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 

Abstract—In this paper, we propose and demonstrate a 

novel technique for true random number generator (TRNG) 

application using GeSe-based Ovonic threshold switching 

(OTS) selector devices. The inherent variability in OTS 

threshold voltage results in a bimodal distribution of on/off 

states which can be easily converted into digital bits. The 

experimental evaluation shows that the proposed TRNG 

enables the generation of high-quality random bits that 

passed 12 tests in the National Institute of Standards and 

Technology statistical test suite without complex external 

circuits for post-processing. The randomness is further 

evidenced by the prediction rate of ~50% using machine 

learning algorithm. Compared with the TRNGs based on 

non-volatile memories, the volatile nature of OTS avoids the 

reset operation, thus further simplifying the operation and 

improving the generation frequency. 

Index Terms—selector, OTS, GeSe, random number 

generation, variability, resistive-switching memory (RRAM) 

I. INTRODUCTION 

ANDOM number generators (RNGs) are essential in many 

applications such as communication systems, statistical 

sampling, computer simulation and cryptography systems [1]. 

Different from the software-based pseudo-RNGs [2], hardware-

based true RNGs (TRNGs), which use local physical 

phenomena to produce truly random outputs, cannot be 

replicated or predicted externally, and are therefore particularly 

critical in hardware security applications such as the Internet of 

Things (IoT) [3]. There are existing CMOS-based TRNGs 

based on randomness sources such as thermal noise [4]-[6], 

random telegraph noise (RTN) [7],[8], current fluctuation in 

oxide after soft breakdown [9], time-dependent oxide 

breakdown (TDDB) [10], etc. However, most of these CMOS 

TRNGs suffer from complex circuitry for randomness 

extraction, hence difficulty in scalability. 

Emerging memory devices are promising for a broad 

spectrum of applications such as storage class memory [11] and 

neuromorphic computing [12]. Several TRNGs based on 

emerging memory devices have been proposed, utilizing RTN 

[8], cycle-to-cycle variability [13] or the stochastic delay time 
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of switching [14] as the randomness source, in which the 

randomness extraction can be greatly simplified by reading the 

random “0” or “1” bits directly from the on/off state. Despite 

this improvement, RTN in those devices are not stable enough 

[15],[16], while to use cycle-to-cycle variability as randomness 

source those non-volatile devices require a reset operation to 

erase the bit stored in the last cycle before generating a new bit, 

which increases operational complexity and limits the 

generation frequency. Moreover, many emerging devices suffer 

from limited endurance or throughput which hinders their 

TRNG application [13],[14],[17]-[19].  

Selector devices are used to suppress the sneak current in 

resistive-switching memory (RRAM) arrays. Ovonic threshold 

switching (OTS) chalcogenide materials have gained interest 

for selector application because of their favorable electrical 

characteristics such as volatile nature, abrupt switching and 

excellent endurance[20],[21]-[23]. Particularly, the endurance 

of GeSe-based OTS device is more than 1010 cycles by using a 

simple recovery scheme, while after composition optimization, 

the OTS based on Se-Ge-As-Te has achieved an excellent 

endurance of more than 1011 cycles without recovery operation. 

Recently, it has been reported that under a constant voltage, the 

time-to-switch-on (t-on) follow the Weibull distribution [24]. 

This stochastic nature of OTS switching, being a drawback for 

memory applications, however can be exploited to implement 

TRNGs. The volatile nature of OTS makes reset operations 

unnecessary, thus simplifying the operation conditions and 

improving the generation frequency. The compatibility of OTS 

selectors to RRAM fabrication process may facilitate OTS 

TRNG in protecting the data memorized in RRAM arrays or 

assisting RRAM-based security applications [25],[ 26].  

In this work, we demonstrate a scalable TRNG using GeSe-

based  OTS selector with volatile switching. The 10,000-bit 

random stream generated from a single device without complex 

extraction circuity demonstrates good randomness by passing 

the National Institute of Standards and Technology (NIST) 

statistical tests and the machine learning prediction test based 

on long short-term memory (LSTM) architecture, proving that 

OTS selector is a promising candidate for TRNG application. 
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II. DEVICE AND CHARACTERIZATION 

Amorphous GexSe1-x films are prepared by room temperature 

physical vapor deposition (PVD). TiN/GeSe/TiN selector 

devices were integrated in a 300 mm process flow, using a pillar 

(TiN) bottom electrode which defines the device size down to 

50 nm. A GexSe1-x chalcogenide films was achieved and 

passivated with a low-temperature BEOL process scheme, as 

shown in Fig.1a. The device size used in this work is 65 nm and 

the GexSe1-x thickness is 10 nm. Fig. 1b shows the typical I-V 

of a triangular switching pulse [27]. The fast I-V 

characterization was done with a Keysight B1500A 

semiconductor analyzer with embedded B1530A Waveform 

Generator/Fast Measurement Unit (WGFMU). 

 

III. RESULTS AND DISCUSSIONS 

It has been reported that under a constant voltage bias, the 

current response varies: the device might be switched on 

immediately; or switched on after some time (t-on) during the 

pulse; or remain off till the end of the pulse (Fig. 1c) [24],[27]. 

100 repetitive square pulses are applied onto an OTS selector, 

with amplitude of 2.7V and duration of 50 μs. Fig. 2a 

demonstrates the current response of 3 arbitrarily selected 

pulses with different t-on. t-on of the total 100 pulses follows 

Weibull distribution (Fig. 2b). Note t-on cannot be recorded 

below 10 ns due to instrumental limitation. Around 50 t-on falls 

below 1 μs, suggesting that under this condition (2.7V, 1μs), the 

OTS device has a balanced probability to be switched on or not, 

which can be a good source of random “0” and “1” generation. 

 
To verify this, after first-firing, a sequence of 10,000 square 

pulses with the width of 1 μs and amplitude of 2.7 V is applied 

onto this OTS device. Current measurement is carried out at the 

end of each pulse to check whether the device has been 

switched on or not, as shown in Fig. 1c. Fig. 3a demonstrates 

the current measured at the initial 1000 pulses. The low current 

state refers to the cycles in which OTS remains off, while the 

high current state refers to the cycles in which OTS has been 

switched on. The two cases, i.e. switch-on and remain-off, 

distribute randomly. For the statistical analysis of the entire 

10,000 current states, a 2-D kernel density of the current at 

(n+1)th pulse as a function of the current at nth pulse, i.e. time-

lag-plot, is plotted in Fig. 3b to visualize the current states and 

transitions between them. The balanced color indicates that the 

two states are indeed statistically balanced. The cumulative 

distribution plot (CDF) in Fig. 3c also shows a bimodal 

distribution, with an abrupt separation probability at 50%.  

 
The entire 10,000-bit “0” and “1” sequence is generated by 

comparing the measured current with a criteria level of 100 μA. 

“1” will be generated for the switch-on case, and otherwise “0” 

will be generated, as demonstrated with the initial 20 pulses in 

Fig. 4a. The generated random bits are presented as a 2-D 

image in Fig. 4b for clearer illustration. Black color represents 

bit 0 and white is bit 1. Almost equal number black and white 

bits are randomly distributed without any regular pattern.   

 
The randomness of the bits produced was further evaluated 

by the National Institute of Standards and Technology (NIST) 
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Fig.1. (a) TEM of the OTS selector used in this work. (b) A typical I-V of 

a triangular switching pulse. (c) Schematic of the bitstream generation 

waveform. Current is measured at the end of each pulse. Device might 

be switched on immediately (1st pulse), or not switched on (2nd pulse), 

or switched on after some time during the pulse (3rd pulse). Such 

stochasticity is used as the source of the randomness generation. 
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Fig.2. (a) Current response of 3 arbitrarily selected pulses with different 

t-on, out of the 100 pulses with Vpulse = 2.7 V and tpulse = 50 μs; (b) 

Weibull plot of t-on measured from the 100 pulses. ~50% of the t-on falls 

below 1 μs. 
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Fig.3. (a) Demonstration of the current measured at the initial 1000 

pulses using Vpulse = 2.7 V and tpulse = 1 μs. (b) 2-D kernel density of the 

time lag plot of the entire 10,000 obtained current states. (c) Cumulative 

distribution plot (CDF) of the 10,000 current states showing a bimodal 

distribution of states abruptly separated at ~50% 
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Fig.4. (a) Demonstration of the “0” and “1” bits generated by the initial 

20 pulses. 100 μA is used as the criteria (dash line). (b) A 100×100 2-D 

image representation of the generated 10,000-bit random stream. Black 

colour represents “0” and white is “1”. 
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Test Suite, a statistical package to evaluate the randomness of 

binary sequences. Table I summarized the test result for the 

10,000 random bits generated by the OTS-TRNG. Each test 

calculates a p-value, and p>0.001 [28] and success proportion 

≥ 9/10 are considered good performance. Note that some of the 

tests consist of several individual tests and we report the 

smallest p-value out of them. The generated random sequences 

have passed 12 NIST tests, supporting an excellent randomness 

performance of the proposed TRNG. The randomness is also 

evaluated with machine learning test using long short-term 

memory (LSTM) architecture [29], a powerful tool for handling 

long-range dependencies in general-purpose sequence 

modeling tasks. The LSTM consists of two hidden layers, with 

32 neurons in each layer. A prediction rate of 49.63% has been 

achieved, further supporting that the  unpredictability of our 

TRNG’s bit-sequence is acceptable [30]. 

 

 
 As shown in Fig. 5a, “1” appears more frequently with 

increasing pulse amplitude. 2.7 V is the balance point 

generating the balanced “0” and “1” random bits while the ratio 

of “0” and “1” can be modulated by simply tuning pulse 

amplitude. This agrees with the previous observation that the 

threshold voltage (Vth) of OTS selectors statistically depends on 

operation voltage and time [27]. Such random switching is also 

observed in 10 OTS device with the same size but at different 

locations across a 300 mm wafer (Fig. 5b). The balance point 

varies between 2.6 V and 2.8 V, due to process variation across 

the wafer. Similar random switching has also been observed in 

a wide range of chalcogenide materials such as GeAsTe and Si-

Ge-As-Te [23]. 

The difficulty in finding the accurate balance point, and the 

sensitivity this point to bias and process variations, is a common 

issue for many emerging TRNG solutions based on novel logic 

and memory devices such as FeFET, RRAM and magnetic 

tunnel junction (MTJ)[8],[13],[14],[31],[32]. It can be migrated 

by solutions at the peripheral circuitry level, for example, a 

bias-sweeping scanning scheme associated with a counter can 

be designed to determine the balance point.  This paper aims to 

demonstrates the novel concept of OTS-based TRNG. The 

design of such peripheral circuitry for tracking or correction is 

a subject of future work. 

The volatile switching mechanism of OTS not only makes 

reset operation unnecessary, but also provide excellent 

throughput due to its electronic-induced switching nature [33], 

which is a great advantage over memristor-TRNGs whose 

throughput can be bottlenecked by the relative slower 

atomic/ionic movement [14]. The switching speed of OTS can 

be shorter than 2 ns [20]. Furthermore, its dependence of 

switching probability on both voltage and time make it possible 

to conveniently reduce the pulse width to nanosecond level by 

increasing the switching voltage, while keeping the bimodal 

distribution balanced [24].  It is predictable that the throughput 

can be conveniently boosted to 100 MHz or higher, by 

increasing the operation voltage for a faster switching speed. 

IV. CONCLUSIONS 

In this paper, we propose and demonstrate a novel technique 

for TRNG application using GeSe-based OTS selector devices. 

The statistical switch-on variability can be easily converted into 

digital “0”s and “1”s with high-quality randomness. The 

generated 10,000-bit sequence passes 12 tests in the NIST 

statistical test suite. The randomness is further supported by the 

machine-learning algorithm. Compared with the TRNGs based 

on non-volatile memories, the volatile nature of OTS avoids the 

reset operation hence improves the generation speed. OTS 

device has shown great potential for TRNGs with excellent 

reliability, tunability, and throughput. This work proves that 

OTS selectors can be used as TRNGs especially in hardware 

security applications in the era of IoT.  
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