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Abstract 

 

The management of the remainder of Europe’s once extensive forests is hampered by a poor 

understanding of the character of the vegetation and drivers of change before the onset of 

clearance for farming. Pollen data indicate a closed-canopy, mixed-deciduous forest, 

contrasting with the assertion that large herbivores would have maintained a mosaic of open 

grassland, regenerating scrub and forested groves. Coprophilous fungal spores from 

sedimentary sequences are increasingly used as a proxy for past herbivore impact on 

vegetation, but the method faces methodological and taphonomical issues. Using pollen trap 

data from a long-running experiment in Chillingham Wild Cattle Park, UK, we investigate 

the first steps in the mechanisms connecting herbivore density to the incorporation of fungal 

spores in sediments and assess the effects of environmental variables on this relationship. 

Herbivore utilization levels correlate with dung fungal spore abundance. Chillingham is 

densely populated by large herbivores, but dung fungal spore influx is low. Herbivores may 

thus be present on the landscape but go undetected. The absence of dung fungal spores is 

therefore less informative than their presence. Dung fungal spores likely enter the sediment 

record through a different pathway from wind-borne pollen and thus dung fungal abundance 

is better expressed as influx rates than as % total pollen.  

Landscape openness, vegetation type and site wetness do not distort the impact of utilization 

levels on dung fungal spore representation. However, dung fungal spore influx varies 

markedly between seasons and years. Spores travel, leading to a background level of spore 

deposition across the landscape, and at times a depletion of spores, especially under wet 

weather conditions. Animal behaviour, as well as husbandry practices, can lead to the 

accumulation of dung, and thus fungal spores, in specific locations on the landscape that do 

not directly reflect grazing pressure. 
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1. Introduction 

 

The management of the remainder of Europe’s once extensive forests is hampered by a poor 

understanding of 'virgin forest', or what comprises a 'natural' temperate environment in terms 

of vegetation abundance and distribution (Birks 2005; Parviainen 2005; Willis and Birks 

2006; Kirby and Watkins 2015). During the earlier interglacials of the European Pleistocene 

and the earlier part of the Holocene, the temperate fauna included a number of important 

herbivores, with megaherbivores such as elephant and rhinoceros, and a diverse range of 

other large herbivores, such as elk and aurochs (e.g. Von Koenigswald and Heinrich 1999; 

Kahlke 1999; Bridgland et al. 2004; Currant and Jacobi 2010). Extant relatives of these 

herbivores can significantly alter vegetation communities and suppress woodland cover 

(Owen-Smith 1988; Weisberg and Bugmann 2003; Hester et al. 2006; Gill and Morgan 2010; 

Ramirez et al. 2018). It can therefore be expected that this large guild of herbivores similarly 

affected the European Pleistocene and earlier Holocene vegetation. For this reason, the 

character of the European forest before the onset of clearance, some 6000 years ago, for 

farming has been highly debated. Early Holocene woodland development may have been a 

response to the anthropogenic reduction in herbivores (e.g. Sandom et al. 2014). Pollen 

research and observations of modern forests (e.g. Peterken 1996; Bradshaw and Mitchell 

1999; Svenning 2002; Bradshaw et al. 2003; Rackham 2003; Mitchell 2005) have been used 

as evidence to suggest that temperate Europe was dominated by high, closed-canopy, mixed-

deciduous forest. In contrast, other researchers have proposed that as the Holocene landscape 



emerged from the last glacial period, large herbivores maintained a mosaic of open grassland, 

regenerating scrub and forested groves, also known as ‘wood-pasture’ (Vera 2000; Kirby 

2004, 2005; Buckland 2005; Hodder and Bullock 2005a). 

Consequently, conservation grazing by large herbivores is increasingly used as a management 

tool in contemporary landscapes for creating and maintaining mosaics of open woodland to 

increase biodiversity (Humphrey et al. 1998; Hodder and Bullock 2005b) and reinstate 

putative natural woodland processes. However, the extent to which wood pasture, instead of 

closed canopy, is the relevant model for woodland conservation is still unclear. Estimating 

vegetation openness based on records of pollen (and other microfossils) is problematic due to 

complexities in pollen dispersal and taphonomic processes (Sugita et al. 1999; Svenning 

2002; Smith et al. 2010; Fyfe et al. 2013). A further complicating factor in this debate is the 

lack of reliable estimates of past large herbivore population sizes. Skeletal records are 

discontinuous in space and time, and are often not found in the same deposits as plant 

remains used to reconstruct past vegetation patterns. 

Over the past decades, counts of coprophilous fungal spores from sedimentary sequences 

have increasingly been used in an attempt to improve reconstructions of past herbivore 

presence and abundance (e.g. Davis 1987; Davis and Shafer 2006; Baker et al. 2013; Perrotti 

and Van Asperen 2019). Since these spores can be recovered from the same samples that are 

used for pollen analysis, vegetation records can be directly linked with a potential proxy for 

large herbivore presence. So far, this proxy has taken on an important role in studies aimed at 

resolving the timing and impact of the worldwide extinction of megaherbivores at the end of 

the last ice age (e.g. Gill et al. 2009; Feranec et al. 2011; Rule et al. 2012; Gill 2014; Johnson 

et al. 2016; Van der Kaars et al. 2017). It is also increasingly used to study aspects of animal 

husbandry, such as transhumance, overgrazing, the relative importance of small and large 



livestock species and dairying (e.g. Feeser and O’Connell 2010; Dietre et al. 2017; Ghosh et 

al. 2017). 

Coprophilous fungi are a diverse group of fungi that grow on animal dung, encompassing 

genera from most major taxonomic groups (Wicklow 1992; Richardson 2001; Krug et al. 

2004). Some of these grow almost exclusively on dung, whilst other species also grow on a 

variety of other substrates. Many exclusively coprophilous species, especially those 

belonging to zygomycete or ascomycete genera, actively release their sporangia or individual 

spores using a variety of explosive mechanisms, propelling them over a short distance 

(typically a few cm to a few m, with most spores landing within 40 cm of the fruitbody; 

Ingold and Hadland 1959; Ingold 1961; Trail 2007; Yafetto et al. 2008) onto the surrounding 

vegetation. The spores can then be ingested by herbivores along with the vegetation, passed 

through the animal's digestive system and voided with the dung. It is unclear whether the 

passage through the animal's gut plays any role in the germination of these spores 

(Janczewski 1871; Massee and Salmon 1902; Krug et al. 2004), but they are rarely found to 

be active on other substrates (see below; Bell 2005; Doveri 2007; Kruys and Wedin 2009; 

Guarro et al. 2012; Newcombe et al. 2016). Due to their presence on vegetation, herbivore 

dung generally harbours a more diverse fungal community than carnivore dung (Lundqvist 

1972; Furuya 1990). Many coprophilous fungal spores (primarily from ascomycete genera) 

are thick-walled, and often the walls contain pigments which protect the spore from exposure 

to harmful UV radiation (Lundqvist 1972). This also accounts for their long-term survival in 

soils (Van Asperen et al. 2016) and their consequent preservation in Quaternary sedimentary 

samples. 

Whilst a number of studies have sought to connect modern herbivore density with 

coprophilous fungal abundance in soil (Blackford and Innes 2006), moss (Cugny et al. 2010; 



Dietre et al. 2012) or lake sediments (Raper and Bush 2009; Ekblom and Gillson 2010; 

Parker and Williams 2012; Etienne et al. 2013), this has exposed a number of problems. 

Firstly, there is a methodological issue. Dung fungal spore abundance is often expressed as a 

percentage of the total pollen sum (TP) or a subgroup of this (Davis and Shafer 2006, Ekblom 

and Gillson 2010, Feeser and O’Connell 2010, Gill et al. 2009, 2013; Parker and Williams 

2012; Johnson et al. 2015). In all likelihood, fungal spores enter the sedimentary record 

through a different pathway to wind-borne pollen due to differences in dispersal and 

taphonomy. Furthermore, total pollen influx may vary based on the surrounding cover of 

wind-blown and insect-pollinated taxa leading to differences between arboreal and non-

arboreal site pollen counts (Hicks 2001). These differences may lead to directional shifts in 

the calculation of fungal spore counts as a percentage of TP. We might expect, for example, 

lower fungal spore abundance in woodland than in highly grazed pasture. In addition, in 

wood pasture the 'glade effect' (Feeser and Dörfler 2014), where trees produce more pollen 

due to increased flowering with broader canopy and access to light, might conceivably reduce 

the apparent fungal spore quantity as a percentage of TP. Fungal spore counts may therefore 

not be directly comparable to pollen counts, and the interpretation of fungal spore data as a 

percentage of the pollen sum may lead to spurious shifts. This is particularly problematic 

where pollen and/or fungal spore accumulation rates are not constant through time (Hicks 

2001; Baker et al. 2013; Etienne et al. 2013; Wood and Wilmshurst 2013; Perrotti and Van 

Asperen 2019). Since fungal spore influx rates have not been assessed widely, a complete 

understanding of this is lacking. 

Secondly, the mechanism connecting herbivore density (in particular differential use of areas 

within a landscape) and the incorporation of fungal spores in sediments is poorly understood. 

Whilst studies of modern pollen dispersal have calibrated our interpretation of palynological 

records (e.g. Janssen 1967; Wright et al. 1967; Overpeck et al. 1985; Prentice 1985; 



Wilmshurst and McGlone 2005; Broström et al. 2008), similar studies have so far not been 

carried out for dung fungal spores. Although the depositional environments studied so far 

approximate the types of samples used in palaeoecological studies, it is paramount to first 

understand how fungal spores become incorporated in these records before drawing 

conclusions about herbivore density from counts in palaeoecological samples (Feranec et al. 

2011). 

Although it seems that dung fungal spore active dispersal distances are short (Ingold and 

Hadland 1959; Ingold 1961; Trail 2007; Yafetto et al. 2008), it is unclear whether, and if so, 

how far, spores can move around the landscape through other taphonomic processes such as 

wind and water transport (Raper and Bush 2009; Johnson et al. 2015; Raczka et al. 2016). 

Thirdly, at present, we have a limited understanding of the role of confounding 

environmental factors such as seasonality, vegetation cover and wetness that could bias the 

deposition, preservation and recovery of spores. Whilst we have limited ability to test the 

mechanisms by which fungal spores become part of the palaeoecological record, unravelling 

the complexities these confounding factors present is a good place to start. 

To our knowledge, only a single study (Gill et al. 2013) used Tauber traps to study the 

relationships between herbivore abundance and dung fungal spore influx rates. This 

investigation used bison enclosures with known grazing densities to show a clear relationship 

between bison grazing and presence of a single fungal genus, Sporomiella. However, Gill et 

al. (2013) did not study environmental variables and these are potentially important. For 

example, Wood and Wilmshurst (2012) show that soil moisture has an impact on dung fungal 

spore presence. Testing the relationship between a range of dung fungal spores and herbivore 

utilization levels, in differing soil moisture conditions is, therefore, an important step. 

Incorporating a wider range of dung fungal taxa in the analysis better indicates herbivore 

presence and abundance, especially since Sporormiella is not always common on the dung of 



extant herbivores (Johnson et al. 2015; Baker et al. 2016; Van Asperen 2017). This study 

aims to resolve some of these uncertainties by investigating the impact of vegetation cover, 

wetness and grazing density on the abundance of a range of dung fungal genera in a long-

running experiment with cattle and deer in northeast England. 

 

2. Study site and methods 

 

2.1 Study site and field methods 

 

To investigate influx rates of coprophilous fungal spores across a range of habitats in a 

mosaic of wood pasture with an overall known herbivore density but varying levels of use of 

different parts of the landscape, pollen (modified Tauber) traps (Tauber 1974; Hicks and 

Hyvärinen 1986) with a volume of 5 l were placed at 11 locations in Chillingham Wild Cattle 

Park, Northumberland, UK (table 1, figure 1). A feral herd of Chillingham cattle has 

occupied this area since at least 1646, and no human handling or veterinary intervention takes 

place, apart from occasional culling of aged or diseased animals (Hall 2007, 2013). At 

present, the herd consists of about 100 animals ranging freely over an area of 123.4 ha, 

equivalent to a cattle biomass of about 186 kg/ha (Bunce and Hall 2013). In winter (January 

to mid-April; Hall 1988) limited supplementary, locally harvested hay and compound feed is 

provided only if necessary, and in previous years (1980-2004), limestone has been applied to 

the grazing areas to prevent dietary magnesium deficiency (Hall et al. 2005). The park is also 

frequented by fallow and roe deer, badgers, foxes and a variety of smaller mammals. The 

park therefore represents an opportunity to gather data in as near-natural grazing conditions 

as is possible in this part of Western Europe to provide a reasonable analogue for 

palaeoecological studies. 



Although the overall herbivore density of the park is known (0.81 cattle per ha, plus 

occasional deer presence), not all parts of the park are used equally intensively, and different 

parts of the park are used in different ways. Utilization patterns are notoriously difficult to 

quantify at the local scale. In a study from June 1977 to January 1981, when the cattle herd 

consisted of about 50 animals and the park was also still grazed by about 300 sheep, the 

spatial behaviour of the cattle was closely monitored (Hall 1988). The overall utilization 

patterns have remained the same (C. Leyland / D. Oard, pers. comm.). In summer, the cattle 

preferentially graze in the lower-lying grassland areas and the ash/alder woodland (Hall and 

Bunce 1984; Hall 1988). Since the lower-lying grassland areas tend to be quite wet, in winter 

the cattle move to the less nutritious but dryer upland grasslands. The shaded woodlands are 

used less intensively, with the exception of the coniferous woodland on the south-western 

boundary of the park, which is sheltered from the prevailing winds. Although there is little 

undergrowth and therefore not much food for the cattle, this area has some of the largest 

accumulations of dung in the park, since it is heavily used in adverse weather conditions. 

Traps were placed within a variety of settings to encompass the mosaic of utilization 

intensity, habitats types and soils moisture levels. Utilization intensity was based on Hall 

(1988) and information from the park wardens (C. Leyland / D. Oard, pers. comm.). Each 

trap was assigned a value of low, medium or high utilization, and since utilization levels vary 

between seasons, besides a year-round value, each trap was also assigned a winter and 

summer utilization value. 

The sampling locations represent a range of vegetation types. The vegetation classification 

(table 1) follows Hall and Bunce (1984), but we have split their 'dense shade' (S) habitat into 

two categories, coniferous and deciduous woodland (including their ash/alder (A) in the 

deciduous woodland category), and merged their two categories of good grassland (G) and 

second-rate grassland (M) into a single category with upland grassland (U). The stands of 



woodland in the park are small, but pollen assemblages from these traps are dominated by 

local deposition (E. van Asperen, unpublished data). Soil moisture at the pollen trap locations 

was measured at a depth of 5 cm every 6 months (in April and October) using a MoonCity 

soil moisture sensor, which measures soil moisture on a scale of 1-10 (1-3 dry, 4-6 medium, 

6-10 wet; table 1). 

Two traps were situated in existing exclosures (approximately 15m in diameter) within the 

park, to which the cattle do not have access (traps CT1 and CT2). One trap was placed just 

outside the park (trap CT5) approximately 7m from the fence line; this area could not be 

accessed by the cattle but other free-roaming species did have access. The remaining traps 

were placed to cover areas that are intensively used by the cattle as well as areas that are used 

less intensively. Apart from traps CT1, CT2 and CT5, the traps were surrounded by three 

wooden poles with barbed wire to protect the traps from trampling (figure 2a). The poles 

were placed as close to the trap as possible to make sure the trap was within the dispersal 

distance of fungi growing on nearby dung (Ingold 1961; Trail 2007; Yafetto et al. 2008).  

The traps were buried into the ground so that the collar and opening were about 5 cm above 

ground level (figure 2b; Hicks et al. 1996). 10 ml of glycerol and 10 ml of anti-algal barley 

straw extract (Blagdon) were added to the trap. A coarse mesh was placed over the opening 

to prevent small animals from falling into the trap (Hicks et al. 1999). The first traps were 

placed in October 2014. Traps were collected and replaced twice a year (in April and 

October) to assess seasonal variation in spore influx. Here we present data for the first two 

years of sampling (October 2014 – September 2016). Analysis of samples for later years is 

ongoing. 

Weather data for the sampling period were obtained from the Met Office Integrated Data 

Archive (MIDAS) Surface Weather Stations network, provided by the British Atmospheric 

Data Centre (BADC; http://badc.nerc.ac.uk, last accessed 16 May 2017), from the weather 



station at Chillingham Barns (Lat: 55.530N, Lon: 1.917W, alt: 70 m asl). Mean monthly 

temperature and monthly total precipitation were calculated from hourly values (figures 3a 

and 3b). 

 

2.2. Laboratory methods 

 

Upon collection from the field, traps were kept in cold storage and processed as soon as 

possible. Trap volume was measured, and based on a visual inspection of the amount of 

sediment present in the trap, 2-6 Lycopodium tablets dissolved in 10 ml 10% HCl were added 

to the trap contents to enable quantification of influx rates (Hicks et al. 1999). Items larger 

than 125 µm were removed by sieving. The remaining trap contents were centrifuged to 

concentrate the samples. To maximize fungal spore recovery (Van Asperen et al. 2016), 

treatment with highly corrosive or acidic chemicals was avoided. The samples were first 

heated in a 10% KOH solution. Heavy particles were removed by swirling, whilst particles 

<6 µm were removed with a fine mesh sieve. The samples were then treated with 10% HCl, 

stained with Safranine and mounted in silicon oil using tertiary butyl alcohol. Pollen and 

fungal spores were counted at 400x magnification until 350 Lycopodium spores had been 

counted (Etienne and Jouffroy-Bapicot 2014). 

Based on the known number of Lycopodium spores added, the spore influx rate per cm2 per 6 

months was calculated for the coprophilous genera Podospora, Sordaria and Sporormiella, as 

well as an overall coprophilous spore influx rate (Baker et al. 2013; Perrotti and Van Asperen 

2019), using the formula: ((n Lycopodium added / n Lycopodium counted) * n fungal spores 

counted) / 19.6 (the surface area of the trap opening in cm2) (Hicks et al. 1999). A small 

number of other coprophilous genera (Arnium, Delitschia, Trichodelitschia; Bell 2005: 46, 

51; Doveri 2007: 872; Guarro et al. 2012: 59, 159) were encountered very rarely, and where 



present, these were included in the total coprophilous spore influx rate. The presence of other 

spore types of genera that contain a mixture of coprophilous and non-coprophilous species 

(Apiosordaria, Cercophora, Coniochaeta; Krug et al. 2004; Bell 2005: 39; Doveri 2007: 810; 

Guarro et al. 2012: 47–51, 132–142) was noted, but these genera were not included in the 

total coprophilous spore influx rate. 

 

2.3. Fungal spore taxonomy, morphology and ecology 

 

The genera Podospora, Sordaria and Sporormiella are generally regarded as being among the 

strongest indicators of dung in palaeoecological studies (e.g. Baker et al. 2013; Perrotti & 

Van Asperen 2019). These genera have highly recognisable pigmented spores which survive 

well in soil and pollen preparations (modified method of Faegri and Iversen 1989; Moore et 

al. 1991; see Van Asperen et al. 2016; figure 4). Species in the genus Podospora are mostly 

coprophilous (Bell 2005: 14; Doveri 2007: 905; Guarro et al. 202: 340; Schlütz & 

Shumilovskikh 2017). Podospora species are not commonly isolated from other substrates, 

whereas some species of the closely similar genus Cercophora are (Bell 2005: 40; Doveri 

2007: 847; Guarro et al. 2012: 111). The pigmented cells of the spores of the latter genus tend 

to be relatively small (<25 × 15 μm) compared with the mostly larger pigmented cells of 

Podospora spores (Bell 2005; Doveri 2007). In addition, Cercophora spores tend to remain 

hyaline until after maturation and discharge (Lundqvist 1972) and such thin-walled, 

unpigmented spores are less likely to survive in soil and pollen preparations (Van Asperen et 

al. 2016). Sordaria is almost exclusively coprophilous (Bell 2005: 36; Doveri 2007: 826), 

although some species are frequently isolated from soil (Guarro et al. 2012), and there are 

some indications the genus can also reproduce on certain plants (Newcombe et al. 2016). 

However, such occurrences are sufficiently rare that it can be assumed that most Sordaria 



spores isolated from soil result from growth on dung. The spores of Sporormiella are 

indistinguishable from those of the genus Preussia (Kruys and Wedin 2009), leading some 

authors to include Sporormiella in Preussia as a later synonym (e.g. Kruys and Wedin 2009; 

Guarro et al. 2012). Since non-pollen palynomorph (NPP) analysts have so far used the 

generic name Sporormiella for 4- to many-celled spores with germ slits, this name is used 

here. Most species of Sporormiella and Preussia grow on dung, but plant debris, wood or soil 

also serve as substrates (Doveri 2007: 613; Kruys and Wedin 2009; Guarro et al. 2012), so 

the use of these spores as obligate indicators of past herbivore abundance must be approached 

with caution.  

 

2.4. Statistical methods 

 

To test the validity of displaying and analysing abundance of fungal spores as a percentage of 

total pollen, correlations between pollen and dung fungal spore counts and influx rates were 

tested using Pearson’s product-moment correlation. Each data set was examined by sampling 

season and year, and for all samples together. Given the likely fluctuations in total pollen, 

dung fungal spores are also correlated here with Poaceae pollen values. Poaceae is used as a 

reference taxon in relative pollen abundance quantification as it has a reasonably stable linear 

relationship with plant abundance (Broström et al. 2004). Finally, the correlation between 

dung fungal spore influx rates and counts expressed as %TP is tested to examine whether an 

increase in dung fungal spores as %TP reflects an increase in influx of these spores. 

To test whether environmental factors impact on dung fungal spore influx rates, correlations 

between dung fungal spore influx and vegetation cover, vegetation type, soil moisture and 

utilization level (see table 1) were each tested separately with Spearman’s rank correlation 

coefficient. Differences in dung fungal spore influx in pollen traps between different habitats 



and utilization levels were tested with the Mann-Whitney U test for environmental variables 

with two categories and the Kruskal-Wallis test for environmental variables with three 

categories. Correlations and tests for difference were first carried out by individual sampling 

season, then for both winter seasons together and both summer seasons together, for each 

sampling year (October-September) and for all samples together. All statistical analyses were 

performed with the Statistical Package for the Social Sciences (SPSS) version 24. Results for 

the tests were considered significant if p ≤ 0.05. 

 

3. Results 

 

3.1. Correlation between fungal spore and pollen influx 

 

When all samples are taken together, there is no correlation between total pollen and total 

dung fungal spore influx (Supplementary Information). However, this correlation is 

significant for the summer 2015 traps (p=0.034), the winter 2015-2016 traps (p=0.010), and 

all winter samples together (p=0.037), due primarily to a correlation between pollen and 

Podospora influx rates (p=0.056 for summer 2015, p=0.021 for winter 2015-2016, and 

p=0.026 for all winter samples). Poaceae influx is related to total dung fungal spore 

(p=0.006), Podospora (p=0.002) and Sordaria (p=0.044) influx for all winter samples 

together, while the correlation with Sporormiella influx is also close to significance 

(p=0.076). 

Dung fungal spore influx rates are strongly positively correlated with dung fungal spore 

counts expressed as %TP (table 2) for all samples taken together (p<0.001; Supplementary 

Information) and for the year from October 2014 to September 2015 (p<0.001). In contrast, 

for the year from October 2015 to September 2016, the correlation is not significant. 



 

3.2 Fungal spore influx variation between seasons and sites 

 

Apart from the 2014-2015 winter traps, most traps contained very low numbers of dung 

fungal spores, ranging from 0 to 85 spores per cm2 in the summer 2015, winter 2015-2016 

and summer 2016 traps, and between 33 and 423 spores per cm2 for the winter 2014-2015 

traps (table 3). In the winter of 2015-2016, 5 out of 11 traps were lost; three washed out of 

position due to high groundwater levels in combination with sheet flow due to high rainfall, 

and two were dug out by a badger. The limited data from the smaller number of surviving 

traps is more difficult to interpret. With only two traps lost in summer 2015 and one in 

summer 2016 (both washed out during wet weather) the data are more secure for these 

sampling periods. In all four sampling seasons, traps in the areas that are not accessible to the 

cattle (exclosures CT1 and CT2, location outside the park CT5) have similar influx rates of 

dung fungal spores to traps in areas of low grazing intensity. 

Influx rates are quantified using counts of Lycopodium marker grains, and this process masks 

the fact that although for each sample, at least 350 (and up to 1000) Lycopodium grains were 

counted, alongside at least 100 (and up to 2380) pollen grains, in absolute numbers for most 

traps fewer than 10 dung fungal spores were counted, except for the five richest traps (all 

from winter 2014-2015) for which 29 to 54 dung fungal spores were counted. This also 

means that in none of the summer 2015, winter 2015-2016 and summer 2016 traps, dung 

fungal spore counts expressed as a percentage of TP is above the 2% value that is often 

quoted as representing 'background deposition' and functions as the cut-off for meaningful 

interpretation (table 2; Davis 1987; Gill et al. 2013; Baker et al. 2016; Raczka et al. 2016). In 

contrast, in nearly all winter 2014-2015 traps dung fungal spore frequencies make up over 

2% of TP. 



Podospora and Sordaria were the most commonly encountered types of dung fungal spores 

(figure 4). Podospora reaches maximum influx rates between 150 and 250 spores per cm2 per 

6 months in a few samples from winter 2014-15, whilst Sordaria reaches 185 spores per cm2 

per 6 months in some samples from winter 2014-15. Sporormiella is more rarely 

encountered, with a maximum influx rate of 76 spores per cm2 per 6 months. 

 

3.3 Vegetation cover 

 

Vegetation cover (open vs. closed, p=0.009) and vegetation type (grassland, deciduous 

woodland and coniferous woodland, p=0.005) are significantly positively correlated with 

Sordaria influx for all samples analysed together (figure 5a; Supplementary Information). 

Sordaria influx rates are significantly different between the three vegetation types (p=0.024). 

This implies that this genus is more common in samples from woodland, especially 

coniferous woodland. 

 

3.4 Site wetness 

 

Summer wetness impacts on Sordaria representation negatively (figure 5b; Supplementary 

Information, p=0.022), but although there is a significant difference (p=0.016) between dry, 

medium and wet sites, this is mainly because the medium wet sites are characterised by lower 

Sordaria influx, whereas both dry and wet sites have higher Sordaria influx. Overall, site 

wetness does not seem to have a major impact on dung fungal spore presence in the pollen 

traps. 

 



3.5 Utilization level 

 

Surprisingly, year-round utilization level (low, medium and high) does not correlate 

significantly with dung fungal spore influx rates (Supplementary Information; tables 3 and 4; 

figures 5c and 6). However, winter utilization level does correlate significantly positively 

with total dung fungal spore (p=0.029) and Sordaria (p=0.021) influx, and it is also 

marginally significantly correlated with Podospora influx (p=0.087). This is also borne out 

by the Mann-Whitney U test, which indicates a significant difference in total dung fungal 

spore (p=0.032) and Sordaria (p=0.024) influx rates between sites with low and high winter 

utilization levels, and once again a marginally significant difference in Podospora influx 

(p=0.087). Sordaria influx rates are also different between sites with low and high year-round 

utilization levels (p=0.033). 

 

4. Discussion 

 

4.1 Fungal spore production, deposition and preservation 

 

The dung fungal spore counts from the Chillingham pollen traps highlight some significant 

issues. Apart from a few exceptions, fungal spore numbers from most traps are very low 

(table 2), meaning that our interpretations are based on very limited increases and decreases 

of spore counts. There are also marked differences in fungal spore influx from season to 

season and year to year. The evidence from Chillingham shows that the dominant fungal 

spore types can vary between landscapes, and reveals a complex relationship between fungal 

spore percentages and pollen percentages. 



Firstly, the low numbers of fungal spores found are not unusual; the fungal spore counts are 

in the same range as reported elsewhere. Many papers (37 out of 47 according to Baker et al. 

2013) use the relative measure of %TP because inaccurate dating of sediment precludes the 

calculation of influx rates. In these studies, dung fungal spore percentages above 4% are 

exceptional, which, with a generally used total pollen sum of 250, translates into a spore 

count of 10 or less. Davis and Schafer (2006) highlight percentages of Sporomiella spores up 

to 29% in areas where animals have been corralled but below 4% in extensively grazed 

meadows. They also cite studies with an absence of Sporomiella in grazed meadows and 

attribute this to climatic factors, vegetation cover and soil conditions. These previous studies 

seem in reasonable agreement with the data from Chillingham, regardless of the fact that they 

report findings from different sample types. Trap CT4 has comparatively high values because 

it is situated in a dung-rich sheltering spot which might equate to the corralling sites 

mentioned by Davis and Shafer (2006). The fungal spore presence in other samples and 

seasons is very limited, rarely reaching the 2% threshold used by other studies to infer 

herbivore presence (Feranec et al. 2011; Gill et al. 2013) and in agreement with Davis and 

Schafer (2006) that dung fungal spores may be a poor detector of low utilization levels in 

meadow habitats.  

In contrast to the 2014-2015 samples, the samples from the second winter season (2015-

2016) were poor in dung fungal spores. Unfortunately the evidence from this sampling period 

is sparse due to the loss of five traps to the very wet conditions. However, the explanation for 

the low number of spores may lie precisely in the wet weather (figures 3 and 6). Dung fungal 

growth is suppressed when the substrate is too wet (Kuthubutheen and Webster 1986; see 

also Wood and Wilmshurst 2012 for a discussion of the impact of soil hydrology on dung 

fungal spore representation). Furthermore, pollen influx rates were also very low for this 

period (average 839 pollen grains per cm2 per 6 months compared to 5,538 for winter 2014-



2015, and 15,857 and 23,286 for summer 2015 and 2016, respectively). This may indicate 

that the very high level of rainfall in November 2015 – January 2016 either prevented 

dispersal from taking place as usual, or may have increased runoff and transport of pollen and 

spores downhill, although at present it is unknown whether spores are easily transported by 

water flowing downhill through vegetation.  

Secondly, in the Chillingham samples, Podospora is by far the most commonly encountered 

dung fungal spore in the pollen trap samples (~60% of all dung fungal spores; table 3). 

Although Sporormiella is the dung fungal genus most commonly used in palaeoecological 

studies, this genus was rare in the Chillingham pollen traps. Since the dung fungal spores in 

the pollen traps are hypothesised to originate from the dung of herbivores in the area, it is 

instructive to compare the range of dung fungal types encountered in the pollen traps and the 

diversity of dung fungi growing on the dung itself to check the representativeness and 

reliability of the dung fungal spore record in the pollen traps. The most abundant genera on 

cattle dung from Chillingham incubated in the laboratory are Pilobolus and Cheilymenia spp. 

(Van Asperen 2017). Podospora spp. is common on cattle dung and abundant on deer dung 

from Chillingham, whilst Sordaria and Sporormiella are only encountered occasionally on 

cattle dung. 

The low numbers of dung fungal spores recovered from the pollen traps can thus be 

explained by the fact that the most common dung fungi on the cattle dung, Pilobolus and 

Cheilymenia, produce spores that are very small (Pilobolus) and therefore likely lost in pollen 

preparations, or thin-walled and hyaline (both genera) and therefore do not preserve well and 

are strongly adversely affected by chemical preparation methods (Van Asperen et al. 2016). 

The relative abundance of Podospora spores in the dung fungal spore assemblage may reflect 

the higher abundance of the genus on deer dung as well as common presence on cattle dung 



from Chillingham, whilst the relative lack of Sporormiella spores corresponds to a sparse 

occurrence of the genus on the dung itself (Van Asperen 2017). 

Although most coprophilous fungi can grow on a wide range of dung types (Richardson 

1972, 2001), some genera are more abundant on certain dung types (Van Asperen 2017). This 

is especially important where it concerns ruminants such as cattle and deer, whose dung is 

dominated by fungal species with hyaline, thin-walled spores that do not survive well in 

palaeoecological samples (Lundqvist 1972; Richardson 1972; Bell 2005; Van Asperen 2017). 

In this case, the deer, although they are less abundant, contribute more spores to the dung 

fungal signal than the more abundant herbivore (in this case the cattle), because the deer dung 

also produced significant numbers of fungal fruitbodies with thick-walled spores (Van 

Asperen 2017), whilst such species were rare on the cattle dung. 

Thirdly, the lack of correlation between total pollen influx and the total dung fungal spore 

influx shows that dung fungal spores enter the sediment record through a different pathway 

than wind-borne pollen, which likely reflect a much larger, potentially distant source area 

than the more local dung fungal signal. The fact that dung fungal spore influx correlates well 

with dung fungal counts expressed as %TP shows that in this case, this potential discrepancy 

in source area size has a limited effect. However, this relationship breaks down for the year 

from October 2015 to September 2016, due to pollen influx being extremely low during the 

winter of 2015-2016, probably due to the wet weather, leading to higher dung fungi 

expressed as %TP, even though dung fungal influx rates were low too. %TP should therefore 

be used with caution as a measure for dung fungal abundance, and where possible, influx 

rates provide a more accurate measure (Etienne et al. 2013; Wood and Wilmshurst 2013; 

Johnson et al. 2015; Perrotti and Van Asperen 2019).  

Overall, the low influx of dung fungal spores in the traps show that a landscape can be 

densely populated by large herbivores that do not always leave a dung fungal spore signal 



that is strong enough to distinguish it from background deposition rates. The absence of dung 

fungal spores in palaeoecological samples may therefore be less informative than their 

presence (Raper and Bush 2009; Jones et al. 2017; Perrotti and Van Asperen 2019). Although 

in some cases Sporormiella spore abundance alone may indicate herbivore presence and/or 

abundance, the low levels of Sporormiella spore recovery, from both the Chillingham pollen 

traps and the dung, underline the importance of analysing all dung fungal spore taxa 

encountered in a palaeoecological sample, rather than limiting the analysis to a single spore 

type (Johnson et al. 2015; Baker et al. 2016; Perrotti and Van Asperen 2019). 

 

4.2 Temporal and spatial variability in fungal spore recovery 

 

Spore recovery over time and across the landscape also shows some interesting patterns. 

Firstly, traps in areas that are not accessible to the cattle have similar influx rates of dung 

fungal spores to traps in areas of low utilization level. For the trap located outside the park 

(CT5) this is not surprising, since this site is accessible to deer and other animals. The fact 

that the traps placed in exclosures (CT1 and CT2) also contained dung fungal spores could 

indicate that the spores travel further across the landscape than previously thought (e.g. Graf 

and Chmura 2006). At present it is unclear how far fungal spores can travel. Active dispersal 

distances are not likely to exceed 1m (Ingold and Hadland 1959; Ingold 1961; Trail 2007; 

Yafetto et al. 2008), but more research into passive dispersal, e.g. by water or wind transport, 

is needed. The two traps in exclosures are both located at relatively high elevation. This 

makes it unlikely, especially for CT1, that water transport plays a major role. For CT2, water 

transport could have some role, since this trap is located in a waterlogged part of the park. At 

times of high rainfall, sheet flow or even flooding could transport spores into this area. Given 

that some of the traps contained much more water than would be expected from rainfall 



levels (though never more than the 5 l volume of the traps; table 5), this seems a likely 

mechanism. 

In a densely occupied area such as Chillingham Park, movement of spores around the 

landscape appears to result in a homogeneous, though low, background level of spore 

deposition, with influx rates generally <100 spores per cm2 per 6 months and a %TP <2%. 

Such low levels of spore deposition cannot be reliably distinguished from background 

deposition from other sources than large herbivores. Smaller herbivores, such as lagomorphs 

and rodents, as well as herbivorous birds, could contribute to the background signal, but 

unless their densities are high, which is not the case at Chillingham, their dung is unlikely to 

be a significant source of dung fungal spores (Baker et al. 2016). An alternative explanation 

could be that these spores are present because they use a wider range of substrates than 

exclusively dung, but previous research shows that this is unlikely (see summary in Perrotti 

and Van Asperen 2019; Bell 2005; Doveri 2007; Kruys and Wedin 2009; Guarro et al. 2012; 

Newcombe et al. 2016). 

Secondly, although correlations between utilization levels and dung fungal spore influx are 

relatively weak, a number of locations that are used relatively intensively are characterised by 

larger numbers of spores. This concerns mainly locations where the cattle find shelter from 

adverse weather conditions (CT4 and to a lesser extent CT10), areas with heavy summer 

grazing (CT3 and CT9), as well as an area that is used intensively by a small number of 

individuals (CT11). The fact that two of these sites are in coniferous (CT4) and deciduous 

woodland (CT10) likely partially explain the correlation between Sordaria influx and 

vegetation type. Both sites are also relatively dry, contributing to the negative correlation 

between Sordaria and wetness. 

Dung does not necessarily concentrate in areas where animals are grazing, and can 

accumulate in locations where the animals are resting, chewing the cud, watering or 



sheltering. Furthermore, some herbivores defecate in latrines, leading to an accumulation of 

dung in one location (e.g. domestic horses; Ödberg and Francis-Smith 1976; and 

rhinoceroses; Groves 1972; Groves and Leslie 2011; Basumatary et al. 2017). Some species 

do not use latrines but avoid grazing near dung (e.g. cattle and sheep; Forbes and Hodgson 

1985; Lütge et al. 1995), whilst other species do defecate in grazing areas (e.g. wild horses; 

Lamoot et al. 2004). It is therefore important to consider animal behaviour when interpreting 

dung fungal records. In archaeological contexts, husbandry techniques (e.g. penning of 

animals at night time or during some parts of the year, use of watering locations; see Davis 

and Shafer 2006; Kammerling et al. 2017) can also lead to spatial patterning of utilization 

intensity. 

The correlations between winter utilization level and dung fungal spore influx also partially 

explain the correlations between dung fungal spore influx and Poaceae pollen influx in the 

winter samples, since the cattle heavily graze the grassland sites that are characterised by 

high Poaceae representation. Low intensity grazing has been shown to increase Poaceae 

pollen production (Groenman-van Waateringe 1993; Innes and Blackford 2003; Fyfe et al. 

2008; Davies 2016), whilst high intensity grazing suppresses it. The correlation between 

winter utilization and Poaceae pollen may thus be due to the lower utilization levels of 

especially the upland areas in summer, allowing the grasses to flower. Winter grazing tends 

to have little effect on Poaceae pollen production (Groenman-van Waateringe 1993: 160). 

Thus, although grazing utilization is high in winter, a larger pollen load in the area is 

reflected in the pollen traps. Since Poaceae on average account for 24.1% of the total pollen 

sum, this also impacts on the somewhat weaker correlation between dung fungal spore influx 

and total pollen influx. 

Thirdly, the 2014-2015 winter samples were rich in dung fungal spores, whereas the summer 

samples contained few spores. Although the evidence is limited and needs further 



corroboration, dung fungal diversity in temperate latitudes is known to be higher in winter 

than in summer (Wicklow 1992; Richardson 2001; Krug et al. 2004; Van Asperen 2017). 

This is due to an interaction between the effects of temperature and moisture availability on 

dung fungal growth on the one hand, and the higher activity levels of other dung-inhabiting 

species, such as dung beetles and fly larvae, in summer on the other hand (Perrotti and Van 

Asperen 2019, and references therein). Such differential growth patterns become important 

where animals migrate seasonally or transhumance is practiced. The implications are that the 

presence of large numbers of herbivores may go more or less undetected if they are only 

present on the landscape during the season in which dung fungal growth is suppressed. 

 

4.3 Implications for palaeoecology  

 

The results from this study raise some important considerations for assessing herbivore 

presence in palaeoecological landscapes. It is clear that a wider range of fungal types are 

informative when assessing past herbivore presence, rather than relying on one indicator 

taxon such as Sporomiella (Perrotti and Van Asperen 2019). However, even with a range of 

fungal spores the data presented here suggest that some levels of grazing in wetter meadows 

might not be detectable or may require painstaking searches for sparse fungal spores in 

quantities insufficient to draw robust conclusions from. Equally, although high levels of 

fungal spores within woodlands might indicate the presence of sheltering animals, these may 

not indicate grazing at that particular location. Dung fungal spores found beside stratigraphic 

deposits from places such as watering holes might reflect a small number of herbivores in the 

wider environment, condensed into an area at particular times, and therefore a widespread 

impact of herbivores or a mosaic of open landscape areas proposed by Vera (2000) may not 

be inferred directly. To be utilised in the openness debate dung fungal spores may have to be 



found in density, or at least consistently, at several sites throughout the landscape before large 

numbers of herbivores can be inferred. This indicates an important role for the continued 

study of networks of local-scale palaeoecological sites (sensu Jacobson and Bradshaw 1981). 

It is often a goal of palaeoecological studies to sample at fine temporal resolution, attempting 

annual sampling in suitable varved deposits. The temporal shifts in fungal spore deposition 

observed across the two years of this study so far sampled show that fine temporal scales 

might be more difficult to interpret and could lead to spurious results, as year to year 

variations may be of a greater amplitude than site variations. Averages over a few years of 

deposition might be more valuable, however, this requires further testing with expanded long-

term datasets.   

 

Conclusion 

 

Our study shows that there is some correlation between herbivore utilization levels of 

different parts of the landscape and dung fungal spore abundance in pollen traps. However, 

herbivores may be present on the landscape at high utilization levels and yet go potentially 

undetected. The presence of dung fungal spores is therefore more significant than their 

absence, and drops in dung fungal spore levels should be interpreted with caution.  

Results from pollen traps may not be directly transferable to the interpretations of 

palaeoecological samples. Pollen traps represent a very short sampling period, whereas 

palaeoecological samples typically represent longer time periods, which may lead to certain 

pollen types, and potentially also NPP types, to be under- or overrepresented (Pardoe et al. 

2010). 

Studies of dung fungal spores are often based on extremely low spore counts. Any 

conclusions drawn from such small datasets should be treated with caution. It may be 



advisable to count a minimum of e.g. 100 spores (Blackford and Innes 2006; Dietre et al. 

2012), but this must balance what is practically achievable against what added information 

can be gained through this extra time investment, and may not be practically achievable for 

all sample types. Furthermore, some dung types can be dominated by dung fungi that leave 

no trace in the palaeoecological record, with the types that do preserve remaining below 

detection levels. For these reasons, as large a range of spore types possible should be used. 

Furthermore, because dung fungal spores follow different taphonomic pathways from pollen, 

interpretations of dung fungal spore counts expressed as %TP must be accompanied by an 

assessment of confounding factors related to fluctuations in pollen influx. Where possible, 

influx rates rather than %TP should be used to provide a more accurate measure of dung 

fungal spore abundance. 

Landscape openness, vegetation type and site wetness do not distort the impact of utilization 

levels on dung fungal spore representation. However, spores travel, leading to a background 

level of spore deposition across the landscape, and at times a depletion of spores, especially 

under wet weather conditions. So far, very little is known about the processes that move 

spores around the landscape, and more research into passive dispersal, e.g. by water or wind 

transport, is needed. Furthermore, there seems to be a seasonal signal related to both higher 

fungal activity in winter and higher levels of competition with other dung-inhabiting 

organisms in summer, which can be an important factor when seasonal migration or 

transhumance takes place. 

Finally, animal behaviour, as well as husbandry practices, can lead to the accumulation of 

dung in specific locations on the landscape that do not necessarily reflect grazing in that 

location. Such complexities need to be considered when interpreting dung fungal spore 

signals, but can also add richness to our understanding of landscape utilization.  



In short, dung fungal spores are a promising proxy, but more research is needed into the 

taphonomic pathways by which these spores become incorporated into palaeoecological 

records. Pollen traps only document the first step in this process. As a next step, pollen trap 

influx rates must be compared with moss samples, which are more similar to 

palaeoecological samples as they represent averaging out of the pollen and NPP assemblage 

over a longer period of time (Pardoe et al. 2010). The extent to which spores are preserved in 

soil, as well as experimental studies of spore movement across the landscape (see also Raper 

and Bush 2009; Johnson et al. 2015; Raczka et al. 2016), should further elucidate the 

taphonomy these spores. Analyses of moss and soil samples, as well as coring of a small 

forest hollow, are ongoing at Chillingham. Furthermore, it is crucial to repeat such studies in 

different landscapes and climatic conditions to ascertain whether these processes vary 

between different environmental conditions. Finally, it is advisable to use the dung fungal 

spore method in conjunction with other proxies for dung or grazing animals, such as dung 

spherulites, faecal biomarkers, or environmental DNA of dung fungi (Lydolph et al. 2005; 

Shahack-Gross 2011; Lancelotti and Madella 2012; Prost et al. 2017). Such methods will be 

particularly useful in archaeological excavations, where the contexts of the samples provide 

further corroboration of the results, or in continuous records, where fluctuations in the 

different proxies can be compared. 
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Table 1. Locations of pollen traps in Chillingham Wild Cattle Park 

Trap 

no. 

Latitude/ 

Longitude 

Elevatio

n (m 

OSL) 

Vegetation cover1 Wetness2 Utilization level 

CT1 55.5308N/ 

1.8891W 

130 Closed – deciduous 

woodland (Acer, 

Betula, Fraxinus, 

Quercus)[S] 

Wet [6.3] Low – exclosure 

CT2 55.5255N/ 

1.8889W 

111 Closed – deciduous 

woodland (Alnus, 

Fraxinus)[A] 

Wet [7.3] Low – exclosure 

CT3 55.5253N/ 

1.8892W 

109 Closed – deciduous 

woodland (Alnus, 

Fraxinus)[A] 

Wet [6.0] Medium (high in 

summer, low in winter) 

CT4 55.5225N/ 

1.8920W 

110 Closed – 

coniferous 

woodland [S] 

Dry [3.4] High – shelter area in 

adverse weather 

CT5 55.5223N/ 

1.8899W 

114 Closed – 

coniferous 

woodland [S] 

Dry [3.4] Low – outside park 

boundaries 

CT6 55.5245N/ 

1.8942W 

95 Open – grassland 

[M] 

Medium 

[5.5] 

Medium (high in 

summer, low in winter) 

CT7 55.5240N/ 

1.8943W 

98 Open – grassland 

[M] 

Medium 

[5.6] 

Medium (high in 

summer, low in winter) 

CT8 55.5249N/ 

1.8942W 

95 Open – grassland 

[G] 

Wet [6.6] Medium (high in 

summer, low in winter) 

CT9 55.5261N/ 

1.8931W 

105 Open – grassland 

[G] 

Medium 

[5.3] 

Medium (high in 

summer, low in winter) 

CT10 55.5265N/ 

1.8925W 

106 Closed – deciduous 

woodland (Acer, 

Fagus, Quercus) 

[S] 

Dry [2.9] Low (medium in 

summer, low in winter) 

CT11 55.5300N/ 

1.8794W 

156 Open – upland 

grassland [U] 

Medium 

[4.6] 

Medium (low in 

summer, high in winter) 
1 in []: vegetation classification according to Hall & Bunce 1984: A = ash/alder; G = good 

grassland; M = second-rate grassland; S = dense shade; U = upland grassland 
2 in []:soil moisture sensor average over the sampling period; 1-3 dry, 4-6 medium, 6-10 wet 

  



Table 2. Dung fungal spores counts expressed as %TP 

 

Winter 2014-2015 Summer 2015 Winter 2015-2016 Summer 2016 

Count %TP Count %TP Count %TP Count %TP 
CT1 5 4.2 1 0.1 3 1.7 0 0.0 

CT2 54 4.4 4 0.3 5 1.5 3 0.3 

CT3 39 17.3       

CT4 34 1.5 5 0.3   6 0.6 

CT5 8 0.5 0 0.0   2 0.1 

CT6 5 4.3 0 0.0 0 0.0 0 0.0 

CT7 3 1.5 1 0.1   3 0.2 

CT8 7 4.9   0 0.0 0 0.0 

CT9 29 8.1 2 0.2   0 0.0 

CT10 4 1.6 5 0.3 5 1.9 1 0.0 

CT11 33 6.1 5 0.5 4 2.1 1 0.2 

  



Table 3. Pollen trap influx rates per cm2 per 6 months of dung fungal spores, total pollen and 

Poaceae pollen 

Winter 2014-2015 

Trap no. Total 

dung 

fungi 

Podospora Sordaria Sporormiella Other 

dung 

fungi 

Total 

pollen 

Poaceae 

pollen 

CT1 54.18 43.34 10.84 0.00 0.00 1278.67 238.40 

CT2 292.58 146.29 70.43 70.43 5.42 8089.19 861.47 

CT3 422.61 184.21 184.21 54.18 0.00 16113.36 368.43 

CT4 368.43 227.56 108.36 32.51 0.00 2676.53 3142.48 

CT5 86.69 43.34 21.67 21.67 0.00 2438.13 1126.96 

CT6 54.18 43.34 0.00 0.00 10.84 15896.63 335.92 

CT7 32.51 21.67 0.00 10.84 0.00 1246.16 281.74 

CT8 75.85 65.02 10.84 0.00 0.00 2232.25 227.56 

CT9 314.25 184.21 43.34 75.85 10.84 1549.57 823.55 

CT10 43.34 21.67 21.67 0.00 0.00 3727.64 260.07 

CT11 357.59 249.23 54.18 43.34 10.84 5667.31 996.93 

Summer 2015 

Trap no. Total 

dung 

fungi 

Podospora Sordaria Sporormiella Other 

dung 

fungi 

Total 

pollen 

Poaceae 

pollen 

CT1 10.84 0.00 10.84 0.00 0.00 9882.57 1625.42 

CT2 43.34 32.51 10.84 0.00 0.00 13826.93 563.48 

CT4 58.53 35.12 23.41 0.00 0.00 23192.99 7128.78 

CT5 0.00 0.00 0.00 0.00 0.00 23235.85 3640.95 

CT6 0.00 0.00 0.00 0.00 0.00 18833.23 4562.02 

CT7 10.84 0.00 0.00 10.84 0.00 13025.05 8051.26 

CT9 21.67 10.84 0.00 10.84 0.00 17170.09 5201.35 

CT10 70.50 42.30 28.20 0.00 0.00 10868.66 5005.17 

CT11 79.34 47.61 31.74 0.00 0.00 12678.30 9330.88 

Winter 2015-2016 

Trap no. Total 

dung 

fungi 

Podospora Sordaria Sporormiella Other 

dung 

fungi 

Total 

pollen 

Poaceae 

pollen 

CT1 11.38 3.79 7.59 0.00 0.00 656.13 117.57 

CT2 18.96 7.59 7.59 3.79 0.00 1251.58 261.69 

CT6 0.00 0.00 0.00 0.00 0.00 587.86 53.10 

CT8 0.00 0.00 0.00 0.00 0.00 341.34 45.51 

CT10 27.09 21.67 5.42 0.00 0.00 1462.88 189.63 

CT11 15.17 0.00 7.59 7.59 0.00 735.77 75.85 

Summer 2016 

Trap no. Total 

dung 

fungi 

Podospora Sordaria Sporormiella Other 

dung 

fungi 

Total 

pollen 

Poaceae 

pollen 

CT1 0.00 0.00 0.00 0.00 0.00 10801.87 3499.87 

CT2 66.49 66.49 0.00 0.00 0.00 21832.17 4809.73 

CT4 84.54 42.27 42.27 0.00 0.00 33850.73 4818.91 

CT5 29.89 0.00 29.89 0.00 0.00 14273.55 6515.73 

CT6 0.00 0.00 0.00 0.00 0.00 13711.87 7612.42 



CT7 59.18 59.18 0.00 0.00 0.00 15690.74 10632.60 

CT8 0.00 0.00 0.00 0.00 0.00 41090.36 7716.55 

CT9 0.00 0.00 0.00 0.00 0.00 19761.14 7782.03 

CT10 19.73 19.73 0.00 0.00 0.00 30095.60 1814.84 

CT11 34.61 34.61 0.00 0.00 0.00 31756.73 11455.23 

 



Table 4. Average dung fungal spore influx rate per cm2 per 6 months with standard deviation per sampling season 

 Total dung fungi Podospora Sordaria Sporormiella Other dung fungi 

mean sd mean sd mean sd mean sd mean sd 

Totals W14-15 191.11 157.13 111.81 87.44 47.78 56.14 28.08 29.16 3.45 5.01 

S15 32.78 30.82 18.71 20.35 11.67 13.04 2.41 4.78 0.00  

W15-16 12.10 10.72 5.51 8.48 4.70 3.73 1.90 3.17 0.00  

S16 29.44 31.41 22.23 26.58 7.22 15.49 0.00  0.00  

Low 

grazing 
W14-15 152.91 147.73 83.68 68.06 40.33 58.42 25.89 32.03 3.01 4.78 

S15 33.38 35.75 20.03 23.93 13.35 13.28 0.00  0.00  

W15-16 11.49 11.87 6.61 8.99 4.12 3.86 0.76 1.70 0.00  

S16 32.75 27.22 25.28 31.96 7.47 14.94 0.00  0.00  

Medium-

high 

grazing 

W14-15 363.01 7.66 238.40 15.32 81.27 38.31 37.93 7.66 5.42 7.67 

S15 32.31 30.67 17.65 19.89 10.32 14.23 4.33 5.94 0.00  

W15-16 15.17  0.00  7.59  7.59  0.00  

S16 27.24 36.29 20.20 25.42 7.05 17.26 0.00  0.00  
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Table 5. Trap content volume and expected volume from rainfall (based on local precipitation 1 

levels) in ml 2 

 Winter 
2014-2015 

Summer 2015 Winter 
2015-2016 

Summer 2016 

CT1 400 260 720 270 

CT2 475 275 1830 1100 

CT3 425    

CT4 350 250  440 

CT5 200 350  430 

CT6 5000 350 940 300 

CT7 2500 260  320 

CT8 5000  850 120 

CT9 5000 160  5000 

CT10 400 300 750 300 

CT11 275 130 835 100 

Rainfall (mm) 258.2 264.4 554.8 305.6 

Expected volume 506 518 1087 599 
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Figure 1. Locations of pollen traps in Chillingham Wild Cattle Park 5 
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Figure 2. Pollen trap in field position; a. trap CT3 with surrounding posts and barbed wire; b. 8 

trap CT1 sunk into the ground 9 
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Figure 3. Weather data for the sampling period (October 2014 – September 2016); a. mean 12 

monthly temperature; b. monthly total precipitation  13 

 14 

  15 



55 

 

 

 

 

Figure 4. Common fungal spore types encountered in the Chillingham pollen traps; a. 16 

Podospora; b. Sordaria; c. Sporormiella; d. Arnium; e. Delitschia; f. Trichodelitschia; g. 17 

Apiosordaria; h. Cercophora; i. Coniochaeta; scale bar: 10 μm 18 
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Figure 5. Boxplots of dung fungal spore influx rates per cm2 per 6 months for each sampling 21 

season for the environmental variables measured; a. vegetation type; b. site wetness; c. 22 

utilization levels 23 
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Figure 6. Average dung fungal spore influx rates per cm2 per 6 months for all traps, for traps 25 

with low year-round utilization levels and for traps with medium-high year-round utilization 26 

levels for the four sampling seasons 27 
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