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ABSTRACT

Using archival X-ray observations and a lognormal population model, we estimate constraints
on the intrinsic scatter in halo mass at fixed optical richness for a galaxy cluster sample
identified in Dark Energy Survey Year-One (DES-Y1) data with the redMaPPer algorithm.
We examine the scaling behaviour of X-ray temperatures, Tx, with optical richness, Agy, for
clusters in the redshift range 0.2 < z < 0.7. X-ray temperatures are obtained from Chandra
and XMM observations for 58 and 110 redMaPPer systems, respectively. Despite non-uniform
sky coverage, the Ty measurements are > 50 per cent complete for clusters with Agry > 130.
Regression analysis on the two samples produces consistent posterior scaling parameters, from
which we derive a combined constraint on the residual scatter, o1, 73 = 0.275 £ 0.019. Joined
with constraints for 7x scaling with halo mass from the Weighing the Giants program and
richness—temperature covariance estimates from the LoCuSS sample, we derive the richness-
conditioned scatter in mass, o pr|x = 0.30 £ 0.04 (o) = 0.09 (5y5), at an optical richness of
approximately 100. Uncertainties in external parameters, particularly the slope and variance
of the Tx—mass relation and the covariance of Tx and Agry at fixed mass, dominate the
systematic error. The 95 per cent confidence region from joint sample analysis is relatively
broad, o1, 5 € [0.14, 0.55], or a factor 10 in variance.
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1 INTRODUCTION

Population statistics of galaxy clusters are acknowledged as a
valuable probe of cosmological parameters (Allen, Evrard & Mantz
2011; Weinberg et al. 2013; Huterer & Shafer 2018), as illustrated
by analysis of modern cluster samples (e.g. Vikhlinin et al. 2009;
Rozoetal. 2010; Benson etal. 2013; Mantz et al. 2014; de Haan et al.
2016; Bocquet et al. 2018), and anticipated from larger and deeper
cluster samples being assembled. The Dark Energy Survey (DES;
Dark Energy Survey Collaboration etal. 2016) is identifying clusters
using colour-based searches in five-band optical photometry. A
small initial sample from the Science Verification survey phase,
with 786 clusters, (Rykoff et al. 2016) is supplemented by a Year-1
(Y1) data sample containing 7000 clusters with 20 or more statistical
galaxy members (McClintock et al. 2019).

The population statistics approach relies on comparing the
number and spatial clustering of galaxy clusters, as a function of
their observable properties and redshift, to theoretical expectations
derived from simulations of dark matter haloes, particularly the
halo mass function (HMF) (e.g. Jenkins et al. 2001; Evrard et al.
2002; Tinker et al. 2008; Murray, Power & Robotham 2013). To
connect halo and cluster properties, a probabilistic model commonly
referred to as the mass—observable relation is employed to map host
halo mass to multiple cluster observables. This paper focuses on the
statistical relationships between optical and X-ray properties of a
cluster and the underlying total mass of the halo hosting it.

Ensemble-averaging, or stacking, to estimate mean mass as a
function of galaxy richness has been applied to the DES-Y1 cluster
sample by McClintock et al. (2019). The process of stacking has
the drawback that it integrates out the variance in halo mass, M,
conditioned on galaxy richness, A. A complementary inference
technique is needed to determine the width and shape of the
conditional probability distribution, Pr(M | A).

Both observations (Pratt et al. 2009; Reichert et al. 2011; Mahdavi
et al. 2013; Lieu et al. 2016; Mantz et al. 2016a,b; Giles et al.
2017) and simulations (Evrard et al. 2008; Stanek et al. 2010;
Farahi et al. 2018a) support a lognormal form for observable-
mass conditional distributions. This form, coupled with a low-order
polynomial approximation for the HMF, yields analytic expressions
for the space density as a function of multiple observable properties
as well as property-conditioned statistics of the massive haloes
hosting groups and clusters (Evrard et al. 2014, hereafter, E14).
We employ this model in our analysis, with particular emphasis on
conditional property covariance.

The red-sequence Matched-filter Probabilistic Percolation
(redMaPPer) identifies clusters using an empirically calibrated,
matched-filter model for old, red galaxies (Rykoff et al. 2014). The
algorithm outputs a probabilistic estimate of optical richness — the
count of red galaxies inside a cluster — along with a mean cluster red-
shift and a set of up to five likely central galaxies. Previous studies
found this photometric cluster-finder algorithm produces a highly
complete and pure cluster sample with accurate redshift estimates
(Rykoft et al. 2012; Rozo & Rykoff 2014; Rozo et al. 2015a,b).

The Sloan Digital Sky Survey (SDSS) DR-8 redMaPPer cluster
sample (Rykoff et al. 2014) has recently been combined with
ensemble-average weak-lensing masses (Simet et al. 2017) to
produce cosmological constraints (Costanzi et al. 2018). A similar
analysis is underway for DES-Y1 (McClintock et al. 2019). In
both of these works, marginalization over the weakly constrained
scatter between mass and richness weakens posterior likelihoods
of cosmological parameters. The aim of our work is to provide an
empirical constraint on the mass—richness variance, a result that will
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be combined with other systematics calibration effort to refine and
improve likelihood analysis of cluster counts for cosmology.

Integrated measures of clusters such as redMaPPer richness,
ArM, X-ray temperature, T, and luminosity, Ly, are proxies for
host halo mass in that each scales as a (typically) positive power
of M. In general, each proxy has intrinsic variance generated by
internal dynamics within haloes, as well as extrinsic scatter caused
by projection, measurement uncertainties, and other effects. For the
intrinsic component, the lognormal property covariance model of
E14 provides expressions that link proxy properties to each other
and to unobservable host halo mass. The expressions involve the
local slope and curvature of the HMF because of the convolution
required to map mass to the observed measures.

Here, we study the scaling behaviour of Tx as a function of Agy
for a redMaPPer sample of clusters identified in DES-Y1 imaging
data within the redshift range, z € [0.2, 0.7] (McClintock et al.
2019). X-ray properties of clusters contained in archival Chandra
or XMM pointings are measured via the Mass Analysis Tool for
Chandra (MATCha; Hollowood et al. 2018) or XCS data analysis
pipelines (Giles et al. in preparation), respectively. We employ the
Bayesian regression model of Kelly (2007) to estimate parameters
of the conditional scaling, Pr(In Tx | Arm)-

The inference of mass scatter requires additional information,
namely the Tx—M,, scaling relation and the Agy—7Tx covariance at
fixed halo mass. These additional quantities are taken from previous
studies (Mantz et al. 2016b; Farahi et al. 2019). Uncertainties on the
inferred scatter are determined by marginalizing over uncertainties
in the model priors.

The structure of this paper is as follows. In Section 2, we
introduce the cluster sample and X-ray follow-up programs of the
optically selected clusters. In Section 3, we describe the regression
algorithm and the population model employed to obtain an estimate
of the mass-richness scatter, with results presented in Section 4.
In Section 5, we discuss our treatment of systematic uncertainties.
Finally, we conclude in Section 6. Appendix A provides the tables
of cluster properties employed in this work. Appendix B provides
corrections for a small number of richness measurements using the
X-ray emission peak locations of Chandra and XMM observations.
Finally in Appendices C and D, we present the richness—temperature
correlation at fixed halo mass and upper limits on the running of
temperature variance at fixed optical richness, respectively.

We assume a flat ACDM cosmology with ©,, = 0.3 and Hy, =
70 km s~! Mpc*'. Distances and masses, unless otherwise noted,
are defined as physical quantities with this choice of cosmology,
rather than in comoving coordinates. We denote the mass inside
spheres around the cluster centre as M = M5, corresponding to
an overdensity of 500 times the critical matter density at the cluster
redshift.

2 DES-Y1 DATA

This work is based on data obtained during the DES-Y1 obser-
vational season, between 2013 August 31 and 2014 February 9
(Drlica-Wagner et al. 2018). During this period 1839 deg® was
mapped out in three to four tilings using g, r, i, z filters. This
strategy produces a shallower survey depth compared to the full-
depth Science Verification data, but it covers a significantly larger
area. We use approximately 1500 deg? of the main survey split into
two contiguous areas, one overlapping the South Pole Telescope
(SPT) Sunyaev-Zel’dovich Survey area, and the other overlapping
the Stripe-82 (S82) deep field of SDSS. The sky footprint is
illustrated in fig. 1 of McClintock et al. (2019).
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Table 1. Supplemental X-ray sample size and median characteristics.

Source Nsam Zmed Amed kTX, med (keV)
Chandra 58 0.41 76 7.45
XMM 110 0.41 38 4.41

We first describe the main data products used in our analysis
and refer the reader to corresponding papers for a more detailed
overview. Imaging and galaxy catalogues associated with the
redMaPPer catalogue used here are publicly available!' in the first
DES data release (DES DR-1; Abbott et al. 2018) and the Y1Al
GOLD wide-area object catalogue (Drlica-Wagner et al. 2018).

2.1 Optical cluster catalogue

We employ a volume-limited sample of galaxy clusters detected in
the DES-Y 1 photometric data using version 6.4.17 of the redMaPPer
cluster-finding algorithm (Rykoff et al. 2016). The redMaPPer
algorithm identifies clusters of red-sequence galaxies in the mul-
tidimensional space of four-band magnitudes and sky position.
Starting from an initial spectroscopic seed sample of galaxies,
the algorithm iteratively fits a model for the local red sequence.
It then performs a matched filter step to find cluster candidates
and assign membership probabilities to potential members. Starting
with a most likely central galaxy, ideally the brightest cluster
galaxy, member weights, pmem, of additional cluster galaxies are
computed with a matched-filter algorithm based on spatial, colour,
and magnitude filters (Rykoff et al. 2014). The method is iterative,
and the ambiguity of selecting a central galaxy is recognized by
recording likelihoods for up to five central galaxies in each cluster.
The final richness, Arwm, is defined as the sum of the ppem values
of its member galaxies. Empirical tests using the SDSS DR-8
sample indicate that, for redshifts 0.1 < z < 0.4, the algorithm
is > 90 per cent (99 per cent) complete for richness above 30 (50)
(Rykoff et al. 2014). Completeness tests using DES-Y1 data are in
preparation.

2.2 Supplemental X-ray catalogues

Table 1 summarizes contents of the XMM and Chandra samples
employed in this work, and Fig. 1 shows the distribution of cluster
samples as a function of their observables. The X-ray catalogues
are provided in Appendix A and will be available from the online
journal in machine-readable format. In the following, we detail how
the redMaPPer clusters are matched to the X-ray sources identified
in Chandra and XMM archival data, and how the X-ray properties
of the matched sources are measured.

The two methods produce independent luminosity and tempera-
ture estimates, and we adjust the latter to remove the known spectral
bias between the two X-ray telescopes (Schellenberger et al. 2015).
The two catalogues have similar depth (median redshifts of 0.41)
while differing in their coverage of halo mass scale, reflected in
Table 1 by offsets in the median values of mass proxies. The
median richness is 76 for Chandra, 38 for XMM, and the respective
median X-ray temperatures are 7.45 and 4.41 keV. In terms of
natural logarithms, these offsets are 0.48 and 0.52, respectively.
Both samples have range of a factor of 10 in both Agy and Tx
dimensions.

Thttps://des.ncsa.illinois.edu/releases/dr1

Mass variance of DES redMaPPer clusters ~ 3343

We are concerned about the relation between the properties of the
redMaPPer-selected cluster observables and its host halo. Therefore,
we need to correct for the fraction of the miscentred population.
Instead of modelling the miscentred population, we correct our
cluster observables with an associated X-ray centre and re-estimate
the optical richness at X-ray peak (see Appendix B for more detail).
In the following, richness, Agrm, implies the optical richness assigned
by the redMaPPer algorithm at the X-ray peak, unless otherwise
mentioned.

2.2.1 Chandra-redMaPPer Catalogues

The analysis of Chandra observations was conducted with the
MATCha pipeline described in Hollowood et al. (2018). We briefly
outline the steps here. Starting from the volume-limited, > 20
redMaPPer catalogue, we analyse all archival Chandra data, public
at the time of the analysis, which overlapped redMaPPer cluster
positions. In brief, after standard data reduction and cleaning, we
search for a significant X-ray cluster detection starting from the
redMaPPer position and iteratively re-centring towards the X-ray
peak using an initial 500 kpc aperture. If the cluster is X-ray detected
(SNR>5), a spectrum is extracted, and we attempt to fit for the X-
ray temperature, Tx. An iterative process is employed to centre,
determine cluster temperature and luminosity in the same X-ray
band, and estimate cluster radius based on the T fit. To evaluate
Tx, the metal abundance is fixed at 0.3 Zg, using the model from
Anders & Grevesse (1989). For clusters with sufficiently well-
sampled data, the output of the MATCha algorithm includes the
centroid location, Lx, and Tx within a series of apertures, 500 kpc,
725005 F's00, and core-cropped rso9. In this work, we only use core
included ry500 Tx values.

In addition, we estimate the X-ray emission peak position of
each detected cluster for use in studying the redMaPPer centring
distribution (Hollowood et al. 2018; Zhang et al. 2019). The
peak is determined, after smoothing the point-source subtracted
cluster image with a Gaussian of 50 kpc width, as the brightest
pixel within 500 kpc of redMaPPer position. We perform a visual
check and then remove clusters for which the position, source
spectrum, or background spectrum were significantly affected by
instrumental chip edges or where the identified X-ray cluster was
a foreground or background cluster not matched to the redMaPPer
cluster.

2.2.2 XCS-redMaPPer Catalogues

For the the XMM-redMaPPer analysis (Giles et al. in preparation),
the redMaPPer sample is matched to all XMM ObsIDs (with useable
EPIC science data) under the requirement that the redMaPPer
position be within 13 arcmin of the aim point of the ObsID. Next,
the XMM observations were filtered based upon exposure time. The
exposure time is determined within a radius of 5 pixels centred
on the redMaPPer position, with the mean and median required to
be >3 ks and >1.5ks, respectively. Here the mean is taken to be
the exposure time averaged over the sum of each pixel, while the
median refers to 50 per cent of the pixels in the enclosed region.
These cuts are applied to ensure the redMaPPer cluster of interest
is within the XMM FOV and has a sufficiently long exposure time
for reliable SNR and Tx measurements.

X-ray sources for each ObsID were then detected using the XCS
Automated Pipeline Algorithm (XAPA; Lloyd-Davies et al. 2011).
At the position of the most likely central galaxy of each redMaPPer

MNRAS 490, 3341-3354 (2019)
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Figure 1. Supplementary sample properties. Left-hand and right-hand panels show the richness and hot gas temperatures as a function of cluster redshift
obtained from XMM and Chandra archival data. The optical richness is re-measured at the location of the X-ray emission peak (see Section 2.2 for more detail).
XMM temperatures are scaled to the Chandra according to equation (1). The error bars are 68 per cent measurement errors.

cluster, we match to all XAPA-defined extended sources within a
comoving distance of 2 Mpc. Cut-out DES and XMM images are
then produced and visually examined to assign a XAPA source to
the optical cluster. Through this process, the final XMM-redMaPPer
sample contains 110 clusters.

The luminosities and temperatures for the XMM-redMaPPer
sample are derived using the XCS Post Processing Pipeline (Lloyd-
Davies et al. 2011), with updates presented in Giles et al. (in
preparation). Cluster spectra are extracted and fit in the 0.3—
7.9 keV band with an absorbed MeKaL. model (Liedahl, Osterheld &
Goldstein 1995). The fits are performed using the xspec package
(Arnaud 1996), with the metallicity fixed at 0.3 Zg. Using an
iterative procedure, spectra are extracted within r,509. We estimate
an initial temperature within the XAPA source detection region
(Lloyd-Davies et al. 2011), and an initial rps509 estimated from
the r500—kT relation of Arnaud, Pointecouteau & Pratt (2005). A
temperature is estimated within this r,509, and hence an updated r»s00
estimated as above. This process is then iterated until 7,509 converges
to 10 percent. To asses the reliability of temperature estimates,
variance of the temperature is calculated for each iteration. This
involves generating a grid of 5-by-5 pixels and estimating the
temperature for each region. We assign a mean temperature to each
cluster which satisfies o (Tx)/{Ty)) < 0.25, where o is the standard
deviation and (7%) is the mean of estimated temperatures. Similar
to the Chandra analysis, the peak is determined, after smoothing
the point-source subtracted cluster image with a Gaussian of
50 kpc width, as the brightest pixel within 500 kpc of redMaPPer
position.

The different X-ray detection method, combined with the larger
collecting area of XMM compared to the Chandra observatory,
produces an X-ray sample for XMM that both is larger and extends
to lower richness than the Chandra detections. We defer a detailed
analysis of the X-ray selection processes used here to future work.
Here, we first analyse each sample independently, combining them
after demonstrating consistency of posterior scaling parameters.

2.2.3 X-ray temperature as primary mass proxy

While X-ray luminosities, Lx, are measured for a larger number
of clusters than are temperatures, the larger variance in non-core

MNRAS 490, 3341-3354 (2019)

excised Lx (Fabian et al. 1994; Mantz et al. 2016b) and the
complexities of modelling the supplemental survey masks motivate
the choice of Tyas the primary link to halo mass. If we assume each
archival data can be treated as an Lx limited sample, then there
could be a secondary selection function. This secondary selection
is mainly a function of Lx. Due to the complexity of modelling
this secondary Lx-selection, we do not perform and report Lx—Arm
relation. As we will see, systematic uncertainties limit the precision
with which we can recover the scatter in underlying halo mass.

An important systematic effect that we address is the misalign-
ment of X-ray cluster temperatures derived from the instruments on
the Chandra and XMM observatories (Schellenberger et al. 2015).
Since we are particularly interested in population variance, it is
important to align the Tx measurements before performing a joint
sample regression. We use the calibration of Rykoff et al. (2016)
based on 41 SDSS redMaPPer-selected clusters,

log,o(T$M ™) = 1.0133 log,o(TaMM) +0.1008 1)

with temperatures in units of keV. Rykoff et al. (2016) note that the
above relation is consistent with that of Schellenberger et al. (2015).
We employ the Chandra temperature scale in analysis below.

Within our sample, there are <20 clusters with both Chandra
and XMM temperatures. The calibration relation from these clusters
alone is consistent with that of Rykoff et al. (2016), but with larger
uncertainties.

My, is another low-scatter mass proxy (Mulroy et al. 2019).
Currently, Mg,; measurement for these sets of clusters is unavailable.
We are planning on employing M,,, measurement as another cluster
mass proxy in a future work.

2.2.4 X-ray completeness

The supplemental samples, with fewer than 200 clusters, are far
from complete relative to the full DES-Y1 redMaPPer population
of 7000 clusters. The incompleteness is primarily due to the limited
sky coverage of the two observatory archives to the depths required
to detect distant clusters.

If the X-ray signal-to-noise ratio (SNR) is >5, typically a few
hundreds of photons, there is enough signal to measure the X-ray
luminosity; but at least 1000 photons are needed to get a reliable
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Figure 2. X-ray completeness of the supplementary samples. Lines show the fractions of DES-Y1 redMaPPer clusters with both Lx and 7x measurements
from Chandra (left) and XMM (right) archival data. Solid, dashed, and dash—dot lines denoting increasing redshift bins given in the legend. Here, we employ

the redMaPPer original richness.

estimation of the Tx. Fewer counts leads to larger errors, but not
excluded from the sample. The variable depths of the archival
pointings produce a complex pattern of flux limits across the optical
sample. The observations also have different levels of background
noise, adding to the complexity of X-ray selection modelling.
Thorough synthetic observations (Bahé, McCarthy & King 2012;
ZuHone et al. 2014) are needed to accurately model this selection
function. We defer such modelling to future work.

The archival nature of the follow-up also produces a mix
of previously known and newly detected X-ray systems. About
60 per cent of clusters are newly detected X-ray systems. Fig. 2
shows the fraction of redMaPPer clusters with Tx measurements as
a function of redMaPPer richness and redshift. As may be expected,
completeness is high for the largest clusters. The sample is more
than half complete in X-ray temperature at high optical richness
values, Arm 2 130. At lower richness, the completeness falls off,
with more systems being found in the XMM archival analysis. We
note in Appendix D that the posterior scaling parameters found in
Section 4 are relatively insensitive to an imposed minimum richness
threshold (see Fig. D1), but the effects of X-ray selection may
affect our estimates of variance at low richness, particularly at high
redshift.

3 POPULATION STATISTICS

The observed richness and X-ray temperature reflect properties of
its host halo, subject to additional contributions from projected
line-of-sight structure and other source of noise. Costanzi et al.
(2019) develop a probabilistic model that maps intrinsic richness,
Mrue, to measured richness, Agry. Generically, projection both
widens the variance in Pr(Agyp|M) and adds a moderate degree of
skewness. We do not apply corrections for projection effects, taking
instead an approach that assumes Pr(Arm, Tx|M, z) is a bivariate
lognormal.

The integrated stellar and gas mass fractions in haloes extracted
from recent hydrodynamic simulations follow a lognormal form,
as validated at per cent-level accuracy by Farahi et al. (2018a).
This form is also supported by previous cosmological simulations
(Evrard et al. 2008; Stanek et al. 2010; Truong et al. 2018). Below,
we show that normalized residuals in the measured scaling relation
are consistent with a lognormal form, supporting this choice for our
population inference model.

Our inference model has two steps: (i) Tx is regressed against
richness to determine scaling properties, particularly the residual?
scatter in Tx (Section 4.1), (ii) we combine the scatter of Tx—Arm
with weak-lensing mass—Agy relations to infer the halo mass scatter
at fixed optical richness (Section 4.2).

3.1 Regression model

We assume a lognormal form for the likelihood of a cluster of
richness A to also have gas temperature 7'

— 2
Pr(nT |1, 2) = _(nT — (InkT |2, z)) }

2
zalnru

1
————exp
V27Ot 2 {

@)

Here, and below, we may drop subscripts for simplicity of notation;
T=Tx and A = Ary. Following E14 notation, we write the log-mean
scaling of k7, expressed in keV, with richness as

(InT|xz2) = [mr+2/3EQ@)] +arp S hme)s ()

where ar|; is the slope, Ameq = 70 is the median richness of the
joint sample, 77|, is the logarithmic intercept at z = 0, and E(z) =
H(z)/H, is the evolution of the Hubble parameter.

We regress Tx on Arym, rather than the other way around,
because optical richness is the primary selection variable. Under
the assumption that the X-ray temperature at fixed optical richness
is either complete or randomly selected, explicit modelling of X-ray
selection process is not required (see Kelly 2007, section 5.1.1). We
use the regression method of Kelly (2007), which returns posterior
estimates of the slope and normalization along with the residual
variance, o, e

The redshift dependence of the normalization in equation (3)
reflects a self-similar expectation, based on virial equilibrium,

2While the term ‘intrinsic scatter’ is often used here, we use residual so
as to avoid confusion with the scatter associated with simulated haloes and
their properties measured within localized (typically spherical) cosmological
volumes. The residual variance in temperature at fixed observed cluster
richness will be larger than the intrinsic variance at the relevant host halo
richness because of projection. Cluster members lying outside of the primary
halo hosting the optical cluster add variance to the intrinsic relation and also
bias the mean (Costanzi et al. 2019).
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Figure 3. X-ray temperature-redMaPPer richness scaling behaviour from the Chandra, XMM, and joint archival data samples (left to right) using a pivot
richness of 70. XMM temperatures have been modified using equation (1) to align with Chandra estimates. In each panel, the blue line and blue shaded region
are the best fit and 68 per cent confidence interval of the mean logarithmic relation, equation (3). Gray shaded regions show 1o, 20, and 30 residual scatter
about the scaling relation. Fit parameters are given in Table 2. Richness errors are provided directly by the redMaPPer algorithm.

that T oc [E(z)M]*? (Kaiser 1991; Bryan & Norman 1998). For
observations spanning a range of redshift, the quantity E~23(z)kT
should be a closer reflection of halo mass, M, than temperature
alone. Over the redshift interval of our analysis, the E~*3(z) factor
decreases modestly, from 0.94 at z =0.2t0 0.77 at z = 0.7.

While the slope and scatter of scaling relations may be scale-
dependent and/or evolving with redshift (e.g. Ebrahimpour et al.
2018; Farahi et al. 2018a), our data are not yet rich enough
to model these effects. We crudely test richness dependence by
splitting both samples into two non-overlapping samples, with
different characteristic scales, at their pivot richness, and find no
evidence of scale dependence in the posterior scaling relation
parameters.

The regression method of Kelly (2007) includes uncertainties
associated with the independent variable, here In Agy;, by assuming
a mixture model in that variable. The number of mixture elements
is a free parameter in the method. We use two components in our
analysis, and have performed tests to demonstrate that our results
are insensitive to this hyperparameter.

3.2 Mass scatter inference

In the E14 population model, the variance in temperature of a sample
conditioned on the selection variable, A, is set by the joint (X-
ray + optical) selection mass variance scaled by the slope, a7,
of the temperature—mass relation,

2 _ 2 2 2
Onrin =% m [olnM\A + Oy — 257 “1nM|AUlnM|T} ) 4

where o, 5 is the variance in halo mass at fixed optical richness
(and similarly for temperature) and r, 7 is the correlation coefficient
between log-richness and log-temperature at fixed halo mass. We
use the variance relationship, o ;| 7 = 0jn 7| 4 / @7 5> and assume
that all parameters are constant with mass and redshift.

Rearranging the expression isolates what this study is after, the
mass variance conditioned on optical richness,

2

) 12
Olnt|a
O'liMM :O-liM\T ( 2n I - _”fr)> +rr| . (5)

Ot |M

We ignore local curvature in the mass function, but note that its
effect is to reduce the mass variance amplitude in equation (5).
This suggests that the upper limits we derive below are somewhat
conservative.
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Table 2. Best-fitting parameters for the Tx—Arwm relation, equation (3).

Sample Normalization Slope Residual scatter
e 1x (keV) ar | TlnTin
Chandra 523 +£0.26 0.56 + 0.09 0.260 £ 0.032
XMM 4.88 £0.15 0.61 +0.05 0.289 4 0.025
Joint 497 +0.12 0.62 +0.04 0.275 £ 0.019

If there is no property correlation, r;7 = 0, the above expression
simplifies to

o2
2 _ 2 InT | A
Ommir = OmmMm|T 2 -1]. (6)

Omr|M

Note that the first term inside the parentheses is guaranteed to
be greater than one because, when r,, = 0, the simple Euclidean
condition

2

«

2 _ 2 biM 2

O-b\a_o-b\M+( ) 041 m> 7
g\ M

holds for any pair of properties {a, b}.

4 RESULTS

In this section, we present temperature-richness scaling parameters
derived from Chandra and XMM data. Consistent posterior con-
straints are found, motivating a joint analysis. We then introduce
additional priors on the missing elements of the residual mass
variance conditioned on observed richness in Section 4.2, and
present the resulting constraints.

4.1 redMaPPer richness-hot gas temperature relation

Fig. 3 shows the Tx—Ary relation for the Chandra, XMM, and
joint samples, respectively, and best-fitting parameters are listed
in Table 2. The blue lines and shaded regions present best fit
and 68 per cent confidence intervals for the mean log scaling,
equation (3). In this regression, Agry is remeasured at the location of
the X-ray peak, for each cluster resulting in mostly small corrections
and a small number of significant adjustments, as detailed in
Appendix B.

We find consistent slopes of 0.56 £ 0.09 (Chandra) and
0.61 £ 0.05 (XMM). The XMM temperature normalization, ex-
pressed in the Chandra system via the adjustment of equation (1),
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Figure 4. Normalized, ranked residuals, equation (8), of the Chandra
(top, left), XMM (top, right), and joint (bottom) samples follow closely
a lognormal form, as indicated by the close proximity of the points to the
dashed line of equality.

is 4.88 £ 0.15 keV, roughly lo lower than the Chandra value
of 5.23 + 0.26. The XMM temperature normalization, before the
adjustment of equation (1), is 3.82 £ 0.12.

Gray shaded regions show the residual scatter about the mean
relation. There are a small number of outliers, particularly towards
low values of Tx given Arm or, equivalently, a larger Ary than
expected given their Tx. Such systems are likely to have a boosted
richness due to lower mass haloes along the line of sight that boost
Arm more than Tx (Rozo & Rykoff 2014; Ge et al. 2019).

We test the shape of Pr(k7x | 1, z) by examining the normalized
residuals of the data about the best-fitting mean scaling,

In (E_2/3(Zi)kTi) —arp In(A;) — 7

2 2 \I2
(GlnTu"'Uen,i)/

Sria,i = , ®)
using posterior maximum-likelihood estimates of the parameters
T 7> a2, and o2 -, and the index i corresponds to the ith cluster.
The quadrature inclusion of o, ;, the square of the measurement
uncertainty in In 7}, is appropriate if measurement errors are both
accurately estimated and also uncorrelated with the underlying
astrophysical processes responsible for the residual scatter.

Fig. 4 shows quantile—quantile (Q—Q) plots of the residuals in
both samples. The Q-Q plot compares the quantiles of the rank-
ordered residuals, expressed in units of the measured standard
deviation, equation (8), to those expected under the assumed
Gaussian model. The Q-Q form of both samples support the
lognormal likelihood, equation (2), as shown by the proximity of the
measured quantiles to the dashed line of unity. There is a very slight
skew in the distribution, with more weight to the low-temperature
side as expected from projection effects (Cohn et al. 2007). In
a previous work, Mantz et al. (2008) employed the Q—Q plot and
illustrated the log-normality of their cluster sample (see their fig. 4).

Within the statistical uncertainties, the slope of temperature—
richness scaling is consistent with a simple self-similar expectation
of 2/3, the result obtained if the star formation efficiency is constant,
so that A o¢ My, o< M, and the temperature scales as T o< [E(z)M]*?

Mass variance of DES redMaPPer clusters 3347

Table 3. External constraints required for the richness-conditioned mass
variance, equation (5). Uncertainties are 68% confidence intervals.

Parameter Value Reference
OnT|M 0.16 + 0.02 Mantz et al. (2016b)
ar|\m 0.62 £+ 0.04 Mantz et al. (2016b)
OmM|T 0.26 + 0.04 (Inferred from above)
i —0.2570:%4 Farahi et al. (2019)

from virial equilibrium (Kaiser 1991; Bryan & Norman 1998).
However, both dynamical and weak-lensing analysis of the same
SDSS sample produce mean behaviour M o Aksi"!, which shows
deviation from the self-similar expectation (Farahi et al. 2016; Simet
et al. 2017), and the Weighing the Giants (WtG) analysis yielding
Ty oc MO62% 004

If r;7 is close to zero and there is no scatter about the mean
relation, then it is expected that temperature scales with mass with
slope o, = 0.81 £ 0.10. There is moderate tension with our result
of 0.62 =+ 0.04 for the joint sample, which we suspect reflects the
lack of low luminosity and temperature systems having low optical
richness in the X-ray archives.

4.2 Mass scatter conditioned on optical richness

To derive mass variance with the multiproperty population frame-
work, information on additional scaling parameters is required, as
reflected in equation (5). We employ recent derivations of scaling
behaviour from the WtG program (Mantz et al. 2015), particularly
the slope and residual scatter of the Tx—M,, relation derived
by Mantz et al. (2016b). In the WtG analysis, X-ray properties
are regressed against lensing mass estimates for a sample of 40
clusters. Their posterior estimates of the scatter in temperature,
Omrip = 0.16 £0.02, and slope, ar|, = 0.62£0.04, imply a
scatter in mass at fixed temperature of 0.26 = 0.04. These values are
listed in Table 3, and we assume that the uncertainties are Gaussian
distributed.

For the correlation coefficient between temperature and richness
at fixed halo mass, we use constraints derived from nearby LoCuSS
clusters by Farahi et al. (2019).> The X-ray bright LoCuSS sample
(Mulroy et al. 2019) contains 41 clusters in the redshift range 0.15
< z < 0.3, with 33 overlapping the SDSS sample region. The
redMaPPer richness estimates for those systems range from 27
to 181, with the median value near 100. Using the same model
framework as this paper, modified to include the original X-ray
selection criteria, Farahi et al. (2019) derive the first empirical
constraint on the correlation coefficient, 7 = —0.257923.

With these additional elements, we can now derive an estimate
of the richness-conditioned mass scatter, equation (5), resulting in
oimpm|r = 0.30£0.10. To get this result, we employ the values
derived from the joint sample temperature variance conditioned
on richness. Since the correlation coefficient is broad and slightly
asymmetric (see Fig. C1), we use Monte Carlo sampling of the terms
on the right-hand side of equation (5), discarding any combinations
that produce unphysical results (negative values inside the square
root). The resultant posterior distributions are shown in Fig. 5 for
the Chandra, XMM, and joint analysis with values of O’liT‘ , from
Table 2.

3The full posterior chains are publicly available in a figshare repository,
https://doi.org/10.6084/m9.figshare.8001218.
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Figure 5. Marginalized posterior likelihood of the halo mass scatter at fixed
richness derived from the supplementary X-ray samples given in the legend.

For the joint sample analysis, the median value of the posterior
mass scatter is

OlnMx = 0.30 £0.04 (stat) +0.09 (sys)» (9)

where the quoted uncertainties are 68 per cent confidence level.
The statistical error derives from the T'x—Ary residual variance
uncertainty while the systematic uncertainty is derived from the
quoted errors of the required external parameters. The overall
95 per cent confidence region is broad, spanning 0.14-0.55.

5 DISCUSSION

Here, we review our treatment of systematic uncertainties, including
priors, before turning to a comparison with existing estimates of the
mass scatter using optical proxies in both observed cluster samples
and simulated halo ensembles.

5.1 Systematic uncertainties

The richness-conditioned mass variance is inferred from the ob-
served temperature variance via equation (5). Uncertainties in
the additional elements (see Table 3) propagates to broaden the
uncertainty in oy, p ;..

Fig. 6 explores the contribution of each element’s uncertainty
by systematically setting the error in specific terms to zero —
i.e. fixing the value of each element. The yellow curve fixes the
Tx—M,, relation parameters, both slope and scatter, while the
red curve fixes the correlation coefficient, ;7. Finally, the blue
curve shows the impact of having perfect knowledge of all above
parameters.

The temperature—mass relation uncertainties make the largest
contribution to the uncertainty in mass variance. We note that the
contribution of the temperature-mass uncertainty in the slope is
negligible and it is dominated by the uncertainty in the scatter. The
width of the blue curve, the statistical uncertainty, is 0.04.

5.2 Comparing to previous studies

Using a smaller set of redMaPPer clusters identified in science
verification (DES-SV) data, Rykoff et al. (2016) estimated the slope
and the scatter of Tx—Agy scaling relation to be 0.60 + 0.09 and
0.28Jj8jgg, respectively. Employing a set of rich redMaPPer clusters
identified from SDSS DR8 data, Ge et al. (2019) also estimated the
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Figure 6. Illustration of the impact of uncertainties in the external elements,
Table 3. The gray shaded region shows the joint analysis result fully
marginalized over external uncertainties. Red and yellow lines assume,
respectively, that r,7 or the Tx—M scaling parameters are exactly known.
The Tx—M parameters dominate the error budget. The blue line shows the
case of all external quantities known. The width of the blue is our statistical
uncertainties.

slope and the scatter of Tx—Ary scaling relation to be 0.79 + 0.06
and 0.24 + 0.03, respectively. With a larger sample size, we find
values in agreement with those of Rykoff et al. (2016) and Ge et al.
(2019), but with smaller parameter uncertainties.

Our measurements can also be compared to those of Rozo &
Rykoff (2014). That work set is similar in spirit to this study but
differs in some key details. The correlation coefficient, r, 7, was set
to zero, and the analysis did not propagate uncertainties in the 7x—
M relation. Employing sub-samples of X-ray selected clusters from
the literature, including the XCS (Mehrtens et al. 2012), MCXC
(Piffaretti et al. 2011), ACCEPT (Cavagnolo et al. 2009), and Mantz
et al. (2010) cluster samples, they estimate oy, 37, = 0.26 4= 0.03,
with the quoted uncertainty being entirely statistical. Our central
value is consistent with theirs, but a key step of our analysis is
to more carefully revise uncertainties by incorporating a coherent
multiproperty model.

In a separate work, Rozo et al. (2015a) directly estimated the
scatter in richness at fixed SZ-mass by comparing the redMaPPer
catalogue to the Planck SZ-selected cluster catalogue (Planck Col-
laboration XXIX 2014). They estimate oy, 572 = 0.277 £ 0.026,
with the reported uncertainties again being purely statistical. We
note that the SZ-masses are inferred from Ysz—M relation, so
covariance between Ary and Ysz needs to be taken into account
in this analysis.

In an independent analysis using abundance and stacked weak-
lensing profiles for roughly 8000 SDSS redMaPPer clusters with
richness, 20 < Arm < 100, and redshift, 0.1 < z < 0.33, Murata et al.
(2018) derive oy prjx ~ 0.46 £ 0.05 at a pivot mass scale of 3 x
10" h~! M, equivalent to a richness of 24, from their mean scaling
relation. In their analysis, the scatter is allowed to run with mass,
and they find that oy, 575 o« M~ Evaluating their result at a
richness of 70, or a mass scale roughly a factor of 4 larger, leads to
a mass scatter of 0.36, consistent with our findings.

This work is concerned about mass scatter conditioned on optical
richness. To estimate the richness scatter at fixed halo mass, Saro
et al. (2015) modelled the total richness variance conditioned on
halo mass with a Poisson term and a lognormal scatter term. If
this additional Poisson contribution, at pivot richness of our joint
sample Api, ~ 72, is subtracted from the total variance, the richness
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Table 4. Best-fitting parameters for the Tx—Arm relation. Samples are
splitted into two non-overlapping subsets with z > 4 and z < 0.4. The
notation is similar to Table 2.

Sample Slope Residual scatter
ar | 0Tl
Chandra (z < 0.4) 0.60 £0.13 0.30 &+ 0.06
XMM (z <0.4) 0.56 & 0.07 0.27 +0.04
Joint (z < 0.4) 0.59 £0.05 0.27 +£0.03
Chandra (z > 0.4) 0.51+0.15 0.25 +0.05
XMM (z > 0.4) 0.65 £0.08 0.32 +£0.04
Joint (z > 0.4) 0.65 £ 0.06 0.29 +0.03

variance conditioned on the halo mass yields

Var(u| In A)
2

Var(In 1| M) = = exp(—(InA[M)) + o, 4y (10)

%A

where Var(u|In) = 0.09370%2 is the halo mass variance con-
ditioned on optical richness, and ai‘ln , = 1.356 £0.052 is the
slope of M—Arm relation (McClintock et al. 2019). Plugging these
numbers into equation (10), we infer

Omam = 0.2070:48. (1)

This result is consistent with what is previously found employing
redMaPPer clusters from SDSS survey (Saro et al. 2015; Simet et al.
2017; Costanzi et al. 2018).

5.3 Redshift dependence

We find no evidence of the redshift evolution for the slope and the
scatter of the Tx—Arm relation. We split the Chandra, XMM, and
joint samples in half at z = 0.4. The Tx—Ary relation results are
presented in Table 4.

Farahi et al. (2018a) studied the redshift evolution of integrated
stellar mass—halo mass scaling relation employing the hydrody-
namical simulations. They find a mild redshift evolution for both
slope and the scatter of this relation. The statistical uncertainties of
our sample are larger than the magnitude of the redshift evolution
they noticed. Therefore, we cannot rule out or confirm such a small
evolution using the current sample.

5.4 Effect of potential selection bias on o'y, 1

A potential source of systematic uncertainty in our analysis is the
lack of a selection model for the archival X-ray analysis. It is
well known that ignoring the sample selection can lead to biased
estimation (Giles et al. 2017; Mantz 2019; Mulroy et al. 2019).
The modest sampling of Agm < 100 (see Fig. 2) leaves open the
possibility that only the X-ray brightest subset of clusters are being
measured at low optical richness. Such sample truncation in flux
would be likely to influence temperature selection, eliminating low-
Tx clusters and thereby distorting estimates of both the slope and
variance at low richness values. We defer a detailed study of X-ray
selection modelling to future work, but we argue that this secondary
selection effect is unlikely to be a source of significant systematic
uncertainty for the richest systems.

For the richest population, our estimate of Tx—Arm scatter is in
agreement with those of Rykoff et al. (2016) and Ge et al. (2019).
It is worth noting that, Ge et al. (2019) employed an independent
way of selecting the sample; thus, consistency with the estimate
of scatter is reassuring. We show in Appendix D that the current
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data do not display strong dependence on richness scale. The upper
limits on the mass scatter are secure for Agm > 100, but application
to lower richness systems could be biased if there is strong running
of the mass-richness scatter with scale. If the selection effect is not
negligible, it does have to be very large, 50 per cent, in order to
have a significant impact on our key result, i.e. oy, u. If we take a
scenario in which oy, 7, is underestimated by 50 per cent, then our
constraint on the mass scatter would be o1,y = 0.551“8:};, a shift
of about 20" uncertainty.

The most conservative approach is to interpret the mass scatter
constraints we report as appropriate to richness Agm > 100, since
the supplementary samples are, cumulatively, 50 per cent complete
above this richness. Under Poisson statistics, the expected fractional
scatter in richness at fixed mass would be 0.1 or less, which in turn
implies minimum mass scatter of 0.1 oupr), 22 0.13 for a mass-
richness slope of 1.3 (Farahi et al. 2016; Simet et al. 2017). This
value lies just outside the 20" low tail of our posterior joint-sample
constraints.

5.5 Sensitivity to 7x—M relation

Considering the size of systematic and statistical uncertainties,
incorporating different 7x—M relation does not have a significant
effect on the inferred oy, (5. We rely on Tx—M relation from the
WtG program (Mantz et al. 2015, 2016b) to infer o 1 4,.. There are
other estimates of Tx—M relation in the literature (Lieu et al. 2016;
Farahi et al. 2018b; Mulroy et al. 2019), but the way that Tx is
measured in this work is better aligned with the T measure of Mantz
etal. (2015). For example, Lieu etal. (2016) and Farahi et al. (2018b)
employ 7x measured within 300 kpc physical aperture while we use
core included r,s500 Tx values. For completeness, we can ask what
the impact of employing a different 7x—M relation would be. If we
use the My —Tx relation reported in (Mulroy et al. 2019), we get

On M. = 0.32J_r8:fé. The scaling relation values by (Lieu et al. 2016)

give O ppp. = 0.201’8;{;. Both results are statistically consistent with
our key result based on the WtG sample.

Our results should be interpreted with caution when the low
temperature or low optical richness clusters population is concerned.
The WtG sample (Mantz et al. 2015) mainly comprises clusters
with Tx < 5(keV). As a result, the inferred oy, pr)pg,, 1S mainly
valid for the most massive systems. Generalization of this finding
to clusters with low temperature should be taken with caution. A
future direction is to study the X-ray and mass properties of systems
with Agm < 70.

5.6 Application to DES cluster cosmology

The mass variance constraints we derive can inform priors for
cluster cosmology studies. For the DES survey, the model that links
observed cluster richness with halo mass (Costanzi et al. 2018) is
more complex than the lognormal population model we apply here.
In particular, Costanzi et al. (2019) develop an explicit model of
projection that is a component of a hierarchical Bayes framework
for Pr(Arm|M, z). The base of that framework is an intrinsic halo
population variance frames as a Poisson distribution convolved with
a Gaussian of width, o .

However, Costanzi et al. (2018) find that a lognormal model
for the intrinsic halo population gives cosmological constraints
consistent with the Poisson plus Gaussian model, and posterior
estimates of Pr(M |Arwm, z) are found to be nearly lognormal. More
work is needed to fully incorporate constraints of the type derived
in this study into cosmological analysis pipelines.
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6 CONCLUSION

We use archival X-ray observations of 168 redMaPPer clusters
identified in DES-Y1 imaging to place limits on the mass variance
at fixed galaxy richness, a critical component of cluster cosmology
analysis. The X-ray observables, Tx and Lyx, of galaxy clusters at
redshifts 0.2 < z < 0.7 falling within archival Chandra or XMM
archival data are extracted via MATCha and XAPA processing
pipelines, respectively. We determine parameters of a power-law
Tx—Xrm relation, particularly the residual scatter in the log of
temperature conditioned on richness, and infer the halo mass scatter
at fixed optical richness using a lognormal multiproperty population
model.

Given the modest sample size and the lack of a detailed X-ray
selection model, we do not attempt to add scaling of the mass
variance with cluster richness or redshift. The median redshift of
both samples is 0.41 while the median richness is 76 for Chandra
and 47 for the larger XMM sample. We infer residual scatter in
temperature at fixed richness, o1, 7|, = 0.26 £ 0.03 (Chandra) and
0.29 £ 0.03 (XMM). The moderately larger variance in the lower
richness XMM sample may be providing a hint of mass dependence.
Larger samples and a model for archival X-ray selection are required
to address this issue.

Constraining the mass scatter requires additional information: the
slope and variance of the Tx—M relation as well as the correlation
between Ary and Tx at fixed halo mass. Incorporating values
from the Weighing the Giants and LoCuSS samples, respectively,
and using the richness-conditioned temperature variance from the
combined sample, we derive the mass scatter parameter, o,y =
0.30 £ 0.04 (a0 &= 0.09 (5y5).

Our joint X-ray sample mainly consists of optically rich clusters,
Arm > 100, with cumulative completeness of about 50 per cent
complete, and the prior on Tx—M relation is taken from the WtG
program, where the sample mainly consists of hot clusters with
Tx < 5keV. Therefore, our results should be interpreted as the
mass scatter constraint on clusters of richness Agry > 100. A
generalization to lower mass systems should be done with care
as more work is needed to model selection in the sparsely sampled
low richness population.

The contribution of the external parameter uncertainties in
these systematics to the overall uncertainty budget is considerable.
Therefore, as we make progress to better understand the scaling
relations of multiwavelength observables, it is necessary to pay
attention to the off-diagonal elements of the mass-conditioned prop-
erty covariance matrix. Mantz et al. (2016a) pioneered empirical
estimates of the full covariance matrix for X-ray observables and
Farahi et al. (2019) take the lead in combining optical, X-ray, and
SZ observables in the LoCuSS sample. Improved understanding of
the broad property covariance matrix behaviour will allow us to
improve the mass variance constraints from studies such as this.
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APPENDIX A: CLUSTER CATALOGUES

In Tables Al and A2, we provide the optical and the X-ray
properties of Chandra and XMM clusters, i.e. the data vector,
employed in this work. The MEM_MATCH_ID is the redMaPPer

MEM_MATCH_ID 2 LAMBDA_CHISQ ~ LAMBDA _CHISQ (X-ray peak) kT (keV) Obsid (s)
2 0.310 195.07 + 6.78 200.65 % 6.90 10.907084 9331,15099

3 0.424 174.46 £ 5.07 171.91 + 4.49 7.39704) 13396,16355,17536

4 0.307 146.24 + 4.04 144.10 % 4.00 10.24%03°  12260,16127,16282,16524,16525,16526
5 0.355 178.84 £ 8.71 188.40 £ 10.06 14.89+0:32 4966

6 0.373 139.18 + 4.67 138.85 + 4.72 7.8870%8 13395

8 0.243 135.48 £ 5.08 136.44 + 4.69 12167035 15097

10 0.330 141.08 % 5.96 142.26 + 6.28 9.487013 11710,16285

12 0.534 160.33 £ 6.45 159.39 £ 6.29 7.51H59% 13466

14 0.282 129.00 £ 4.30 132.86 £ 4.36 9.4610:56 3248,11728

15 0.610 169.08 £ 5.77 165.92 £ 5.63 771108 12264,13116,13117

16 0.289 132.62 + 4.75 13037 £ 4.73 6.25723 17162,16271,17162

17 0.597 144.88 +5.51 152.04 % 5.00 14.32%033 13401,16135,16545

19 0.421 127.98 £ 4.61 124.99 + 4.26 11.837)2 12259

20 0.231 136.78 +£7.18 135.36 + 6.69 9.887072 15108

21 0.350 139.94 + 7.49 125.67 + 5.83 5.867043 17185
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Table A2. XMM clusters.

A. Farahi et al.

MEM_MATCH_ID 5 LAMBDA_CHISQ ~ LAMBDA_CHISQ (X-ray peak) ~ kTx (keV) XCS_NAME
1 0.430 234.50 & 7.52 238.88 & 7.37 8.07037 XMMXCSJ025417.8-585705.2
2 0310 195.07 & 6.78 198.50 & 6.67 6.11701% XMMXCSJ051636.6-543120.8
3 0.424 174.46 £ 5.07 171.91 £ 4.79 5787010 XMMXCSJ041114.1-481910.9
4 0.307 146.24 + 4.04 149.23 4 3.98 8.467073 XMMXCSJ024529.3-530210.7
5 0.355 178.84 + 8.71 190.51 % 10.17 339708 XMMXCSJ224857.4-443013.6
8 0.243 135.48 + 5.08 135.74 + 4.70 9.48103¢ XMMXCSJ213516.8-012600.0
10 0.330 141.08 + 5.96 140.76 + 5.94 7.06707%8 XMMXCSJ213511.8-010258.0
14 0.282 129.00 + 4.30 134.66 + 4.43 7457024 XMMXCSJ233738.6-001614.5
15 0.610 169.08 + 5.77 164.19 + 5.68 7.297078 XMMXCSJ055943.5-524937.5
17 0.597 144.88 + 5.51 150.54 + 4.93 12,1108 XMMXCSJ234444.0-424314.2
19 0.421 127.98 + 4.61 125.71 + 4.58 831707 XMMXCSJ043818.3-541916.5
20 0.231 136.78 + 7.18 134.34 + 6.71 8.05104% XMMXCSJ202323.2-553504.7
24 0.494 126.99 + 4.31 127.26 + 4.33 5797017 XMMXCSJ024339.4-483338.3
25 0.427 130.39 + 6.17 131.88 + 6.31 526107 XMMXCSJ213538.5-572616.6
26 0.450 138.53 + 6.45 138.08 + 6.31 6.411028 XMMXCSJ030415.7-440153.0

Cluster Identification Number that shall be used to match the
X-ray clusters to the original redMaPPer clusters (McClintock
et al. 2019). The full original redMaPPer DES Y1A1 catalogues
will be available at http://risa.stanford.edu/redmapper/ in FITS
format. LAMBDA_CHISQand LAMBDA_CHISQ (X-ray peak)
are the original redMaPPer optical richness and the new richness
assigned to each cluster at the location of the X-ray emission peak,
respectively. XCS_NAME in Table A2 is the unique source identifier
which could be used to match with the XCS source catalogue (Giles
et al. in preparation). The full X-ray catalogues will be available
from the online journal in machine-readable formats.

APPENDIX B: X-RAY EMISSION PEAK
CENTRING SENSITIVITY

We are concerned about the relation between the properties of the
redMaPPer-selected cluster observables and its host halo. Therefore,
we need to correct for the fraction of the miscentred population. The
mass scale of the redMaPPer host haloes is studied in McClintock
et al. (2019) by correcting for the miscentred clusters. Instead of
modelling, we correct our cluster observables with an associated
X-ray centre. To assign a centre, we assume the hot gas content
of galaxy clusters traces the gravitational potential sourced by the
host halo. Specifically, we estimate the centre of the host halo with
the location of the X-ray emission peak. We run the redMaPPer
algorithm and assign a new optical richness to each X-ray extended
source which is matched to a redMaPPer-selected cluster. Fig. B1
shows the assigned richness at the X-ray emission peak versus the
original redMaPPer richness. Except for a handful of miscentred
clusters, the change in the richness is negligible (see Zhang et al.
2019, for more detail). We also find that the estimated richness is
insensitive to the data obtained by different instruments and the two
X-ray analysis pipelines.

APPENDIX C: RICHNESS-TEMPERATURE
COVARIANCE

Farahi et al. (2019) studied the full property covariance of 10
observables, including redMaPPer richness and X-ray temperature,
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Figure B1. Re-estimation of redMaPPer-selected clusters richness at the
X-ray emission peak versus their original redMaPPer richness. Left-hand
(right-hand) panel shows the clusters with a matched X-ray source in the
Chandra (XMM) archival data set. The black line is a unity line for the
reference.
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Figure C1. The marginalized posterior distribution for the In (Arym) and
In (Tx) correlation coefficient about fixed host halo mass employed in this
work. This is taken from Farahi et al. (2019).

regressed on the weak-lensing mass. Their sample consist of a 41
X-ray luminosity selected, low-redshift clusters with weak-lensing
mass measurement for each individual cluster. Fig. C1 presents
their marginalized posterior distribution for the In (Agym) and In (7x)
correlation coefficient about weak-lensing mass, which is employed
in this work. Clearly a strong positive and negative correlations are
ruled out with a high statistical significance.

APPENDIX D: RUNNING OF VARIANCE WITH
RICHNESS

We further study the change in the scatter parameter for a subset
of clusters by progressively applying Arm > Acye (Fig. D1). We
find that within the 68 per cent statistical confidence intervals the
estimated intrinsic scatter about the mean relation does not change.
This implies that the bias caused by the X-ray analysis pipeline is
negligible, or otherwise there is a miraculous running of the scatter
that cancels the X-ray selection bias. Saying that, one should be
cautious that a different subset of redMaPPer cluster sample, with
a larger sample size or a different X-ray analysis pipeline, can have
different characteristics.

0.34 { === Chandra
== XMM

/\CUt

Figure D1. Constraints on the scatter of the Tx—Arwm relation derived from
subsamples of Chandra (blue, dashed line) and XMM (red solid line) data
thresholded by redMaPPer richness, Arm > Acue. Shaded regions show
68 per cent confidence intervals.

Mass variance of DES redMaPPer clusters 3353

'McWilliams Center for Cosmology, Department of Physics, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15312, USA

2Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
3 Department of Physics, Yale University, New Haven, CT 06511, USA
4Department of Astronomy, University of Michigan, Ann Arbor, MI 48109,
USA

SSanta Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
Department of Physics and Astronomy, Pevensey Building, University of
Sussex, Brighton, BN1 9QH, UK

7 Astrophysics & Cosmology Research Unit, School of Mathematics, Statis-
tics & Computer Science, University of KwaZulu-Natal, Westville Campus,
Durban 4041, South Africa

8 Department of Physics, University of Arizona, Tucson, AZ 85721, USA
9Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450,
Stanford University, Stanford, CA 94305, USA

10S1.AC National Accelerator Laboratory, Menlo Park, CA 94025, USA

U Astrophysics Research Institute, Liverpool John Moores University, IC2,
Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 SRF, UK

R Universitits-Sternwarte, Fakultit fiir Physik, Ludwig-Maximilians Uni-
versitat Miinchen, Scheinerstr. 1, D-81679 Miinchen, Germany
3CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco
Pais 1, P-1049-001 Lisboa, Portugal

Ynstitute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ,
UK

15 Perimeter Institute for Theoretical Physics, 31 Caroline St. North, Water-
loo, ON N2L 2Y5, Canada

1 Department of Physics and Astronomy, Uppsala University, Box 516, SE-
751 20 Uppsala, Sweden

7 Sub-department of Astrophysics, Department of Physics, University of
Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK and
Department of Physics, Lancaster University, Lancaster LAI 4 YB, UK

18 nstituto de Astrofisica e Ciencias do Espaco, Universidade do Porto,
CAUP, Rua das Estrelas, P-4150-762 Porto, Portugal

19Depamzmento de Fisica e Astronomia, Faculdade de Ciencias, Universi-
dade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal

20 Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510,
USA

2Unstitute of Cosmology and Gravitation, University of Portsmouth,
Portsmouth, PO1 3FX, UK

22Department of Physics & Astronomy, University College London, Gower
Street, London, WCIE 6BT, UK

23 Centro de Investigaciones Energéticas, Medioambientales y Tecnolégicas
(CIEMAT), E-28040 Madrid, Spain

241 aboratério Interinstitucional de e-Astronomia - LlneA, Rua Gal. José
Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil

2 Department of Astronomy, University of Illinois at Urbana-Champaign,
1002 W. Green Street, Urbana, IL 61801, USA

26 National Center for Supercomputing Applications, 1205 West Clark St.,
Urbana, IL 61801, USA

2T Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of
Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona),
Spain

B nstitut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona,
Spain

D nstitute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can
Magrans, s/n, E-08193 Barcelona, Spain

300bservatério Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-
20921-400, Brazil

3 Department of Physics, HT Hyderabad, Kandi, Telangana 502285, India
32Excellence Cluster Origins, Boltzmannstr. 2, D-85748 Garching, Germany
3B Faculty of Physics, Ludwig-Maximilians-Universitit, Scheinerstr. I, -
D81679 Munich, Germany

34 Kavli Institute for Cosmological Physics, University of Chicago, Chicago,
IL 60637, USA

35 Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid,
E-28049 Madrid, Spain

36 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stan-
ford, CA 94305, USA

MNRAS 490, 3341-3354 (2019)

020Z YoJe\ Z0 uo Jasn AusiaAlun salooly uyor joodisa] Aq €0¥125S/ L EE/S/06110B1Sqe-0j0E/seiul/woo dnoolwepese//:sdiy Woll papeojumod



3354  A. Farahi et al.

37 Center for Cosmology and Astro-Particle Physics, The Ohio State Uni-
versity, Columbus, OH 43210, USA

38Department of Physics, The Ohio State University, Columbus, OH 43210,
USA

3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138,
USA

ODepartment of Astronomy/Steward Observatory, University of Arizona,
933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

41 Australian Astronomical Optics, Macquarie University, North Ryde, NSW
2113, Australia

42Departament0 de Fisica Matemdtica, Instituto de Fisica, Universidade de
Sao Paulo, CP 66318, Sdao Paulo, SP, 05314-970, Brazil

$George P. and Cynthia Woods Mitchell Institute for Fundamental Physics
and Astronomy, and Department of Physics and Astronomy, Texas A&M
University, College Station, TX 77843, USA

4 Department of Astrophysical Sciences, Princeton University, Peyton Hall,
Princeton, NJ 08544, USA

MNRAS 490, 3341-3354 (2019)

4 Institucié Catalana de Recerca i Estudis Avangats, E-08010 Barcelona,
Spain

46School of Physics and Astronomy, University of Southampton, Southamp-
ton, SO17 1BJ, UK

4T Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas,
13083-859, Campinas, SP, Brazil

4 Computer Science and Mathematics Division, Oak Ridge National Labo-
ratory, Oak Ridge, TN 37831

4 Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL
60439, USA

0Cerro Tololo Inter-American Observatory, National Optical Astronomy
Observatory, Casilla 603, La Serena, Chile

S'Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse,
D-85748 Garching, Germany

This paper has been typeset from a TEX/I&TEX file prepared by the author.

020Z YoJe\ Z0 uo Jasn AusiaAlun salooly uyor joodisa] Aq €0¥125S/ L EE/S/06110B1Sqe-0j0E/seiul/woo dnoolwepese//:sdiy Woll papeojumod



