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Investigations into a putative role for the
novel BRASSIKIN pseudokinases in
compatible pollen-stigma interactions in
Arabidopsis thaliana
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Abstract

Background: In the Brassicaceae, the early stages of compatible pollen-stigma interactions are tightly controlled
with early checkpoints regulating pollen adhesion, hydration and germination, and pollen tube entry into the
stigmatic surface. However, the early signalling events in the stigma which trigger these compatible interactions
remain unknown.

Results: A set of stigma-expressed pseudokinase genes, termed BRASSIKINs (BKNs), were identified and found
to be present in only core Brassicaceae genomes. In Arabidopsis thaliana Col-0, BKN1 displayed stigma-specific
expression while the BKN2 gene was expressed in other tissues as well. CRISPR deletion mutations were
generated for the two tandemly linked BKNs, and very mild hydration defects were observed for wild-type
Col-0 pollen when placed on the bkn1/2 mutant stigmas. In further analyses, the predominant transcript for
the stigma-specific BKN1 was found to have a premature stop codon in the Col-0 ecotype, but a survey of
the 1001 Arabidopsis genomes uncovered three ecotypes that encoded a full-length BKN1 protein.
Furthermore, phylogenetic analyses identified intact BKN1 orthologues in the closely related outcrossing
Arabidopsis species, A. lyrata and A. halleri. Finally, the BKN pseudokinases were found to be plasma-
membrane localized through the dual lipid modification of myristoylation and palmitoylation, and this
localization would be consistent with a role in signaling complexes.

Conclusion: In this study, we have characterized the novel Brassicaceae-specific family of BKN pseudokinase
genes, and examined the function of BKN1 and BKN2 in the context of pollen-stigma interactions in A.
thaliana Col-0. Additionally, premature stop codons were identified in the predicted stigma specific BKN1
gene in a number of the 1001 A. thaliana ecotype genomes, and this was in contrast to the out-crossing
Arabidopsis species which carried intact copies of BKN1. Thus, understanding the function of BKN1 in other
Brassicaceae species will be a key direction for future studies.
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Background
In the Brassicaceae, the early post-pollination stages of
pollen adhesion and hydration, and pollen tube entry
into the stigma are highly-regulated and represent the
first of several stages leading to the release of the sperm
cells at the ovule for fertilization (reviewed in [1–5]).
The characteristic Brassicaceae “dry stigmas” lack sur-
face secretions to facilitate pollen hydration and germin-
ation; thus, pollen recognition is required for the stigma
to be receptive [6, 7]. The Brassicaceae stigma surface is
covered with unicellular stigmatic papillae, and the
process of pollen capture is very rapid, occurring in as
little as 30 s following a compatible pollination in Arabi-
dopsis thaliana [8]. Following this, the pollen coat and
stigma surface components mix to form a “pollen foot”
at the location of the pollen-papillar contact, and this
contributes to the process of pollen adhesion [9]. The
next checkpoint of pollen acceptance is pollen hydration,
where the desiccated pollen grain takes up water re-
leased by the stigmatic papilla to become metabolically
active [6, 10–12].
Despite being a critical step leading to successful

fertilization, the cell-cell communication events that fa-
cilitate early pollen-stigma interactions are poorly under-
stood. There are proteins in the pollen coat that are
required for pollen hydration such as the A. thaliana
GRP17 oleosin-domain protein, the EXL4 extracellular
lipase, and the Pollen Coat Protein-B family (PCP-B)
[13–15]. The PCP-Bs are particularly interesting as they
are small cysteine-rich proteins that represent promising
compatible pollen recognition factors for unknown
stigma receptors. A. thaliana pcp-bα/β/γ triple mutants
displayed impaired pollen hydration and delayed pollen
tube growth on wild-type stigmas [15]. Perception of
peptide ligands by receptor kinases plays a prominent
role in the regulation of downstream compatible pollen-
pistil interactions and pollen tube guidance, as well as
the rejection of self-pollen in self-incompatible Brassica-
ceae species (reviewed in [1, 2, 4, 5, 16]).
Other factors identified on the pollen side for these

early post-pollination stages are connected to the pro-
duction of reactive oxygen species (ROS). Pollen
NADPH oxidases were shown to be important for Ca2+-
dependent ROS production in the apoplast for A. thali-
ana pollen tube elongation into the stigmatic papillar
cell wall [17, 18]. ROS production was again implicated
in A. thaliana T-DNA insertion mutants disrupting the
β and γ subunits of the SNF1-related protein kinase 1
complex. Mutant kinβγ pollen grains displayed reduced
ROS levels as a result of mitochondrial and peroxisomal
defects, and this was associated with reduced hydration
and germination on wild-type stigmas [19]. Finally, the
SHAKER POLLEN INWARD K+ channel (SPIK) gene
was found to be downregulated in kinβγ mutant pollen,

and spik mutant pollen grains also displayed reduced hy-
dration on wild-type stigmas [20].
On the stigmatic papillar side, ultrastructural studies

of the pollen-papillar interface previously implicated
both secretory activity and vacuolar expansion in the
stigmatic papillae of Brassica and Arabidopsis species
[21–25]. This exocyst complex, a vesicle-tethering
complex composed of eight different subunits (SEC3,
SEC5, SEC6, SEC8, SEC10, SEC15, EXO70 and
EXO84), was implicated in mediating this secretory
activity in the stigma [26–28]. Through the use of
knockout mutants and stigma-specific RNA silencing
constructs, all eight subunits were found to be re-
quired in the stigma for the compatible pollen accept-
ance. Wild-type pollen applied to stigmas from the
exocyst subunit knockdown/knockout mutants displayed
reduced pollen hydration and germination, and showed
signs of disrupted secretion [22, 26, 27, 29, 30]. Other cel-
lular responses in Brassica and Arabidopsis stigmatic pa-
pillae have also been connected to vesicle trafficking
(reviewed in [31]). For example, Brassica compatible polli-
nations were associated with actin reorganization in the
stigmatic papilla towards the pollen attachment site and
microtubule depolymerization [25, 32]. Recently, another
vesicle trafficking-related component, Brassica phospho-
lipase Dα1, has been shown to be required in the stigma
for compatible pollinations [33]. As well, changes in Ca2+

dynamics were observed, with small Ca2+ increases at the
site of pollen attachment in A. thaliana stigmatic papillae
[34]. Through transcriptome analyses of A. thaliana stig-
mas pre- and post-pollination, the ACA13 Ca2+ ATPase
was identified as a stigmatic component and proposed to
secrete Ca2+ for the developing pollen tube [35]. Finally,
we have recently identified the secreted Arabidopsis E6-
like 1 protein as a potential structural component of the
stigmatic papillae required for these early post-pollination
stages [36].
While the PCP-Bs represent potential pollen ligands for

compatible pollen recognition, the corresponding recogni-
tion system in the stigma is unknown. The process of
pollen acceptance by the stigma is thought to be con-
served in the Brassicaceae since pollen from several Bras-
sicaceae species were able to hydrate and germinate on
Arabidopsis stigmas whereas pollen from non-
Brassicaceae species failed to hydrate [37]. Moreover,
when pollen from various species were applied to A. thali-
ana or B. oleracea stigmas, there was some specificity at
the pollen adhesion stage [8, 38]. Thus in this reverse-
genetics study, we utilized publicly available transcriptome
datasets to search for potential signalling genes that dis-
play stigma-enriched expression and were conserved
within the Brassicaceae. Through this approach, we identi-
fied a novel group of Brassicaceae-specific pseudokinase
genes which we termed the BRASSIKINs (BKNs).
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Results
BKNs are stigma-expressed receptor-like cytoplasmic
kinases
To identifying candidate stigma signalling genes, we
used the expression angler tool from the Bio-Analytic
Resource for Plant Biology [39]. For this search, we used
the stigma-specific SLR1 gene [40] as a bait to identify
other genes with similar expression patterns across the
A. thaliana developmental series microarray datasets
[36, 41, 42]. The gene, At5g11400, was a top hit (Add-
itional file 2: Table S1) and displayed stigma-specific ex-
pression in the transcriptome datasets (Additional file 1:
Figure S1, [35, 43, 44]). This gene is predicted to encode
a novel receptor-like cytoplasmic kinase (RLCK) which
we named BRASSIKIN 1 (BKN1). Interestingly, adjacent
to the BKN1 gene is a tandemly linked paralogue,
At5g11410, named BKN2 in the A. thaliana genome
(Fig. 1a). BKN2 was ranked 64th in the expression angler
dataset (Additional file 2: Table S1), with expression in a
wider range of tissues (Additional file 1: Figure S1). Both
BKN genes are also predicted to encode pseudokinases
(discussed below) [46, 47].
The expression patterns for BKN1 and BKN2 were

examined by RT-PCR on RNA extracted from A.
thaliana stigmas (top ½ pistil), ovaries (bottom ½ pis-
til), leaves and roots. Both BKN1 and BKN2 were
expressed in the stigma samples, with some expression for
BKN2 in ovary samples (Fig. 1b). The BKN1 and BKN2 ex-
pression patterns were also examined in promoter-GUS
transgenic plants (promoter regions are indicated by ar-
rows, Fig. 1a). For the transgenic BKN1p:GUS A. thaliana
lines, stained inflorescences showed high levels of GUS ac-
tivity in stigmas from flowers across developmental stages,
but not in the other tissues in the inflorescences or in
seedlings (Fig. 1c-e). The transgenic BKN2p:GUS inflores-
cences displayed GUS activity primarily in the flower ab-
scission zones and in the stems (Fig. 1f-g). There was also
GUS activity in some BKN2p:GUS seedlings at the leaf
edges and petiole (Fig. 1h). GUS activity was not observed
in BKN2p:GUS stigma tissues; however, this may be due
to BKN2 having much lower expression in the stigmas
that may be undetectable by GUS staining (Additional file
1: Figure S1). Alternatively, the adjacent stigma specific
BKN1 promoter or other unknown regulatory regions
may be responsible for the BKN2 expression detected in
the stigma tissues (Fig. 1a,b).

Analysis of compatible pollen responses for BKN1 and
BKN2 single and double knockout mutants in A. thaliana
Given BKN1’s stigma-specific expression, we investi-
gated whether BKN1 was required for compatible polli-
nations by examining loss-of function mutants. A
knockout line with a T-DNA inserted in the fifth exon
of BKN1 was assessed for post-pollination responses

(bkn1–1; Additional file 1: Figure S2a, b). The bkn1–1
mutant plants did not display any discernible develop-
mental defects and appeared fully fertile with wild-type
siliques. Furthermore, pollinated bkn1–1 pistils stained
with aniline blue were similar to wild-type for adhered
pollen grains and pollen tube growth (Additional file 1:
Figure S2c, d). Given that this mutant displayed some
expression upstream of the T-DNA insertion, additional
BKN1 mutants were generated using a CRISPR/Cas9
genome editing system [48]. Furthermore, a similar ap-
proach was taken for BKN2 since it could potentially
function redundantly to BKN1. Single deletion mutants
were generated resulting in two new independent homo-
zygous mutants for each BKN1 and BKN2: bkn1–2 and
bkn1–3, and bkn2–1 and bkn2–2 (Fig. 2a).
Similar to bkn1–1, all four CRISPR deletion mutants

bkn1–2, bkn1–3, bkn2–1 and bkn2–2 displayed wild-type
pollen tube growth in aniline blue stained pistils that had
been manually pollinated with wild-type Col-0 pollen
(Fig. 3a-e). There were no discernable phenotypes at this
stage for individual bkn1 and bkn2 loss-of-function mu-
tants. These mutants also did not show any observable de-
fects in the number of pollen grains adhered to the stigma
or seed set, relative to Col-0 (Fig. 3f-g). We then examined
one of the earliest post-compatible pollination stages,
pollen hydration, which is dependent on water release
from the stigma [6, 26, 27]. Col-0 pollen was applied to all
stigmas and pollen hydration was assessed by measuring
the diameter of pollen grains which become rounder in
shape with water uptake. Col-0 pollen on Col-0 stigmas
had a mean pollen grain diameter of 21.9 μm at 10min
post-pollination compared to 12.6 μm at 0min. The
bkn1–2 and bkn1–3 mutant stigmas supported similar
levels of Col-0 pollen hydration when compared to Col-0
stigmas (Fig. 2b). In contrast, Col-0 pollen place on the
bkn2–1 and bkn2–2 mutant stigmas showed a small but
significant decrease in diameter at 10min post-
pollination. This suggested that there was a mild Col-0
pollen hydration defect on the bkn2–1 and bkn2–2 mutant
stigmas (Fig. 2b).
To test for potential functional redundancy, double

bkn1-bkn2 mutants were generated. Since the BKN1 and
BKN2 genes are tandemly arrayed, the strategy taken
was to transform a transgene-free bkn1–3 mutant with a
BKN2 CRISPR construct to knock out both genes. From
this screen, three new bkn2 mutants, bkn2–3, bkn2–4
and bkn2–5, were identified in the bkn1–3 background
(Fig. 2a). Pollen hydration assays were conducted on
these double bkn1-bkn2 homozygous mutants, and
again mild, but significant reductions were observed
for the Col-0 pollen placed on these mutant stigmas
(Fig. 2b). Similar to the single mutants, pollinated
double bkn1-bkn2 mutant pistils stained with aniline
blue displayed wild-type levels of adhered pollen
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grains and pollen tube growth (Fig. 4). Thus, there
did not appear to be any additive effect by knocking
out both BKN1 and BKN2, and suggests that the
highly expressed, stigma-specific BKN1 did not display
a noticeable function in pollen-stigma interactions.

Variations in predicted protein translation products for
BKN1 in different A. thaliana ecotypes
As the bkn1 mutants displayed wild-type post-pollination
phenotypes, the predicted protein sequences encoded by
the BKN genes were examined more closely. BKN

Fig. 1 Tissue-specific expression patterns of BKN1 and BKN2 in A. thaliana. a. Gene structures for the tandemly linked BKN1 and BKN2
genes. The promoter regions used for BKNp:GUS constructs are shown by blue arrows. b. RT-PCR analysis of different tissues show BKN1
and BKN2 expression in the stigmas. The double PCR bands observed for BKN1 is the result of the third intron not being properly spliced
in the top band (determined by sequencing). This is also seen in the carpel RNA-Seq mapping data (Fig. 5).c-e. GUS staining of different
tissues from BKN1p:GUS transgenic plants. GUS activity was specifically detected in stigmas across developmental stages in the
inflorescence (c,d), and not in other tissues, including seedlings (e). f-h. GUS staining of different tissues from BKN2p:GUS transgenic
plants. GUS activity was detected primarily in the floral abscission zones and stems (f, g). GUS staining was also seen in the petioles and
the tips of leaves for about half of the samples (h). Scale bars are 1 cm for inflorescence images (right), and 500 μm for stage 12 flowers
(centre) and 100 μm for seedlings (left)
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cDNAs were cloned from the A. thaliana Col-0 eco-
type and compared to the TAIR/Araport gene annota-
tions [45, 49]. While the BKN2 cDNA sequence and
predicted amino acid sequence matched the gene an-
notation, the full-length BKN1 cDNA showed some
differences (Fig. 5a, Additional file 1: Figure S3). Im-
portantly, the second exon in the cDNA included an
additional 17 bp at the 5′ end resulting in a frame-
shift and a premature stop codon (Fig. 5a, asterisk).
As a result, the predicted A. thaliana Col-0 BKN1
protein would only be 42 aa in length, in comparison
to the predicted 304 aa (Additional file 1: Figure S4).
The cloned BKN1 cDNA matched the carpel RNA-
Seq mapping data displayed on Araport (Fig. 5a);
nevertheless, there also appeared to be potential alter-
native splice sites at the beginning of the second exon
that could restore the BKN1 reading frame and en-
code a larger protein (i.e. the BKN1 gene annotations;

yellow arrow in Fig. 5a; Additional file 1: Figure S3,
S4). While two BKN1 RT-PCR bands were observed
in Fig. 1b, the larger band was identified by sequen-
cing to include the third intron, rather than an alter-
natively spliced transcript. Signs of the unspliced
third intron were also present in the carpel RNA-Seq
mapping displayed on Araport (orange arrow in Fig.
5a). Despite several attempts, we were unable to clone
BKN1 cDNAs that corresponded to the TAIR/Araport
gene annotations.
A search for BKN orthologues in the genomes of

two outcrossing Arabidopsis species, A. lyrata, and A.
halleri, uncovered BKN1 coding regions that were
predicted to be fully intact. This was confirmed by
cloning the corresponding cDNAs from A. lyrata
(Additional file 1: Figure S3, S4 and S5). When the
BKN1 sequences were aligned, two indels were identi-
fied in the A. thaliana Col-0 BKN1 cDNA sequence

Fig. 2 Pollen hydration assays for A. thaliana Col-0 bkn1 and bkn2 CRISPR deletion mutants. a. Structure of the tandemly linked BKN1 and BKN2
genomic region depicting the locations of CRISPR deletions. The bkn1 and bkn2 deletion mutants were generated separately and the CRISPR-
generated deletion were confirmed by sequencing. The bkn1–3 mutant was then transformed with a CRISPR construct to delete the BKN2 gene
resulting in the bkn1 bkn2 double mutants. b. Pollen hydration assays at 10min post-pollination. Wild-type Col-0 pollen was applied to Col-0 stigmas
and the different bkn mutant stigmas and left for 10min. Pollen hydration results in a change in pollen grain diameter which was measured at 10min
post-pollination. Stigmas carrying a mutation in the BKN2 gene showed reduced Col-0 pollen hydration compared to Col-0 stigmas. n = 30 pollen
grains per line. Letters represent statistically significant groupings of p < 0.05 based on a one-way ANOVA with a Duncan post-hoc test
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that would disrupt the reading frame (Fig. 5, aster-
isks), the first being a 1 bp deletion (ΔT128) and the
second being a 1 bp insertion (^A597; Additional file
1: Figure S3). We then searched through the 1135 ge-
nomes dataset to determine how widespread these
BKN1 indels were across the different A. thaliana
ecotypes [50]. Most ecotypes carried ΔT128 causing

the premature stop codon in Col-0 BKN1 (Add-
itional file 3: Table S2). Interestingly, three A. thali-
ana ecotypes were predicted to have fully intact
BKN1 coding regions. The first ecotype identified was
Hh-0, and the corresponding cDNA was cloned and
confirmed by sequencing to encode a full-length
BKN1 protein, similar to Al-BKN1 (Fig. 5, Additional

Fig. 3 Analysis of the single bkn1 and bkn2 CRISPR mutants. a-e. Stage 13 pistils were pollinated with wild-type Col-0 pollen for 2 h and then fixed
and stained with aniline blue. Brightfield images (left) show pollen grains adhered to the stigmatic papillae, and fluorescent images (right) show aniline
blue stains of callose deposits in the pollen tubes. Representative images of pollinated Col-0 pistils (a) bkn1–2 (b) bkn1–3 (c), bkn2–1 (d) and bkn2–3 (e)
show similar pollen adhesion and pollen tube penetration. Scale bar = 100 μm. f. Number of Col-0 pollen grains adhered to stigmas following aniline
blue staining at 2-h post-pollination for Col-0 and the bkn1 and bkn2 mutants. During this staining procedure, ungerminated pollen grains are washed
away and so the number of adhered pollen grains can be quantified. n = 10 stigmas per line. g. Seed set rates, following hand-pollination with Col-0
pollen. All bkn1 or bkn2 mutants display normal seed set, similar to Col-0. n = 10 siliques per line. Letters represent statistically significant groupings of
p < 0.05 based on a one-way ANOVA with a Duncan post-hoc test. No significant differences were observed for (f) and (g)
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file 1: Figure S3, S4 and S5). Subsequent searches
identified two other ecotypes, Dju-1 and Västervik,
that were also confirmed to carry the same two indels
as Hh-0 to encode a full-length BKN1 protein (Fig. 5b,
Additional file 1: Figure S6, Additional file 3: Table S2).
However, in a number of other ecotypes, the presence of
the two ORF-restoring indels (^T128, ΔA597) were asso-
ciated with new SNPs that would again knock out the
BKN1 coding region. This included the loss of the start
methionine (ATG→ACG) and a new stop codon (TAA)
downstream of ΔA597 (Fig. 5, Additional file 1: Figure S6,
Additional file 3: Table S2). With Hh-0 expressing an in-
tact At-BKN1 gene, pollen hydration assays were con-
ducted on Hh-0 flowers to see if there was any variation at
this early post-pollination stage and then compared to
Col-0 in reciprocal pollinations, but no obvious differences
were observed (Additional file 1: Figure S7).

BKNs are conserved within the Brassicaceae but are
absent in species outside this family
Given the BKN1 polymorphisms found in the Arabidopsis
species genomes, we also investigated related BKN genes
in other plant species. The BKNs are part of the group VII
RLCKs (Additional file 1: Figure S8; as defined by [51])
which include a number of important signalling proteins
such as the BOTRYTIS-INDUCED KINASE1 (BIK1 [52])

and the various PBS1-Like (PBL) proteins associated with
plant immune signalling [53, 54]. The BKNs are most
closely related to CASTAWAY (CST [55]) and PBL31
[53] (Additional file 1: Figure S8). RLCKs are related to
plant receptor kinases [51, 56], except that they lack extra-
cellular domains and typically function in complexes with
receptor kinases [57–59]. Alignments between BKN1 and
BKN2 with CST (an active kinase involved in floral abscis-
sion [55]) clearly show that the BKNs are missing several
key residues for ATP binding and catalytic activity, includ-
ing the glycine-rich loop and the VAIK, HRD and DFG
motifs, and as a result, are defined as being pseudokinases
[46] (Additional file 1: Figure S9). Although some pseudo-
kinases may exhibit partial kinase activity, BKNs are pre-
dicted to be inactive due to the number of missing
residues, particularly the glycine-rich loop and the VAIK
motif, which are required for catalytic activity [46, 60].
To investigate the distribution of BKN genes in plant

genomes, BLAST searches were conducted using the A.
thaliana BKN amino acid sequences along with three
closely related RLCK amino acid sequences: At5g25440,
PBL31 (At1g76360) and CST (At4g35600). These three
predicted proteins were selected as they cluster with the
BKNs in the RLCK-VII tree (Additional file 1: Figure
S8). In these searches, a third A. thaliana BKN paralo-
gue was located nearby on chromosome 5, At5g11360

Fig. 4 Representative images of aniline blue-stained stigmas from the bkn1 bkn2 mutants. a-d. Aniline blue-stained pistils, following 2 h
pollination with Col-0 pollen. Brightfield images (left) show pollen grains adhered to the stigmatic papillae, and fluorescent images (right) show
aniline blue-stained pollen tubes (a), bkn1–3 bkn2–3 (b), bkn1–3 bkn2–4 (c) and bkn1–3 bkn2–5 (d). All show similar levels of pollen adhesion and
pollen tube growth. Scale bar = 100 μm
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(BKN3; Additional file 1: Figure S4). At-BKN3 is pre-
dicted to have a large internal deletion of ~ 140 amino
acids, while the corresponding orthologues in A. lyrata
and A. halleri encode a full length BKN3s (Additional
file 1: Figure S4 and S5). We identified BKN homologues
for all Brassicaceae genomes searched, including A. lyr-
ata, A. halleri, Arabis alpina, Boechera stricta, Capsella
rubella, C. grandiflora, Brassica cretica, B. oleracea,
Eutrema salsugineum (formerly Thellungiella halophila)
and Schrenkiella parvula (formerly T. parvula). The
number of homologues ranged from one in S. parvula to
nine in B. oleracea. Interestingly, the BKNs were all pre-
dicted to be the pseudokinases (Additional file 1: Figure
S9) and only found in core Brassicaceae genomes, not in
the genome of the basal Brassicaceae species, Aethio-
nema arabicum [61]. Our searches were expanded to in-
clude two genomes from other Brassicales families
(Tarenaya hassleriana, Cleomaceae; Carica papaya,
Caricaceae), and a phylogenetic analysis of the retrieved
sequences indicated an absence of BKN homologues in
these genomes as well (Fig. 6). All of the core Brassica-
ceae BKNs were found in a clade that was distinct from
the homologues for the other group VIIa RLCKs
(At5g25440, CST, PBL31; Fig. 6).

Plasma membrane localization of BKNs by predicted N-
terminal myristoylation and palmitoylation sites
Despite lacking kinase activity, pseudokinases do play a
variety of roles in biological systems and typically are in
association with other signalling proteins at the cell
membrane [66–74]. While the BKNs, as typical RLCKs,
lack extracellular and transmembrane domains, they
have conserved residues for N-terminal myristoylation
and/or palmitoylation. These N-terminal lipid anchors
can target proteins to the cell membrane where they
would be proximal to other signalling proteins and re-
ceptors [75–77]. The presence of a glycine at position
two is essential for myristoylation, while the cysteine at
position 4 is required for palmitoylation [78]. Interest-
ingly, all the Brassicaceae BKN homologues have a pre-
dicted myristoylation site (G2, Additional file 1: Figure
S9) while several also have a predicted palmitoylation
site at the N-terminus (C4; Additional file 1: Figure S9).
Specifically, A. thaliana BKN1, A. thaliana BKN2 and A.
lyrata BKN2 have both the G2 and C4 sites while A. lyr-
ata BKN1 only has the G2 myristoylation site (Add-
itional file 1: Figure S5 and S9). Using a transient
expression system in Nicotiana benthamiana leaf epider-
mal cells, C-terminal YFP fusions [79] of the four

Fig. 5 A. thaliana BKN1 gene models and ecotype polymorphisms. a. A. thaliana BKN1 gene models are shown with carpel RNA-Seq mapping
coverage from Araport [45]. Yellow astericks (*) mark two in/del SNPs in Col-0 BKN1 when compared to Hh-0 BKN1 and A. lyrata BKN1. For the BNK1 Col-0
gene annotations and cDNA, the first asterisk marks a 1 bp deletion (T) resulting in an adjacent premature stop codon and the second asterisk marks a 1
bp insertion (A) that would result in a downstream premature stop codon for the At5g11400.1 annotation. Based on the reduced carpel RNA-Seq
coverage at the 5′ end of the BKN1 exon 2, there may be alternate splice sites in use (yellow arrow) and some of these potential alternate splice junctions
would restore the BKN1 Col-0 reading frame to produce a longer protein as predicted for the At5g11400.1 and At5g11400.2 annotations. See also
Additional file 1: Figure S3 and S4. The orange arrow delineates the third intron that is not properly spliced in the top RT-PCR band in Fig. 1b. b. A. thaliana
BKN1 polymorphisms in different ecotypes. In addition to Hh-0, Västervik and Dju-1 are predicted to encode a full length BKN1 protein (based on genomic
sequencing). Bela-1 and Bik-1 displayed other SNPs that disrupt the BKN1 open reading frame (see also Additional file 1: Figure S6)
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proteins were then tested for potential plasma membrane
localization. Full-length At-BKN1 from Hh-0 was tested
along with At-BKN2 from Col-0, Al-BKN1 and Al-BKN2
(Fig. 7). All four BKN:YFP proteins appeared to be pre-
dominantly localized to the plasma membrane (Fig. 7a-d),
with At-BKN1:YFP and Al-BKN1:YFP also showing some
localization to the nucleus (Fig. 7a-b). It was unclear
whether the unexpected partial nuclear localization is

related to the protein function or an artifact caused by
cleavage and mis-localization of the YFP. As well, Al-
BKN1:YFP’s pattern of localization to the plasma mem-
brane did not appear to be as tight as the other BKNs, but
this may be related to Al-BKN1 only having a myristoyla-
tion site [81]. Myristoylation allows for transient associa-
tions with the membrane while the combination of
palmitoylation and myristoylation more effectively

Fig. 6 Phylogenetic analysis of Brassicaceae BKN and closely-related RLCK group VIIa protein sequences. Sequences are from Arabidopsis thaliana,
A. lyrata, A. halleri, Arabis alpina, Boechera stricta, Brassica cretica, B. oleracea, Capsella rubella, C. grandiflora, Eutrema salsugineum (formerly T.
halophila), Schrenkiella parvula (formerly T. parvula), Aethionema arabicum, Tarenaya hassleriana, and Carica papaya. Red branches represent the
BKN clade, Magenta branches represent the At5g25440-related RLCKs, Blue branches represent the At1g76360-related RLCKs, Green branches
represent the CST (At4g35600)-related RLCKs. A. thaliana protein sequences for At5g25440.1, At1g76360.1 and At4g35600.2 were selected for
searches and phylogenetic analyses as they clustered with the BKNs in the RLCK-VIIa tree (Additional file 1: Figure S7). KIN10 (At3g01090.2, SnRK1
kinase) was chosen as an outgroup. The analysis involved 90 amino acid sequences and the sequences were aligned using ClustalW [62] in the
MEGA 7 software [63]. The N-and C-terminal ends of the alignment were trimmed (see Supplemental files for sequences and alignment), and the
tree was constructed using the Maximum Likelihood method [64] in the MEGA 7 software. All positions containing gaps and missing data were
eliminated, and a total of 28 positions was in the final dataset. The tree generated in MEGA 7 represents the bootstrap consensus tree inferred
from 1000 replicates [65]

Doucet et al. BMC Plant Biology          (2019) 19:549 Page 9 of 18



anchors proteins to the plasma membrane, though these
protein modifications remain reversible to facilitate transi-
ent membrane associations [81].

With Al-BKN2:YFP and At-BKN2:YFP containing
both the G2 and C4 sites and showing strong plasma
membrane localization, we also tested if these proteins

Fig. 7 Confocal microscopy imaging of N. benthamiana leaves infiltrated with C-terminal BKN:YFP fusion proteins. a-b. BKN1 is
predominantly localized to the plasma membrane (PM) with some nuclear localization (N) for both At-BKN1 (a) and Al-BKN1 (b). The
BKN1 cDNA from the Hh-0 ecotype was used for expressing the At-BKN1 protein (see text). c-d. BKN2 is predominantly localized to the
plasma membrane (PM) for both At-BKN2 (c) and Al-BKN1 (d).e-g. Plasma membrane localization is disrupted for Al-BKN2 versions
mutated at the myristoylation (G2A) and palmitoylation (C4A) sites. Images are shown for the single G2A mutant (e), single C4A mutant
(f) and double G2A C4A mutant (g) versions of Al-BKN2. Localization is seen in the cytoplasm (CS = cytoplasmic strands) and nucleus (N).
h. A. thaliana CAM4:YFP was used to compare the localization of YFP fluorescence in the cytoplasm (CS = cytoplasmic strands) and
nucleus (N). i. Cells infiltrated with Al-BKN2 were plasmolysed using 0.8 M mannitol. Localization in plasmolysed cells remains
predominantly at the cell periphery. There is also some localization to Hechtian strands in the apoplastic space (A). Hechtian strands are
plasma membrane tubules connected to the cell wall [80]. YFP fusion constructs were infiltrated at OD600 = 0.5, and images were taken
24 h post-inoculation. Scale bars = 30 μm
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could be palmitoylated when expressed in yeast cells.
The BKN2 proteins were isolated from transformed
yeast cells (Fig. 8a), and then tested for S-palmitoylation
using the in vitro acyl-RAC (resin-assisted capture) assay
[82]. After free thiols were blocked, the proteins were ei-
ther treated with hydroxylamine (+) to remove palmitoy-
late and exposing free thiols at the palmitoylation sites
or left untreated (−). Both Al-BKN2 and At-BKN2 were
detected in the (+) lanes indicating that these proteins
had been S-palmitoylated and were captured on the
thiol-reactive resin following hydroxylamine treatment
(Fig. 8b). Finally, since Al-BKN2:YFP displayed particu-
larly high florescent levels as well as strong localization
to the plasma membrane (Fig. 7d), we tested the effects
of disrupting the myristoylation and palmitoylation sites
on its localization pattern. Amino acid substitutions of
the myristoylation (G2A) site, the palmitoylation (C4A)
site or both (G2A, C4A) in Al-BKN2:YFP disrupted its
plasma membrane localization, resulting in mis-
localization to the nucleus and the cytoplasm of N.
benthamiana leaf epidermal cells (Fig. 7e-g), similar to
the CAM4:YFP control (Fig. 7h). The cells infiltrated with
Al-BKN2:YFP were also plasmolysed by treating with 0.8
M mannitol to cause cell shrinkage and plasma membrane
dissociation from the cell wall. BKN2:YFP localization was
observed at the plasma membrane, at the sites where the
plasma membrane has detached from the cell wall, and
with Hechtian strands in the apoplastic space (Fig. 7i).
Similar results were observed for the other BKNs follow-
ing plasmolysis (Additional file 1: Figure S10). With the
Al-BKN2 versions mutated at the myristoylation (G2A)
and/or palmitoylation (C4A) sites, disrupted plasma mem-
brane localization was again observed in the plasmolysed
cells with the YFP signal becoming more diffuse and some

localization occurring in the nucleus (Additional file 1:
Figure S10). Thus, this data strongly supports that the
BKNs have N-terminal lipid anchors to localize to the
plasma membrane, and disruption of the fatty acid modifi-
cation sites (G2, C4) causes a mis-localization to other
subcellular compartments.

Discussion
In this study, we have investigated a novel family of
pseudokinase genes, the BRASSIKINs (BKNs) that are
only found in core-Brassicaceae species. The Brassica-
ceae genomes examined typically carried two to three
different BKN genes, except for the Brassica genomes
which tended to have higher numbers, up to nine pre-
dicted BKN genes for the diploid species. BKNs belong
to the receptor-like cytoplasmic kinase (RLCK) subfam-
ily, and as such lack an extracellular domain required for
external signal perception. RLCKs play diverse roles in
plant cell signalling often through interactions with re-
ceptor kinases [57, 58], and so it is conceivable that
BKNs function in a receptor kinase complexes for sig-
naling pathways. For instance, A. thaliana CASTAWAY
(CST) is a plasma membrane localized RLCK that has
been shown to interact with two receptor kinases,
HAESA and EVERSHED, and function as an inhibitor of
floral organ abscission [55]. CST also localized to the
plasma membrane through N-terminal myristoylation
and palmitoylation sites, and this localization pattern
was shifted towards the cytoplasm when the N-terminal
lipid anchor sites were mutated [55]. Here, we have
shown that BKN1 and BKN2 have predicted N-terminal
palmitoylation and/or myristoylation sites and localized
to the plasma membrane in N. benthamiana epidermal
cells. As well, yeast-expressed BKN2 was confirmed to

Fig. 8 Palmitoylation of Al-BKN2 and At-BKN2. (a) Protein expression and (b) Palmitoylation assay for Al-BKN2 and At-BKN2. BKN2 proteins were
purified from yeast cells and tested for S-palmitoylation using the in vitro acyl-RAC assay [82]. The BKN2 proteins were detected via C-terminal V5
epitope tags and western blotting with an anti-V5 antibody. The presence of a band in the + NH2OH bound lanes indicates that both BKN2
proteins were palmitoylated when expressed in yeast cells
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be palmitoylated using the in vitro acyl-RAC assay. Fi-
nally, we observed that mutations of the myristoylation
and palmitoylation sites for Al-BKN2 disrupted mem-
brane localization in N. benthamiana epidermal cells.
Thus, the plasma membrane localization of BKN1 and
BKN2 could position these RLCKs for interactions with
receptor complexes.
While many RLCKs, such as CST, are functional ki-

nases, the BKNs are predicted to be pseudokinases
meaning that they lack the catalytic motifs required for
phosphotransfer [46, 60]. There are examples of pseudo-
kinases with very low levels of autophosphorylation ac-
tivity and this typically requires the catalytic lysine of the
VAIK motif, and usually the aspartates of the HRD and
DFG motifs as well [46]. In addition, while most pseudo-
kinases are devoid of catalytic activity, it is estimated
that close to 40% of all pseudokinases are capable of nu-
cleotide binding [46]. However, the BKNs lack all of the
key motifs required for ATP binding and catalytic activ-
ity, including VAIK with the key catalytic lysine as well
as the HRD and DFG motifs [46, 60]. In a recent study,
168 of the 1005 Arabidopsis predicted kinases were clas-
sified as pseudokinases [47]. A number of these Arabi-
dopsis pseudokinases (also referred to as atypical kinases
[83]) have been shown to have biological functions re-
lated to signalling [66–74, 84, 85]. One example is the
Brassinosteroid Signalling Kinases (BSKs), which are a
group of 12 closely-related, functionally redundant cyto-
plasmic pseudokinases involved in brassinosteroid sig-
nalling through interactions with the receptor BRI1 [66,
67, 86]. The BSKs are phosphorylated by the BRI1 recep-
tor kinase during BR hormone perception and are pro-
posed to function as scaffolds in the signaling complex
[67, 87]. Another example is the stem cell signalling pro-
tein CORYNE (CRN) which interacts with the receptor
CLAVATA 2 to promote localization to the plasma
membrane [88] and functions with receptor kinases to
regulate stem cell fate in the shoot and root apical meri-
stems [68, 69, 89]. Finally, roles for pseudokinases have
been defined in immune complexes that regulate plant
immunity responses [70, 84, 85, 90]. Interestingly, Liu
et al. [91] recently discovered a role for BKN2 in plant
immunity (SUPPRESSOR OF ZED1-D2; SZE2) and
found that it was localized to the plasma membrane as
part of an immune complex. Thus, given the tendency
of pseudokinases to function in protein complexes, po-
tential interactors will need to be identified in the stigma
to further understand the functions of BKNs.
Our interest in the BKN family started with a search

for stigma-enriched signalling proteins that may function
in compatible pollen responses, and this search led to
the identification of the stigma-specific BKN1 in A.
thaliana Col-0. However, the bkn1 mutants in the Col-0
ecotype did not display any detectable changes in

compatible pollen responses and only a mild-hydration
defect was observed when wild-type Col-0 pollen was
placed on mutant bkn2 stigmas (a tandemly linked para-
logue). In addition, the level of impairment did not in-
crease for the bkn1-bkn2 double mutant stigmas. This
was rather puzzling since BKN2 was only expressed at a
low level in the stigma, particularly in comparison to
BKN1. Further investigations uncovered that the BKN1
gene in most A. thaliana ecotypes carried two indels,
ΔT128 and ^A597, that would cause frameshifts in the
BKN1 coding region resulting a loss of full-length pro-
tein. Interestingly, three ecotypes, Hh-0, Dju-1 and Väs-
tervik, were found to carry two ORF-restoring SNPs
(^T128 and ΔA597) and predicted to encode a full-
length BKN1 protein. Furthermore, two outcrossing
Arabidopsis species, A. lyrata and A. halleri, also carry
BKN1 orthologues that are predicted to encode full-
length BKN1 proteins. These combined results raise a
few questions for further investigation. Does the mild
hydration phenotype associated with bkn2 mutants point
to a related function for BKN1 that was lost during the
transition to selfing for A. thaliana? For example, is
BKN1’s stigma function related to pollen-stigma interac-
tions in outcrossing species? The evolution from out-
crossing to selfing occurs under different selective
mechanisms, such as reduced access to pollinators or
population bottlenecks associated with colonization of
new environments, and is associated with the loss of
self-incompatibility in Brassicaceae species (reviewed in
[92, 93]). The transition to selfing is also associated with
a change in several floral traits termed the ‘selfing syn-
drome’ and includes changes in flower size and shape
(small flowers) and reduced pollen numbers, as seen in
comparisons between outcrossing A. lyrata/A. halleri
and selfing A. thaliana [93–95]. Other changes associ-
ated with the ‘selfing syndrome’ include loss of pollin-
ator attraction traits (reviewed in [93, 95]).
Specifically related to selfing, there are traits, in the

addition to the loss of self-incompatibility, that can be
modified to improve self-pollination in the transition to
selfing. These include dichogamy (temporal differences
between time of pollen release and stigma receptivity),
herkogamy (height differences between to stigma and
anthers to prevent self-pollination) and anther orienta-
tion (anther surface undergoing dehiscence is oriented
away from stigma) [93, 95, 96]. A. lyrata and A. halleri
are self-incompatible species, whereby they exhibit a
tight control of outcrossing through the linked S-locus
protein 11/S cysteine-rich and S receptor kinase poly-
morphic genes (reviewed in [16]). With both species car-
rying intact BKN1 genes, it would be of interest to
investigate a potential role in stigma-pollen interactions
in the context of these different traits designed to avoid
self-pollination. As well, some North American A. lyrata
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populations around the Great Lakes region have also
shifted towards self-compatibility, but show no signifi-
cant changes towards the selfing syndrome [97–99].
These self-compatible A. lyrata may also be interesting
to compare loss-of-function BKN1 mutations in the con-
text of self-pollination. Finally, the recent discovery of a
role for BKN2/SZE2 in plant immunity [91] opens an-
other direction of inquiry. Related to this, dual roles
have been uncovered for other signaling proteins in both
plant reproduction and pathogen responses [5]. The
relative ease with which CRISPR/Cas9 technology can be
used to create loss-of-function mutants opens the door
to asking these questions regarding BKN1 function in
other A. thaliana ecotypes and Arabidopsis species in
the future.

Conclusions
In this study, we have identified a novel family of
Brassicaceae-specific pseudokinase genes, termed BRAS-
SIKINs, and specifically focused on the function of the
tandemly linked BKN1 and BKN2 genes, in the context
of pollen-stigma interactions in A. thaliana Col-0.
CRISPR deletion mutants were generated, and very mild
hydration defects were observed for wild-type Col-0
pollen when placed on the bkn2 and bkn1/2 mutant stig-
mas. Polymorphisms leading to premature stop codons
were uncovered for BKN1 in many A. thaliana ecotypes
including Col-0 while absent in outcrossing Arabidopsis
species. Thus, future studies should focus on examining
BKN1 function in other A. thaliana ecotypes and Arabi-
dopsis species.

Methods
Plant materials and growth conditions
Seeds for the A. thaliana bkn1–1T-DNA insertion mu-
tant (Col-0, SALKseq_039336), and the A. thaliana Hh-
0 (CS76512), Västervik (CS78834), Dju-1 (CS78896) and
Bela-1 (CS76696) ecotypes were obtained from Arabi-
dopsis Biological Resource Center (ABRC). Seeds for the
A. thaliana Col-0 ecotype and N. benthamiana were ob-
tained from Dr. Nambara and Dr. Yoshioka, respectively
(University of Toronto). A. thaliana seeds were sterilized
and cold stratified for at least 2 days at 4 °C, then trans-
ferred to soil or plated on ½ Murashige and Skoog (MS)
medium plates with 0.4% (w/v) phytoagar at pH 5.8 at
22 °C under 16 h light. After 7–10 days, seedlings were
transferred to soil supplemented with 1 g/L 20–20-20
fertilizer and grown at 22 °C under 16 h light. For the A.
thaliana bkn1–1 T-DNA insertion mutant (SALKseq_
039336), homozygous mutants were confirmed by PCR,
and the location of the T-DNA was verified by sequen-
cing of PCR products. N. benthamiana seeds were cold
stratified for several days and planted directly on soil,
and grown at 22 °C under 16 h light conditions.

Humidity was monitored and maintained at between 20
to 60% relative humidity in the growth chambers.

Plasmid construction and plant transformation
The 371 bp BKN1 predicted promoter consists of the
untranslated region immediately following the BKN2
coding region to the BKN1 start codon. The BKN2 pre-
dicted promoter covers 465 bp upstream of the BKN2
start codon, including the 3’UTR for At5g11412. The
BKN1 and BKN2 5′ predicted promoter regions were
synthesized by GeneArt gene synthesis services (Ther-
moFisher Scientific). The promoters were cloned into
the pORE-R2 vector upstream of the GUS coding region
through XhoI and NotI sites, [100], transformed into
Arabidopsis thaliana Col-0 by floral dip [101]. T1 seeds
were selected for kanamycin resistance on ½ MS
medium plates containing 50 μg/ml kanamycin. Inflores-
cence or stage 12 flowers from several T1 plants were
stained for GUS activity (see below).
For the CRISPR/Cas9 generated mutants, a two-sgRNA

(single guide RNA) system was used to generate genomic
deletions in the BKN1 and BKN2 genes [48]. The
CRISPR sgRNA sequences targeting BKN1 or BKN2
were selected using the CHOPCHOP software to
search for sequences adjacent to PAM sites and avoid
potential off-targets in the A. thaliana genome [102].
PCR fragments containing the two sgRNAs (See Add-
itional file 4: Table S3 for primer sequences), along
with the promoter and terminator sequences were
generated from the pCBC DT1T2 vector template
using Phusion polymerase (ThermoFisher Scientific).
The purified fragments containing the two sgRNAs
were cloned into the final vector pBEE401E using a
golden gate reaction with BsaI enzyme. This vector
was modified to carry the Basta resistance marker
(BlpR from pBUE411 [103]) rather than the original
HygR marker in pHEE401E [36, 48]. Constructs were
transformed into Agrobacteria by electroporation,
which were then used to transform A. thaliana Col-0
by floral dip [101]. T1 seeds were cold stratified and
sown on soil as previously described [26]. Once seed-
lings had germinated, selection for Basta™ herbicide
resistance was carried out, and resistant seedlings
were transplanted, and PCR screened for the Basta™
selection marker and for genomic deletion. T1 plants
were analyzed with primers pairs designed to amplify
inside or outside of the deletion regions for BKN1/
BKN2 to identify heterozygous mutants, and homozy-
gous mutants carrying the respective gene deletions
were identified in subsequent generations (T2-T5) for
phenotyping. PCR products covering the deletions
were sequenced to confirm the locations of each in-
dependent deletion mutation. For both BKNs, two
constructs carrying different sgRNA target sites were
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screened for deletions in the T1 (Additional file 4:
Table S3). The BKN1_CR #1 and BKN1_CR #3 con-
structs produced the bkn1–2 and bkn1–3 mutants, re-
spectively. The BKN2_CR #3 construct produced the
bkn2–1 and bkn2–2 mutants. To generate double mu-
tants, transgene free bkn1–3 mutants were trans-
formed with the BKN2_CR #2 construct to produce
three new bkn2 mutants, bkn2–3, bkn2–4 and bkn2–
5, in the bkn1–3 background.
To clone cDNAs for A. thaliana BKN2 (Col-0, At5g11410),

A. lyrata BKN1 (AL6G22040.t1) and A. lyrata BKN2
(AL6G22050.t1), RT-PCR was conducted on RNA extracted
from top ½ pistil tissue. The A. thaliana Hh-0 BKN1 cDNA
was cloned from stage 12 flower bud RNA. The BKN clones
were introduced into the TOPO entry clone using the PCR8/
GW TOPO cloning kit (ThermoFisher Scientific). To generate
the Al-BKN2(G2A), Al-BKN2(C4A), and Al-BKN2(G2A,
C4A) constructs, the myristoylation (G2) and palmitoylation
(C4) sites at the N-terminus of A. lyrata BKN2 were disrupted
by PCR with primers to replace the G2 and C4 sites (Add-
itional file 4: Table S3). Gateway reactions were carried out
using LR clonase II enzyme (ThermoFisher) into the destin-
ation vector pEARLEYGATE 101 containing a C-terminal
YFP (Earley et al., 2006). Plasmids were then transformed into
Agrobacterium GV2260 by electroporation for the agroinfiltra-
tion experiments. Leaves 3 or 4 from 5week-old N. benthami-
ana leaves were transformed by agroinfiltration as described
in the protocol by Sparkes et al. [104].

Promoter-GUS staining
Inflorescences or stage 12 flowers from the BKN1 and BKN2
promoter-GUS transgenic plants were incubated in GUS so-
lution overnight at 37 °C according to the protocol used in
Wang et al. [15]. Tissues were then fixed in ethanol:glacial
acetic acid and cleared with chloral hydrate solution as de-
scribed by [105]. Tissues were mounted in 30% glycerol and
images were taken on a Nikon sMz800 microscope.

Confocal microscopy
At 24 to 48 h post-infiltration, leaf disks were cut from N.
benthamiana and visualized using a Leica TCS SP8 confocal
microscope. Image processing was done using the Leica LAS
AF lite software. Plasmolysis was achieved by treatment with
0.8M mannitol as described by Lang et al. [106]

Expression profiling, multiple sequence alignments and
phylogenetic analyses
The BAR Expression Angler tool [39] (http://bar.utor-
onto.ca/) was used to search for stigma-enriched signal-
ling proteins as previously described [36]. Briefly, the
stigma-specific SLR1 gene as the bait (At3g12000, [40])
to search the AtGenExpress Plus-Extended Tissue Com-
pendium dataset [39, 41]. Expression profiling of the
BKN genes for Additional file 1: Figure S1 came from

three additional transcriptome datasets: the TRAVA
RNA-Seq dataset (http://travadb.org/ [44]), the stigmatic
papillae RNA-Seq dataset [43] and the stigma microarray
datasets [35]; and the data was displayed using the Heat-
Mapper Plus tool [39].
For ecotype polymorphism searches of the 1135 ge-

nomes [50], two different databases were used to retrieve
the BKN1 genomic sequences: 1001 Genomes (https://1
001genomes.org/) and Salk Arabidopsis 1001 Genomes
(http://signal.salk.edu/atg1001/index.php). Hh-0 was the
first ecotype identified to carry the T128 and ΔA597 to
encode a full-length BKN1 protein. The MEGA7 soft-
ware [63] was used to produce multiple protein se-
quence alignments of the BKN1 genomic sequences
retrieved from the 1135 ecotype genomes. The Col-0
and Hh-0 BKN1 cDNA sequences were included to re-
move introns and locate the position of the two SNPs
(Additional file 5 and Additional file 6). The two SNP
regions were copied from the alignment into an excel
file for further analysis (see Additional file 3: Table S2).
Genomic DNA samples were used to PCR amplify and
sequence the BKN1 gene for the Västervik, Dju-1 and
Bela-1 ecotypes (Additional file 1: Figure S5).
For the phylogenetic analysis of Brassicaceae BKNs

(Fig. 6), amino acid sequences (Additional file 7) were
obtained from TAIR (A. thaliana) [49]; Phytozome (A.
lyrata, B. oleracea capitata, B. stricta, E. salsugineum -
formerly T. halophila, C. rubella, C. grandiflora, C. pa-
paya) [107]; NCBI (A. alpina, B. cretica, B. oleracea cv
TO1000, T. hassleriana) [108]; EnsemblPlants (A. hal-
leri, B. oleracea cv TO1000) [109]; BRAD (A. arabicum)
[110]; or thellungiella.org (S. parvula - formerly T. par-
vula) servers using blastp or tblastn searches for genes
similar to the BKNs or other RLCKs. For the phylogen-
etic analysis of Arabidopsis RLCK VII members
(Additional file 1: Figure S8), the RLCK VII members
defined by Lehti-Shiu and Shiu [51] were used, and
amino acid sequences (Additional file 8) were retrieved
from TAIR [49]. The MEGA7 software [63] was used to
produce multiple protein sequence alignments using
ClustalW [62]. The ClustalW alignments were trimmed
at the N-and C-terminus and then used to generate a
consensus tree by the Maximum Likelihood method [64]
with 1000 bootstrap replicates [65] in MEGA7. Align-
ments in Additional file 1: Figure S3, S4, S5 and S6 were
generated in MEGA7 and formatted with the Multiple
Align Show tool (http://www.bioinformatics.org/sms/
[111]), using groupings of amino acids based on their
side chains [112]. See additional files for all amino acid
sequences and alignments.

RT-PCR and quantitative RT-PCR software
Anthers and pistil tissues (top-half: stigmas, bottom-half:
ovaries) and were collected from stage 12 flower buds;
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leaves and roots were collected from 2-week-old A. thali-
ana seedlings for RT-PCR and quantitative RT-PCR appli-
cations. RNA was extracted using a modified protocol of
the SV total RNA extraction kit (Promega) which included
vigorous grinding of plant tissue in liquid nitrogen. Next,
cDNA synthesis was carried out using Superscript III re-
verse transcriptase (ThermoFisher) and oligo dT primers.
The cDNA was then used in RT-PCR reactions with Taq
polymerase, and quantitative RT-PCR reactions with
PowerUp 2x SYBR Green master mix (ThermoFisher)
(primers listed in Additional file 4: Table S3).

Assays for pollen hydration, pollen adhesion and pollen
tube growth, and seed set
Stage 12 flower buds were emasculated and carefully
wrapped with plastic wrap and allowed to mature over-
night. For pollen hydration, the next day, pistils were
mounted upright in ½ MS medium and hand-pollinated
with a small amount of Col-0 pollen. Pictures were taken
immediately at 0min and again at 10min post-pollination
using a Nikon sMz800 microscope at 6x magnification
with a 1.5x objective. Pollen grain diameter was measured
laterally using the Nikon digital imaging software for 10
random pollen grains per pistil, 3 pistils per genotype. All
pollinations were performed under an ambient humidity
lower than 60% to avoid spontaneous water uptake from
the surrounding environment.
For pollen adhesion and pollen tube growth, the

next day, pistils were carefully unwrapped and lightly
pollinated with Col-0 pollen, or transgenic pollen for
reciprocal crosses. At 2 h post-pollination, pistils were
collected, fixed and stained with aniline blue to stain
the callose deposited by pollen tubes, as described by
Safavian et al. (2015). Pollinated pistils were imaged
using a Zeiss Axioskop2Plus microscope under bright-
field to count the number of pollen grains adhered,
and under UV fluorescence to assess pollen tube
growth. Pollen adhesion was quantified for n = 10 pis-
tils for each cross.
For seed set, late stage 12 buds were emasculated and

hand-pollinated with Col-0 pollen for Col-0 pistils and
for each transgenic line. Hand pollinations were marked
with thread and siliques were allowed to mature fully
over several days. Prior to senescence, green siliques
were removed, and sliced longitudinally to count the
number of developing seeds. 10 siliques were counted
for each pollination.

In vitro BKN2 Palmitoylation assay
At-BKN2 and Al-BKN2 gateway entry clones were
recombined into the Gateway destination vector pYES-
DEST52 (C-terminal V5 tagged, Invitrogen) to create
yeast expression vectors pYES-Al-BKN2 and pYes-At-
BKN2 respectively. Wild-type yeast BY4741 (MATa

his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) cells were transformed
and grown at 25 °C in selective minimal media minus
uracil to select transgenic yeast cells. To induce protein
expression, the transformed yeast cells were grown in
minimal liquid media containing 2% galactose. The pal-
mitoylation assay was carried out by the Acyl-RAC
method [82, 113]. Briefly, total proteins were lysed and
recovered by acetone precipitation. Free –SH was
blocked with 1% methyl methanethiosulfonate (MMTS),
and samples were then treated with 1M hydroxylamine,
pH 7.5 (+ NH2OH) to remove palmitoylate and to ex-
pose free thiols at the palmitoylation sites. In the nega-
tive control (−NH2OH), 1M Tris (pH 7.5) was added.
Palmitoylated proteins were captured on thiopropyl
sepharose beads (Sigma), and the presence of BKN2 pro-
teins were detected by ECL western blotting with anti-
V5 primary and HRP-conjugated secondary antibodies
(CWBio, China).
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