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Abstract 

Investigations of visually-guided target-directed movement frequently adopt measures 

of within-participant spatial variability to infer the contribution of planning and control. The 

present study aims to verify this current trend by exploring the distribution of displacements 

at kinematic landmarks with a view to understanding the potential sources of variability. 

Separate sets of participants aiming under full visual feedback conditions revealed a 

comparatively normal distribution for the displacements at peak velocity and movement end. 

However, there was demonstrable positive skew in the displacement at peak acceleration and 

a significant negative skew at peak deceleration. The ranges of the distributions as defined by 

either ±1SD or ±34.13th percentile (equivalent to an estimated 68.26% of responses) also 

revealed differences at peak deceleration. These findings indicate that spatial variability in 

the acceleration domain features highly informative systematic, as well as merely inherent, 

sources of variability. Implications for the further quantification of trial-by-trial behaviour are 

discussed.  
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Introduction 

Since the findings of endpoint variability in target-directed movements being scaled to 

the magnitude of response impulses (Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979), 

eminent theories have placed a great emphasis on how it is performers cope with such 

circumstances and the associated trade-off between speed and accuracy (Fitts, 1954; Fitts & 

Peterson, 1964). Namely, Meyer and colleagues (Meyer, Abrams, Kornblum, Wright, & 

Smith, 1988) suggested primary movement endpoints assume a central tendency on or over 

the target centre so that the majority of aims can subtend the target boundaries. In the event of 

an initial error (synonymous with the tails of the endpoint distribution), the performer may 

issue a secondary corrective movement to eventually reach the target. Alternatively, it has 

been argued that while a normal distribution in the primary movement endpoints may 

manifest, these movements tend to fall short of the target location (undershoot) so as to avoid 

a potential cost of moving beyond the target (overshoot) (Elliott, Hansen, Mendoza, & 

Tremblay, 2004). This ‘cost’ is reflected by the need of the performer to overcome inertia and 

switch the agonist-antagonist arrangement in order to reverse the limb’s location. However, 

when the endpoint variability begins to decline, and presumably subtend the target 

boundaries, the performer may begin to undershoot less and effectively ‘creep-up’ on the 

target. This notion draws heavily on the findings that primary movement endpoints are 

heavily related to their frequency distribution (i.e., spatial variability) (see Lyons, Hansen, 

Hurding, & Elliott, 2006; Worringham, 1991). 

Alongside these suggestions, traditional views of target-directed movement contend 

that there are two sensorimotor components: early ballistic phase associated with pre-

movement planning (initial impulse) and late ‘homing-in’ phase associated with the use of 

online sensory feedback for the amendment of errors (current control) (Elliott, Helsen, & 

Chua, 2001; Meyer et al., 1988; Woodworth, 1899). The very first instance of these so-called 
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components was reflected by a series of delayed discontinuities when aiming with a pencil 

between two targets on a rotating drum; so-long as there was an opportunity to use visual 

feedback within the movement (Woodworth, 1899). Following the advent of motion capture 

systems, there was an exciting possibility of more precisely corroborating Woodworth’s early 

findings by measuring the primary and secondary submovement components between 

different feedback conditions (vision vs. no vision). However, despite the obvious advantages 

in endpoint accuracy for vision compared to no vision conditions, there was no such 

difference in the nature or number of secondary submovements (e.g., Elliott, Carson, 

Goodman, & Chua, 1991). 

Herein, the measures of endpoint dispersion that were previously mentioned were 

adapted for the assessment of within-participant standard deviation of earlier locations of the 

trajectory (see Khan et al. (2006) and Hansen, Elliott, & Khan (2008)); also referred to as 

spatial variability. That is, in order for the increasing variability that is observed during the 

earlier portions of the movement to be overturned and accurately subtend the target, there 

must be some intervening control process that is contingent upon the use of online sensory 

feedback. Indeed, there has been much evidence to support this conjecture following larger 

declines in spatial variability toward the end of the movement when performers are presented 

with vision compared to no vision (e.g., Khan et al., 2003; Khan, Elliott, Coull, Chua, & 

Lyons, 2002). At the same time, there has been evidence to suggest performers can reduce the 

spatial variability at earlier landmarks to reflect a more refined specification of efferent 

signals (e.g. Allsop, Lawrence, Gray, & Khan, 2016; Hansen, Tremblay, & Elliott, 2005; 

Roberts, Wilson, Skultety, & Lyons, 2018). As a result, these measures have been heavily 

leveraged to substantiate two-component views of target-directed movement, and potentially 

steer researchers to a greater consideration of dispersion rather than tendency. 
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While the organisation and manifestation of submovement components based on 

endpoint variability is robust (Elliott et al., 2004; Worringham, 1991), it remains to be seen 

whether the same assumption of a normal trend in the response distribution unfolds at earlier 

kinematic landmarks (peak acceleration, peak velocity, peak deceleration). Indeed, implicit 

within the proposed value served by spatial variability is the notion that we may 

correspondingly determine the effective limb location at various points within the trajectory 

(see Welford, 1968) – location of the limb that most likely subtends a select proportion of the 

responses (e.g., 34.13% = 1SD). For this inference to be so, the error that is incurred prior to 

‘homing-in’ should be somewhat random or stochastic in nature and reflect a normal 

distribution. However, it is also possible that the changes reported in spatial variability across 

kinematic landmarks may reflect a systematic alteration or planning error (van Beers, 2009). 

In other words, the current reference to spatial variability may not be fully indicative of 

limiting the negative effects of ‘noise’ through the refined parameterization and control of 

movement, but mere adaptation or exploratory behaviour (cf. Faisal, Selen, & Wolpert, 2008; 

van Beers, Haggard, & Wolpert, 2004). Afterall, there needs to be some degree of variability 

if performers are to learn in a novel sensorimotor environment over a series of trials (e.g., 

Shea & Morgan, 1979). 

To this end, the following study aims to examine these issues, and whether it is 

premature to conceive of early spatial variability as a marked reflection of performers’ 

response distribution. With this in mind, the present study may offer further insights into the 

inferences associated with spatial variability and identify precise indicators of trial-by-trial 

behaviour. Thus, previously collected data sets from our lab pertaining to typical controlled 

circumstances of rapid aiming with visual feedback were adopted (see Roberts, Elliott, 

Lyons, Hayes, & Bennett, 2016; Roberts et al., 2018). The purpose of conducting this 

analysis across multiple data sets is to vouch for the repeatability of the findings within 
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separate sets of participants. Providing the changes in spatial variability across the trajectory 

are the result of ‘random effects’ such as neuromotor noise, then we would anticipate a 

normal distribution of limb locations. Alternatively, a systematic alteration to the intended 

strategy or an error in planning for some of the movement attempts may be indicated by a 

degree of skewness. That is, variation in the trial-by-trial behaviour predominantly resulting 

from the performer actively adjusting the efferent output. 

 

Method 

Participants 

Eleven participants were eligible to participate from the first study, and sixteen 

participants from the second study (age range = 18-30 years). All participants signed an 

informed consent form, and were self-declared right-handed, had normal or corrected-to-

normal vision and free of any neurological condition. These studies were designed and 

conducted in accordance with the Declaration of Helsinki, and approved by the local ethics 

committee. 

 

Apparatus, Task and Procedure 

With regards the first data collection, stimuli were presented on a horizontally 

mounted monitor (66-cm diagonal; temporal resolution = 60 Hz; spatial resolution = 1024 x 

768 pixels). The experiment was controlled via a custom written program in E-prime 

(Psychology Software Tools Inc., Sharpsburg, PA). The home position was located in front of 

the participants who had to rest their right index finger on it prior to the start of the trial. 

Following a random foreperiod (800-2800 ms), a 1-cm diameter target would appear 24 cm 

along the participant midline. Herein, participants had to aim as quickly and accurately as 

possible by moving their right limb along the horizontal mid-sagittal axis (forward). 
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Movements were captured courtesy of an infra-red marker that was attached to the right index 

finger and detected using an Optotrak 3020 system (Northern Digital Instruments, Waterloo, 

ON) recording at 200 Hz. These movements were executed under normal/low and high state 

anxiety situations, although we were only concerned with the normal/low anxiety set for 

which there were 30 trials. Participants were granted an initial 30 familiarisation/practice 

trials in advance of the experiment. 

In a similar vein, the second set of data featured stimuli that were presented on a wall-

mounted monitor (54-cm diagonal; temporal resolution = 85 Hz; spatial resolution = 1600 x 

1200 pixels). The experiment was controlled by a custom-written program in Matlab (The 

Mathworks Inc., Natick, MA). The trial proceedings and task objectives were precisely the 

same as above, only stimuli and movements were made for a 16-cm amplitude along the mid-

line of the body within the vertical extent (upward). These movements were executed 

amongst a series of potential other movement trials (short and long amplitude, single- and 

two-segment movements, up and down directions), although the current focus is adopted for 

the sake of brevity and without conflating the principle objective of this study. There were 20 

movement trials in the present study condition. 

 

Data Processing and Analysis 

Position data were filtered using a second-order, dual-pass Butterworth filter with a 10 

Hz low-pass cut-off frequency. Data were differentiated and double-differentiated to obtain 

velocity and acceleration, respectively. Movement onset and offset were respectively defined 

as the moment velocity within the primary movement direction reached above and below 10 

mm/s for 40 ms or more (>8 frames). 

Displacement data at each kinematic landmark were extracted including, peak 

acceleration (PA), peak velocity (PV), peak deceleration (PD) and movement end (END). In 
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order to quantify violations in the normality of the within-participant response distribution, 

the degree of skewness was calculated by converting displacement data into z3 scores. By 

taking the third moment, the z-scores were accentuated while retaining the direction with 

respect to the participant mean (i.e., position/negative). In addition, the difference between 

+1SD and -1SD of the within-participant mean position at kinematic landmarks was 

calculated (standard deviation range) for comparison with the difference between 84.13th and 

15.87th percentiles (median ± 34.13%) (percentile range). These ranges were selected as they 

theoretically equate to 68.26% of the response distribution (-1SD = 15.87%, +1SD = 

84.13%). Thus, a normal distribution that positively reflects the effective limb position 

should indicate an overlap between the ranges, although a violation should unveil differences 

between the two. 

Movement trials featuring reaction times <100 ms or >1000 ms were considered 

anticipatory or non-reactive responses respectively, and removed from the analysis. In 

addition, movement times exceeding >800 ms were considered non-rapid target responses, 

and also removed prior to analysis. For the analysis of mean z3 scores, a one-way repeated-

measures ANOVA (4 levels of kinematic landmark; PA, PV, PD, END) was initially 

conducted. In order to examine the extent of skewness, the mean z3 scores were compared 

with a theoretical value of 0 (representing mean displacement) using single-sample t-tests. 

Finally, for the analysis of ranges encompassing the response distribution, a 2 statistic 

(standard deviation, percentile) x 4 kinematic landmark (PA, PV, PD, END) repeated-

measures ANOVA was conducted. Mauchly’s test of Spehericity was used to assess the 

variability of differences. In the event of a violation, the Huynh-Feldt value was adopted 

when epsilon was >.75, although the Greehouse-Geisser value was adopted if otherwise 

(original Sphericity-assumed degrees-of-freedom are reported). Partial eta-squared (ƞ2) was 

used as an effect size measure, and any significant effects featuring more than two levels 
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were decomposed using Tukey HSD post hoc procedure. Significance was declared at p < 

.05. 

 

Results 

Horizontal/Forward Movements 

As a general account of the target-directed aims, the means of reaction time, 

movement time and constant error were 363.57 ms (SD = 45.44), 466.75 ms (SD = 52.35) and 

-.53 mm (SD = .70), respectively. Thus, response distributions (see Figure 1), there was a 

notable positive and negative skew in peak acceleration and peak deceleration, respectively. 

However, the displacements at peak velocity and movement end reflected a comparatively 

normal distribution. Indeed, the one-way ANOVA on z3 scores revealed a significant main 

effect of kinematic landmark, F(3, 30) = 7.77, p < .05, partial ƞ2 = .44, which indicated 

significantly more positive skew for the displacement at peak acceleration compared to peak 

velocity and peak deceleration (ps < .05). In addition, there was a significant difference 

between the skewness at peak acceleration (M = .79, SD = .79), t(10) = 3.32, p = .01, and 

peak deceleration (M = -.78, SD = .99), t(10) = 2.63, p = .03, compared to 0 (mean score). 

However, there was no significant difference observed for the displacements at peak velocity 

(M = -.17, SD = .95), t(10) = .59, p = .57, and movement end (M = .05, SD = .34), t(10) = .57, 

p = .58. 

Meanwhile, the factorial ANOVA on the ranges of the within-participant distributions 

revealed a significant main effect of statistic, F(1, 10) = 2.28, p < .05, partial ƞ2 = .19, as well 

as kinematic landmark, F(3, 30) = 32.69, p < .05, partial ƞ2 = .77. In addition, there was a 

significant statistic x kinematic landmark interaction, F(3, 30) = 32.42, p < .05, partial ƞ2 = 

.23 (see Figure 2 and Table 1). Post hoc analysis revealed a larger range for the within-
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participant standard deviation compared to the percentile statistic at peak deceleration (p < 

.05).1 

 

[Insert Figure 1, Figure 2  

and Table 1 about here] 

 

Vertical/Upward Movements 

To corroborate the findings from our first set of data, the second data reflected target-

directed movements with a mean reaction time, movement time and constant error of 300.37 

ms (SD = 23.84), 447.08 ms (SD = 43.45) and -.13 mm (SD = 2.43), respectively. 

Once more, the within-participant response distributions reflected a degree of 

skewness in the acceleration domain; namely, at peak deceleration (see Figure 3). The one-

way ANOVA revealed a significant main effect of kinematic landmark, F(3, 45) = 8.55, p < 

.05, partial ƞ2 = .36, which indicated a significantly greater negative skew for displacement at 

peak deceleration compared to peak acceleration and peak velocity (ps < .05). The single-

sample t-test also confirmed a significant negative skew for the displacement at peak 

deceleration compared to a theoretical value of 0 (mean score) (M = -.81, SD = .68), t(15) = 

4.80, p = .00, although there was no significant difference for peak acceleration (M = .32, SD 

= .94), t(15) = 1.37, p = .19, peak velocity (M = .28, SD = .67), t(15) = 1.67, p = .12, and 

movement end (M = -.15, SD = .42), t(15) = 1.40, p = .18. 

Meanwhile, the factorial ANOVA revealed a significant main effect of statistic, F(1, 

15) = 814.06, p < .05, partial ƞ2 = .48, which indicated a larger range between standard 

deviations compared to percentile scores (see Figure 4 and Table 2). In addition, there was a 

significant main effect of kinematic landmark, F(3, 45) = 60.50, p < .05, partial ƞ2 = .80, 
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although no significant statistic x kinematic landmark interaction, F(3, 45) = 1.69, p > .05, 

partial ƞ2 = .10.2 

 

[Insert Figure 3, Figure 4  

and Table 2 about here] 

 

Discussion 

Theoretical propositions surrounding target-directed movement contend that there is a 

normal distribution of endpoint responses, where variations from the mean are the result of 

stochastic properties (Elliott et al., 2004; Meyer et al., 1988). The present study adapted two 

sets of data in order to examine the trial-by-trial distribution of limb locations and the 

associated descriptors at early and late phases of movement. The results indicated a degree of 

skewness within the acceleration domain. That is, there was some evidence of a positive skew 

at peak acceleration, although the evidence predominantly pointed to a negative skew at peak 

deceleration. These violations in normality were corroborated by a limited overlap between 

the parametric (standard deviation) and non-parametric (percentile) descriptors of the 

response distribution. In contrast, there seemed to be a normal distribution for the limb 

displacements at peak velocity and movement end. 

To date, the majority of studies featuring the measure of spatial variability have 

assumed that differences in the standard deviation of limb locations at early (peak 

acceleration, peak velocity, peak deceleration) and late (movement end) stages of the 

movement represent influences of planning and control processes, respectively. For example, 

the decline in early kinematic landmarks across practice assumes the development of a more 

refined specification of motor efference (Hansen et al., 2005; Khan & Franks, 2003), while an 

exponential decline in variability toward the end of movement assumes the use of online 
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sensory feedback (Khan et al., 2003). While there has been no known study to precisely 

attribute the sources of this variability, we may have presently assumed that the within-

participant variability was stochastic in nature, as per the matter of endpoint variability 

(Meyer et al., 1988) and the associated effective target width (Welford, 1968). Such trial-by-

trial behaviour ought to generate a normal or Gaussian distribution of limb locations 

throughout the entire trajectory. However, the present data indicate that this assumption is 

premature at best as there were marked violations in the normal distributions at certain 

kinematic landmarks (peak acceleration, peak deceleration). Because the skewness was 

isolated to only some, and not all the landmarks, while a removal criteria (<100 ms and 

>1000 ms in reaction times, >800 ms in movement times) was set in advance of the analysis, 

it is highly unlikely that these findings were the result of some unnoticed artefact or failed 

movement/s (for examples of trial outliers, see Grierson & Elliott (2008) and Grierson, 

Lyons, & Elliott (2011)). 

On further assessment of the trend of the response distributions; namely, the negative 

skew at peak deceleration, it is possible that we can derive even more detail about these 

particular aiming movements as opposed to attributing mere random error. That is, the 

current trend may represent potential contamination of within-participant variability based on 

a voluntary parameter such as an attempt of the performer to prematurely engage in 

deceleration. These rare instances may reflect an anomalous safe approach to the end target 

as an alternatively random or extended position to peak deceleration would be possibly 

associated with a normal and positively skewed distribution profile, respectively. This 

suggestion is consistent with the tenets of optimization as performers seek to avoid an 

overshoot because it may incur some cost in time and energy-expenditure (Lyons et al., 2006; 

Oliveira, Elliott, & Goodman, 2005). Along these lines, there is evidence to suggest that peak 

deceleration is reached at an earlier point in time and space when encountering an 
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unanticipated positive shift in limb-velocity compared to other limb-velocity perturbations 

(Grierson et al., 2011). In a similar vein, the potential of incurring an even greater cost of an 

overshoot when aiming downwards (requiring corrections against gravity) coincides with a 

shortened displacement at peak deceleration prior to ‘homing-in’ (Roberts, Burkitt, Elliott, & 

Lyons, 2016). 

With this in mind, it is not unreasonable to suggest that the negative skew at peak 

deceleration pertains to the generation of early exploratory or alternative behaviours with a 

view to learning (Elliott et al., 2004; van Beers, 2009; Wolpert & Flanagan, 2010). Indeed, it 

has been previously shown that performers encounter profound changes in their target-

directed movements and subsequent learning following feedback of previous trial events 

(Burkitt, Staite, Yeung, Elliott, & Lyons, 2015; Cheng, Luis, & Tremblay, 2008; Khan & 

Franks, 2003). Presumably, performers seek to explore how fast they can aim before 

accumulating an error (Rabbitt, 1981). In the event that the performer moves so fast that they 

almost miss or no longer subtend the target boundaries then they will limit their reach until 

variability is reduced (see Joseph, King, & Newell, 2013, for commentary on transitory 

learning phases). 

On the contrary, it is important to realise that in the absence of any direct 

experimental manipulation designed to offset the variability measures from the current 

standard context, it cannot be categorically denied that such skewed profiles were the result 

of noise. Indeed, it is possible that the variance of positions for each kinematic landmark 

coincided with variations in time. That is, the acceleration landmarks may have reached 

varying moments in time (asymmetric), while the moment of peak velocity assumed a 

comparatively fixed period in time (symmetric). Nevertheless, this distinction between time 

and position ceases to be drawn within previous studies featuring spatial variability of 

kinematic landmarks, whose assumptions are of principle concern in the present study (see 
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Khan & Binsted, 2010, for examples of alternative moments of spatial variability). In order to 

positively attribute the sources of this variance, future investigations may seek to closely link 

single-trial events with ongoing (online; trial n) or subsequent (offline; trial n+1) target 

attempts in open- and closed-loop conditions. If the response distributions of kinematic 

landmarks are differentially sensitive to such manipulations then we can more strongly 

attribute these effects to systematic or intended sources of variance. 

On a separate note, the reported differences between the ranges based on ±1SD and 

±34.13th percentile, as well as the observed differences in within-participant means and 

medians (see Tables 1 and 2), continue to reflect the same form of variability profile (see 

Figures 2 and 4). That is, there was a systematic increase between peak acceleration and peak 

deceleration prior to a decline at the end of the movement. This form is deemed the 

characteristic feature of online control as changes between conditions should be primarily 

determined by relative rather than absolute metrics (Allsop et al., 2016; Khan et al., 2003). 

Thus, the presently conceived use and inference of spatial variability can successfully 

encompass variations across kinematic landmarks, although there may be some issues when 

separately comparing different levels of an independent factor (e.g., vision vs. no vision) at 

individual kinematics landmarks. 

At this juncture, we begin to recognise that the use of spatial variability to-date may 

indiscriminately consist of random (involuntary) and systematic (voluntary) sources of 

variance that are associated with stochastic properties and trial-by-trial adaptation, 

respectively. Therefore, it is problematic to adopt this measure for the potential inference of 

effective limb position across certain points of the trajectory. At the same time, it may 

unreasonably inflate individual participant values and offer imprecise accounts of trial-by-

trial behaviour. Thus, a more precise indication of pre-movement parameterization and 

intervening online control, designed to combat accumulating inherent and random sources of 
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variability, may be better-served by a non-parametric equivalent such as percentile ranges. 

Meanwhile, the potential inference of systematic variations within the trajectory (e.g., trial-

by-trial adaptation) may be more appropriately represented by measures of skewness in the 

distribution of spatial locations. 

In conclusion, while the current evidence does not refute the explanatory power of 

within-participant standard deviation as a measure of spatial variability, it does suggest that 

there is sufficient recourse to assess the distribution of limb locations; especially for 

landmarks of acceleration. Such procedures may be conducted with a view to selecting the 

appropriate descriptive statistics that closely reflect trial-by-trial behaviour. What’s more, any 

such violation in normality (e.g., positive/negative trend) may be leveraged to infer particular 

or systematic motor behaviours. Future research may identify the factors that cause such 

variation within the distribution including, but not limited to, the influence of practice and 

task mastery. Based on the current trend, it is possible that the degree of skewness may 

become less with increasing practice so that any further variability that is incurred may be 

isolated to random stochastic properties.  
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Tables 

Table 1. Mean within-participant means (±SD) and medians (±34%) of the displacement at 

kinematic landmarks (mm) for cases aiming horizontal/forward 

 
PA PV PD END 

Mean (±SD) 
10.53 

(7.46-13.59) 

98.59 

(88.18-109.00) 

212.25 

(194.15-230.35) 

239.18 

(235.93-242.44) 

Median (±34%) 
9.75 

(8.05-13.00) 

98.64 

(88.65-107.64) 

214.92 

(196.49-227.00) 

238.88 

(236.24-242.26) 

 

Table 2. Mean within-participant means (±SD) and medians (±34%) of the displacement at 

kinematic landmarks (mm) for cases aiming vertical/upward 

 
PA PV PD END 

Mean (±SD) 
7.08 

(5.70-8.45) 

59.75 

(51.73-67.77) 

138.17 

(123.64-152.70) 

156.33 

(152.98-159.68) 

Median (±34%) 
7.07 

(5.84-8.12) 

58.98 

(52.61-66.82) 

140.83 

(124.86-151.05) 

156.45 

(153.13-159.52) 
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Figure captions 

Fig. 1 Combined within-participant frequency distributions of spatial locations at peak 

acceleration (PA), peak velocity (PV), peak deceleration (PD), and movement end (END) for 

the first set of movement data (horizontal/forward). 

 

Fig. 2 Variability ranges defined by ±1 standard deviation (SD) and ±34.13th percentile (%) 

across kinematic landmarks for the first set of movement data (horizontal/forward). 

 

Fig. 3 Combined within-participant frequency distributions of spatial locations at peak 

acceleration (PA), peak velocity (PV), peak deceleration (PD), and movement end (END) for 

the second set of movement data (vertical/upward). 

 

Fig. 4 Variability ranges defined by ±1 standard deviation (SD) and ±34.13th percentile (%) 

across kinematic landmarks for the second set of movement data (vertical/upward).  
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Footnotes 

1) Because the double-differentiated time-series displacement data used to obtain 

acceleration may have exaggerated any irregularities in the kinematics, it is possible that 

the indicators of skewness or non-normal distributions resulted from an artefact of data 

processing. Thus, the present findings were corroborated by conducting the same sets of 

analyses following the re-filtering of velocity data prior to a further three-point central 

differentiation. For z3 scores, the main effect of kinematic landmark approached 

conventional levels of significance, F(3, 30) = 2.67, p = .085, partial ƞ2 = .21, while there 

was a significantly positive skew compared to 0 for peak acceleration, t(10) = 2.55, p < 

.05 (peak acceleration: M = .32, SD = .42; peak deceleration: M = -.64, SD = 1.15). 

Meanwhile, comparisons between standard deviation and percentile ranges revealed 

significant main effect of statistic, F(1, 10) = 7.17, p < .05, partial ƞ2 = .42, and 

kinematic landmark, F(3, 30) = 32.76, p < .05, partial ƞ2 = .77, although were superseded 

by a significant statistic x kinematic landmark interaction, F(3, 30) = 4.65, p < .05, 

partial ƞ2 = .32. Post hoc analysis confirmed a significantly larger range for standard 

deviation (M = 31.59, SD = 9.24) compared to percentile (M = 26.29, SD = 12.65) scores 

at peak deceleration (p < .05). Furthermore, as the transition between positive-to-

negative acceleration coincides with the moment of peak velocity, the z3 scores from the 

zero-line crossing of the double-differentiated acceleration were compared with the peak 

of the single-differentiated velocity, which revealed no significant difference, T = 5, z = 

.27, p > .05. Collectively, it appears these separate analyses refute suggestions of a 

processing artefact. 

2) To further corroborate the additional analysis for horizontal/forward movements, the 

same data processing was undertaken for the vertical/upward movements to derive 

displacement in the acceleration trace following the filtering of velocity. Comparison of 
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the z3 scores revealed a significant main effect of kinematic landmarks, F(3, 45) = 9.93, 

p < .05, partial ƞ2 = .40, which indicated a significantly more negative score at peak 

deceleration (M = -.89, SD = 72) compared to the remaining landmarks (peak 

acceleration: M = .24, SD = .77; peak velocity: M = .32, SD = .68; movement end: M = -

.15, SD = .43). These findings were corroborated by the single-sample t-test as there was 

a significantly lower score compared to 0 for peak deceleration, t(15) = 4.93, p < .05. 

Meanwhile, the analysis of standard deviation and percentile ranges showed significant 

main effects of statistic, F(1, 15) = 14.23, p < .05, partial ƞ2 = .49, and kinematic 

landmark, F(3, 45) = 61.61, p < .05, partial ƞ2 = .81, which were superseded by a statistic 

x kinematic landmark interaction, F(3, 45) = 4.29, p < .05, partial ƞ2 = .22. Post hoc 

analyses confirmed a significantly larger standard deviation range (M = 28.83, SD = 

7.78) than percentile range (M = 24.49, SD = 10.12) for peak deceleration (p < .05). 

Finally, the comparison between the z3 scores at peak velocity and corresponding 

moment of the positive-to-negative zero-line crossing in acceleration revealed no 

significant difference, t(15) = .36, p > .05. 


