read across cases under REACH. In the third presentation the essential component 

of read across – chemical similarity – was further elucidated. Here computational methods that 

provide indications of chemical similarity were discussed. These methods calculate 

physicochemical properties of molecules defining type and number of atoms, bonds and rings 

present in the molecule, polarity and solubility, among other molecular properties. The analysis 

shows that graph convolutional fingerprints are useful for read-across. One advantage is that the 

fingerprints are learned from the underlying dataset and can be generated endpoint specific. 

Hence, they are customized for the specific read-across questions and can better distinguish 

between the active and inactive molecules. Thus, computational methods are available to assist 

and evaluate best selection of chemical for read across purposes based on physicochemical 

parameters. 

As indicated above, the number of successful read-across cases in systemic toxicity is limited. 

Therefore, additional information – derived from new approach methods (NAMs) can potentially 

be helpful to substantiate read-across. One such a NAM is metabolomics. Appling this technology 

in the context of regulatory 28-day studies in rats provided additional biological information to 

prove or disprove similarity on a biological basis. Such information was considered as very useful 

in the ECHA NAM workshop. In this 2016 Helsinki workshop a number of key suggestions to 

further apply NAMs in a regulatory context were made. There is a need for standardisation of 

NAMs as well as a better understanding of their relevance through thorough analysis of their 

performance and definition of their applicability. Documentation and/or access to the underlying 

data and algorithms. In addition, reporting templates for NAMs are required to encourage their 

use. NAMs were demonstrated to provide pertinent information relating to mechanisms of action 

i.e. toxicodynamics; however, fewer examples of their use for toxicokinetics were available. Paini 

et al 2019, discuss the need for development and potential application of biokinetic models using 

information from ‘Next Generation’ alternatives. The regulatory use of NAMs is anticipated to 

increase in a variety of applications and to address a number of regulatory challenges, including 

supporting read-across, prioritisation and screening; however, they should be applied with a full 

understanding of their potential advantages (e.g. rapid screening, improved mechanistic 

understanding) and limitations. To increase uptake and acceptance amongst all stakeholders, 

case studies and capacity building are required. In the context of NAMs used for read-across, the 

main outcomes and conclusions of the workshop were:  



 

 

(1) Data from NAMs were shown to support read-across as well as providing useful and usable 

information for screening and prioritisation.  

(2) There is a need for standardisation of NAM approaches so that they may be made 

transferable and transparent.  

(3) The intrinsic quality and coverage of NAM data have to be defined and addressed.  

(4) There is a need to understand and characterize uncertainty from NAM data and how these will 

affect WoE.  

(5) There is a need for further case studies to demonstrate the practical application of NAMs.  

 

Finally, the last presentation, takes the concept of read across one step further, from chemical 

grouping based on preselected similarity (albeit with computational aid) to an automated process 

taking into account both chemical similarity as well as biological outcome for the end-point of 

interest. Different to a traditional read-across, where a formula is derived from chemical 

descriptors to make a prediction, which often only holds for relatively small parts of the chemical 

universe [48], the new approach is looking only into the similar chemicals to derive a prediction, 

similar to a read-across - termed RASAR (read-across-based structure/activity relationship).   
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Table 2: Structural and toxicological comparison of 2-acetylaminofluorene (2-AAF) and 4-

acetylaminofluorene (4-AAF). 

 2-AAF 4-AAF 

   
 

STRUCTURE 
 

 

 
ADVERSE 

OUTCOMES Strong liver enzyme inducer Weak liver enzyme inducer 

Liver carcinogen No liver carcinogen 

Immune suppressant Immune suppressant 

Bladder carcinogen Lipid accumulation in the liver 

 
 
 
 

 
 
Figure 1: The molecules can be analyzed in terms of the similarity between their molecular 

descriptors by using the UMAP nonlinear dimensionality-reduction technique. The embedded 

neural representation shows an increased tendency to cluster molecules by biological activity, 

rather than simply on structural similarity. 
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Figure 2: Performance of k-nearest neighbor classification for the three different descriptors on a 

separate test dataset. Visualized is the percentage accuracy, sensitivity and specificity. In 

general, the specificity is very low, because the dataset is imbalanced, with respect to the ratio of 

inactive and active compounds in the dataset. Here the results are shown exemplarily for the 

estrogen receptor. 

 

 
 

 
 

Figure 3: Evaluating the performance of combinations of distance measure and descriptor using 

receiver operator curves. In general, curves using the neural representation have higher areas 

under the curve indicating improved separation of active and inactive molecules 

 

 



 

 

 
Figure 4 Comparison of metabolite profile of female rats treated with BASF Substance 1, 2, 3 
and 4. a) Profile Comparison for BASF Substance 1 high dose (HD) indicating its own low dose 
(LD) to represent the best match directly followed by BASF Substance 3 at rank 2. BASF 
Substance 2 was only found at rank 1386 and 1560, respectively. The red line indicates the 
threshold for matching treatments (Pearson r of 0.5). b) Commonly shared metabolites of 
BASF Substance 1 with BASF Substance 2 and 3. A large subset of commonly changed 
metabolites was found for BASF Substance 1 and 3, whereas only one single metabolite was 
shared between BASF Substance 1 and 2. Red indicates a significant upregulation, yellow 
indicates a significant downregulation (p=0.05). f7,14 and 28 = data from female rats at day 7, 
14 and 28. c) OPLSDA set up with the metabolic profile controls and BASF Substance 1 treated 
female rats. BASF Substance 3 was predicted to be the most similar to BASF Substance 1, 
clustering well with its LD. BASF Substance 2 is clustering more closely with the controls. 

 


