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Abstract  28 

We investigated the repeatability of dynamic proteome profiling (DPP), which is a novel technique for 29 

measuring the relative abundance (ABD) and fractional synthesis rate (FSR) of proteins in humans. LC-30 

MS analysis was performed on muscle samples taken from male participants (n = 4) that consumed 4x 31 

50 ml doses of deuterium oxide (2H2O) per day for 14 d. ABD was measured by label-free quantitation 32 

and FSR was calculated from time-dependent changes in peptide mass isotopomer abundances. One-33 

hundred and one proteins had at least 1 unique peptide and were used in the assessment of protein 34 

ABD. Fifty-four of these proteins met more stringent criteria and were used in the assessment of FSR 35 

data. The median (M), lower- (Q1) and upper-quartile (Q3) values for protein FSR (%/d) were M = 1.63, 36 

Q1 = 1.07, Q3 = 3.24. The technical CV of ABD data had a median value of 3.6 % (Q1 1.7 % - Q3 6.7 %), 37 

whereas the median CV of FSR data was 10.1 % (Q1 3.5 % - Q3 16.5 %). These values compare favorably 38 

against other assessments of technical repeatability of proteomics data, which often set a CV of 20 % 39 

as the upper bound of acceptability.   40 



 

Skeletal muscle is an accessible tissue in humans and offers a unique opportunity to study complex 41 

human physiology, including ageing, polygenic disease and adaptations to exercise, which can be 42 

challenging to reproduce in animal or cell models. Proteomic analysis of muscle is particularly relevant 43 

because the proteome is the interface between gene-environment interactions that underpin the 44 

current functional state of a tissue. Proteomic studies of human muscle have provided insight by 45 

associating patterns of protein abundance or post-translational modification with different functional 46 

states (reviewed in [1] amongst others). However, this static information does not capture dynamic 47 

aspects of the proteome such as turnover or adaptation. Static information, even when collected in a 48 

time-series, cannot give insight to protein turnover or the relative contributions that synthesis and 49 

degradation make to changes in protein abundance. Proteins within human muscle exhibit a broad 50 

range of different turnover rates and changes to both synthesis and degradation contribute to 51 

adaptations in protein abundance [2]. We [3] recently developed the new technique of dynamic 52 

proteome profiling (DPP) that can measure both the abundance and synthesis rate of individual 53 

proteins in human muscle. DPP combines deuterium oxide (2H2O)-labelling with peptide MS and offers 54 

the first insight to dynamic aspects of the human proteome in vivo. To further establish DPP it is 55 

important to investigate the reliability of the technique and estimate the sensitivity of DPP to detect 56 

biologically meaningful changes in relative protein abundance (ABD) and fractional synthesis rate (FSR).  57 

We report the repeatability of protein ABD and FSR data in replicate analysis of muscle samples from 4 58 

sedentary men (age = 38 ± 7 y; body mass = 76 ± 4 Kg). Each volunteer gave their informed consent to 59 

the experimental procedures, which were approved (16/WM/0296) by the Black Country NHS Research 60 

Ethics Committee (West Midlands, UK) and conformed with the Declaration of Helsinki.  Stable isotope 61 

labelling of newly synthesised proteins in vivo was achieved by oral consumption of 2H2O over a 14-day 62 

period. Consistent with our previous work [3], participants consumed 50 ml of 99.8 atom % of 2H2O four 63 

times per day. Venous blood was collected bi-daily, and muscle was collected at baseline (day 0), and 64 

after 4, 9, and 14 days of 2H2O consumption. Samples (∼100 mg) of vastus lateralis were taken using 65 

the conchotome technique after administration of local anaesthetic (0.5 % Marcaine). Two biopsies 66 

were taken from each leg in alternate order and all samples were obtained after an overnight fast.  67 

Body water enrichment of 2H was measured in plasma samples against external standards by gas 68 

chromatography-mass spectrometry [4]. Soluble proteins were extracted from muscle samples as 69 

previously described [3]. Tryptic digestion was performed using filter-aided sample preparation [5]. 70 

Digests containing 4 µg of peptides were de-salted using C18 Zip-tips (Millipore) and analysed by LC-MS 71 

consisting of nanoscale reverse-phase ultra-performance LC (NanoAcquity; Waters Corp., Milford, MA) 72 

and online ESI QTOF MS/MS (Q-TOF Premier; Waters Corp.). Samples (5 μl corresponding to 1 μg tryptic 73 

peptides) were loaded by partial-loop injection on to a 180 μm ID x 20 mm long 100 Å, 5 µm BEH C18 74 



 

Symmetry trap column (Waters Corp.) at flow rate of 5 μl/ min for 3 min in 2.5 % (v/v) ACN, 0.1% (v/v) 75 

FA. Separation was conducted at 35 °C via a 75 μm ID x 250 mm long 130 Å, 1.7 µm BEH C18 analytical 76 

reverse-phase column (Waters Corp.). Peptides were eluted using a linear gradient that rose to 37.5 % 77 

ACN 0.1% (v/v) FA over 75 min at a flow rate of 300 nl/ min. Eluted peptides were sprayed directly in 78 

to the MS via a NanoLock Spray source and Picotip emitter (New Objective, Woburn, MA). Additionally, 79 

a LockMass reference (100 fmol/ μl Glu-1-fibrinopeptide B) was delivered to the NanoLock Spray source 80 

of the MS and was sampled at 240 s intervals. For all measurements, the MS was operated in positive 81 

ESI mode at a resolution of 10,000 FWHM. Before analysis, the TOF analyser was calibrated using 82 

fragment ions of [Glu-1]-fibrinopeptide B from m/z 50 to 1990. Peptide MS were recorded between 83 

350 and 1600 m/z and muscle samples were analysed in duplicate, in a randomized order interspersed 84 

by inter-sample blanks (5 μl 0.1 % FA separated over a 15 min linear gradient). Data-dependent MS/MS 85 

spectra were collected from baseline (day 0) samples over the range 50–2000 m/z. The 5 most 86 

abundant precursor ions of charge 2+ 3+ or 4+ were selected for fragmentation using an elevated (20–87 

40 eV) collision energy. A 30-s dynamic exclusion window was used to avoid repeated selection of 88 

peptides for MS/MS.  89 

Label-free quantitation (LFQ) was performed using Progenesis Quantitative Informatics for Proteomics 90 

(Waters Corp.) consistent with our previous work (e.g. [3, 6, 7]). Analytical data were LockMass corrected 91 

using the doubly-charged monoisotopic ion of the Glu-1- fibrinopeptide B and prominent ion features 92 

were used as vectors to warp each data set to a common reference chromatogram. MS/MS spectra 93 

were searched against the Swiss-Prot database (2018.7) restricted to Homo-sapiens (20,272 94 

sequences) using a locally implemented Mascot server (v.2.2.03; www.matrixscience.com). Enzyme 95 

specificity was trypsin (allowing 1 missed cleavage), carbamidomethyl modification of cysteine (fixed), 96 

and m/z errors of 0.3 Da. 97 

Log-transformed MS data were normalized by inter-sample abundance ratio, and protein relative 98 

abundance (ABD) was calculated using nonconflicting peptides. Mass isotopomer abundance data were 99 

extracted from MS spectra using Progenesis Quantitative Informatics (Waters Corp.). The abundance 100 

of m0–m4 mass isotopomers was collected over the entire chromatographic peak for nonconflicting 101 

peptides used in LFQ. Incorporation of 2H into protein is associated with a decrease in the molar fraction 102 

of the monoisotopic (m0) peak. Changes in mass isotopomer distribution follow a nonlinear bi-103 

exponential pattern as a result of the rise-to-plateau kinetics in 2H enrichment of the body water 104 

compartment, and the rise-to-plateau kinetics of 2H-labelled amino acids in to newly synthesised 105 

protein. Data were fitted using the Nelder-Mead simplex method to optimise for the rate of change in 106 

the molar fraction of the m0 peak. The rate constant (k) of change in mass isotopomer distribution is a 107 

function of the number of exchangeable H sites and was accounted for by referencing peptide 108 



 

sequences against the 2H enrichment of amino acids in humans [8]. Peptides were selected for statistical 109 

analysis if they were (i) unique to a protein, (ii) fitted well (R2 >0.85) to the biexponential model, and 110 

(iii) were detected in each technical replicate across the entire time series (0, 4, 9 and 14 d) of samples 111 

from all 4 participants. Protein FSR was derived from the median k of peptides assigned to the protein. 112 

All data processing and statistical analyses were performed in R version 3.5.2.  113 

The enrichment of 2H in body water increased at a rate of 0.135 ± 0.005 %/d and reached a peak of 114 

2.14 ± 0.08 % on day 14. LFQ encompassed 101 proteins that had at least 1 unique peptide and ABD 115 

ranged from 7.75 e+01 AU (CISY: citrate synthase) to 2.86 e+05 AU (HBA: hemoglobin subunit alpha). Fifty-116 

four proteins passed the more stringent filtering necessary for synthesis calculations and FSR ranged 117 

from 0.37 %/d (CASQ1: calsequestrin-1) to 12.90 %/d (APOA1: apolipoprotein A-I). The median (M), 118 

lower quartile (Q1) and upper quartile (Q3) values for protein FSR (%/d) were M = 1.63, Q1 = 1.07, Q3 = 119 

3.24.  120 

The overall repeatability of proteome ABD and FSR data was assessed using reduced major axis (RMA) 121 

regression that is appropriate when random error is expected in both x and y variables. RMA is 122 

equivalent to ordinary least products regression [9] and can distinguish between fixed- and proportional-123 

bias. Strong linear relationships (Figure 1 A and D) existed between replicate analyses of ABD 124 

(R2=0.9989.; p = 0.0104) and FSR (R2=0.9535; p = 0.0104). The 95 % confidence interval (CI) of the 125 

intercept and slope were used to assess fixed- and proportional-bias, respectively. ABD data did not 126 

exhibit fixed bias (95 % CI of intercept = -68.2 – 38.7) but there was evidence of proportional bias 127 

because the 95 % CI for the slope (0.951 – 0.957) did not include 1. The 95 % CI for the slope of FSR 128 

data (0.9285-1.001) did span 1 but the 95 % CI for the intercept of FSR data (0.100 – 0.308) did not 129 

span zero, which suggests fixed bias exists between replicate analyses. RMA analysis summarises the 130 

overall reliability of the proteomic data but each protein exhibits unique technical repeatability. CV is 131 

representative of 68 % (1SD) of the likely variation in data and has been a commonly used (e.g. [6, 10, 11]) 132 

index in reliability studies. CV was used to illustrate relative differences in the technical repeatability of 133 

ABD and FSR data on a protein-by-protein basis (Figure 1B and 1E, respectively). The mean CV of ABD 134 

data was 5.5 % (SD = 6.6 %); M = 3.6 % (Q1 1.7 % - Q3 6.7 %), the mean CV of FSR data was 14.1 % (SD 135 

= 13.6 %); M = 10.1 % (Q1 3.5 % - Q3 16.5 %). To give insight to biological variability amongst participants, 136 

FSR and ABD data were filtered to exclude proteins with a technical repeatability of >5 %CV. The 137 

biological variability of FSR (Figure 1F) was M = 30.4 % (Q1 17.9 % - Q3 42.0 %) and was approximately 138 

double that of ABD data (Figure 1C; M = 14.6 %; Q1 7.7 % - Q3 25.1 %). Ordinary least squares regression 139 

found that neither protein ABD, FSR or the number of peptides per protein predicted the level of 140 

technical repeatability in FSR (Figure 1 G, H and I). Accordingly, there was no difference (p=0.7511) 141 

between the CV of FSR calculated from single peptides versus proteins that had 2 or more peptides. 142 



 

Lastly, the ability of DPP to replicate a given result (i.e. precision) was defined according to ISO 5725 in 143 

which the precision of a method is denoted by its repeatability (r) 144 

r  =    1.96 √2𝑆𝑤2  145 

where Sw is the within-subject standard deviation. The practical interpretation of r is “the value below 146 

which the difference between two measurements would lie with a probability of 0.95” [12]. Glycolysis 147 

was the most dominant functional group amongst the proteins surveyed and the precision of ABD and 148 

FSR measurements for enzymes of the glycolytic pathway in human muscle is summarised in Figure 2. 149 

Hexokinase was the only enzyme of the glycolytic pathway that was not detected in the current analysis, 150 

or in our previous work [6].  This may be an artifact of our standard fractionation procedure or it may 151 

relate to the reported differences in subcellular location of hexokinase [13] compared to other glycolytic 152 

enzymes [14].  Consistent with [15, 16] enzymes of the second phase of glycolysis were of greater ABD than 153 

those belonging to stage 1. Interestingly, the opposite pattern emerged in FSR data and generally the 154 

FSR of stage 2 glycolytic enzymes was less than those involved in stage 1. 155 

An understanding of measurement precision is an important aspect of scientific investigation and is 156 

prerequisite to proper experimental design. The average CV in ABD data presented here (6 %) compares 157 

favorably with 12 % for LFQ in yeast [10], 6 % for SWATH-MS analysis in HEK293 cells [11] and 7 % in our 158 
[6] previous assessment of in rat skeletal muscle. Methods for studying the dynamic aspects of the 159 

proteome, particularly in humans in vivo, are less widely reported than static abundance data. The 160 

average technical repeatability (14 %) of protein FSR was remarkably similar to the performance of the 161 

more established techniques for measuring relative protein abundance. Especially so, because FSR 162 

calculations require time-series analysis encompassing measurements of both precursor enrichment 163 

and incorporation of label in to newly synthesised protein. Biological variability in protein ABD and FSR 164 

was estimated using proteins with the highest levels of technical repeatability (CV <5 %). The biological 165 

variability in FSR was approximately double that of protein ABD. Sample size calculations [17], based on 166 

Q3 biological variation, estimate a required n of 6 (ABD) or 15 (FSR) to detect a within-subject change 167 

of 50 % (α = 0.05, 80 % power). DPP of human muscle responses to resistance exercise [3] reported 168 

changes in FSR that, generally, were of twice the magnitude of changes in ABD. The above observations 169 

suggest DPP has an equal ability to detect changes in ABD and FSR in the setting of human exercise 170 

physiology.  171 

The current assessment of DPP was limited to a subset of the most abundant muscle cytosolic 172 

proteins [16]. While repeatability of protein ABD was similar to more extensive profiling of rat muscle 173 



 

[6], it remains to been shown whether yet deeper analysis of the muscle proteome would achieve 174 

similar levels of technical repeatability in FSR data. Herein, we report high levels of repeatability for 175 

the measurement of both ABD and FSR using peptides that were consistently resolved and detected 176 

in all samples. However, at a confidence level of 95 %, fixed bias was detected between duplicate 177 

analyses of FSR data and proportional bias was detected in the measurement of ABD. In addition, 178 

approximately 50 % of proteins were not consistently resolved in all samples and these data were 179 

excluded prior to statistical analysis. Increasing the number of proteins eligible for statistical analysis 180 

is key to the future development of the DPP technique and could be achieved through the use of 181 

more modern instrumentation and orthogonal peptide separation techniques. Whereas, less 182 

stringent handling of missing data, for example by inclusion of proteins detected in a subset of 183 

participants or samples, should be avoided because this diminishes the technical repeatability of ABD 184 

and FSR measurements.  185 

In conclusion, DPP is a robust technique for the assessment of protein abundance and synthesis rates 186 

in human skeletal muscle. Peptide MS analysis of 2H2O-labelled samples is a burgeoning discipline that 187 

has promise in bringing new insight to dynamic aspects of the proteome. The ability of DPP to report 188 

abundance and synthesis data on a protein-by-protein basis in humans in vivo is unique. In the future 189 

DPP of human muscle may help to uncover new information regarding the complex effects of exercise, 190 

ageing or chronic diseases on the rate of turnover, as well as abundance, of muscle proteins.  191 
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Figure Legends 224 

Figure 1 – Repeatability of protein abundance and synthesis measurements 225 

Duplicate analysis of (A) normalised protein abundance (ABD) measured by label-free quantitation and 226 

(D) fractional synthesis rate (FSR) measured by deuterium oxide labelling in vivo and peptide mass 227 

isotopomer analysis. Abundance data (AU) are reported for 101 proteins measured in each technical 228 

replicate of n = 4 participants at experiment day 0. Synthesis data (%/d) are reported for 54 proteins 229 

measured in technical replicates of n = 4 participants in time-series analysis of samples collected at 0, 230 

4, 9 and 14 d of deuterium administration. The line of best fit was calculated by reduced major axis 231 

regression and used to investigate fixed- or proportional-bias in ABD or FSR data. 232 

Density plots (B and E) illustrate the distribution and median CV for technical replication of ABD and 233 

FSR data. Biological variation (C and F) was illustrated after filtering protein lists to remove proteins 234 

with a level of technical CV >5 %. 235 

Scatter plots (G, H and I) illustrate the lack of significant relationship between technical variation in 236 

protein FSR (%CV) and (G) protein ABD, (H) protein FSR, or (I) number of peptides per protein.   237 

Figure 2 – Dynamic proteome profiling of glycolytic enzymes in human skeletal muscle 238 

Gray boxes display the common name of each enzyme in the glycolytic pathway, redrawn from the 239 

Kyoto Encyclopaedia of Genes and Genomes. Adjacent boxes detail the UniProt protein ID and number 240 

of peptides. The median abundance (ABD) and fractional synthesis rate (FSR) of proteins is reported in 241 

n = 4 participants. Data in parentheses represent the repeatability of ABD and FSR measurement 242 

calculated according to ISO 5725 and defined as the maximum difference expected between two 243 

measurements in 95 % of cases.   244 
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