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aeronautical systems with neural
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J Barry Gomm3 and Qian Zhang3

Abstract
A new method of fault detection and fault-tolerant control is proposed in this article for mechanical systems and aero-
nautical systems. The faults to be estimated and diagnosed are malfunctions that occurred within the control loops of
the systems, rather than some static faults, such as gearbox fault, component cracks, and so on. In the proposed
method, two neural networks are used as online estimators, the fault will be accurately estimated when the estimators
are adapted online with the post-fault dynamic information. Furthermore, the estimated values of faults are used to com-
pensate for the impact of the faults, so that the stability and performance of the system with the faults are maintained
until the faulty components to be repaired. The sliding mode control is used to maintain system stability under the post-
fault dynamics. The control law and the neural network learning algorithms are derived using the Lyapunov method, so
that the neural estimators are guaranteed to converge to the fault to be diagnosed, while the entire closed-loop system
stability is guaranteed with all variables bounded. The main contribution of this article to the knowledge in this field is
that the proposed method can not only diagnose and tolerant with constant fault but also diagnose and tolerant with
the time-varying faults. This is very important because most faults occurred in industrial systems are time varying in
nature. A simulation example is used to demonstrate the design procedure and the effectiveness of the method. The
simulation results are compared with the two existing methods that can cope with constant faults only, and the superior-
ity is demonstrated.
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Introduction

Fault detection (FD) and fault-tolerant control for
industrial systems have attracted great attention in the
past few decades and different methods have been pro-
posed. A popular method for FD of nonlinear dynamic
systems is using a nonlinear state observer1–3 or a fuzzy
observer-based method.4,5 In these methods, observers
were used to predict system state. The residual would
then be generated as a function of state estimation
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error. While the fault occurrence can be detected, how-
ever, the identification of fault amplitude will normally
be difficult. Therefore, these methods do not make a
large contribution in passive fault-tolerant control
design. Another type of the FD system uses a nonlinear
dynamic model to predict system output. The model
can be constructed with fuzzy logic or neural net-
works.6,7 A function of the modelling error was then
used as the detection residual. These models are not
adaptive and therefore the system uncertainties will sig-
nificantly affect the detection accuracy. If these models
are adapted online to cope with model uncertainty, the
fault will also be accounted as model uncertainty and
the residual will be insensitive to the fault. In recent
years, a nonlinear observer with an online estimator
method8–10 attracted much attention of researchers.
This method uses an online estimator in the dynamic
equation of the system to estimate a fault or distur-
bance. While the fault is estimated by the online estima-
tor and compensated for in the state dynamics, the
observed state under the fault condition converges to
the nominal system state. It therefore naturally forms a
passive fault-tolerant control strategy.

For fault-tolerant control techniques, recently devel-
oped methods include the use of adaptive neural net-
works,11 back-stepping method,12 colony-based
optimization method,13 least-squares support vector
machine intelligent diagnosis method with improved
particle swarm optimization algorithm,14 terminal slid-
ing mode control method,15 and so on. The adaptive
observer method for fault-tolerant control usually uses
an online estimator to estimate a fault, where the fault
estimator can be implemented using different compo-
nents and are adapted with different learning algo-
rithms. A radial basis function (RBF) network was
used in Trunov and Polycarpou16 and Polycarpou and
Trunov17 as the online estimator, and a projection-
based learning algorithm was developed to tune the
weights of the network. As the reported work was in an
early stage, simulations showed that the tuning of the
estimator is very difficult and the convergence of the
estimation is slow. Rather than directly estimating dis-
turbance, neural networks have also been used to esti-
mate unknown parameters in a nonlinear uncertain
system without combining with a nonlinear state obser-
ver. In the air-to-fuel ratio (AFR) control of air path in
a spark ignition (SI) engine using a sliding mode
method,18 an RBF network was used to estimate two
unknown parameters, the partial derivative of air
passed the throttle with respect to the air manifold pres-
sure and that with respect to crankshaft speed. The
adaptive law of the network estimator was derived so
that the states out of sliding mode will be guaranteed to
converge to the sliding mode in finite time. Moreover,
an RBF network was used to estimate the optimal slid-
ing gain in Wang and Yu19 to achieve an optimal

robust performance in AFR control against model
uncertainty and measurement noise.

If an external disturbance is a matched one or the
distribution matrix of the system fault is the same as
that of the control input, robust control can be achieved
easily by using a basic sliding model method. For mis-
matched disturbance, Chen et al. proposed a distur-
bance observer for a class of nonlinear systems,20–22

which can estimate a constant disturbance but cannot
estimate a time-varying disturbance. A sliding mode
method was developed for disturbance estimation in
Yang et al.,23 which used the disturbance observer of
Chen et al.20 in the sliding surface. While the distur-
bance estimation converges, the initial state out of the
sliding mode would converge to the sliding mode. The
method can guarantee the stability of the whole system,
but is still robust to constant disturbance only. So, the
aforementioned method will have very limited applica-
tions in practice as most faults considered in real indus-
trial systems are time varying. Compared with the
above commented disturbance observer-based methods,
the proposed method in this article has advantage of
diagnosing and tolerant with time-varying faults. The
disturbance observer was also used in Kayacan et al.24

to design a robust control for nonlinear systems. In this
method, the disturbance estimation was achieved by
combining the disturbance observer with a type-2
neural-fuzzy network (T2NFN) in Kayacan et al.25 and
was tuned by combining three adaptive laws: a conven-
tional estimation law, a robust estimation law and the
T2NFN law. While the method can estimate time-
varying disturbance without bias, the structure of the
estimation system is rather complex and the computing
load is high. Besides, some other disturbance observer–
based methods have also been developed for robust
control, such as Wei et al.26,27 However, the two meth-
ods in Wei et al.26,27 are for stochastic systems.

A class of nonlinear systems discussed in this aticle is
described by the state space model in equation (1). The
model represents many industrial systems, including
magnetic levitation suspension systems,28 the chaotic
Duffing oscillators,29 a three-dimensions of freedom
model helicopter system,11 near space vehicle systems,30

robotic manipulators,31 and so on. The motivation
behind the development of the new method in this arti-
cle is to propose a new fault diagnosis and fault-tolerant
control method for this class of nonlinear systems using
a full-order sliding mode observer combined with two
neural network fault estimators. The major expectation
is to use the developed method for fault-tolerant control
for mechanical systems and aeronautical systems in the
follow-up research.

The novelty and contributions of the proposed
method in this article are as follows. The method uses a
sliding mode approach and includes an online fault
estimator in the sliding surface. The major contribution
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in this article is that the proposed method can detect
time-varying faults compared with the existing methods
that can detect constant fault only. Furthermore, the
time-varying faults can be estimated via the two RBF
networks, and the fault-tolerant control is achieved by
compensating the impact of the fault on the system per-
formance. Here, one network is used to estimate fault,
while another RBF network is used to online estimate
the first-order derivative of the fault with respect to
time, and is included in the control law, so that the
time-varying fault is diagnosed. The occurred fault is
not only detected but also its format, size, location and
occurring time have also been diagnosed or identified.

The Lyapunov method is used to derive the adapta-
tion laws for the two RBF estimators, so that the con-
vergence of the two estimators and the stability of the
entire system are guaranteed. Under the proposed con-
trol strategy, closed-loop stability of the underlying sys-
tem will be guaranteed and performance maintained
when a fault occurs in the system. The fault-tolerant
control is achieved by reconstructing the fault with the
two neural estimators, and the fault occurrence is
reported with the identified fault size and occurrence
time, which are used for later maintenance. A numeri-
cal simulation is used to evaluate the developed method
and results prove the effectiveness of the method in
detecting a fault, estimating fault amplitude and pas-
sive fault-tolerant control by automatic fault compen-
sation. The article is organised in the following way.
The sliding mode control and fault estimators are
described in section ‘FD system’. Convergence of the
adaptive laws for the fault estimators and system stabi-
lity are proved in section ‘Stability analysis’. Section
‘Simulation example’ gives a simulation example and
section ‘Conclusion and future work’ draws some
conclusions.

FD system

Consider the following second-order nonlinear system
with mismatched disturbance

_x1 = x2 + d tð Þ
_x2 =A xð Þ+B xð Þu tð Þ
y = x1

ð1Þ

where x1, x2 are system states, u is the control variable,
d is a disturbance or a system component fault, y is the
output, A and B are nonlinear functions of state x and
B is supposed to be invertible. We consider the system
component fault which can be presented by the term
d(t) in equation (1).

For the purpose of FD and fault-tolerant control,
we propose to estimate the fault d(t) using an RBF

network. As a class of linearly parameterized neural
networks, an RBF network can approximate any
smooth nonlinear mapping to any accuracy if provided
with enough hidden layer nodes due to its universal
approximation ability. The fault f (t) is a smooth non-
linear function and is approximated by an RBF net-
work NN (z) : Rq ! R as follows

f (t)=NN(z)+ e ð2Þ

NN (z)= Ŵ T F(z) ð3Þ

where e is the approximation error,
z= ½z1, . . . , zq�T 2 <q is the input vector of the RBF
network, F(z)= ½u1(z),u2(z), . . . ,up(z)�T 2 <p is the
nonlinear basis function and Ŵ 2 <p is the weight vec-
tor. The Gaussian function is chosen in this research as
the basis function

ui(z)= exp � z� cik k2

s2
i

 !
, i= 1, . . . , p ð4Þ

where ci is a vector of the same dimension with z and is
called the centre of the ith hidden layer node, si is the
radius of the ith Gaussian function. The optimal weight
Ŵ � defined as follows, which gives the minimum
approximation error e�, will exist according to the uni-
versal approximation property of the RBF network

Ŵ � = arg min
Ŵ2Of

sup f̂ (zjŴ )� f (z)
�� ��

z2Sz

" #
ð5Þ

where Of = Ŵ : Ŵ
�� ��ł M

� �
is a valid field of the esti-

mated weight Ŵ , M.0 is a design parameter and
Sz � <q is an allowable set of the state vectors. The
optimal weight will then generate

f (z)= Ŵ�T F(z)+ e�
e � ł �e

ð6Þ

where �e is the upper bound of the approximation error.
A sliding mode control is developed for the system in

equation (1) with the sliding surface designed as follows

s= x2 + cx1 + d̂(t) ð7Þ

where d̂(t) is the estimate of the disturbance d(t), c.0 is
a design parameter to determine convergence speed on
the sliding mode. The control law is designed as

u= � B�1 xð Þ A xð Þ+ cx2 + c
b_d tð Þ+ k � sgn sð Þ

h i
ð8Þ

where
b_d tð Þ is the estimate of the first-order derivative of

the disturbance with respect to time, sgn(s) is the sign
function of s defined as
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sgn(s)=
1, s.0

0, s= 0

�1, s\0

8<: ð9Þ

Here, d̂(t) and
b_d tð Þ are estimated using two RBF net-

works as the online estimator with the following equa-
tions according to equations (3) and (4)

d̂(t)=
Xqd

i= 1

ŵd
i exp �

xd � cd
i

�� ��2

(sd
i )

2

 !
ð10Þ

b_d tð Þ=
Xqg

i= 1

ŵ
g
i exp �

xg � c
g
i

2
��� ���

s
g
ið Þ

2

0@ 1A ð11Þ

where superscript or subscript d denotes the estimated
disturbance-related parameters or variables, while g
denotes the estimated first-order derivative of
disturbance-related parameters or variables.

Assumption 1. Disturbance estimation error,
~d = d � d̂, is bounded and

~d ł ~d � ð12Þ

where ~d � is a positive constant.

Assumption 2. Estimation error of disturbance deri-

vative,
e_d = _d � b_d , is bounded and

e_d ł
e_d � ð13Þ

where
e_d � is a positive constant.

The estimate of disturbance is used as FD residual.
In this way, not only the fault alarm can be triggered
when a fault occurs but the fault amplitude can also be
identified. The estimation of the fault is then used in
the control system as compensation to form the fault-
tolerant control. The fault-tolerant control configura-
tion is displayed in Figure 1.

Stability analysis

For the sliding surface designed in equation (7) and
control law in equation (8), we now prove system stabi-
lity and neural estimator convergence.

States converge to sliding mode

A Lyapunov function is chosen as

V1 =
1

2
s2 ð14Þ

From equation (7) we have

_s= _x2 + c _x1 +
b_d

=A xð Þ+B xð Þu+ cx2 + cd + b_d
= c~d +

e_d � k � sgn sð Þ

ð15Þ

Using equation (15), we have

_V 1 = s_s= � k sj j+ s c~d + e_d� �
= � k � c~d +

e_d� �
sgn sð Þ

h i
� sj j

ð16Þ

It is evident in equation (16) that if k is designed such

that k.c~d � +
e_d � , we have _V1\0, which implies that

any initial state away from the sliding mode will be dri-
ven on to the sliding mode in finite time.

Convergence of neural estimators

To make sure the estimation error converges to the
minimum, it requires that the neural estimator weights
Ŵd , Ŵg converge to the optimal value Ŵd � , Ŵg�. We
have the following Theorem.

Theorem 1. Consider the nonlinear system in equation
(1), given assumption 1 equation (12) and assumption 2

Figure 1. Schematic of the fault-tolerant control system.
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equation (13), if the two neural estimators are updated
using the adaption law as follows

ŵd, i(t+Dt)= ŵd, i(t)

+

ðt +Dt

t

rcsgn(s) exp � zd � cd, ik k2

s2
d, i

 !
dt, i= 1, . . . ,m

ð17Þ

ŵg, i(t +Dt)= ŵg, i(t)

+

ðt +Dt

t

hsgn(s) exp �
zg � cg, i

�� ��2

s2
g, i

 !
dt, i= 1, . . . , n

ð18Þ

the system states will be guaranteed to be attracted on
the sliding mode equation (7) and the two neural esti-
mators will converge to the optimal estimators given in
equation (6).

Proof. A Lyapunov function as follows is designed

V2 = sj j+ 1

2r

Xm

i= 1

~w2
d, i(t)+

1

2h

Xn

i= 1

~w2
g, i(t) ð19Þ

where ~wd, i = ŵ �d, i �ŵd, i, ~wg, i = ŵ �g, i �ŵg, i are neural
estimator weight optimization errors, and r, h are two
learning rates for the two estimators, respectively.
From equation (19), we have

_V 2 = _ssgn sð Þ+ 1

r

Xm

i= 1

~wd, i tð Þ~_wd, i tð Þ+ 1

m

Xn

i= 1

~wg, i tð Þ~_wg, i tð Þ

= _ssgn sð Þ � 1

r

Xm

i= 1

~wd, i tð Þ _̂wd, i tð Þ � 1

m

Xn

i= 1

~wg, i tð Þ _̂wg, i tð Þ

= sgn sð Þ½c
Xm

i= 1

~wd, i tð Þ exp �
zd � cd, i

2
�� ��

s2
d, i

 !
� k � sgn sð Þ

+
Xn

i= 1

~wg, i tð Þexp �
zg � cg, i

2
�� ��

s2
g, i

 !
� 1

r

Xm

i= 1

~wd, i tð Þ _̂wd, i tð Þ

� 1

m

Xn

i= 1

~wg, i tð Þ _̂wg, i tð Þ

= � k + c � sgn sð Þ
Xm

i= 1

~wd, i tð Þ exp �
zd � cd, i

2
�� ��

s2
d, i

 !

� 1

r

Xm

i= 1

~wd, i tð Þ _̂wd, i tð Þ

+
Xn

i= 1

~wg, i tð Þ exp �
zg � cg, i

2
�� ��

s2
g, i

 !
� 1

m

Xn

i= 1

~wg, i tð Þ _̂wg, i tð Þ

ð20Þ

In equation (20), if we choose adaptive law for neural
estimator weights as follows

_̂wd, i tð Þ= rc � sgn sð Þ � exp �
zd � cd, i

2
�� ��

s2
d, i

 !
, i= 1, . . . ,m

ð21Þ

_̂wg, i tð Þ=hc � sgn sð Þ � exp �
zg � cg, i

2
�� ��

s2
g, i

 !
, i= 1, . . . , n

ð22Þ

then equation (20) becomes _V2 = � k\0, so V2 will
converge to its equilibrium point 0.

It can be seen that the two learning rates will affect
the value of the adaptive law of the neural estimators.
Therefore, a bigger value of learning rate may cause the
updating unstable, while a small learning rate will cause
slow learning. This can be tuned in the simulation.

Tracking control

We consider the case of zero reference. When the state
converges to the sliding surface s= 0, from equation
(7) we have

x2 = � x1 � d̂ ð23Þ

Substituting equation (23) into equation (1)

_x1 + cx1 = d � d̂ = ~d ð24Þ

Lemma 1. If a nonlinear system F(x, u) is input-to-state
stable, and the input satisfies Lim

t!‘
u= 0, then the state

satisfies Lim
t!‘

x= 0.32

According to Lemma 1, as Lim
t!‘

~d = 0 in equation

(24), Lim
t!‘

x1 = 0. This proves the output y= x1 ! 0

converges to the zero reference. Furthermore, substitut-
ing u(t) in equation (8) into the second equation in
equation (1), we have

_x2 + cx2 = � cd̂ � k � sgn sð Þ ð25Þ

As equation (25) is input-to-state stable and

�cd̂ � ksgn(s)
�� ��ł k + cd̂ � , x2 is bounded. The afore-

mentioned discussion can be summarised by the follow-
ing theorem.

Theorem 2. Consider the nonlinear system equation (1)
with fault d(t), when the system is under a siding mode
control with the sliding mode designed in equation (7)
and the control law designed in equation (8), and the
two neural estimators are updated according to equa-
tions (17) and (18), the post-fault system state is
bounded.
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Simulation example

The numerical example used in Yang et al.23 is adopted
in this article to demonstrate the effectiveness of the
developed novel method. Consider the following non-
linear system

_x1 = x2 + d tð Þ
_x2 = � 2x1 � x2 + ex1 + u

y = x1

ð26Þ

with the initial states x(0)= ½1, � 1�T . To simulate the
control system and compare the performance, a zero
reference is used for the output and the disturbance as
follows

d(t)=
0, 0 ł t\6(s)

0:5, 6 ł t\12(s)
sin½(t � 12) � 2p=8�, 12 ł t\20(s)

8<: ð27Þ

Here, a basic sliding mode control without rejecting dis-
turbance and an integral sliding mode control rejecting
constant disturbance as used in Yang et al.23 will also
be simulated for comparison.

The basic sliding mode control has the sliding
surface

s= x2 + cx1

and the control law is

u= � B�1(x)½A(x)+ cx2 + ksgn(s)�

The design parameters are c= 5, k = 3. The simulation
result is shown in Figure 2.

It can be observed that the output is deviated from
the reference value, r=0 for t=6s–12 s for the con-
stant disturbance, and for t=12 s to t=20 s for the
time-varying disturbance.

The integral sliding mode control uses the sliding
mode

s= x2 + c1x1 + c2

ð
x1

and the control law is

u= � B�1(x)½A(x)+ c1x2 + c2x1 + ksgn(s)�

The design parameters are c1 = 5, c2 = 6, k = 3.
The simulation result is shown in Figure 3.

We can see that the output is insensitive to the con-
stant disturbance from t=6s to t=12 s, but deviates
away from zero for the period t=12 s to t=20 s.

The method developed in Yang et al.23 used a distur-
bance observer to estimate the disturbance, based on
which a siding mode control law is derived. However,
due to that the disturbance observer can estimate a

constant disturbance ( _d = 0) only and the observer-
based method is robust to a constant disturbance only.
As most faults in real systems are time varying, the
method in Yang et al.23 cannot be used for fault diag-
nosis and fault-tolerant control of most industrial
systems.

In the simulation of our developed neural estimator-
based fault diagnosis and fault-tolerant control, the net-
work parameters for the two RBF networks are set as:

Estimator d̂: the input vector is chosen to include
three variables, zd(k)= ½x1(k), x2(k), d̂(k � 1)�; 10 cen-
tres are chosen to be evenly distributed in the region
between zd, min = ½�1, � 1, � 3�T and zd, max =
½1, 1, 3�T ; 10 widths of the Gaussian function are
s= 2, � � � , 2½ �T ; the input data were scaled before feed-
ing into the network by a linear scale,
zscale =(z� zmin)=(zmax � zmin).

Estimator b_d : the parameters for the estimator b_d are

similar to those for d̂, except for the input vector, which

is zg kð Þ= x1 kð Þ, x2 kð Þ, b_d k � 1ð Þ
h i

The adaptation algorithms in equations (17) and (18)
are used to update the weights with the learning rates
r=h= 0:2. The initial values of the weight vector are

Figure 2. Basic sliding mode control performance.
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0.2 times a random matrix of 10 dimensions with the
entries distributed between 0 and 1.

The control parameters are chosen as c= 5, k = 3,
and the sampling period is chosen as Ts = 0:01 s, and
the simulation runs for 20 s. In addition, to avoid chat-
tering around the sliding surface, an approximation to
the sign function is applied as follows

sgn(s)=
s

sj j+ d
ð28Þ

with d= 0:05. It is noted here that the value of d should
be assigned to cover the amplitude of chattering, which
can be found in the experiments. The simulation results
are displayed in Figures 4 and 5.

From Figure 4, we can see that the output y= x1

converges to the reference value of zero when the dis-
turbance is constant (t=6–12 s) and is time varying
(t=12–20 s). The other state x2 is bounded, which
implies the entire system, including the neural estima-
tor, is bounded and the stability of the post-fault system
is maintained. The fourth figure in Figure 4 indicates
that the state is attracted onto the sliding mode s=0.

The third figure in Figure 4 demonstrates that the con-
trol variable has no chattering due to the damped sign
function. On the contrary, from the FD point of view,
both the constant and time-varying faults (distur-
bances) are accurately estimated as shown in the top
figure in Figure 5. With the compensation of the esti-
mated disturbance and disturbance change rate, the sys-
tem output is not affected by the occurrence of the
faults. In addition, the sliding mode control guarantees
the entire system stability under the appearance of the
fault. Thus, the fault-tolerant control is achieved. The
second and fourth figures in Figure 5 show the change
in a weight in the two neural estimators.

Conclusion and future work

The article proposes a new fault diagnosis and fault-
tolerant control method for a class of nonlinear sys-
tems. Two neural network fault estimators are used in
a sliding mode strategy and their online adaptation
algorithms are derived. Both constant and time-varying
faults are accurately estimated online for FD and iden-
tification purposes. With the estimated fault compensa-
tion, fault-tolerant control is achieved in terms of
maintaining the entire system stability and closed-loop
system performance. A numerical example is simulated

Figure 3. Integral sliding mode control performance.

Figure 4. System states, input and sliding mode.
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to demonstrate the effectiveness of the proposed
method. As the method is simple and straightforward
to implement, it has a great potential to be applied in
real fault-tolerant control for industrial systems.

The future work following the presented research is
to apply the developed method to a few mechanical sys-
tems and aeronautical systems, such as a wind turbine
generation system and an autonomous under-water
vehicle system. For such systems, fault analysis and
modelling are important and essential. Then, the devel-
oped method will be applied to diagnose and tolerant
control with these faults. It would be necessary to con-
sider noise impact and to express the effects of some
other unavoidable external disturbances. These will fur-
ther prepare the proposed method for real applications.
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