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ABSTRACT

We use photometric redshifts derived from new u-band through 4.5µm Spitzer IRAC photometry in the 4.8 deg2

of the XMM-LSS field to construct surface density maps in the redshift range 0.1-1.5. Our density maps show

evidence for large-scale structure in the form of filaments spanning several tens of Mpc. Using these maps, we identify

339 overdensities that our simulated lightcone analysis suggests are likely associated with dark matter haloes with

masses, Mhalo, log(Mhalo/M�) >13.7. From this list of overdensities we recover 43 of 70 known X-ray detected and

spectroscopically confirmed clusters. The missing X-ray clusters are largely at lower redshifts and lower masses than

our target log(Mhalo/M�) >13.7. The bulk of the overdensities are compact, but a quarter show extended morphologies

which include likely projection effects, clusters embedded in apparent filaments as well as at least one potential cluster

merger (at z ∼ 1.28). The strongest overdensity in our highest redshift slice (at z ∼ 1.5) shows a compact red galaxy

core potentially implying a massive evolved cluster.

Keywords: galaxies: general — galaxies: evolution — galaxies:formation — galaxies: photometry —

galaxies: statistics

Corresponding author: Nick Krefting

nicholas.krefting@tufts.edu

ar
X

iv
:1

91
2.

02
23

8v
1 

 [
as

tr
o-

ph
.G

A
] 

 4
 D

ec
 2

01
9

mailto: nicholas.krefting@tufts.edu


2

1. INTRODUCTION

Many studies over the last few decades have shown that the local density in which a galaxy resides affects its growth,

quenching and morphology (e.g. Cochrane & Best 2018). The physical mechanisms through which the environment

plays a role include gas accretion, feedback, and galaxy interactions. At low redshift, this environmental dependence

is well known, with ‘red and dead’ elliptical galaxies dominating in denser environments, while star-forming spirals are

more commonly found in the field (e.g. Dressler 1980; Norberg et al. 2002; Peng et al. 2010). Higher-z studies also show

environmental trends such as the faster build-up and quenching of more massive galaxies in denser environments (e.g.

van der Burg et al. 2013; Etherington et al. 2017) and more generally the dependence of the specific star formation

rate (SFR) on local environment (e.g. Duivenvoorden et al. 2016) as well as large scale environment such as proximity

to a filament (Malavasi et al. 2017; Laigle et al. 2017).

To help elucidate the mechanisms through which the environment affects galaxy and black hole evolution, we need

surveys that reach high enough redshift to sample the epochs where the bulk of the stellar and black hole mass were

assembled (the bulk of stellar mass growth happened at z ∼ 0.5− 2; Madau & Dickinson 2014). We also need a large

enough volume to sample a representative range of environments with good statistics. Spectroscopic surveys are ideal

because of their ability to localize galaxies in 3D precisely; however, they do not reach to high enough redshift with

high enough sampling rates (e.g. see the VIPERS survey Guzzo et al. 2014, for state of the art) and tend to be biased

against redder galaxies by selection. High quality photometric redshifts can work as shown for the COSMOS survey

(e.g Darvish et al. 2015a; Laigle et al. 2016), but, with an area of only 2 deg2, this survey is not quite a representative

cosmic volume and suffers from significant cosmic variance and poor statistics at the high-mass end (Moster et al.

2011; Darvish et al. 2015b; Yang et al. 2018).

The Spitzer Extragalactic Representative Volume Survey (SERVS; see Mauduit et al. 2012, for survey definition and

early results) was designed specifically to address these issues. With a total volume of ≈ 1 Gpc3 out to z ∼ 3, this

survey reaches galaxies down to stellar masses of M∗ ∼ 109.5M� at z ∼ 2, corresponding to the epoch of “cosmic noon”

and probes the full range of environments from voids to massive clusters. The survey centers on the Spitzer IRAC

data which samples the rest-frame near-IR out to cosmic noon and therefore allows for accurate stellar parameter

estimation (Muzzin et al. 2009). The full multi-wavelength coverage, spanning from the X-rays to the radio, allows

us to derive accurate photometric redshifts, star-formation rates and AGN presence and strength for our galaxies. In

a series of papers, we use the SERVS and ancillary data to explore the role of environment in galaxy and black hole

evolution.

In this first paper of the series, we construct 2D density maps for the 4.8 deg2 XMM-LSS field where we have the

most uniform and deep multiwavelength coverage in hand. The XMM-LSS field is already 2.5× the size of COSMOS

with estimated ≈300 dark matter halos with log(Mhalo/M�) > 13.7. The existing massive halo catalogs in this field

are the X-ray cluster catalogs (Clerc et al. 2014; Adami et al. 2018). Our density maps allow us to construct an

independent and complementary catalog of the massive halos in this field. This is because of our catalog having a

redshift-independent halo mass limit whereas X-ray cluster selection has a strong redshift dependence of its limiting

mass. In addition, density-maps allow us to find overdensities that are not yet virialized, X-ray emitting halos. This

paper is also a test case of what we can do with the quality of photometric data that are expected in the near future

for a total of ≈15 deg2 spread across four fields with matching coverage from the u-band through the mid-IR. We

demonstrate our ability to recover the highest density peaks and even pick up some large scale structure like filaments.

We stress, however, that, being based on photometric redshifts, our overdensities are only candidates. They require

spectroscopic confirmation. This should be available for many of these overdensities in the near future since this fields

is also covered by the ongoing DEVILS and the upcoming Prime Focus Spectrograph (PFS) spectroscopic surveys

(Davies et al. 2018; Tanaka et al. 2017) which will significantly increase the spectroscopic coverage of the field out to

cosmic noon.

This paper is organized as follows. In Section 2 we discuss the photometric and spectroscopic data in the XMM-LSS

field. We also discuss the lightcone of simulated galaxies we use to help us interpret our observational results. In

Section 3, we present our analysis. This includes photometric redshift determination and uncertainty estimates, as well

as density map generation in the simulated and observed dataset. We present a list of 339 overdensity-selected cluster

candidates and compare them with catalogs of spectroscopically-confirmed X-ray clusters in the field. In Section 4, we

give our summary and conclusions. Throughout this paper, we adopt the Planck2015 cosmology (Planck Collaboration

et al. 2016), such that Ωm= 0.3075, ΩΛ= 0.691 and H0 = 67.74 km s−1Mpc−1. All magnitudes are in the AB system.



3

Figure 1. Left: Separation of stars and galaxies using the J -Ks vs g-i color cut described in Baldry et al. (2010). Right: The
differential Ks number counts after star removal. The counts from Jarvis et al. (2013) are included for reference. The red dashed
line indicates the Ks magnitude limit of 23 which we adopt for this work for consistency with the simulated lightcone (note our
lightcone is constructed based on a 3.6 µm-limited sample not a Ks-limited one).

2. DATA

2.1. Photometry

Our photometric data rely on the multiwavelength coverage of SERVS, that provides Spitzer IRAC 3.6 and 4.5µm

data of a depth sufficient to reach below M∗ (based on the compilation in Madau & Dickinson 2014) at cosmic noon

across an area wide enough to cover a representative volume of the Universe. Specifically, it reaches a 5σ point source

depth of ≈2 µJy (AB = 23.1) and covers 18 deg2 spread across five fields to combat cosmic variance (see Moster

et al. 2011). Each field has an area of ∼2-5 deg2 which allows for large extended structures such as protoclusters and

filamentary networks to be studied (Yamada et al. 2012; Chiang et al. 2017).

In this paper we focus on the XMM-LSS field for which a new multi-band photometric catalog has been constructed

using forced photometry (Nyland et al. 2017, and Nyland et al. 2019 in prep). This catalog was constructed using the

Tractor code (Lang et al. 2016) and uses one image as a reference for the source model which includes positions and

surface brightness profiles of galaxies. The VIDEO Ks-band is the preferred reference image for the bulk of the galaxies,

but other bands are used under certain circumstances such as gaps in coverage. These source models are applied across

all other bands. This method is particularly crucial for deblending the IRAC 3.6 and 4.5µm photometry. We use

this catalog for the u-through-4.5µm photometry. For the longer wavelength photometry including IRAC 5.8µm and

8.0µm and MIPS 24µm (from SWIRE; Lonsdale et al. (2003)) and Herschel SPIRE 250, 350 and 500µm photometry

we use the band-merged catalog published by the Herschel Extragalactic Legacy Program (HELP; Vaccari 2016; Shirley

et al. 2019)1. The HELP team also have published photometric redshifts in the field (Duncan et al. 2018), but this is

based on their band-merged catalog (Shirley et al, in prep.) as opposed to the forced photometry catalog described

above. We compare our photometric redshifts (derived below) with the HELP photometric redshifts. We find them

to be consistent out to z ∼ 1; however, our IRAC-deblending (thanks to the forced photometry catalog) leads to more

accurate redshifts at z ∼ 1− 2. Therefore in this paper we use our own photometric redshift estimates. Since Duncan

et al. (2018) use AGN templates in their photo-z analysis, for the objects flagged as AGN (see below), we adopt the

Duncan et al. (2018) photometric redshifts for AGN. We also use the spectroscopic redshifts and quality flags (see

below) as compiled in the HELP catalog 2.

1 http://hedam.lam.fr/HELP
2 See also: http://www.mattiavaccari.net/df/specz/
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In the 4.8 deg2 XMM-LSS field, there are ∼ 1.25 million objects. We remove stars by using the Baldry et al. (2010)

J −Ks vs. g − i color cut, leaving us with ∼ 1.09 million non-stellar objects (see Figure 1). In the right-hand panel

of Figure 1 we plot the differential Ks-band number counts in the field using Tractor photometry and compare them

with the counts using the VIDEO photometry from Jarvis et al. (2013). Tractor measures flux by fitting a surface

brightness profile, whereas Jarvis et al. (2013) use a fixed aperture. Tractor thus collects more flux from brighter,

extended sources, accounting for the discrepancy between the two number counts at brighter magnitudes. We also

overlay the counts from our simulated lightcone (see below for details). This lightcone assumes the original depth

of SERVS in the IRAC bands (see Mauduit et al. 2012) which leads to significant incompleteness above Ks ∼ 23.

Our current Tractor photometry, which uses the Ks image as a reference has allowed us to reach below the original

single-band based photometry of SERVS. Since we rely on our simulated lightcone for analysis, though, we limit our

sample to Ks < 23 to ensure a closer comparison. This yields 441,969 galaxies. We finally remove 16,211 additional

objects classified as stars in SDSS (but missed in Figure 1). This leads to a final sample of 425,758 galaxies.

In this sample we also flag any AGN, which we select based on: a) X-ray counterpart Chen et al. (based on the 2018,

catalog), b) having AGN-like mid-IR colors, or c) being spectroscopically classified as AGN in SDSS, leading to a total

of 2,113 potential AGN. AGN are not removed from the sample because we are interested in the effect of environment

on the incidence, type, and strength of the AGN. However, given their typically significantly more uncertain redshifts

we exclude them in the redshift quality assessment shown in Section 3.1 as well as the density map determinations in

Section 3. Because the number of AGN is so small, this has negligible effect on our results.

2.2. Spectroscopic data

The XMM-LSS field has significant spectroscopic redshift coverage. This is primarily from the VIMOS VLT Deep

Survey (VVDS; Le Fèvre et al. 2013) and the VIMOS Ultra-Deep Survey (VUDS; Le Fèvre et al. 2015). The VVDS

and VUDS are i -band magnitude selected surveys, going down to iAB = 24 and iAB ' 25, respectively. These data

are complemented by the VIMOS Public Extragalactic Redshift Survey (VIPERS) (Guzzo et al. 2014) down to iAB

= 22.5, the PRIsm MUlti-object Survey (PRIMUS) (Coil et al. 2011; Cool et al. 2013) down to iAB = 23, the Sloan

Digital Sky Survey (SDSS) (Alam et al. 2015) down to iAB = 21.3, the UKIDSS Ultra-Deep Survey (UDSz) (Bradshaw

et al. 2013; McLure et al. 2013) down to iAB = 25 and the Australian Dark Energy Survey (OzDES) (Yuan et al.

2015) down to rAB = 25. Note that these do not all cover the full area and targetted campaigns such as for cluster

confirmation in the field (see e.g. Adami et al. 2018) are not included. These spectroscopic data are compiled as part

of HELP and documented on their website3. We also supplement with redshifts from the VANDELS survey (McLure

et al. 2018; Pentericci et al. 2018), which uses the VIMOS spectrograph down to a limit of iAB=27.5. In total 76,016

sources in our sample have spectroscopic redshifts available in the XMM-LSS, 16,342 of which have been flagged as

> 99% reliable in the HELP catalog. This represents 3.7% of our sample.

2.3. Simulated data

To assess the reliability of environment measures in the presence of photometric redshift uncertainties, we employ

a simulated catalog designed to cover an area and volume equivalent to the SERVS survey. Our simulated data are

built from the Millenium N-body simulation (Springel 2005). Model galaxies were constructed using the Lagos12

GALFORM semi-analytic model (Lagos et al. 2012; Cole et al. 2000) using the method described in Merson et al.

(2013). GALFORM models the main physical processes of galaxy formation and evolution, using the formation histories

of dark matter haloes as a starting point. Our lightcone covers 18 deg2 and spans the redshift range 0.0 < z < 6.0,

containing 1,518,854 galaxies4. This translates to ≈ 400,000 in an 4.8 deg2. field consistent with our data (after the

Ks < 23 cut). Galaxy stellar mass and parent halo mass are both outputs of the lightcone. We also have simulated

observations of each galaxy in the SDSS z-band, the DECam Y -band, and the UKIRT J-, H-, K-, and Ks-bands. The

cosmology of the simulated lightcone is different than that which we assume for our observed sample, but we correct

for this by multiplying masses by the value of h appropriate to each sample.

3. ANALYSIS

3.1. Photometric redshifts

3 http://hedam.lam.fr/HELP
4 This lightcone is publicly avaialble at astro.dur.ac.uk/~violeta/sw/servs.tar.gz.

astro.dur.ac.uk/~violeta/sw/servs.tar.gz
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Table 1. Systematic offsets (magdata - magtemplate) for each filter used to calculate photometric redshifts in the XMM-LSS
catalog.

Filter offsetWide offsetDeep offsetUltraDeep Filter offsetWide offsetDeep offsetUltraDeep

u* 0.2748 0.2372 0.2472 J 0.1235 0.0894 0.1475

g -0.0031 -0.0848 -0.0742 H 0.0417 0.0024 0.0370

r -0.0161 -0.2028 -0.0610 Ks -0.1102 -0.1433 -0.1131

i -0.0534 0.0440 -0.0111 [3.6] 0.0207 0.0156 0.0016

z -0.0701 0.0662 -0.0245 [4.5] -0.0029 -0.0016 -0.0031

y 0.0306 0.0337 -0.0084

Only ∼ 4% of the sources in the field have spectroscopic redshifts (Section 2.2), so we need photometric redshifts

in order to trace the galaxy density field. We determine photometric redshifts using the EAZY code (Brammer et al.

2008)5. EAZY compares input photometry to a linear combination of template spectral energy distributions (SEDs)

realized across a range of redshifts, returning the redshift of the combination giving the smallest χ2 value and a redshift

probability distribution function p(z) for each galaxy. We use the EAZY template library including emission lines as

well as a dusty star-forming template. We evaluate using the EAZY default redshift range from 0 < z < 8 in steps of

0.01(1 + z).

We employ an iterative zero-point correction algorithm (see Brodwin et al. 2006; Ilbert et al. 2006) to correct

for systematic magnitude deviations between the template set and our photometry. Here, we restrict ourselves to

those galaxies with high quality spectroscopic redshifts for efficiency of iteration.6 After determining photo-z’s for

this subsample, we compute the median ratio between the best-fit template fluxes and the catalog fluxes in each

photometric band. We then re-run EAZY, correcting the flux through each band by multiplying the flux by this ratio.

We iterate this process until the flux ratios converge within 1% of unity (as in Ilbert et al. 2006). The XMM-LSS is

nearly uniformly covered by the SERVS survey (modulo a tiling pattern), but features three separate levels of depth

in the optical from the HSC. Differences in coverage and depth affect the relative weight of given bands in the fit and

therefore may affect the zero point corrections. We therefore perform this procedure separately for the HSC Wide,

Deep, and UltraDeep patches. The zero-point magnitude offsets computed in this way are presented in Table 1. We

note that these offsets are correcting for the the fact the particular template set used by EAZY may not be fully

representative of the real galaxies spectra as well as for any systematic offsets in the photometry.

After the above procedure, the bulk of the sources (>96%) show nominally excellent fits with reduced χ2 < 3. The

p(z)’s are typically single-peaked, but show increasing incidences of multiple peaks with increasing Ks magnitude. By

adopting a Ks < 23 cut as discussed above, we minimize the effect of multiple significant solutions. In addition, in the

density map analysis presented in the next section, the full p(z) profiles for each galaxy are taken into account and
therefore any remaining sources with multiple peaks naturally have lower weight in the density map calculation.

Our choice of using a template-based method for deriving photometric redshifts is driven by the fact that non-

template based methods rely more heavily on training on the spectroscopic sample. This requires a spectroscopic

sample that is representative of the whole. The left-hand panel of Figure 2 shows the optical color-magnitude diagram

comparing the full photometric catalog with the subset of galaxies with spectroscopic redshifts. It is clear that the

spectroscopic subset is not representative of the whole. This is further highlighted in the right-hand panel of Figure 2,

where we show the photometric redshift distribution of all our sources compared with the spectroscopic redshift

distribution. It is clear that at redshifts of z >∼ 1, methods that heavily rely on spectroscopic redshift training will start

to fail/be less reliable. We have not explored the validity of the observed peak in the redshift distribution at z ∼ 1.9,

but our analysis does not extend that far therefore we ignore it at this point.

3.1.1. Photometric redshift accuracy

5 There are many choices here. The fact that we see comparable σNMAD and no significant systematic biases between our photometric
redshifts and those derived for the same dataset but using different models by Pforr et al. (2019) suggest our results are likely robust against
photometric redshift code systematics.

6 We tested using a random subsample of galaxies in our sample to avoid using the biased spectroscopic subsample. We found no
significant differences in the resulting redshift distribution.
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Figure 2. Left: The g-r color versus i-band magnitude for our sample. The black points and histograms represent all galaxies
in our sample, while the red points and histograms represent just those galaxies for which we have high quality spec-z’s as
defined in the text. Right: The photo-z distribution of our sample is shown (scaled as indicated) as the filled blue histogram.
The spec-z distribution (scaled for comparison) is plotted as the open histogram.

We assess the photo-z accuracy in two ways (Figure 3). We begin with the standard approach of comparing the

photometric and spectroscopic redshifts. We characterize the accuracy of the photo-z’s via:

σNMAD = 1.48×median
|zspec − zphot|

1 + zspec
, (1)

where σNMAD (the normalized median absolute deviation) is robust against catastrophic photo-z failure. We identify

outliers as objects with |zspec − zphot| > 0.15 (as in Ilbert et al. 2013; Dahlen et al. 2013). Before computing σNMAD,

we remove outliers from the distribution. This helps characterize the distribution of only those sources which had

relatively successful photo-z fits. We calculate σNMAD = 0.033 for our field, with outlier fraction foutlier = 3.25% and

a bias of 0.0172. We correct for this bias when we compute our density maps.

However, this standard approach has the drawback that the sub-sample with spectroscopic redshifts is not represen-

tative of the sample as a whole in a color-magnitude diagram (Figure 2). To overcome this, we also characterize our

uncertainty using the pair method of Quadri & Williams (2010). This method does not give reliable outlier fractions

or bias estimates, but uses the full photometric sample to compute σz/(1+z). This gives us sufficiently large numbers,

especially above z ∼ 1, to allow us to assess the uncertainties as a function of redshift.

The pair method exploits the observation that galaxies with close angular separation have a significant probability

of being physically associated, while the role of line-of-sight projections can be subtracted in a statistical sense. It

works as follows. For each galaxy in our sample, we first search for pairs separated by 2.5-15′′. Galaxies often contain

multiple pairs in this annulus, so the following procedure is done for all such pairs. For each pair we compute:

∆zpair = (zphot,1 − zphot,2)/(1 + zmean), (2)

where zmean represents the mean redshift of the pair. We then randomly assign each object new coordinates in the field

and perform the same procedure to obtain the distribution of ∆zpair’s for random line-of-sight projections. Subtracting

the random distribution of ∆zpair’s from the observed distribution of ∆zpair’s gives a the distribution for physically

associated galaxy pairs only7. This distribution for our full sample of z < 1.5 galaxies is shown in the middle panel of

Figure 3. The width of this distribution is a factor of
√

2 larger than the photo-z uncertainty per galaxy (because we

are dealing with pairs of galaxies).

7 The characteristic velocity differences between such physical pairs are much smaller than the photometric redshift uncertainties.
Therefore, we ignore this effect.
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Figure 3. Left: Comparison of photo-z with quality spec-z for galaxies with zphot < 1.5. The inset shows the distribution
of ∆zpair from which we derive σNMAD after removing the outliers. Points that do not lie between the dotted red lines are
considered outliers. Middle: Photo-z uncertainty distribution for sources with zphot < 1.5 based on the pair analysis. The single
(blue) and double (red) Gaussian fits are overlaid. The double Gaussian is clearly a better fit to the distribution, and provides
a weighted σpair/(1 + z) = 0.033. Right: Evolution of photo-z uncertainty from 0.0 < z < 1.6. The blue dashed line is an
interpolation of the function as described in 3.2.1.

Table 2. Redshift slices and comoving depths

bin z-range depth (Mpc) bin z-range depth (Mpc)

1 0.1 < z < 0.146 192 15 0.549 < z < 0.649 317

2 0.123 < z < 0.171 197 16 0.599 < z < 0.705 324

3 0.146 < z < 0.196 203 17 0.649 < z < 0.760 330

4 0.171 < z < 0.224 210 18 0.705 < z < 0.820 330

5 0.196 < z < 0.251 217 19 0.760 < z < 0.879 330

6 0.224 < z < 0.282 227 20 0.820 < z < 0.942 325

7 0.251 < z < 0.313 237 21 0.879 < z < 1.004 322

8 0.282 < z < 0.348 246 22 0.942 < z < 1.069 315

9 0.313 < z < 0.382 254 23 1.004 < z < 1.133 309

10 0.348 < z < 0.421 265 24 1.069 < z < 1.207 318

11 0.382 < z < 0.460 275 25 1.133 < z < 1.281 327

12 0.421 < z < 0.504 287 26 1.207 < z < 1.372 347

13 0.460 < z < 0.549 298 27 1.281 < z < 1.462 365

14 0.504 < z < 0.599 308 28 1.372 < z < 1.564 368

In the middle panel of Figure 3, we show that a single Gaussian can be a poor fit due to the presence of extended

wings on either side of the peak. As discussed in Quadri & Williams (2010), these wings likely result from the non-flat

redshift distribution of our field. We follow the recommendation of Quadri & Williams (2010) and fit the distribution

by a convolution of two Gaussians (see Quadri & Williams 2010, for full details) centered about zero. The weighted

sum of the standard deviations of the two Gaussians gives σpair/(1+z) using this method. For our sample, this double

Gaussian is clearly the better fit, and gives an uncertainty σpair/(1+z) = 0.033, consistent with σNMAD derived above.

The right-hand panel of Figure 3 shows the thus derived uncertainty as a function of redshift, in bins of ∆z = 0.25.

We find the uncertainties σpair/(1 + z) get significantly worse at z & 1.5; therefore, for the density map analysis in the

following sections, we will restrict ourselves to 0.1 < z < 1.5.

3.2. Surface density maps: method and validation



8

We follow the method of Darvish et al. (2015b), who construct 2D density maps based on photometric (and, where

available, spectroscopic) redshifts in the COSMOS field. In this method the surface density is estimated in redshift

slices via weighted adaptive kernel smoothing. This means that the kernel width adapts to the local density as

described below. This method allows us to probe adaptively smaller volumes than the more commonly-used fixed

aperture ‘cylinders’. The weights account for photometric redshift uncertainties which helps combat the significant

smearing of the signal along the line of sight (see Muldrew et al. 2012, for a comparison between different density

estimation methods).

3.2.1. Redshift slices

To obtain our redshift slices, we first linearly interpolate the redshift evolution of σpair/(1 + z) onto a finer grid.

Starting with z = 0.1 we set the start and end points for our bins such that each slice width is 2 × σpair evaluated

using the interpolation shown in the right-hand panel of Figure 3. We use overlapping redshift slices so that if a given

overdensity falls on the edge in one slice and therefore is significantly scattered outside of the slice it will, by design,

end up in the middle of the neighboring overlapping slice. Our redshift slices and their co-moving depths are given in

Table 2.

3.2.2. Weighted adaptive kernel smoothing

The weighted adaptive kernel smoothing works as follows. For each redshift slice, we identify the objects whose

median photo-z falls within that slice. We then weight each of the galaxies within our redshift slice by the fraction

of that object’s total p(z) that lies within the slice of interest. We proceed to estimate the surface density Σ̂(ri) at

each object’s location by summing over a kernel K. In Darvish et al. (2015b) this kernel is a weighted 2D Gaussian

whose width starts at h = 0.5 Mpc, but is adaptive, i.e. scaled by the local density in a manner analogous to that

described below. We test this algorithm first by taking the public COSMOS data and reproducing the density map

around a filament at z ∼ 0.5 that was published in Darvish et al. (2015a). While we successfully reproduce the results

of that study, we find the code to be slow8. We test three faster alternatives: a truncated Gaussian kernel KG(h), an

Epanechnikov (parabolic) kernel KE(h), and a top-hat kernel KT (h). The Epanechnikov kernel is defined as:

KE(ri, rj , h) =

 3
4h2 (1− (

ri−rj
h )2) where |ri − rj | < h

0 else,
(3)

where ri is the position of the object and rj is the position of each other object.

Following Darvish et al. (2015b), we choose an initial fixed kernel width h for the Gaussian kernel of 0.5 Mpc,

which corresponds roughly to R200 for a halo of 1013 M�. For the Epanechnikov kernel we get equivalent results

using an initial value of h = 1.0 Mpc. Using a fixed width would underestimate the density in overdense regions and

overestimate the density in underdense regions, so we calculate an adaptive smoothing width hi = h × λi for each

object. Here λi =

√
G/Σ̂(ri), where G is the geometric mean of all Σ̂(ri) values. To compute the surface density in

our redshift bins, we set up a regular grid in steps of 50 kpc. Thus, 50 kpc sets the minimum scale probed by our maps

in the plane of the sky. On top of this grid, the density maps are computed using the same kernel, but now using the

adaptive width hi. This surface density is converted to an overdensity with respect to the median surface density Σm

in the slice as follows:

δ =
Σ− Σm

Σm
. (4)

To help us decide between the different kernel options, we compute density maps using exact redshifts from the

simulated lightcone and the bins defined in Table 2. In Figure 4 (top panels) we show the relation between the

percentage rank of measured 2D overdensities and dark matter halo mass (using the main host halo mass for each

galaxy in our simulated lightcone, not sub-halos) for all galaxies in the range 0 < z < 1. For all kernels, we find that

the most overdense regions tend to correlate with high halo masses, suggesting we can indeed recover the peaks of the

density field with this method. To further help us differentiate between them, we consider two measures. The first tells

us how often a significant overdensity is observed when there is no corresponding high mass halo (i.e. a false positive

8 We ran timing tests and found the full Gaussian kernel to be 25× slower for a test run of ≈ 103 objects compared to the alternatives
listed, which all took comparable time.
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Figure 4. Here we use the 2D density maps calculated using the exact redshifts of the simulated galaxies to show how the
overdensity percentile compares with the host halo mass associated with each simulated galaxy. The top panel uses all galaxies
in the range 0<z<1 and the bottom ones uses all galaxies in the range 1<z<1.5. Contours are linearly spaced and indicate
constant galaxy number. These show that the bulk of galaxies that reside in high (> 80th) percentile overdensities live in high
mass halos (log(Mhalo/M�) >13 which is roughly group-scale). Therefore finding high percentile overdensities helps us find high
mass halos. We compare this behavior using a truncated Gaussian filter (left); an Epanechnikov kernel (middle); and a top-hat
kernel (right). Here flowmass is the fraction of galaxies above the 80th percentile within log(Mhalo/M�) < 12, while ∆highmass is
the width of the distribution of galaxies above the 80th percentile. On both counts, the Epanechnikov filter performs marginally
better than the truncated Gaussian; while the top-hat filter is the worst-performing.

measure). We compute this as the fraction of galaxies found in >80th percentile overdensities that are located in halos

with log(Mhalo/M�) <12 (flowmass). The other important measure is how closely halo mass maps onto overdensity

percentile (i.e. an accuracy measure). We compute this as the width of the halo mass distribution for all galaxies

found in 80th percentile overdensities after removing the galaxies in halos with log(Mhalo/M�) <12 (∆highmass). The

Epanechnikov filter performs the best in both measures, although the differences between the three filters are fairly

minor. In the bottom panels of Figure 4, we do the same analysis for galaxies in the range 1 < z < 1.5. We find that

the basic trends hold although, as expected, the false positive rate is now higher. This however is the result of using

a fixed percentile (here 80%) in selecting significant overdensities. As discussed below, we find it is more appropriate

to use an evolving percentile threshold.

3.2.3. Probing the density field with photometric redshifts

Here we investigate the recoverability of true overdensities given the uncertainties in our photometric redshifts. We

choose an arbitrary 4.8 deg2 subsection of the simulation to match the area of our XMM-LSS field and perform the
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Figure 5. Smoothed density maps of our simulation over the range 0.649 < z < 0.760 using the Epanechnikov kernel. Left:
Density map using exact redshifts. Right: Density map using uncertain redshifts mimicking our photometric redshift errors as
described in text. These show that while the high density peaks are weaker in the uncertain redshifts map, overall both the
peaks and the large scale structure are preserved.

density map analysis using both the exact redshifts and redshifts minimicking the photometric redshifts (see Figure 5).

To mimic what we do with the observed data, where we use the p(z) output from EAZY for each galaxy, we assign

an uncertain “photometric” redshift to each galaxy by drawing from a Gaussian distribution centered on the galaxy’s

exact simulated redshift zexact and a width given by the typical width of a galaxy’s p(z)9. We note that this is wider

than σpair(z) since this incorporates outliers, multiple-z solutions etc. We use this wider width as it approximates

better what we can do with the data itself. We know that this works since we get reasonably close distributions of

log(1 + δ) between simulations and data in this way. For a random subset of 3.25% of the objects, we assign a redshift

drawn from a uniform distribution in the range 0 < z < 3 to mimic the catastrophic outlier fraction. Lastly, 3.7% of

the objects are given redshifts equal to their exact simulated redshift to mimic our spec-z fraction. The latter fraction

of course is a function of redshift. However, it is small enough that its role is negligible here.

Figure 5 shows an arbitrarily chosen redshift slice at 0.649 < z < 0.760, where we compare the surface density

computed using the exact redshifts vs. uncertain redshifts as determined above. This figure highlights that the main

large-scale structures and strongest overdensities are largely preserved. This means that we are likely to recover

features, real or projected, that would appear if we had exact redshifts given the slice width we are using. There

are, however, significant differences as well. The amplitudes of the overdensities are generally lower in the uncertain

redshifts map (as expected). This is because the uncertainty in the redshifts tends to ‘smear’ the signal and decrease

the magnitude of over- and underdensities. Also apparent are some weaker “false” features in the uncertain redshifts

map not present in the exact map (see e.g. upper-right end of the maps). These arise due to real overdensities that

belong to neighbouring redshift slices being scattered into this slice by redshift uncertainties.

Next we investigate how reliably 2D density maps calculated including redshift uncertainties track the mass of the

host halo of the galaxies in the simulated lightcone. The left-hand panel of Figure 6 is similar to Figure 4 in that it

plots the percentile of the overdensity in which a galaxy is found against its host halo mass. However, here the density

maps are computed using uncertain redshifts (mimicking our photometric redshift errors). We again see a bimodality

in this distribution about a group scale (log(Mhalo/M�) ∼13), above which halo mass correlates with observed 2D

overdensity. However there are two marked differences: 1) there is significant presence of lower mass halos in high

density parts of the maps; and 2) there is significant range in observed percentile per halo mass. Given the first point,

we can only reliably recover halos with log(Mhalo/M�) & 13.7) going to higher percentiles in the density maps.

How reliably can we recover clusters (here defined as log(Mhalo/M�) > 13.7)? Given the second point above, we need

to find what percentile threshold mass for finding halos above said scale, minimizes false positives and false negatives.

The middle panel of Figure 6 illustrates this further by considering different two test thresholds aimed at finding halos

with log(Mhalo/M�) >13.7. Here we measure Ntrue/Nmeasured, the ratio of all halos in the simulation that meet the

mass criteria, to all such halos that are recovered using the particular percentile threshold. This ratio ideally should

9 We do not specifically simulate double peaked distributions as these form a negligible fraction of the whole for our K < 23 sample.
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Figure 6. Left: Similar to Figure 4, but now including the uncertainty in the photometric redshifts. This has the effect of
scattering galaxies from low density environments to high density ones and vice versa. The group scale is no longer reliably
recovered as many galaxies in smaller mass halos are found in > 80% overdensities. If we consider the recoverability of cluster
scales (here defined Mhalo > 1013.7M�) however, they can still be recovered at higher percentile levels. The red and black
horizontal lines are two test recoverability percentiles. Middle: The recoverability of log(Mhalo/M�) > 13.7 using these two
test thresholds as evaluated by Ntrue/Nmeasured (see text for details). The dotted black line corresponds to Ntrue/Nmeasured = 1
which corresponds to a minimal false positive rate – the higher red threshold is therefore preferable by this measure. Right:
Median percentage ranks to recover log(Mhalo/M�)> 13.7 as a function of redshift. Note that this threshold increases with
redshift as expected from hierarchical halo growth.

Figure 7. A sample XMM-LSS density map at 0.421< z <0.504. The red circles mark two known spectroscopically-confirmed
X-ray clusters (Clerc et al. 2014), XLSSC 49 and 53, both of which are located at z=0.50.

be ≈1 with a value << 1 showing significant number of false positives (suggesting the percentile threshold is too low)

while a value >> 1 shows significant number of false negatives suggesting the percentile threshold is too high).

In the right-hand panel of Figure 6 we show the percentile threshold that recovers log(Mhalo/M�) > 13.7 with

Ntrue/Nmeasured ≈ 1 as a function of redshift. This threshold increases with redshift as expected from hierarchical halo

mass growth – i.e. a high mass halo is more of an extreme in the density field at higher redshift than at lower redshift.

This evolving threshold is given by:

Percentile13.7 = 0.355z + 99.4. (5)

3.3. Observed SERVS XMM-LSS density maps

To compute the surface density maps for our observed data in the XMM-LSS field, we first correct for the measured

bias in the photometric redshifts by multiplying the redshifts by 1.0172. We also generate a mask where bright stars

(based on the bright star mask of Mauduit et al. (2012)), the field border, and image artifacts are all masked. This

mask brings the usable area of the field down to 4.0 deg2 For consistency, we mask a 0.8 deg2 area out of the border
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of the simulated field. This matches the area though obviously not the exact geometry of the observed masked field –

this is not relevant to the present paper though needs to be considered for any large scale structure studies.

In addition, there is some non-uniformity of coverage across the field, in particular with about 1/3 being covered

by the deeper optical HSC-UltraDeep patch, and the rest being covered by HSC-Deep. The difference in depth in the

grizy bands leads to lower uncertainties in the photometric redshifts for the HSC-Ultradeep patch than in the HSC-

Deep patch. This means they suffer less smearing and we end up seeing higher overdensities of sources in this patch

especially at z & 1. We found that this non-uniformity is minimized by using percentiles rather than the measured

overdensities in determining thresholds for finding significant overdensities (which is why we used percentiles in finding

the threshold for selecting log(Mhalo/M�) > 13.7 halos in Section 3.2.3).

Figure 7 gives an example of a density map for the XMM-LSS field. It shows qualitatively similar behavior to

that of the simulated maps shown in Figure 5. In particular, we see very similar large scale filamentary structures.

We defer our analysis of such structures to a subsequent paper in this series. We also circle two previously known

spectroscopically confirmed X-ray clusters, both recovered by our density maps (Overdensities 69 and 92 in Table 3,

see Section 3.4 for details).

Figure 8. Left: Histogram of overdensities corresponding to Mhalo & 1013.7 within an area of 4.0 deg2. The solid black line
are the distinct overdense regions above the threshold in our sample. In purple are the distinct overdense regions above the
threshold in the simulated lightcone with degraded redshift accuracy. For reference, in red is the distribution of halos with
Mhalo & 1013.7 in the simulation. in our sample as a function of redshift. The height of the red histogram is found by dividing
the 18 deg2 of the lightcone into four quadrants and averaging the count of halos in each quadrant (scaled by 4.0/4.5). The error
bars represent the maximum and minimum count among the four quadrants to give some sense of the impact of cosmic variance.
Middle: The open histogram represents the spectroscopically-confirmed X-ray clusters in the field based on Adami et al. (2018),
where the minimum cluster mass is log(M500/M�) = 13.3 which is below our target halo mass. The X-ray selection leads to
increasing mass limit with increasing redshift The filled histogram represents the known X-ray clusters we recover from our
density maps. The relative dearth of recovered clusters at lower redshifts is the result of the lower cluster masses thereof. Right:
The separations between the positions of our overdensities and their closest matching X-ray clusters. Note that at z ∼ 0.2 − 1
1 arcminute corresponds to ≈200-500 kpc. The shaded histogram shows this distribution for the non-extended overdensities only.
It is clear that these separations are largely driven by the uncertainty in the center positions of the overdensities.

3.4. Potential new clusters in XMM-LSS

Using our density maps for XMM-LSS and the percentile threshold for recovering halos of log(Mhalo/M�) > 13.7

given in Equation 5, we find 330 potential halos with log(M/M�) > 13.7 between 0.1 < z < 1.5 (339 if we allow for a

few more clusters that may be in this range or in the slice just above). Due to the use of overlapping redshift slices,

overdensities found in neighbouring slices in overlapping RA-Dec locations are counted only once. They are assigned

to the slice in which they are strongest. Our overdensities are listed along with their basic characteristics in Table 3.

Note that for overdensities selected in more than one slice the redshift ranges given in the table conservatively span

both slices.

The redshift distribution of our overdensities is given in the left-hand panel of Figure 8, where overdensities spanning

more than one redshift slice (see above) are assigned to the one where they have the highest percentile. We overlay

on that the redshift distribution of all halos with log(Mhalo/M�) >13.7 expected in our field based on our simulated

lightcone. We expect 279±35 such halos in the XMM-LSS. This errorbar represents the spread in this number when
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drawing random 4 deg2 patches from our 18 deg2 simulated lightcone and therefore approximates cosmic variance10.

We note that, at nearly 13%, cosmic variance is significant at this mass scale even for our relatively large field. On

the same figure we overlay the histogram derived by applying photometric redshift uncertainties to our lightcone,

generating 2D density maps and extracting likely clusters based the exact same procedure as applied to the real data.

The fact that this distribution recovers quite closely the simulated halos histogram, suggests our procedure is robust

in recovering such structures11. The recovered such structures from the observed XMM-LSS field is also quite close –

indeed it is only ≈ 18% above the expected number from the simulated lightcone (only a few percent above if we take

the upper limit from our cosmic variance test). This difference is small enough that it can still be attributed to cosmic

variance (given our rough estimate thereof). However, it can also be due to a non-negligible false positive rate. This

could result from slightly overestimating our redshift uncertainties – which means we have less redshift smearing and

somewhat higher densities than in the simulations.

In Table 3 we also include a morphology column which flags overdensities that have significant spatial extent. This

is computed by making 80×80 pixel cutouts around each overdensity and computing the fraction of that patch that

is above our density threshold. By visual inspection we chose > 10% as signifying extended overdensities. About

1/4 of our overdensities fall in this category. These are likely to be dominated by projection effects given the wide

redshift slices as well as the effects of large scale structure such as clusters apparently embedded in filaments as shown

in Figure 7. These can also include cases of cluster mergers as discussed in Section 3.4.2.

3.4.1. Confirming previously known X-ray clusters

In Table 3 we also note which of our overdensities are previously known in the literature. For this comparison we

looked at the XLSSC catalog of Adami et al. (2018). Within our field and above z = 0.1, there are 70 X-ray clusters

that are spectroscopically confirmed from this catalog. We matched these against our overdensities using a 0.07 deg

separation (corresponding to ≈ 1.5 Mpc at z ∼ 0.5). We also excluded potential matches whose cluster redshift was

outside the redshift range of our overdensities (with a small padding since clusters just outside our redshift slices

would likely influence the density map through the scatter of their photometric redshifts). There were 53 such matches

Table 3; however, several known clusters were matches to more than one of our overdensities due to the generous

redshift slices. All cases where a matched cluster was just outside the overdensity redshift slice also had the same

cluster matched to another overdensity where it is inside the redshift slice. We chose to keep these double matches

since, as described above, massive clusters would influence neighbouring slices due to photometric redshift scatter.

All together there were 43 matches to unique known clusters. These represent 61% of the X-ray clusters in the field.

As shown in the right-hand panel of Figure 8, most of the unmatched clusters are at lower redshifts (z < 0.5) consistent

with the expected lower halo masses therein (the XLSSC catalog of Adami et al. (2018) has a limiting cluster mass of

log(Mhalo/M�) > 13.3, below our halo mass threshold, but this threshold increases with redshift consistent with the

increased recoverability in our density maps. For example, for the smaller sub-set of X-ray clusters in Clerc et al. (2014)

(that are all folded into the XLSSC catalog), we recovered 17/21 in our density maps, but found that the “missing”

four clusters were all associated with density percentiles > 88% – i.e. still significant though below our threshold for

finding halos of log(Mhalo/M�) > 13.7. The clusters that are also in Clerc et al. (2014) are marked in Table 3. In

addition, our Overdensity #282 corresponds to XLSS J022303.0043622 at z ∼ 1.22 first found by Bremer et al. (2006).

Lastly, van Breukelen et al. (2007) found a spectroscopic cluster at z = 1.454 associated with our Overdensity #311

(more on this structure below).

3.4.2. Case studies

Detailed discussion of the clusters and large-scale structures is reserved for a subsequent paper in this series. However,

as an illustration of the potential of our technique to find distant clusters, in Figure 9 we show the overdensity

corresponding to the highest redshift X-ray detected cluster in the field from Clerc et al. (2014), XLSSC 029 at z = 1.05,

and an example of what appears to be a compact cluster core associated with the highest percentile overdensity in our

highest redshift bin (1.372 < z < 1.564, Overdensity #336).

As discussed in Section 3.4, a quarter of our overdensities show extended morphologies which are likely the result

of projection effects – i.e. 3D structures that are unassociated though overlap on the sky, but can also include

10 This is only a rough approximation since in our lightcone we have <5 independent realizations.
11 Since we ultimately derive our percentile threshold on the same simulations, this is not surprising but a good sanity check. Of course,

we also assume that the simulated lightcone itself is a good representation of reality which previous studies suggest is the case (e.g. Lagos
et al. 2012).
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Figure 9. Two distant galaxy clusters corresponding to overdensities in the XMM-LSS field. Left the field of the z = 1.05
X-ray detected cluster XLSSC 029 of Clerc et al. (2014), with contours of overdensity 0.6 in white and 0.8 in yellow. Right the
highest overdensity in the 1.372 < z < 1.564 redshift bin, with contours of overdensity as follows; 0.25 in white, 0.5 in yellow
and 1.0 in orange. In both cases, the red channel of the RGB image is Spitzer IRAC 4.5 µm, the green VIDEO H-band and
the blue HSC ultradeep i-band. The insets show zoom-ins of the compact cluster cores, with VIDEO Ks data in red, VIDEO
H-band data in green and HSC ultradeep i-band data in blue.

interested potentially associated structures such as cluster mergers. We examine one of our extended sources in more

detail (Overdensity #300) which is chosen because it is among our higher redshift structures but also has significant

spectroscopic redshift coverage. It allows us an example of how by looking at the structures in overlapping redshift

slices we get a coarse view of the 3D structure.

Examining this overdensity more closely reveals a potential cluster merger at z = 1.28. This is shown in Figures 10

and 11). In Figure 10 we show this structure in three overlapping redshift slices shown on either side. The field had

been previously noted as overdense by van Breukelen et al. (2007), who obtained spectroscopy of galaxies in the field

with the Keck Telescope. We find that the bi-polar overdensity structure in our maps corresponds to a peak in the

distribution of spectroscopic redshifts at z ∼ 1.28 (bottom-left), and Figure 11 shows that the distribution of objects

at this redshift on the sky corresponds well to the overdensity map. The relative line of sight velocity (relative to the

median in this peak) is shown on a RA-DEC plot highlighting the gradient across this structure. Component A has a

median spectroscopic redshift of 1.286 with a velocity dispersion of 670 km s−1. Component B has a median redshift of

1.276 with a velocity dispersion of ∼ 1100 km s−1 (likely affected by the overlapping structure at lower redshift clearly

visible in the lower redshift slice). Even without correcting for this structure in its median redshift (since we cannot

cleanly disentangle these structures), the relative velocity between these two components is 3000 km s−1. To check if

this number is reasonable for a potential cluster merger, we compared it with the relative velocity of the ‘bullet’ and

the larger cluster in the well-studied Bullet Cluster. This is estimated at 2700 km s−1 (Springel & Farrar 2007). This

is the true relative velocity rather than the line of sight one as in our case, but it does show that our number is of

reasonable magnitude, especially considering that the median redshift of Component B is likely pulled down by the

slightly foreground structure.

Figure 10 also helps illustrate how structures at slightly higher and lower redshifts ‘bleed’ into any given redshift

slice, but the overlapping slices help us discern some of the 3D structure. For example, Overdensity #311 sits on top

of Components A and B in the middle maps. It is however increasingly stronger in the two overlapping density slices

centered at higher redshifts, suggesting what we see here is coming in from a strong overdensity that is actually more

distant. Indeed, van Breukelen et al. (2007) find six objects in the field at z ≈ 1.45 confirming that Overdensity #311

is background to our potential merger.

This particular structure is chosen due to the quality of spectroscopic coverage which makes it more likely to be

a true physical association. There are other cluster merger candidates among our potential cluster catalog; however,

many or most of them are likely line of sight projections (given the wide redshift slices). The XMM-LSS field has

ongoing further spectroscopic coverage from the DEVILS survey (Davies et al. 2018) and will have even more extensive
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coverage from the planned Prime Focus Spectrograph (PFS; Tamura et al. 2018) galaxy evolution survey. These will

help us further disentangle the nature of the overdensity we find our density maps.

Table 3. Overdensities selected in the XMM-LSS field

ID RA Dec z-rangea Nspec
b morphology Referencesc

1 36.7988 -5.0698 0.100-0.196 3

2 36.3951 -4.2480 0.100-0.196 13 XLSSC41.0,z =0.142,[C14,A18]

3 34.0523 -4.2236 0.100-0.196 3 XLSSC57.0,z =0.153,[C14,A18]

4 36.4396 -4.3284 0.123-0.223 18 extended

5 35.3947 -4.5792 0.146-0.251 2 extended XLSSC119.0,z =0.158,[A18]

6 35.5526 -4.2187 0.146-0.251 2

7 35.0743 -4.6531 0.146-0.251 3

8 34.8840 -4.5052 0.146-0.251 6

9 36.4270 -4.9823 0.171-0.282 2

10 35.4948 -4.4999 0.171-0.282 0 extended

11 36.4270 -4.5782 0.171-0.282 7 extended

12 36.4187 -4.4133 0.171-0.282 13 extended

13 35.4575 -4.2525 0.171-0.282 1 extended

14 36.6714 -4.2154 0.171-0.282 13

15 34.9851 -5.4770 0.171-0.282 4

16 35.2793 -4.6730 0.171-0.282 5 extended

17 34.3554 -4.6524 0.171-0.282 1 XLSSC141.0,z =0.196,[A18]

18 34.9727 -4.4421 0.171-0.282 1

19 36.4315 -5.2302 0.196-0.313 2

20 37.0447 -4.8333 0.196-0.313 6 XLSSC27.0,z =0.295,[C14,A18]

21 36.3563 -4.6723 0.196-0.313 10 extended XLSSC25.0,z =0.265,[C14,A18]

22 35.5211 -4.6386 0.196-0.313 0 extended

23 35.5249 -4.5675 0.196-0.313 1 extended XLSSC40.0,z =0.32,[A18]

24 36.8642 -4.5563 0.196-0.313 21 XLSSC13.0,z =0.308,[C14,A18]

25 36.1456 -4.1781 0.196-0.313 6

26 35.9537 -4.1594 0.196-0.313 0

27 36.7776 -4.1070 0.196-0.313 9 extended

28 34.0087 -5.4997 0.196-0.313 2

29 35.1787 -4.6536 0.196-0.313 4

30 36.9131 -4.8701 0.223-0.347 2 XLSSC22.0,z =0.293,[C14,A18]

31 35.4098 -4.4807 0.223-0.347 1 extended XLSSC126.0,z =0.29,[A18]

32 36.1512 -4.2382 0.223-0.347 7 XLSSC44.0,z =0.263,[C14,A18]

33 35.2725 -5.0955 0.223-0.347 0

34 37.0243 -5.2979 0.251-0.382 3 XLSSC121.0,z =0.317,[A18]

35 35.7522 -4.1362 0.251-0.382 5 XLSSC24.0,z =0.291,[A18]

36 34.9909 -5.4684 0.251-0.382 5

Continued on next page
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Table 3 – Continued from previous page

ID RA Dec z-rangea Nspec
b morphology Referencesc

37 34.9338 -4.8875 0.251-0.382 18 XLSSC58.0,z =0.332,[C14,A18]

38 35.3403 -5.4284 0.282-0.421 0

39 36.0283 -5.0744 0.282-0.421 2 XLSSC18.0,z =0.324,[C14,A18]

40 36.2282 -4.9369 0.282-0.421 2

41 36.6545 -4.8842 0.282-0.421 2

42 37.0249 -4.8462 0.282-0.421 4 XLSSC27.0,z =0.295,[C14,A18]

43 35.5138 -4.5624 0.282-0.421 3 extended XLSSC40.0,z =0.32,[C14,A18]

44 36.8897 -4.5507 0.282-0.421 10 extended XLSSC13.0,z =0.308,[C14,A18]

45 36.6368 -4.4951 0.282-0.421 13

46 34.0261 -5.0364 0.282-0.421 5

47 36.6363 -4.9954 0.313-0.460 3

48 35.4938 -4.9653 0.313-0.460 1

49 36.3775 -4.3680 0.313-0.460 7

50 36.7327 -4.1680 0.313-0.460 3 extended XLSSC33.0,z =0.345,[A18]

51 36.6115 -4.1242 0.313-0.460 6 extended XLSSC14.0,z =0.344,[A18]

52 34.0016 -5.3844 0.313-0.460 2

53 34.8330 -5.1269 0.313-0.460 7

54 34.1833 -5.0255 0.313-0.460 9

55 34.0401 -4.7844 0.313-0.460 7

56 34.2439 -4.6338 0.313-0.460 5

57 34.1585 -4.4529 0.313-0.460 8 XLSSC144.0,z =0.447,[A18]

58 36.5369 -5.0739 0.347-0.504 5

59 36.7694 -4.9737 0.347-0.504 2

60 35.9480 -4.5187 0.347-0.504 3 XLSSC26.0,z =0.435,[A18]

61 34.9174 -5.3952 0.347-0.504 4

62 34.2278 -4.5521 0.347-0.504 7 extended XLSSC194.0,z =0.411,[A18]

63 34.4138 -4.5084 0.347-0.504 3

64 35.6449 -5.3939 0.382-0.549 7

65 36.0653 -5.3793 0.382-0.549 10 XLSSC19.0,z =0.496,[A18]

66 36.1362 -4.8345 0.382-0.549 17 XLSSC53.0,z =0.495,[C14,A18]

67 36.2364 -4.7469 0.382-0.549 6

68 36.1019 -4.7299 0.382-0.549 11

69 35.9968 -4.6155 0.382-0.549 5 extended XLSSC49.0,z =0.494,[C14,A18]

70 36.6616 -4.5207 0.382-0.549 15

71 36.3537 -4.3966 0.382-0.549 5 XLSSC42.0,z =0.463,[A18]

72 34.7479 -5.4814 0.382-0.549 10 extended XLSSC142.0,z =0.451,[A18]

73 34.3935 -4.9926 0.382-0.549 14

74 34.4033 -4.8174 0.382-0.549 8 XLSSC124.0,z =0.516,[A18]

75 34.6257 -4.2458 0.382-0.549 2

Continued on next page
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76 34.7234 -4.2118 0.382-0.549 4

77 36.0249 -5.2895 0.421-0.599 11

78 36.7449 -5.1190 0.421-0.599 13

79 36.1013 -5.0107 0.421-0.599 6

80 36.6407 -4.9992 0.421-0.599 7 XLSSC20.0,z =0.494,[A18]

81 35.3767 -4.4993 0.421-0.599 10

82 36.8907 -4.3611 0.421-0.599 6

83 36.7565 -4.1722 0.421-0.599 11

84 34.1776 -5.0038 0.421-0.599 9

85 34.4507 -4.5270 0.421-0.599 6

86 34.1614 -4.4694 0.421-0.599 9 extended XLSSC144.0,z =0.447,[A18]

87 36.3098 -5.4046 0.460-0.649 9

88 36.5042 -5.2969 0.460-0.649 10

89 36.1662 -5.0616 0.460-0.649 12 extended

90 36.3628 -4.7143 0.460-0.649 9

91 35.9608 -4.6550 0.460-0.649 6 extended

92 36.0005 -4.5824 0.460-0.649 8 extended XLSSC49.0,z =0.494,[C14,A18]

93 36.3805 -4.2681 0.460-0.649 11 XLSSC45.0,z =0.556,[A18]

94 34.6818 -5.0660 0.460-0.649 22 extended

95 34.3460 -5.0353 0.460-0.649 14

96 34.7193 -4.9957 0.460-0.649 12 extended

97 34.6575 -4.9891 0.460-0.649 23 extended

98 35.0683 -4.9231 0.460-0.649 9 XLSSC183.0,z =0.511,[A18]

99 34.4962 -4.8638 0.460-0.649 5

100 35.1829 -5.4278 0.504-0.705 11 XLSSC130.0,z =0.546,[A18]

101 36.1409 -4.8335 0.504-0.705 2 XLSSC53.0,z =0.495,[A18]

102 36.8880 -4.5457 0.504-0.705 23

103 36.5588 -4.2664 0.504-0.705 19

104 36.1663 -4.2265 0.504-0.705 3 XLSSC131.0,z =0.513,[A18]

105 36.9914 -4.1740 0.504-0.705 5

106 34.4421 -5.4362 0.504-0.705 14

107 34.5962 -5.2871 0.504-0.705 13

108 34.9381 -5.2577 0.504-0.705 8

109 34.7798 -5.2472 0.504-0.705 7 extended

110 34.6405 -5.2388 0.504-0.705 15

111 34.7102 -5.1422 0.504-0.705 13 extended

112 34.2839 -4.9385 0.504-0.705 5 extended

113 34.4780 -4.9280 0.504-0.705 8

114 34.2733 -4.8608 0.504-0.705 15

Continued on next page
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115 34.4991 -4.8062 0.504-0.705 10 extended

116 34.3366 -4.7263 0.504-0.705 11

117 35.1027 -4.2580 0.504-0.705 10

118 36.2049 -4.9554 0.549-0.760 8

119 36.3672 -4.7474 0.549-0.760 12

120 36.7142 -4.4910 0.549-0.760 18

121 35.7909 -4.2204 0.549-0.760 7 XLSSC30.0,z =0.631,[A18]

122 34.6100 -5.4219 0.549-0.760 13 extended XLSSC80.0,z =0.646,[C14,A18]

123 34.3929 -5.4421 0.549-0.760 8 extended

124 34.3056 -5.4279 0.549-0.760 5 extended

125 34.3503 -5.4178 0.549-0.760 9 extended

126 34.2508 -5.4178 0.549-0.760 10 extended

127 34.9407 -5.3007 0.549-0.760 12 extended

128 34.4091 -5.2321 0.549-0.760 19 extended XLSSC59.0,z =0.645,[C14,A18]

129 34.5532 -5.2502 0.549-0.760 12 extended

130 34.4822 -5.2159 0.549-0.760 13 extended

131 34.3706 -5.1998 0.549-0.760 21 extended XLSSC59.0,z =0.645,[A18]

132 34.2021 -5.1634 0.549-0.760 13

133 34.2772 -5.0746 0.549-0.760 9 extended

134 34.1879 -5.0463 0.549-0.760 10

135 34.5024 -4.9615 0.549-0.760 4

136 34.0134 -4.5132 0.549-0.760 8

137 36.1709 -4.6442 0.599-0.820 7

138 36.1103 -4.3505 0.599-0.820 6

139 36.2862 -4.2358 0.599-0.820 5

140 34.5741 -5.5214 0.599-0.820 4 extended

141 34.2360 -5.4825 0.599-0.820 6

142 34.4959 -5.4650 0.599-0.820 13 extended

143 34.4256 -5.4708 0.599-0.820 10 extended

144 34.7168 -5.4572 0.599-0.820 5

145 34.1383 -5.4280 0.599-0.820 12

146 34.5370 -5.3561 0.599-0.820 4 extended

147 34.6308 -5.3386 0.599-0.820 6 extended

148 35.0686 -5.1810 0.599-0.820 4 extended

149 34.2946 -5.1441 0.599-0.820 9 extended

150 34.6445 -5.0215 0.599-0.820 19 extended

151 34.6464 -4.9632 0.599-0.820 8 extended

152 34.0562 -4.8387 0.599-0.820 2

153 34.0347 -4.7940 0.599-0.820 14

Continued on next page
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154 34.2653 -4.4769 0.599-0.820 10 XLSSC195.0,z =0.661,[A18]

155 36.9854 -5.3820 0.649-0.879 15

156 36.2831 -5.2991 0.649-0.879 4

157 36.9533 -4.9092 0.649-0.879 5

158 35.4010 -4.7679 0.649-0.879 6

159 35.3896 -4.5983 0.649-0.879 3

160 36.5557 -4.4212 0.649-0.879 5

161 36.1790 -4.2084 0.649-0.879 4

162 36.2945 -4.1424 0.649-0.879 1

163 34.5169 -5.5214 0.649-0.879 3 extended

164 34.7517 -5.1409 0.649-0.879 8

165 35.2230 -5.0768 0.649-0.879 5

166 34.6078 -4.9845 0.649-0.879 16 extended XLSSC64.0,z =0.874,[A18]

167 34.4128 -4.5795 0.649-0.879 9

168 34.0039 -4.5738 0.649-0.879 6

169 34.8804 -4.4457 0.649-0.879 6

170 34.8785 -4.3101 0.649-0.879 2

171 34.0834 -4.2574 0.649-0.879 3

172 36.9232 -5.2798 0.705-0.942 3

173 35.9436 -5.0201 0.705-0.942 7 extended XLSSC15.0,z =0.858,[A18]

174 35.6752 -5.0165 0.705-0.942 4 extended XLSSC71.0,z =0.833,[A18]

175 35.6477 -4.9689 0.705-0.942 4 extended XLSSC71.0,z =0.833,[A18]

176 35.8149 -4.9561 0.705-0.942 5

177 35.6219 -4.7183 0.705-0.942 1

178 36.5501 -4.4495 0.705-0.942 6

179 35.3224 -4.4001 0.705-0.942 5 extended

180 34.1810 -5.3731 0.705-0.942 9

181 34.2178 -5.2049 0.705-0.942 12

182 34.8408 -5.0805 0.705-0.942 13

183 35.2250 -5.0238 0.705-0.942 5 extended

184 35.2268 -4.9049 0.705-0.942 2 extended

185 35.1147 -4.8628 0.705-0.942 4 extended

186 35.2139 -4.8464 0.705-0.942 5 extended

187 34.9291 -4.8391 0.705-0.942 11

188 35.0742 -4.8189 0.705-0.942 3 extended

189 35.0283 -4.8189 0.705-0.942 4 extended

190 34.7747 -4.7092 0.705-0.942 9

191 35.2305 -4.5848 0.705-0.942 1

192 34.8445 -4.5281 0.705-0.942 7

Continued on next page
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193 34.8261 -4.4934 0.705-0.942 8 extended

194 35.3187 -4.4458 0.705-0.942 2 extended

195 35.1992 -4.3105 0.705-0.942 0

196 34.0211 -4.2739 0.705-0.942 0

197 34.3023 -4.2135 0.705-0.942 10

198 35.4056 -5.3048 0.760-1.004 3 extended

199 35.9882 -5.1336 0.760-1.004 4

200 35.9255 -5.1104 0.760-1.004 6

201 35.9721 -4.9748 0.760-1.004 1 extended

202 36.2894 -4.8000 0.760-1.004 2

203 36.0312 -4.2559 0.760-1.004 0

204 35.3267 -4.2434 0.760-1.004 10 XLSSC184.0,z =0.811,[A18]

205 34.4484 -5.5082 0.760-1.004 6

206 35.2156 -5.1728 0.760-1.004 4

207 34.9539 -5.1389 0.760-1.004 13

208 35.3070 -5.0979 0.760-1.004 1

209 34.6366 -5.0033 0.760-1.004 26 XLSSC64.0,z =0.874,[A18]

210 35.3375 -4.9266 0.760-1.004 2

211 35.0722 -4.8963 0.760-1.004 8 extended

212 35.0453 -4.8785 0.760-1.004 7 extended

213 34.9557 -4.8232 0.760-1.004 7

214 34.5183 -4.7250 0.760-1.004 1

215 35.1547 -4.5217 0.760-1.004 7

216 34.6384 -4.4735 0.760-1.004 1

217 35.2102 -4.4307 0.760-1.004 2 extended

218 34.3426 -4.4039 0.760-1.004 4

219 35.2246 -4.3754 0.760-1.004 4 extended

220 36.9468 -5.3541 0.820-1.069 0

221 36.6085 -4.7522 0.820-1.069 8

222 36.3876 -4.4259 0.820-1.069 4 extended

223 36.4349 -4.3858 0.820-1.069 4 extended

224 35.2217 -5.2250 0.820-1.069 1 extended

225 35.2498 -5.2198 0.820-1.069 0 extended

226 34.3592 -5.2041 0.820-1.069 13

227 34.2733 -5.1674 0.820-1.069 8

228 34.8097 -4.5830 0.820-1.069 5

229 35.0744 -4.4190 0.820-1.069 3

230 34.1961 -4.3963 0.820-1.069 0

231 35.2628 -5.2960 0.879-1.133 0 extended

Continued on next page
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232 36.8115 -5.2704 0.879-1.133 1

233 37.0215 -5.0923 0.879-1.133 1

234 36.3366 -4.2737 0.879-1.133 0

235 35.2043 -4.2035 0.879-1.133 0

236 36.8425 -4.1829 0.879-1.133 0

237 35.0666 -5.2755 0.879-1.133 1

238 35.1681 -5.2087 0.879-1.133 1 extended

239 35.2232 -5.0580 0.879-1.133 1

240 34.8687 -4.8525 0.879-1.133 4

241 35.0459 -4.7343 0.879-1.133 3

242 35.0356 -4.6949 0.879-1.133 1

243 34.1167 -4.5990 0.879-1.133 0

244 36.4925 -4.4876 0.942-1.207 0

245 36.8058 -4.3039 0.942-1.207 1 XLSSC5.0,z =1.058,[C14,A18]

246 36.1420 -4.2348 0.942-1.207 1 extended

247 35.5831 -4.2668 0.942-1.207 0

248 36.2808 -4.2584 0.942-1.207 0 extended

249 36.0319 -4.2230 0.942-1.207 1 extended XLSSC29.0,z =1.05,[C14,A18]

250 36.2605 -4.1927 0.942-1.207 0

251 35.2123 -5.1937 0.942-1.207 2

252 34.5417 -5.0521 0.942-1.207 12 extended

253 34.6382 -5.0336 0.942-1.207 13 extended

254 34.5264 -5.0184 0.942-1.207 13 extended

255 34.5603 -5.0117 0.942-1.207 6 extended

256 34.5958 -4.9797 0.942-1.207 5 extended

257 34.2843 -4.9611 0.942-1.207 3

258 34.5874 -4.8465 0.942-1.207 5

259 35.1107 -4.8078 0.942-1.207 1 extended

260 34.8770 -4.7859 0.942-1.207 2

261 34.4841 -4.6190 0.942-1.207 0

262 34.0472 -4.5365 0.942-1.207 0

263 35.1564 -4.5196 0.942-1.207 2

264 34.1183 -4.3966 0.942-1.207 0

265 34.7618 -4.2028 0.942-1.207 0

266 36.8379 -4.6075 1.004-1.281 1

267 36.4719 -4.2865 1.004-1.281 1

268 35.9438 -4.1668 1.004-1.281 0

269 34.4881 -5.1015 1.004-1.281 4

270 34.1522 -4.8769 1.004-1.281 1

Continued on next page
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271 34.2909 -4.8353 1.004-1.281 6

272 34.3009 -4.7672 1.004-1.281 2

273 34.5600 -4.7206 1.004-1.281 0

274 35.1332 -4.6491 1.004-1.281 1

275 34.4179 -4.6341 1.004-1.281 0

276 34.6352 -4.5892 1.004-1.281 0

277 34.3310 -4.5060 1.004-1.281 0

278 36.9064 -5.2820 1.069-1.372 0

279 36.5711 -4.8463 1.069-1.372 0

280 36.6850 -4.7016 1.069-1.372 0

281 35.6113 -4.6737 1.069-1.372 0

282 35.7699 -4.6046 1.069-1.372 0 XLSSC46.0,z =1.217,[B06,A18]

283 36.8965 -4.6063 1.069-1.372 0

284 36.7362 -4.4008 1.069-1.372 1

285 36.7759 -4.3071 1.069-1.372 0 XLSSC5.0,z =1.058,[A18]

286 36.3266 -4.1822 1.069-1.372 0

287 34.5705 -5.0419 1.069-1.372 7 extended

288 34.4549 -5.0189 1.069-1.372 3 XLSSC203.0,z =1.077,[A18]

289 34.2633 -4.8184 1.069-1.372 5 extended

290 35.3552 -4.6967 1.069-1.372 1

291 35.2759 -4.6622 1.069-1.372 0

292 35.0364 -4.3926 1.069-1.372 0

293 36.8365 -5.3993 1.133-1.462 1

294 36.8512 -5.1403 1.133-1.462 0

295 36.7792 -5.1354 1.133-1.462 0

296 36.5205 -4.8992 1.133-1.462 0

297 35.3616 -4.4512 1.133-1.462 1

298 34.9115 -5.3520 1.133-1.462 3

299 34.9295 -5.1419 1.133-1.462 0

300 34.5382 -5.0067 1.133-1.462 14 extended pot.merger

z ≈ 1.28

301 34.5039 -4.8878 1.133-1.462 4

302 34.6987 -4.7102 1.133-1.462 0

303 34.5923 -4.6630 1.133-1.462 2 extended

304 34.5824 -4.6353 1.133-1.462 0 extended

305 35.1586 -4.6304 1.133-1.462 0

306 35.0244 -4.6076 1.133-1.462 0

307 35.3387 -4.5554 1.133-1.462 0

308 34.5988 -4.5424 1.133-1.462 1

Continued on next page
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309 36.8256 -5.2332 1.207-1.564 0

310 34.9422 -5.5224 1.207-1.564 0

311 34.5282 -5.0587 1.207-1.564 1 extended [vB07]

312 34.7084 -5.0038 1.207-1.564 5

313 34.8480 -4.8713 1.207-1.564 2

314 34.6532 -4.6661 1.207-1.564 0 extended

315 35.0120 -4.6564 1.207-1.564 0

316 35.0153 -4.5287 1.207-1.564 0

317 35.0607 -4.5158 1.207-1.564 0

318 34.7409 -4.4528 1.207-1.564 0

319 34.8562 -4.4431 1.207-1.564 0

320 36.5928 -4.9511 1.281-1.665 0

321 36.1908 -4.9302 1.281-1.665 1

322 34.8249 -5.2773 1.281-1.665 0

323 34.3987 -5.1761 1.281-1.665 2

324 34.4988 -5.1262 1.281-1.665 2

325 34.2696 -4.9463 1.281-1.665 3

326 34.7846 -4.8290 1.281-1.665 2

327 34.1937 -4.7985 1.281-1.665 1

328 34.5747 -4.7262 1.281-1.665 0

329 34.8266 -4.4498 1.281-1.665 0

330 34.6425 -4.3085 1.281-1.665 0

331 34.7457 -5.3043 1.372-1.665 1

332 34.2198 -5.1827 1.372-1.665 3

333 34.8148 -5.0627 1.372-1.665 3

334 34.5479 -5.0115 1.372-1.665 10

335 35.0802 -4.6834 1.372-1.665 1

336 34.0172 -4.6514 1.372-1.665 1

337 34.5543 -4.4866 1.372-1.665 0

338 34.5945 -4.4674 1.372-1.665 0

339 34.6428 -4.4466 1.372-1.665 0

a The full redshift range within which overdensity is found.
b These are only high quality spectroscopic redshifts within a circle of 750 kpc

(proper) of the overdensity center.
c Here we reference: Adami et al. (2018, ; here A18), Clerc et al. (2014, ;here

C14), Bremer et al. (2006, ; here B06) and van Breukelen et al. (2007, ; here
vB07).

4. SUMMARY AND CONCLUSIONS
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Figure 10. A potential new z = 1.28 cluster merger. The middle panel shows the peak density redshift slice for this structure,
with the neighboring overlapping redshift slices shown on either side. The bottom-left shows all available spectroscopic redshifts
showing a clear peak at z ∼ 1.28, corresponding to the middle of the peak density redshift slice. The bottom-right panel shows
that Component A is behind Component B in redshift space.

In this paper we present new photometric redshifts for the 4.8 deg2 XMM-LSS field. We use them to compute surface

density maps in the range 0.1 < z < 1.6. We use a simulated lightcone to assess the recoverability of true structures

using such density maps. We summarize our key results as follows:

1. Photometric redshifts at the level of σ(z)/(1 + z) ≈ 0.03 allow us to recover dark matter halos with

log(Mhalo/M�) &13.7, as we show based on a comparison with a simulated lightcone.

2. We construct 2D density maps for the XMM-LSS in 28 redshift slices covering z = 0.1−1.6. These density maps

show evidence of extended overdensities, visually similar to filaments, as well as compact overdensities likely

associated with massive halos.

3. Using an evolving percentile mass density per comoving volume threshold we determine from our simulated

lightcone, we find 339 halos with log(Mhalo/M�) >13.7 from 0.1 < z < 1.6 and a peak of z ∼ 0.8. Their number

and redshift distribution are consistent with expectations from our simulated lightcone.

4. Among our likely massive halo overdensities, we recover 43 of the 70 known spectroscopically-confirmed X-ray

clusters in the field (Adami et al. 2018). The unrecovered ones are predominantly below z ∼ 0.4 where the X-ray

cluster tend to have lower masses than our target threshold.
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Figure 11. A three color RGB image of the field of the z = 1.28 cluster merger, with contours of overdensity in the 1.207 <
z < 1.372 redshift slice as follows; 0.25 in white, 0.5 in yellow and 1.0 in orange. The red channel is Spitzer IRAC 4.5 µm, the
green VIDEO H-band and the blue HSC ultradeep i-band. Galaxies with spectroscopic z ≈ 1.28 are marked with light blue
circles.

5. We present some interesting case studies including a potential massive evolved cluster at z ∼ 1.5 as well as as a

potential cluster merger at z ∼ 1.28.

This paper is proof of concept on the degree to which we can reliably probe both the local and large scale environment

of galaxies using photometric redshifts of the quality already achievable for moderately large area surveys such as

SERVS. The next papers in the series will use these density maps to further quantify the presence of filaments and

look at the role of local and large scale environment on the growth of galaxies and their supermassive black holes.

The authors acknowledge useful discussions with Rachel Bezanson, Frank van den Bosch and Eric Gawiser which

helped guide our analysis. The authors especially thank Ryan Cybulski for providing his Voronoi Tesselation idl code
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Figure 12. A comparison between the EAZY photometric redshifts adopted in this paper, and the HELP photometric redshifts
described in Duncan et al. (2018). The legend gives the statistics across the full range of interest (0.1 < z < 1.6), whereas the
red symbols and errorbars give the median values and σNMAD in bins of 0.1 in EAZY redshifts.

which NK translated into python and has used for this project. B.D. acknowledges financial support from the National

Science Foundation, grant number 1716907.

APPENDIX

A. PHOTOMETRIC REDSHIFTS COMPARISON

In this paper we use photometric redshifts based on the template fitting code EAZY as described in detail in the

body of the paper. However, this may lead to a potential bias driven by the particular choice of templates. Our

zero-point offset corrections are meant to mitigate for such biases to some extent, but this correction is driven by

the available spectroscopic redshifts which represent a biased subset of the whole as shown in Figure 2. The HELP

team performed a more sophisticated photometric redshift analysis in this field considering several different template

libraries and performing a hierarchical Bayesian analysis to find the best redshift overall. While this is clearly a more

sophisticated approach, the downside for us is that that work uses the data fusion catalogs which adopt the single-band

SExtractor IRAC photometry. However, we now have the Tractor forced photometry (Nyland et al. 2017) which is

better at de-blending IRAC sources leading to more accurate results especially at higher redshifts (z > 1).

In Figure 12, we show the direct comparison between our EAZY photometric redshifts and the HELP photometric

redshifts12. This plot shows very good agreement in the range 0.3 < z < 1.0, but also has significant deviations at

either end outside this range. We performed the pair analysis for the HELP redshifts at those two ends – for the z < 0.3

bin and the z > 1.2 bin, we get σ/(1 + z) of 0.016 and 0.053 respectively. At the lower redshift end, this is better

than EAZY (see Figure3) but in the higher redshift bin this is much worse than EAZY, as expected given the effect

of blended IRAC photometry therein. While there are clearly advantages and disadvantages to both approaches, we

chose our EAZY redshifts for our analysis in particular because of this behavior at z > 1. This comparison highlights

the significant biases that can exist between photometric redshifts derived based on different photometric catalogs and

using different approaches. Therefore we re-emphasize that the list of overdensities we present here are only candidates.

Their confirmation requires high spectroscopic completeness out z ∼ 1.5 as expected from the PFS galaxy evolution

survey which will include the XMM-LSS field (e.g. Tanaka et al. 2017).

12 We adopted the z1median redshifts from the HELP catalog, which is their recommended measure.
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