
Chen, C, Chen, XQ, Ma, F, Chen, YW and Wang, J

 Deviation warnings of ferries based on artificial potential field and historical 
data

http://researchonline.ljmu.ac.uk/id/eprint/12042/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Chen, C, Chen, XQ, Ma, F, Chen, YW and Wang, J (2019) Deviation warnings 
of ferries based on artificial potential field and historical data. Proceedings 
of the Institution of Mechanical Engineers, Part M: Journal of Engineering 
for the Maritime Environment. ISSN 1475-0902 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Chen, C, Chen, XQ, Ma, F, Chen, YW and Wang, J

 Deviation warnings of ferries based on artificial potential field and historical 
data

http://researchonline.ljmu.ac.uk/id/eprint/12042/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Chen, C, Chen, XQ, Ma, F, Chen, YW and Wang, J (2019) Deviation warnings 
of ferries based on artificial potential field and historical data. Proceedings 
of the Institution of Mechanical Engineers Part M: Journal of Engineering 
for the Maritime Environment. ISSN 1475-0902

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 

Deviation Warnings of Ferries Based on Artificial 

Potential Field and Historical Data 

Chen Chen1, 2, Xian-Qiao Chen1, 2, Feng Ma 3*, Yu-Wang Chen4, Jin Wang5 

School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China1

Hubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, Wuhan, China2 

Intelligent Transportation System Center, Wuhan University of Technology, Wuhan, China3

Alliance Manchester Business School, University of Manchester, Manchester, UK4 

Liverpool Logistics, Offshore and Marine (LOOM) Research Institute, Liverpool John Moores University, Liverpool, UK5 

Abstract: Ferries are usually used for transporting passengers and vehicles among docks, and any 

deviation of the course can lead to serious consequences. Therefore, transportation ferries must be 

watched closely by local maritime administrators, which involves much manpower. With the use of 

historical data, this paper proposes an intelligent method of integrating artificial potential field (APF) 

with Bayesian Network (BN) to trigger deviation warnings for a ferry based on its trajectory, speed and 

course. More specifically, a repulsive potential field-based model is firstly established to capture a 

customary waterway of ferries. Subsequently, a method based on non-linear optimisation is introduced 

to train the coefficients of the proposed repulsive potential field. The deviation of a ferry from the 

customary route can then be quantified by the potential field. BN is further introduced to trigger 

deviation warnings in accordance with the distribution of deviation values, speeds and courses. Finally, 

the proposed approach is validated by the historical data of a chosen ferry on a specific route. The 

testing results show that the approach is capable of providing deviation warnings for ferries accurately 

and can offer a practical solution for maritime supervision. 

Keywords: Route deviation, artificial potential field, non-linear optimisation, Bayesian Network 

1 Introduction 

A ferry is an important water transportation vessel, which is used to carry passengers as well as 

cargos, including hazardous materials, livestock, vehicles, and even trains. Different from cargo ships, 

ferries usually commute among wharves or traffic hubs, ranging from a few hundred metres to hundreds 

of nautical miles. As a special vessel for commuting, a ferry has some unique features as follows. The 

hull structure and facilities of a ferry are relatively simple, since ferries usually do not have to sail for a 

long distance, especially the in-land ones are always equipped with a light hull and limited living 

facilities. However, the cabin and deck of a ferry are generally wide so that it can carry many passengers 

and much load easily. Ferries are customarily designed as double-ended to make it convenient for 

passengers and vehicles to get on and off. Furthermore, twin or more full-directional thrusters are 

equipped to improve the manoeuvrability and controllability of ferries. Some ferries are of a catamaran 

hull in order to meet the requirements of high speed and seakeeping performance. According to the 

actual use, ferries can be classified as passenger ferries, car ferries and train ferries. By now, ferries 

become an integral and essential component of river and island transportation systems. 

A ferry sometimes must navigate under poor visibility conditions in order to meet the 

transportation demand. For instance, truck logistics in Nanjing, Zhenjiang and Yangzhou of Jiangsu 
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province, China is so heavy that car ferries must operate as usual at night and even in fog conditions. 

Similarly, in order to meet the requirements of customers, cross-sea ferries take an evening-morning 

operation which requires them running all the time at night. Moreover, ferry operators have to endure 

fixed routes and long working hours, hence fatigue in operations is unavoidable. Ferry ships often run 

between two sides of a strait, which might encounter other vessels passing this strait frequently, leading 

to high risks. Accidents of ferries have occurred from time to time. For example, ferry Dashun capsized, 

when it just left Yantai with 10 kilometres away from the shore on November 24 of 1999, and 280 

passengers were confirmed dead or missing. In the sinking of South Korea Sewol, 296 lives were lost 

on April 16, 2014. Although a ferry is generally small in terms of tonnage, it often carries a large number 

of passengers and vehicles. In the case of collision or overturning, it could easily cause mass human 

casualties and incur a high negative impact. The safety problem for ferries has attracted much attention 

from all over the world.  

In fact, a ferry is faced with many safety issues, including route deviation, extreme weather and 

human errors in collision avoidance. In practice, the corresponding maritime administration of ferries 

usually pays much attention on three factors: deviations, abnormal speeds, and abnormal courses. A 

ferry is generally equipped with assistant devices including an automatic identification system (AIS), 

and/or BeiDou Navigation Satellite System (BDS) maritime satellite terminals. Taking Shandong 

Maritime Safety Administration as an example, it requires all the supervised ferries to be firmly watched 

by supervisors remotely and manually on top of mandatory navigation facilities and measures in order 

to ensure safety, especially for those on the Yanda route and China-Japan-Korea routes. However, this 

tight supervision not only imposes great pressure on human supervisors, and it is also difficult to ensure 

that the entire process of supervision is effective. In this context, it is critical to develop an intelligent 

approach to evaluate hazard level for improving the safety of ferry navigation. 

There are many factors that could influence the safety of a ferry ship, including weather conditions, 

human factors and encountering ships. In general, hazard identification is similar for ordinary cargo 

ships and ferries, but there are particularities for ferries. Firstly, the local maritime administration 

intends to set a dedicated navigation area or a route for ferries. Meanwhile, ferry companies are also 

willing to make their ferries running on fix routes for easy management. Therefore, the routes of ferries 

always follow some principles, specified tracks or guidelines. In other words, any deviation from such 

principles or specified routes generally means an abnormal situation or a high risk. From the view of 

local administration, when a ferry behaves abnormally, especially deviating from its specified route, it 

should be identified immediately with an appropriate mitigating measure taken. However, such 

customary routes of ferries are unique for each single ferry, how to identify a ferry deviating from its 

route requires a great deal of knowledge and experience and needs much attention of local supervisors. 

Moreover, the boundaries of such routes are generally vague. Speeds, courses, and other factors should 

be taken into consideration for judgement. As a result, reasonable judgments of deviations rely heavily 

on experienced supervisors. However, the resources of administration are always limited in everyday 

management. To address this problem, it is necessary to invent artificial intelligence to identify any 

route deviation automatically, through continuously watching every ferry in its customary route.   
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Artificial potential field (APF) has been widely applied in fields of a lane keeping system of 

intelligent vehicles, obstacle avoidance path planning of robots and road risk awareness. To make the 

APF model applicable to the identification of customary routes for ferries, this research analyses the 

historical trajectories distribution of specific ferries over a period of time. The coefficients of APF can 

be obtained by building optimisation models to capture the actual distribution. Subsequently, navigation 

areas or customary routes of these ferries can be learned. The warnings of route deviation can be 

comprehensively identified by a Bayesian Network-based method. The proposed method is validated 

on a ferry Bohaiyinzhu, which travels from Lvshun to Penglai (the Yanda route).  

This research aims to propose an intelligent approach to trigger deviation warnings for ferries on 

the basis of AIS history data and the APF model. The rest of this paper is organised as follows. The 

literature of vessel risk assessment and real-time warning, route deviation, the APF model application 

in lane departure and ship navigation are briefly reviewed in Section 2. A novel approach is proposed 

to assess hazards for ferries in Section 3. The proposed approach is validated through a case study in 

Section 4. Section 5 concludes this paper. 

2 Literature review 

The research dedicated to analyse route deviation or other risks on ferries is very limited, as ferries 

are generally considered as normal ships in references. Ship risk assessment refers to risk assessment 

of vessel accidents under different navigation environments. Formal safety assessment (FSA) was put 

forward by researchers in the UK, which was also approved by the International Maritime Organization 

(IMO) as a standard and systematic process for accessing maritime safety in 2002 [1]. Since then FSA 

has been widely used as a tool to establish an evaluation framework of ship navigation risk, and it 

provides not only qualitative information but also quantitative results. Lois et al. [2] applied the FSA 

framework in a critical evaluation of cruise passenger vessels, and they conducted a test case study to 

demonstrate the feasibility of the proposed approach. Wang et al. [3] discussed how a formal safety 

assessment methodology was applied to containership operations. Montewka et al. [4] introduced a 

qualitative scoring system on risk for FSA and showed its applicability on an exemplary risk model for 

a RoPax ship. 

 In recent years, researchers have introduced many other new methods for water transportation 

safety evaluation. Hu et al. [5] presented a risk-assessment approach based on fuzzy functions for the 

assessment of pilotage safety in Shanghai Harbour. Mentes et al. [6] proposed an FSA and fuzzy-set-

based theory approach to evaluate risks of cargo ships at coasts and open seas of Turkey. You et al. [7] 

presented an approach to assess the risk and sustainability associated with ship collision accidents, 

which was illustrated on a maritime transportation system in the Delaware River area. Wang et al. [8] 

proposed a decision-making method based on subjective analysis of evidential reasoning (ER) and 

fuzzy set modelling when there was a large amount of uncertainty. Montewka et al. [9] introduced a 

systematic, transferable and proactive framework based on BNs and a set of analytical methods for the 

estimation of the risk model parameters, which had been applied to a maritime transportation system 

operating in the Gulf of Finland and the results have good agreement with the available records. In 
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summary, these researchers have proposed a set of methods on risk assessment for general purposes. 

However, these methods are not designed for triggering a real-time warning for vessels. 

In fact, previous research demonstrated that there is a high correlation between real-time risk 

warning of a specific vessel and its navigation trajectory. Sutulo et al. [10] showed a kinematic 

mathematical model for short-term path prediction in manoeuvring simulation. Sang et al. [11,12] 

provided a novel method for restoring ship trajectory and proposed a real-time ship safety early warning 

method. This method collects AIS information to calculate ship dynamic information of the distance to 

closest point of approach (DCPA) and the time to closest point of approach (TCPA) and predicts ship 

trajectory to obtain the real-time collision risk. The timeliness and reliability of this method were 

verified by means of an accident case of Wuhan Yangtze River Bridge. According to historical data, 

Gan et al. [13] predicted the long-term trajectories of ship with satisfactory accuracy using K-Means 

clustering and Artificial Neural Network (ANN) models. Chen et al. [14] developed a cross-disciplinary 

application of ecological methods in habitat use of the wild animal principle to extract fairways 

boundaries of ships crossing Taiwan Strait. 

 Nowadays, a majority of large-tonnage ships are well equipped with an electronic chart display 

and information system (ECDIS), which allows users to set a "deviation limit" and a "deviation angle" 

according to their coordinates and heading. In the navigation, if the vessel deviates from its route more 

than the "deviation limit" or the "deviation angle", such an ECDIS might trigger a warning. However, 

such deviation limits are generally given by users without a rational and scientific basis. In addition, 

such a mechanism does not take the customary routes into account, and it was not intelligent enough in 

supporting decision-making and early warning.  

In practice, the route deviation of ships is very similar to the lane deviation of intelligent vehicles. 

The lane departure system of intelligent vehicles is mainly based on the relative distance of vehicle-

road or the expected path deviation feedback. However, this method cannot be transplanted to the 

application of ferries directly, since waterways are usually much wider than vehicle lanes. APF 

proposed by Khatib et al. [15] has been widely used in the path planning system of robots and intelligent 

vehicles. In practice, the APF-based method has been proved to be capable of planning a path efficiently 

[16]. In general, APF consists of attractive fields and repulsive fields. A destination in APF is usually 

described as a source of attractive potential field (PF), which attracts an agent to approach such a 

destination. On contrary, an obstacle in PF is usually described as a source of repulsive filed located at 

its position so that the obstacle might repulse agents away [17]. Wolf et al. [18] presented a set of PF 

components, including lane potential, road potential, car potential and velocity potential. This model 

was proved to be valid on a multi-lane, populated high-way where intelligent vehicles could be 

automated in lane-keeping or lane-changing in different scenarios. Rasekhipour et al. [19] considered 

non-crossable obstacles and crossable obstacles where a road environment APF was built closely to the 

actual situation. In the research, a minimum value of PF can be generated at the central region of the 

lane. Homoplastically, a maximum value is decided on the boundary of the road. In practice, the 

coefficients of PF functions are determined by the position and dynamic status of the corresponding 



5 

vehicle. By applying the APF model, boundaries of lane can always be found automatically, hence the 

autonomous vehicle cannot overstep the lane boundary under the influence of the PF function. 

In fact, APF was widely used in the field of ship movement because of its advantages in complex 

movement. Ma et al. [20] made effective use of repulsion PF to describe navigation risk distribution 

and obtained coefficients of the repulsion field based on historical trajectories and a nonlinear 

optimisation method. His research reveals the correlations among APF, ship behaviours and risk 

potential distributions [21]. Rong et al. [22] evaluated near ship-ship collision situations in the Tagus 

River Estuary using a simulation model based on the APF method of ship navigation in restricted waters. 

Chen et al. [23] designed an improved APF method to address the problem of collision avoidance for 

unmanned ships. Yogang Singh et al. [24] elaborated the use of APF in path planning of an autonomous 

surface vehicle (ASV) in a real time marine environment in Portsmouth Harbour. 

As elaborated previously, the distance or deviation to the customary waterways or routes is not the 

only factor in the determination of deviation warnings. Course, speed and many other related factors 

are also important. Hence, a decision should be made with a combination of these factors. In such a 

case, Bayesian Network [25], a commonly used machine learning method can be a practical option to 

make inference based on dependant or independent factors. 

This research puts forward the APF model of the Yanda Route to simulate that the ship is traveling 

in a customary route. By means of the ferry historical trajectory coming from AIS, the coefficients of 

APF can be learned. The following step is to establish a model to describe the customary route of a 

ferry based on APF and Bayesian Network. Then, warnings can be triggered automatically for all ferries 

sailing on this waterway. 

3 A proposed approach 

3.1 The area and object under study 

The Yanda waterway or route is an important waterway which connects Liaoning province with 

Shandong province, China, and is known as the "golden waterway" of Bohai Gulf. The shipping activity 

of this route is very busy, which is being closely watched by the local maritime administration. Presently, 

the entire Yanda route has been covered by the shore-based AIS base stations, hence the AIS data from 

the ships in Bohai Gulf can be obtained easily. Presently, there are 19 roll-on-roll-off passenger ships, 

which sail in the roundtrips from Yantai to Dalian, Penglai to Lvshun, and Longkou to Lvshun. In 

accordance with the AIS records, from July 1st to July 31st of 2018, there were 6 ferries sailing on the 

Yanda route. Their Marine Mobile Service Identity (MMSI) numbers are 412328370, 413409000, 

413408000, 412330020, 414096000 and 414095000. The detailed information of these ships is shown 

in Table 1. According to the AIS data from the local maritime administration, the historical coordinates 

and speeds of the six ships can be extracted. Then, the average speeds can be calculated, and meanwhile 

the trajectories can be obtained. Subsequently, the ship flow heat map of the Yanda route is made, as 

shown in Fig. 1. The bar in this figure represents the correlations between the colour and the ship density. 

Table 1 Traffic Characteristics of Ferries on Yanda 

http://local/
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MMSI Ship name 
Ship length

（m） 

Ship width

（m） 

Max speed 

(knot) 

Average speed 

(knot) 
route 

412328370 Bohaiyinzhu 161.20 24.80 18.5 13.7 Lvshun-Penglai 

413409000 Bohaizhenzhu 163.95 25.00 18.5 14.1 Lvshun-Penglai 

413408000 Bohaiyuzhu 163.95 25.00 18.5 14.2 Lvshun-Longkou 

412330020 Bohaibaozhu 163.95 25.00 18.5 14.0 Dalian-Yantai 

414096000 Bohaicuizhu 178.80 28.00 20 14.2 Dalian-Yantai 

414095000 Bohaijingzhu 178.80 28.00 20 14.4 Dalian-Yantai 

Figure1 The heat map of the ferry density distribution of the Yanda route 

It can be inferred that several customary routes of ferries can be easily identified. In order to 

address the problem of recognizing route deviations, this research chooses the “Bohaiyinzhu” ferry as 

the study object. Bohaiyinzhu is a typical roll-on roll-off passenger ship with 162.2 m long and 24.8 m 

wide, which is capable of carrying 200 vehicles and 1,128 passengers simultaneously. This ferry is 

equipped with a satellite positioning system (GPS) and an AIS terminal. Therefore, by extracting the 

AIS historical data of Bohaiyinzhu, the historical trajectory of this ferry ship can be obtained.  

Moreover, it clearly shows in Fig. 1 that the ferries are more likely to sail at the centre of the 

customary routes or waterways. On the other hand, such a phenomenon can be regarded as that this 

ferry ship was pushed into narrow routes by some undetectable “repulsions”. Apparently, the closer to 

the boundaries, the greater the repulsion a ferry ship gets; the distance is the core factor in the attenuation 

of the repulsions. The strength of the “repulsions” can be considered as consistent with the 

corresponding hazard level, since ships are always intended to sail in safe routes. By analysing the 

distribution of passing vessels, the corresponding repulsions or repulsive potentials can be quantified. 

Therefore, the hazard level of a position can be obtained indirectly. By this meaning, the intelligence of 

identifying route deviation is presented as follows. 
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3.2 The modelling of channel potential field using the APF model 

As mentioned previously, a vehicle usually travels within a lane. In the corresponding research, 

such boundaries or constraint relationships are often described with the model of PF. Similarly, ferries 

always travel along a specific or customary route. The only difference is that the route of a ferry is much 

wider than a lane of an automobile. In this occasion, a lane or a channel PF model can be used to 

describe relationships between a vessel and its customary route. It is easy to find a vessel PF value 

according to its position in an APF model, then it is possible to estimate a hazard distribution based on 

its position when the coefficients are known. For simplicity, only the repulsive PF is used in this 

research. 

The channel PF is introduced to build a model of a customary route, which can explain why a ferry 

is willing to keep in its own route. Following such a principle, the route boundaries generate a repulsive 

potential or a repulsive force to the corresponding ferry. If the ferry is close to boundaries, the potential 

field might push it back to the centre of the route. 

To formulate such an APF model, a coordinate system is established at the first step. Let the x-

axis align with the heading of the ferry in its customary route and let us choose the origin point such 

that the right boundary is centred at 𝑦 =  0, as shown in Fig. 2. The ferry was considered as a point in 

this coordinate frame, and its coordinate is presented as (𝑥, 𝑦). 

Figure 2 Channel Setup: ferry motion coordinate system 

The channel PF prevents the ferry from leaving the channel by becoming infinite at the channel 

boundaries. Facing the centre of the channel, the channel potential field is gradually reduced to zero. 

According to the experience of APF in relevant research on robots [26], a repulsive PF of each boundary 

of the customary route is presented: 

𝑈𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑗 =
1

2
𝜂 (

1

𝑦−𝑦𝑗
)
2

，   (1) 

where 𝜂 is a scaling factor and 𝑦𝑗 is the 𝑗𝑡ℎ channel boundary coordinate, j ∈ {1,2}.

The curve of channel edge potentials with typical coefficients is illustrated in Fig. 3. With this 

model, the safety level or hazard level can be inferred. 
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Figure 3 Edge potential fields with typical coefficients 

3.3 A nonlinear optimisation of the coefficients of PF 

The following question is to obtain the coefficients of PF. As discussed previously, the left and 

right boundaries of the route are considered as producing direct repulsive forces to the ferry, given by 

Eq. (1). In this view, the closer to the centre of this channel or this route, the smaller the corresponding 

repulsive, as illustrated in Fig. 3. As elaborated previously, the distribution of historical ferry tracks can 

be considered as another representation of the hazard level. 

By selecting a profile in the customary route of the ship, the navigation direction of the ship in 

which the 𝑥, coordinate of all points on this profile is the same. For any point of the profile, the potential 

field value is only related to 𝑦, which is represented as: 

𝑃(𝑦，para⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗) =
1

2
𝜂

1

(y-y1)
2 +

1

2
𝜂

1

(y-y2)
2                                                                                            (2)

where 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = {𝜂, 𝑦1, 𝑦2} denotes all the undetermined coefficients of Eqs. (2); 𝑦1 and 𝑦2 denote 𝑦 axis

coordinates of the left and right sides of this channel profile. 

Suppose a cross profile contains 𝐿 discrete statistical points or sections{(𝑥, 𝑦1),⋯ , (𝑥, 𝑦𝐿)}. There

is a point (𝑥, 𝑦𝑘) on this cross profile, 1 ≤  𝑘 ≤ 𝐿 . Its corresponding potential field is represented

by 𝑃(𝑦𝑘 , 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ) . Therefore, the potentials for all 𝐿  points of this profile can be represented

as{𝑃(𝑦1, 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ),⋯ , 𝑃(𝑦𝐿 , 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ )} , and the maximum and minimum potentials of the L points are

represented as 𝑃 𝑚𝑎𝑥[𝑃1𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ …𝑃𝐿𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 𝑚𝑎𝑥] , 𝑃 𝑚𝑖𝑛[ 𝑃1𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ …𝑃𝐿𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 𝑚𝑖𝑛] . Therefore, the

normalised potential of the point (𝑥, 𝑦𝑘) is presented as:

𝑃𝑛𝑜𝑟𝑚𝑎𝑙(𝑦𝑘) = [𝑃(𝑦𝑘 , 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ) − 𝑃𝑚𝑖𝑛]/(𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)                                                          (3)

Hence, [1 − 𝑃𝑛𝑜𝑟𝑚𝑎𝑙(𝑦𝑘)] can be regarded as a normalised safety degree of point (𝑥, 𝑦𝑘) on this

profile. The normalised safety degree distribution of the 𝐿 points can be presented as:  

𝑃∗⃗⃗⃗⃗ = {1 − 𝑃𝑛𝑜𝑟𝑚𝑎𝑙(𝑦1),⋯ ,1 − 𝑃𝑛𝑜𝑟𝑚𝑎𝑙(𝑦𝐿)}                                                                             (4)

The distribution  of the passing vessels of the 𝐿 points can be denoted as a vector 𝑑 = {𝑑1,⋯𝑑𝐿},

and the maximum and minimum passing vessel numbers of the 𝐿  points as 𝑑𝑚𝑎𝑥  and 𝑑𝑚𝑖𝑛 , 

respectively. Hence, the normalised distribution of vessels on the 𝐿 points is presented as: 

𝑑∗⃗⃗⃗⃗ = {𝑑1 − 𝑑𝑚𝑖𝑛,⋯𝑑𝐿 − 𝑑𝑚𝑖𝑛}/(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)                                                                  (5)
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It was discussed that the appropriate coefficients of the potential fields para⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ should make the 

deviation between 𝑑∗⃗⃗⃗⃗  and 𝑃∗⃗⃗⃗⃗ minimum. Therefore, the coefficients can be obtained with a nonlinear

optimisation model, which is presented as, 

𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = {𝜂, 𝑦1, 𝑦2} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ∑ |[1 − 𝑃𝑛𝑜𝑟𝑚𝑎𝑙(𝑦𝑖)] − (𝑑𝑖 − 𝑑𝑚𝑖𝑛)/(𝑑𝑚𝑎𝑥 −𝐿
𝑖=1

𝑑𝑚𝑖𝑛)|(6)

                              Such an optimisation can be implemented by the fmincon function of MATLAB 2018 [21]. With 

all these equations and historical data, the safety degree can be quantified and normalised. 

3.3 Trigger a warning based on Bayesian Networks 

Based on the quantified characteristics of a ferry ship, a BN-based inference process is conducted 

as follows. BN is defined by a pair (S, Θs) , where 𝑆 = (𝜒, 𝐸) is a directed acyclic graph (DAG) with a

set of nodes 𝜒, and with a set of arcs or nodes 𝐸 = {(𝑋𝑖, 𝑋𝑗)|𝑋𝑖, 𝑋𝑗 ∈ 𝜒, 𝑋𝑖 ≠ 𝑋𝑗} representing the

probabilistic dependencies among domain variables [26]. Θs represents the parameterization of a

probability measure 𝜌 defined over the space of possible instantiations of χ. Given a node 𝑋𝑖 ∈ 𝜒, Pai

is used to denote the set of parents of 𝑋𝑖in S. The essential property of BN is summarized by the Markov

property, which asserts that each variable is independent of its non-descendants given its parents. The 

application of the chain rule, together with the Markov property, yields the following factorization of 

the joint probability of any particular instantiation 𝑥  of all n variables: 

𝜌(𝒙⃗⃗ ) = 𝜌(𝑥1,⋯ , 𝑥𝑛) = ∏ 𝜌(𝑥𝑖|𝑷𝒂𝒊, Θ𝑆)
𝑛
𝑖=1                                                                                 (7)

In practice, manual work gives a warning (W) based on the deviation to customary routes (D), the 

speed (V), the course deviation (C), and other factors. The deviation to the customary route can be given 

from Section 3.2. The course deviation can be considered as the included angle between the customary 

route and the course of this ferry ship. Hence, (W), (D), (V) and (C) form a DAG (Directed Acyclic 

Graph). Subsequently, the undetermined structure of the DAG can be learned from historical data and 

verified data samples. Presently, the K2 scoring algorithm is widely accepted for constructing BN from 

databases or records, proposed by Cooper and Herskovits [27], which is fully supported by the software 

tools of BN, including Netica, Hugin, and the MATLAB bnt toolbox. The MATLAB bnt toolbox is an 

open source software program, which is released on Google Open Source projects. Moreover, it is a 

popular and widely used BN-based inference tool. 

When the structure is determined, the conditional probability tables (CPTs) of the DAG can be 

learned from verified samples too. Usually, a maximum likelihood estimation (MLE) is used to 

implement CPTs estimation when given a training data. In this research, the expectation maximization 

(EM) algorithm is adopted, which is an iterative method to carry out an MLE [28]. Such a process is 

also supported by the software tools described above. Hence, the details of the EM algorithm will not 

be given here. Lastly, the probability of a ship should be warned can be estimated with the new DAG. 

4. A case study

4.1 The distribution of vessels of Yanda

As discussed in Section 3, a ferry traveling in the customary route is affected by the PF of the route, 

and the route distribution should follow the routine that there are more ships in the middle of the route 
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and fewer ships near the boundary of the route. The distribution of Bohaiyinzhu route, which is 

relatively isolated on the vast sea, should follow this rule.  

This research collected AIS data from the AIS equipment on the Bohaiyinzhu from 0:00:16 on 

July 1, 2017 to 2:5:50 on July 22, 2017. After eliminating error messages, a total of 117,115 records 

were obtained. A software program was developed on the VC++ platform, which is capable of parsing 

the collected AIS information from database. By drawing the historical coordinates of Bohaiyinzhu on 

the electronic chart, two customary routes can be easily identified in Fig. 4. 

Figure 4 The trajectory of Bohaiyinzhu 

Based on the approach elaborated in Section 3.3, the research chooses several profiles in Fig. 4 to 

obtain appropriate coefficients of the PF model of the Yanda Route. Profile K1 lies at the range of 

[121.05,121.1] longitude and [38.3,38.4] latitude, containing 3,537 trajectory points. Profile K2 lies at 

the range of  [120.88, 120.98] longitude,  [37.94, 37.96] latitude, containing 1,123 trajectory points. 

Profile K3 lies at the range of [120.90, 120.97] longitude and [38.54, 38.56] latitude, containing 1,135 

trajectory points.  

Subsequently, the densities of each profile can be further processed by the Origin software. The 

frequency or the ship distribution maps of these three profiles can be obtained respectively, as shown 

in Fig. 5 and Fig. 7, where the X-axis represents the longitudes, and the Y-axis the densities. Taking 

profile K1 as an example, the data of profile K1 processed by the Origin software was divided into 17 

groups. The Origin software also produces the position of the centre point of each group, the quantity 

of points in each group, the frequency of each group, etc. The results are shown in Table 2.  
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Figure 5 The ship distribution of profile K1 

Table 2  The frequency outputs of profile K1 data 

No Bin Center Bin End Count Relative Frequency Normalized 

1 121.049 121.05 0 0 0 

2 121.051 121.052 133 0.0376 0.43322 

3 121.053 121.054 217 0.06135 0.70684 

4 121.055 121.056 292 0.08256 0.95114 

5 121.057 121.058 284 0.08029 0.92508 

6 121.059 121.06 299 0.08453 0.97394 

7 121.061 121.062 307 0.0868 1 

8 121.063 121.064 280 0.07916 0.91205 

9 121.065 121.066 299 0.08453 0.97394 

10 121.067 121.068 275 0.07775 0.89577 

11 121.069 121.07 273 0.07718 0.88925 

12 121.071 121.072 271 0.07662 0.88274 

13 121.073 121.074 227 0.06418 0.73941 

14 121.075 121.076 180 0.05089 0.58632 

15 121.077 121.078 119 0.03364 0.38762 

16 121.079 121.08 70 0.01979 0.22801 

17 121.081 121.082 11 0.00311 0.03583 

Then, the distribution of vessels on profile K1 can be normalised with Eq. (5) and presented in Fig. 

6, where the X-axis represents longitude, and the Y-axis the normalised distribution.  
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Figure 6 The normalised distribution of ships on profile K1 

Similarly, we can process the data of profile K2 and profile K3 in the same way, and their 

distribution charts and normalized distribution as shown in Fig. 7 and Fig. 8. 

(a)Profile K2 (b) Profile K3

Figure 7 The ships distribution 

(a)Profile K2 (b) Profile K3

Figure 8 The normalised distribution of ships 

4.2 The training of the artificial potential coefficients 

The next step is to obtain the coefficients of these potential fields. Apparently, the coefficients 

should make the potentials consistent with the distribution of vessels. Therefore, the coefficients can be 

obtained in a nonlinear optimisation model, as Eq. (6). Taking profile K1 as an example, 17 bin centre 

points were chosen randomly as elaborated in Section 4.1. In this occasion, 𝑖 = 17, the coefficients are 

obtained as 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = {𝜂, 𝑦1, 𝑦2} = {132.2629,121.0280,121.0998}  using the ‘fmincon’ function of

MATLAB 2018. 

With these coefficients, the potential field of all points on profile K1 can be obtained by Eq. (2), 

and the normalised “potential distribution” (hazard level) and normalised “safety distribution” are 

presented in Fig. 9 and Fig. 10, which are defined in Eq. (3) and Eq. (4). 
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Figure 9 The normalised distribution of potential filed on profile K1 (hazard level)

Figure 10 The normalised distribution of safety degree on profile K1 

By comparing Fig. 6 and Fig. 10, a good agreement can be found. In other words, the distribution 

of potentials is consistency with the distribution of ships on profile K1.  

Moreover, the artificial potential coefficients of profile K2 and profile K3 can be obtained in the 

same way, the outputs are {3.6911,120.8700, 120.9799} and {3.0342,120.8760, 120.9990}, 

respectively. Based on Eq. (3), the normalised potential distributions of profile K2 and profile K3 are 

presented in Fig. 11. Based on Eq. (4), the normalised safety degrees of profile K2 and profile K3 are 

presented in Fig. 12. Obviously, a high agreement can also be found between Fig. 8 and Fig. 12.  

(a)Profile K2 (b) Profile K3

Figure 11 The normalised distribution of potential filed (hazard level) 
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(a)Profile K2                                                               (b) Profile K3

Figure 12 The normalised distribution of safety degree

Basing on the obtained distribution information of ships, a heatmap of the safety degree of the 

entire Yanda route can be obtained in Fig. 13. 

Figure 13 The heat map of potential of whole Yanda route 

4.3 The warning with this approach 

Based on Section 4.2, a normalised safety degree or potential coursed by deviation can be obtained 

directly on any position in the Yanda route, even there is no ferry ship that has ever sailed on this position 

before. Subsequently, as elaborated previously, whether to trigger a deviation warning or not also 

relies on the corresponding speed, the course and other factors. It is worth noting that the course here 

stands for the included angle between the heading and the corresponding customary route. Based on 

the model proposed in Section 3.3, an initial DAG can be presented as the left side of Fig. 14.  

At the very beginning, the correlations among the nodes of this figure are unknown; 

the corresponding conditional probability tables (CPTs) also remain to be determined. As 

discussed previously, Bayesian Network is a typical supervised learning method, which requires 

much labelled 
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data for training. In other words, warning samples and normal samples should be given and labelled 

in advance. In this occasion, historical data with warning records is required. However, it is 

difficult to obtain the real warning records in the daily management of the Yanda route. Therefore, to 

validate the proposed approach, the mentioned 117,115 records were labelled manually by 

experienced and competent operators who were invited from local administrations. In such 

records, 2,512 ones are considered as risky.  Then, the input samples are equally divided into the 

training ones and the validation ones. 

Moreover, the nodes or the attributes of a BN-based model should be discretized before training. 

Taking the speed as an example, the ferry’s possible speed ranges from 0.0 to 20.0 knots, which 

means that there are 200 possible values. To make this model easy to be trained, such values 

should be discretized into several intervals in order to avoid problems associated with an 

unacceptably high amount of combinations of data for use. With the help of the method proposed in 

[22], the discretized nodes are shown as Table 3. 

Table 3 Discretization of the attributes (nodes) 

Attributes 

(Nodes) 
Intervals of nodes 

Speed 

(knots) 

V1 V2 V3 V4 

0~8.1 8.2 ~13.0 13.1~18.0 
≥

18.1 

Course 

(included 

angle with 

the 

customary 

route, 

degree) 

C1 C2 C3 C4 C5 C6 

0~5 6~12 13~21 22~30 31~45 ≥45 

Hazard 

level 

caused by 

Deviation 

from the 

customary 

routes 

D1 D2 D3 D4 D5 

≥0.8 0.6~0.7 0.4~0.5 0.3~0.4 0~0.2 

Figure 14 the DAG of warning 

With the help of the K2 algorithm and the bnt toolbox of MATLAB 2018b, the formulated DAG 

is updated based on the training ones, and the updated DAG is presented on the right side of Fig. 

14. 

Warning 

(W) 

Deviation from 

routes (D) 
Speed 

(V) 

Course 

(C) 

Warning 

(W) 

Deviation from 

routes (D) 
Speed 

(V) 

Course 

(C)
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The CPTs of the updated DAG can be estimated with the MLE method available in the bnt toolbox. 

The results are shown in Tables 5-7 in the appendix. Surprisingly, the nodes of D, V, C are 

not independent basing on the updated DAG. The deviation to the customary routes would take 

great influence on the speed and the course directly. This seems reasonable, considering that when a 

ferry deviated from its customary routes, it might change the course and speed to return its routes.  

At last, the updated DAG that is shown on the right side of Fig. 14. Few examples based on this 

DAG are given in the appendix. Moreover, this DAG is tested on the validation samples, and 

compared with the manual labels. Eventually, the confusion matrix is presented in Table 4 when 50% 

or 0.50 is set as the threshold in triggering deviation warnings. It can be concluded that the proposed 

approach is capable of simulating the manual work efficiently.  

Table 4 Confusion matrix 

Warning No warning Accuracy 

Normal samples 511 55,534 99.01% 

Warning samples 2,111 101 95.21% 

The outstanding advantage of this approach is not only the efficiency, but also the 

generalizing ability. In this case study, such a route is about 300 nautical miles, and the training 

samples only include 58,557 records. With the help of this approach, practical artificial 

intelligence of giving deviation warnings to ferries can be formulated based on samples whose size 

is not unnecessarily large. 

5 Conclusions 

This research proposed an intelligent approach, which is capable of simulating the manual work, 

giving deviation warnings to ferry ships when sailing in their customary routes. The customary route 

can be learned from historical data automatically, meanwhile the deviation from the customary route 

can be quantified as a normalised deviation hazard level by the proposed APF model. Subsequently, a 

warning can be given by a Bayesian Network-based model in accordance with the deviation, 

speed, course and sufficient training. In the field testing, the proposed approach provided a promising 

result in replicating manual work. In the following research, the intelligent approach of integrating 

APF with BN should be improved further through incorporating Deep Learning and other un-

supervised machine learning methods in order to make the whole process automatically.  

Acknowledgements 

The first author is financed by the China Scholarship Council under Grant 201706950028. This 

research is partially supported by EU H2020 RISE 2016 RESET – 730888.   

Appendix Table 5 The Conditional Probability Table of D 

D1 D2 D3 D4 D5 

Hazard level caused by Deviation from the customary routes 

(D) 
0.83 0.05 0.03 0.03 0.05 

Table 6 The Conditional Probability Table of V 

D1 D2 D3 D4 D5 

V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 



Speed 

(V) 
0.10 0.13 0.12 0.65 0.10 0.13 0.21 0.56 0.12 0.15 0.25 0.37 0.34 0.23 0.21 0.21 0.25 0.28 0.21 0.25 

Table 7 The Conditional Probability Table of C 

D1 D2 D3 D4 D5 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Course 

(C) 
0.87 0.04 0.04 0.05 0.80 0.14 0.02 0.04 0.56 0.34 0.04 0.06 0.34 0.44 0.14 0.08 0.45 0.14 0.28 0.13 

Table 7-1 The Conditional Probability Table of W 

V1 

D1 D2 D3 D4 D5 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Warning 

(W1) 
0.03 0.04 0.04 0.05 0.10 0.14 0.21 0.34 0.22 0.43 0.36 0.38 0.45 0.44 0.42 0.61 0.95 0.96 0.96 0.96 

Warning 

(W2) 
0.97 0.96 0.96 0.95 0.9 0.86 0.79 0.66 0.78 0.57 0.64 0.62 0.55 0.56 0.58 0.39 0.05 0.04 0.04 0.04 

Table 7-2 The Conditional Probability Table of W 

V2 

D1 D2 D3 D4 D5 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Warning 

(W1) 
0.03 0.04 0.04 0.05 0.10 0.14 0.21 0.34 0.22 0.43 0.36 0.38 0.45 0.44 0.42 0.61 0.96 0.96 0.96 0.96 

Warning 

(W2) 
0.97 0.96 0.96 0.95 0.9 0.86 0.79 0.66 0.78 0.57 0.64 0.62 0.55 0.56 0.58 0.39 0.04 0.04 0.04 0.04 

Table 7-3 The Conditional Probability Table of W 

V3 

D1 D2 D3 D4 D5 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Warning 

(W1) 
0.03 0.04 0.04 0.05 0.12 0.42 0.45 0.45 0.33 0.33 0.56 0.56 0.45 0.45 0.62 0.66 0.96 0.96 0.96 0.96 

Warning 

(W2) 
0.97 0.96 0.96 0.95 0.88 0.58 0.55 0.55 0.67 0.67 0.44 0.44 0.55 0.55 0.38 0.34 0.04 0.04 0.04 0.04 

Table 7-4 The Conditional Probability Table of W 

V4 

D1 D2 D3 D4 D5 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Warning 

(W1) 
0.03 0.04 0.04 0.05 0.22 0.22 0.35 0.35 0.22 0.22 0.36 0.36 0.45 0.45 0.42 0.42 0.82 0.82 0.82 0.82 

Warning 

(W2) 
0.97 0.96 0.96 0.95 0.78 0.78 0.65 0.65 0.78 0.78 0.64 0.64 0.55 0.55 0.58 0.58 0.18 0.18 0.18 0.18 

Based on the updated DAG shown on the right side of Fig. 14 and the CPTs, the deviation warning can 

be triggered automatically. An example is given here. A ferry is sailing near the customary route, 

whose hazard level evaluated by the APF model is 0.5, speed is 18.1 knots, the included angle 

between its heading and the customary route is 18 degrees. Based on Table 3, the corresponding 

status can be assigned to D3, V4, C3. In this occasion, the inference probabilities of W1 

(Triggering a deviation 17 
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warning) is 0.36 based on Table 7-4. The vessel was considered to be safe by this approach, even it 

was sailing at a high speed. 
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