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Abstract

Risk assessment is a crucial element in the life insurance business to classify the applicants. Companies perform underwriting
process to make decisions on applications and to price policies accordingly. With the increase in the amount of data and
advances in data analytics, the underwriting process can be automated for faster processing of applications. This research
aims at providing solutions to enhance risk assessment among life insurance firms using predictive analytics. The real world
dataset with over hundred attributes (anonymized) has been used to conduct the analysis. The dimensionality reduction has
been performed to choose prominent attributes that can improve the prediction power of the models. The data dimension has
been reduced by feature selection techniques and feature extraction namely, Correlation-Based Feature Selection (CFS) and
Principal Components Analysis (PCA). Machine learning algorithms, namely Multiple Linear Regression, Artificial Neural
Network, REPTree and Random Tree classifiers were implemented on the dataset to predict the risk level of applicants.
Findings revealed that REPTree algorithm showed the highest performance with the lowest mean absolute error (MAE) value
of 1.5285 and lowest root-mean-squared error (RMSE) value of 2.027 for the CFS method, whereas Multiple Linear Regression
showed the best performance for the PCA with the lowest MAE and RMSE values of 1.6396 and 2.0659, respectively, as
compared to the other models.

Keywords Life insurance underwriting - Machine learning - Predictive analytics - Correlation - Principal components -
Feature selection - Dimensionality reduction

Introduction

The big data technologies revolutionize the way insurance
companies to collect, process, analyze, and manage data
more efficiently [1,2]. Thus, proliferate in various sectors
of insurance industries such as risk assessment, customer
analytics, product development, marketing analytics, claims
analysis, underwriting analysis, fraud detection, and rein-
surance [3,4]. Telematics is a typical example where big data
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analytics is being vastly implemented and is transforming the
way auto insurers price the premiums of individual drivers
[5].

Individual life insurance organizations still rely on the
conventional actuarial formulas to predict mortality rates and
premiums of life policies. Life insurance companies have
recently started carrying out predictive analytics to improve
their business efficacy, but there is still a lack of extensive
research on how predictive analytics can enrich the life insur-
ance domain. Researchers have concentrated on data mining
techniques to detect frauds among insurance firms, which is
acrucial issue due to the companies facing great losses [6—8].

Manulife insurance company in Canada was the first to
offer insurance to HIV suffering applicants through analyz-
ing survival rates [9]. Analytics help in the underwriting
process to provide the right premiums for the right risk to
avoid adverse selection. Predictive analytics has been used
by Property and Casualty (P&C) insurers for over 20 years,
primarily for scoring disability claims on the probability
of recovery. Predictive analytics approach in life insurance
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mainly deals with modeling mortality rates of applicants to
improve underwriting decisions and profitability of the busi-
ness [10].

Risk profiles of individual applicants are thoroughly
analyzed by underwriters, especially in the life insurance
business. The job of the underwriter is to make sure that
the risks are evaluated, and premiums as accurately as pos-
sible to sustain the smooth running of the business. Risk
classification is a common term used among insurance com-
panies, which refers grouping customers according to their
estimated level of risks, determined from their historical data
[11]. Since decades, life insurance firms have been relying
on the traditional mortality tables and actuarial formulas
to estimate life expectancy and devise underwriting rules.
However, the conventional techniques are time-consuming,
usually taking over a month and also costly. Hence, it is
essential to find ways to make the underwriting process faster
and more economical. Predictive analytics have proven to be
useful in streamlining the underwriting process and improve
decision-making [12]. However, extensive research has not
been conducted in this area. The purpose of this research is
to apply predictive modeling to classify the risk level based
on the available past data in the life insurance industry and
recommend the most appropriate model to assess risk and
provide solutions to refine underwriting processes.

Literature review

Over the years, life insurance companies have been attempt-
ing to sell their products efficiently, and it is known that before
an application is accepted by the life insurance company, a
series of tasks must be undertaken during the underwriting
process [13].

According to [14], underwriting involves gathering exten-
sive information about the applicant, which can be a lengthy
process. The applicants usually undergo several medical tests
and need to submit all the relevant documents to the insur-
ance agent. Then, the underwriter assesses the risk profile
of the customer and evaluates if the application needs to be
accepted. Subsequently, premiums are calculated [15]. On
average, it takes at least 30 days for an application to be
processed. However, nowadays, people are reluctant to buy
services that are slow. Due to the underwriting process being
lengthy and time-consuming, customers are more prone to
switch to a competitor or prefer to avoid buying life insurance
policies. Lack of proper underwriting practices can conse-
quently lead to customers being unsatisfied and a decrease
in policy sales.

The underwriting service quality is an essential element in
determining the corporate reputation of life insurance busi-
nesses and helps in maintaining an advantageous position in
a competitive market [16]. Thus, it is crucial improving the
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underwriting process to enhance customer acquisition and
customer retention.

Similarly, underwriting process and the medical proce-
dures required by the insurance company to profile the risks
of the applicants can be expensive [17]. Usually, all the costs
to perform the medical examinations are initially borne by
the firm. Underwriting costs are fully paid from the contract
and can last 10-30 years. In case, where there is a policy
lapse, the insurer incurs great losses [18]. Therefore, it is
imperative to automate the underwriting process using ana-
lytical processes. Predicting the significant factors impacting
the risk assessment process can help to streamline the proce-
dures, making it more efficient and economical.

A study by [19] shows that low underwriting capacities
are a prominent operational problem among insurance com-
panies surveyed in Bangladesh. Another threat to the life
insurance businesses is that they can face adverse selection.
Adverse selection refers to a situation where the insurers do
not have all information on the applicant, and they end up
giving life insurance policies to customers with a high-risk
profile [20]. Insurance firms with competent underwriting
teams stress on making the least possible losses. In other
words, the insurers strive to avoid adverse selection as it can
have powerful impacts on the life insurance business [21].
Adverse selection can be avoided by correctly classifying
the risk levels of individual applications through predictive
analytics, which is the goal of this research.

Methods and techniques

The research approach involves the collection of data from
online databases. The hypotheses about possible relation-
ships between variables would be investigated using defined
logical steps. The research paradigm deals with a positivist
approach, as it is mainly a predictive study involving the
use of machine learning algorithms to support the research
objectives.

Figure 1 shows the data analysis flow chart. It gives an idea
of the stages that have been going through systematically to
build the prediction models.

Description of data set

The data set consists of 59,381 applications with 128
attributes, which describe the characteristics of life insurance
applicants. The data set comprises of nominal, continuous,
as well as discrete variables, which are anonymized. Table 1
describes the variables present in the data set.
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Fig.1 Data analysis approach

Data pre-processing

Data pre-processing, also known as the data cleaning step,
implicates that noisy data or outliers are removed from the
target dataset. This step also encompasses the development
of any strategies needed to deal with the inconsistencies in the
target data. In case of discrepancies, specific variables will

be transformed to ease analysis and interpretation. In this
step, the data gathered from Prudential Life Insurance will
be cleaned to treat missing values to make the data consistent
with analysis. Prudential Life Insurance data set has attributes
with a remarkable amount of missing data. The missing data
structure and mechanism will be studied to decide the suitable
imputation method for the data set. Usually, there exist three
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Table 1 Data set description

Attributes Type Description

Product_Info_1-7 Categorical 7 normalized attributes concerning the product applied for

Ins_Age Numeric Normalized age of an applicant

Ht Numeric Normalized height of an applicant

Wt Numeric Normalized weight of an applicant

BMI Numeric Normalized Body Mass Index of an applicant

Employment_Info_1-6 Numeric 6 normalized attributes concerning employment history of an
applicant

InsuredInfo_1-6 Numeric 6 normalized attributes offering information about an applicant

Insurance_History_1-9 Numeric 9 normalized attributes relating to the insurance history of an
applicant

Family_Hist_1-5 Numeric 5 normalized attributes related to an applicant’s family history

Medical_History_1-41 Numeric 41 normalized variables providing information on an
applicant’s medical history

Medical_Keyword_1-48  Numeric 48 dummy variables relating to the presence or absence of a
medical keyword associated with the application

Response Categorical ~ Target variable, which is an ordinal measure of risk level,

having 8 levels

mechanisms of missing data, namely, Missing Completely At
Random (MCAR), Missing At Random (MAR), and Missing
Not At Random (MNAR) [23].

MCAR This is the case when the distribution of the missing
values does not show any relationship between the observed
data and the missing data. In other words, the missing values
are like a random sample of all the cases in the feature.

MAR This mechanism requires that the missingness may
be dependent on other observed variables, but independent
of any unobserved features. In other words, missing values
do not depend on the missing data, yet can be predicted using
the observed data.

MNAR This mechanism, on the other hand, implies that
the missing pattern relies on the unobserved variables; that
is, the observed part of the data cannot explain the missing
values. This missing data mechanism is the most difficult to
treat as it renders the usual imputation methods meaningless.

Data exploration using visual analytics

The Exploratory Data Analysis (EDA) will comprise of uni-
variate and bivariate analyses. The EDA would allow the
researcher to understand the different distributions that the
features exhibit. On the other hand, for the bivariate analy-
sis, the relationships between the different features and the
response attribute, risk level, would be analyzed. Therefore,
it would help to understand the extent to which the indepen-
dent variables are capable of impacting the response variable
significantly. Due to page limitation, the results of EDA not
discussed here. The interested reader can refer the attached
supplementary data analysis.
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Visual analytics will be performed on the data set to gain
insights into the data structure. The data will be visualized
using charts and graphs to show the distribution of the data
set to have a better knowledge of which prediction models
will be more suitable for the data set.

The interactive dashboards are very helpful to business
users to understand their data. The dashboard will comprise
of several graphs relating to the data set on one screen. As
such, trends and patterns in the data set can be studied while
showing the relationships between different attributes. In
short, a summary of the data can be seen in one view.

Dimensionality reduction

The dimensionality reduction involves reducing the num-
ber of variables to be used for efficient modeling. It can
be broadly divided into feature selection and feature extrac-
tion. Feature selection is a process involved in selecting the
prominent variables, whereas the feature extraction applied
to transform the high dimensional data into fewer dimen-
sions to be used in building the models. Thus, dimensionality
reduction is used to train machine learning algorithms faster
as well as increase model accuracy by reducing model over-
fitting [24].

There are several techniques available for feature selec-
tion classified under the filter methods, wrapper methods,
and embedded methods. The filter method uses a ranking to
provide scores to each variable, either based on univariate
statistics or depending on the target variable. The rankings
can then be assessed to decide whether to keep or discard
the variable from the analysis [25]. The wrapper method, on
the contrary, takes into account a subset of features and com-
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pares between different combinations of attributes to assign
scores to the features [26]. The embedded method is slightly
more complicated, since the learning method usually decides
which features are best for a model while the model is being
built [27]. Attributes can be selected based on Pearson’s
correlation, Chi-square, information gain ratio (IGR), and
several other techniques [28,29].

In contrary, the feature extraction process derives new fea-
tures from the original features, to increase the accuracy via
eliminating redundant features and irrelevant features. This
research limits itself on two methods, namely the correlation-
based feature selection method and principal component
analysis-based feature extraction method. The discussion
about these methods is presented in the below subsections.

Correlation-based feature selection

Correlation-based feature selection (CFS) evaluates subsets
of attributes based on a hypothesis, which is a useful subset of
features contains highly correlated features with the class, yet
uncorrelated to each other [30]. This feature selection method
is easy to understand and fast to execute. It removes noisy
data and improves the performance of algorithms. It does not
require the analyst to state any limits on the selected number
of attributes but generates the optimal number of features by
itself. It is usually classified under the filter method.

The correlation values for the feature selection are not
only calculated based on Pearson’s correlation coefficient
but are based on the measures namely, minimum description
length (MDL), symmetrical uncertainty, and relief [31,32].
CFS requires the nominal attributes in a data set to be dis-
cretized before calculating the correlation. Nonetheless, it
works on any data set, independent of the data transforma-
tion methods used [31]. In a study, [33] found that CFS was
more accurate compared to IGR. Similarly, [34] concluded
that they obtained the highest accuracy for their classification
problem using a CFS as compared to other feature selection
methods.

Principal components analysis feature extraction

Principal components analysis (PCA) is an unsupervised lin-
ear feature extraction technique aimed at reducing the size
of the data by extracting features having most information
[35]. PCA uses the features in the data set to create new
features, known as the principal components. The principal
components are then used as the new attributes to create
the prediction model. The principal components have bet-
ter explaining power compared to the single attributes. The
explaining power can be measured by the explained vari-
ance ratio of the principal components. This value shows
how much information is retained by the combined features
[36].

PCA works by calculating eigenvalues of the correla-
tion matrix of the attributes. The variance explained by each
newly generated component is determined and the compo-
nents retained are those which describe the maximal variation
in the data set. Scholars like [37] and [38] conducted stud-
ies using PCA, and they concluded that the PCA method is
useful when used with predictive algorithms.

Comparison between correlation-based feature selection
and principal components analysis feature extraction

PCA creates new features by combining the existing ones
to create better attributes, while correlation feature selection
only selects the best attributes as they are, that is, without the
creation of new ones, based on the predictive power. While
PCA does some feature engineering with the attributes in the
data set, the resulting new features are more complicated to
explain, as it is difficult to deduce meanings from the princi-
pal components. CFS, on the other hand, is relatively easier
to understand and interpret, as the original features are not
combined or modified.

In this research, four machine learning algorithms are
implemented on CFS and PCA. Following the implemen-
tation of the algorithms, the accuracy measures will be
compared to evaluate the effectiveness of both feature reduc-
tion techniques.

Supervised learning algorithms

This section will elaborate on the different algorithms imple-
mented on the data set to build the predictive models. The
techniques namely, Multiple Linear Regression, REPTree,
Random Tree, and Multilayer Perceptron.

Multiple linear regression model

Multiple linear regression shows the relationship between
the response variable and at least two predictor variables by
fitting a linear equation to the observed data points. In other
words, the equation is used to predict the response variable
based on the values of the explanatory variables collectively
[39].

Multiple linear regression models are evaluated based on
the sum of squared errors which shows the average distance
of the predicted data points to the observed data values. The
model parameter estimates are usually calculated to mini-
mize the sum of squared errors, such that the accuracy of the
model is increased. The variables significance in the regres-
sion equation are determined by statistical calculations and
are mostly based on the collinearity and partial correlation
statistics of the explanatory features [40].
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REPTree algorithm

The REPTree classifier is a type of decision tree classifica-
tion technique. It can build both classification and regression
trees, depending on the type of the response variable. Typi-
cally, a decision tree is created in case of discrete response
attribute, while a regression tree is developed if the response
attribute is continuous [41].

Decision trees are a useful machine learning technique for
classification problems. A decision tree structure comprises
of aroot node, branches, and leaf nodes aimed at representing
data in the form of a tree-like graph [42]. Each internal node
represents the tests performed, and the branches are repre-
sentative of the outcome of the test. The leaf nodes, on the
other hand, represent class labels. Decision trees mainly use
the divide and conquer algorithm for prediction purposes.
Decision trees are a widely used machine learning technique
for prediction and have been implemented in several studies
[43-45]. The advantage of using decision trees is that they
are easy to understand and explain.

REPTree stands for Reduced Error Pruning Tree. It makes
use of regression tree logic to create numerous trees in dif-
ferent iterations. Mostly, this algorithm is used as it is a fast
learner, which develops decision trees based on the infor-
mation gain and variance reduction. After creating several
trees, the algorithm chooses the best tree using the lowest
mean-square-error measure when pruning the trees [46].

Random Tree

The Random Tree is also a decision tree algorithm, but it is
different from the previously explained REPTree algorithm
in the way it works. Random Tree is a machine learning
algorithm which accounts for k randomly selected attributes
at each node in the decision tree. In other words, random tree
classifier builds a decision tree based on random selection of
data as well as by randomly choosing attributes in the data
set.

Unlike REPTree classifier, this algorithm performs no
pruning of the tree. The algorithm works in a way that it
conducts backfitting, which means that it estimates class
probabilities based on a hold-out set. In [47], the authors used
the random tree classifier in their research together with CFS
and concluded that the classifier works efficiently with large
data sets. Likewise, [48] investigated on the use of random
trees in their work and the scholars were able to achieve high
levels of model accuracy by modifying the parameters of the
random tree classifier.

Artificial neural network

The artificial neural network is an algorithm, which works
like the neural network system in the human brain. It is

Dieliase ¢llodi ay .
bes Shenas Q) Springer

comprised of many highly interconnected processing ele-
ments, also known as the neurons. The neurons are usually
organized in three layers, which are the input, hidden,
and output layers. The neurons keep learning to improve
the predictive performance of a model used in problem-
solving. This adaptive learning capability of the model is very
beneficial for developing high accuracy prediction models
given a data set for training [49]. Artificial neural networks
are widely utilized in numerous domains, for instance for
speech and image recognition, machine translation, artificial
intelligence, social network filtering, and medical diagnosis
[50-52]. The neural network model makes use of backprop-
agation to classify instances. Backpropagation refers to a
supervised learning method which calculates the error of each
neuron after a subset of the data is processed and distributes
back the errors through the layers in the network. The neural
network can also be altered when it is trained [53].

Experiments and results
Data pre-processing

The data set has 59,381 instances and 128 attributes. The
data pre-processing step carried out using R programming to
detect the missing data.

Missing data mechanism

The attributes that are showing more than 30% missing
data would be dropped from the analysis [54]. There-
fore, attributes, Employment_Info_1, Employment_Info_4,
Employment_Info_6, and Medical_History_1 are the only
features, which are retained for further analysis. These four
attributes will need to be treated to impute their missing val-
ues.

The data were tested for MCAR using the Little’s test
[55]. The null hypothesis is that the missing data are MCAR.
However, a significance value of 0.000 was obtained which
implies that the null hypothesis was rejected. Thus, the Lit-
tle’s test revealed that the missing data are not entirely at
random. If the data are not MCAR, they can be MAR or
MNAR. Usually, there is no such reliable test to determine
directly if the data are MAR, because this requires acquir-
ing some of the missing data, which is not possible when
using secondary data sets. To understand the missing value
mechanism, patterns in the data set can be examined.

Figure 2 depicts the plot for the missing value in the data
set, with the variable having most missing values on the top
of the y-axis and least missing values on the bottom.

The visualization of the missing data structure suggests a
random distribution of the missing value observations. The
pattern of missing data and non-missing data is scattered
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Missing Value Plot for Train Data Set
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throughout the observations. Therefore, the data set in this
study is assumed to be MAR and treatment of the missing
values will be based on this assumption.

Missing data imputation

If the data are assumed to be MAR, the multiple imputation
is an appropriate technique to replace the missing values in
the features. Multiple imputation is a statistical technique
which uses available data to predict missing values. Multiple
imputation involves three steps, namely, imputation, analy-
sis, and pooling as determined by [56]. Multiple imputation is
more reliable than single imputation, such as mean or median
imputation as it considers the uncertainty in missing values
[57,58].
The steps for multiple imputation involve:

e Imputation: This step involves the imputation of the
missing values several times depending on the number
of imputations stated. This step results in a number of
complete data sets. The imputation is usually done by
a predictive model, such as linear regression to replace
missing values by predicted ones based on the other vari-
ables present in the data set.

e Analysis: The various complete data sets formed are
analyzed. Parameter estimates and standard errors are
evaluated.

e Pooling: The analysis results are then integrated together
to form a final result.

The MICE (Multivariate Imputation via Chained Equations)
package in R has been utilized to do the multiple imputations
[59]. The missing data were assumed to be MAR. The cate-
gorical variables were removed and only numeric attributes
were used to do the imputation.

Executive dashboard

The cleaned data set was used in Microsoft Power BI to
create dynamic visualizations to gain better insights about
the data. Power Bl is an influential analytical tool offering a
friendly interface, whereby interactive visualization can be
easily created to ease interpretation and do efficient report-
ing. The resulting cleaned data set consisted of 118 variables
and 59, 381 instances.

Figure 3 shows the dashboard, which has been created
using the Prudential insurance data set. The dashboard shows
several graphs that are interactive with each other. This
dashboard mainly presents the distribution of demographic
variables in the data set with the response variable. For
instance, BMI, age, weight, and family history and how they
vary with the different risk levels. Such a dashboard provides
insights into the customer data. Thus, the life insurance com-
pany knows its applicants better and has better engagement
with them.

Comparison between feature selection and feature
extraction

The experiment was carried out using Waikato Environment
for Knowledge Analysis (WEKA). The correlation-based
feature selection was implemented using a BestFirst search
method on a CfsSubsetEval attribute evaluator. Thirty-three
variables were selected out of a total 117 features, excluding
the response variable in the data set.

The PCA was implemented using a Ranker search method
on a PrincipalComponents, attribute evaluator. The PCA fea-
ture extraction technique provides a rank for all the 117
attributes in the data set. The technique works by combin-
ing the attributes to create new features, which can predict
the target variable in a better way. Furthermore, the selec-

il lloJl Al .
bes Shens ) Springer



152

Complex & Intelligent Systems (2018) 4:145-154

Wieight Digtrizetion by Rigk Leve!

Redponse @1 @2 @3 4 @3

1.000

Count

Faanily History by Risk Leve Aversge of SMI by Risk Leve:

Response @1 @2 @3 82 1.20

15K

85 58 87 #3

100 —

0.50
0K
5K 0.50
1 3 3

1

B

Count

020
0.00

Eaenily_Higt_1

Fig.3 Life insurance dashboard

Table 2 Comparison of algorithms between CFS and PCA

Algorithms Error measures

CFS PCA

MAE RMSE  MAE RMSE
Multiple linear regression 1.5872  2.0309 1.6396  2.0659
Artificial neural network 1.7859  2.369 1.7261 2.3369
REPTree 1.5285  2.027 1.6973  2.1607
Random Tree 1.7892  2.7475  2.0305 2.9142

tion was conducted to choose optimum variables with better
predictive capabilities based on the standard deviation.

A cut-off threshold of 0.5 has been used to decide on the
number of principal components to retain from the data set.
In other words, only those attributes which standard devia-
tion value that is half of that of the first principal component
(2.442) would be retained. Therefore, those principal com-
ponents with a standard deviation of 1.221 or more were
retained, resulting in 20 attributes.

Following the dimensionality reduction, the reduced data
set was exported and used for building the prediction models
using machine learning algorithms discussed in the previous
section. Model validation has been performed using a k-folds
(tenfold) cross-validation.

Four models were developed using multiple linear regres-
sion, artificial neural network, REPTree, and random tree
classifiers on the CFS and PCA. The error measures are
shown in Table 2.

For the CFS, the model developed using REPTree clas-
sifier shows the highest performance with the lowest mean
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absolute error (MAE) value of 1.5285 and lowest root mean
square error (RMSE) value of 2.027 as compared to the other
models. However, for the PCA, the model developed with
multiple linear regression shows the best performance with
the data set by having the lowest MAE and RMSE values as
1.6396 and 2.0659, respectively. Moreover, random tree clas-
sifier shows the highest error values for both feature selection
techniques.

Comparing between the feature selection and feature
extraction techniques, CFS shows that most of the mod-
els achieved lower errors compared to PCA. Multiple linear
regression, REPTree, and random tree classifiers show bet-
ter performance when used with CFS, while artificial neural
network shows a better performance with PCA.

Conclusions

This research has specific implications for the business envi-
ronment. Data analytics is now the trend that is gaining
significance among companies worldwide. In the life insur-
ance domain, predictive modeling using learning algorithms
can provide the notable difference in the way which business
is done as compared to the traditional methods. Previously,
risk assessment for life underwriting was conducted using
complex actuarial formulas and usually was a very lengthy
process. Now, with data analytical solutions, the work can
be done faster and with better results. Therefore, it would
enhance the business by allowing faster service to customer,
thereby increasing satisfaction and loyalty.
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The data obtained from Prudential Life Insurance were
pre-processed using R programming. Missing values were
detected using Missing At Random (MAR), and the multiple
imputation methods were used to replace the missing values.
Those attributes have more than 30% missing data which
were eliminated from the analysis. Furthermore, a dashboard
was built to show the effectiveness of visual analytics for
data-rich business processes.

The research demonstrated the use of dimensionality
reduction to reduce the data dimension and to select only
the most important attributes which can explain the target
variable. Thirty-three attributes were selected by the CFS
method, while 20 features were retained by the PCA.

The supervised learning algorithms namely, Multiple Lin-
ear Regression, Artificial Neural Network, REPTree, and
Random Tree were implemented. The model validation was
performed using tenfold cross-validation. The performance
of the models was evaluated using MAE and RMSE. Find-
ings suggested that the REPTree algorithm had the highest
accuracy with lowest MAE and RMSE statistics of 1.5285
and 2.027, respectively, for the CFS method. Conversely, for
the PCA method, Multiple Linear Regression showed the
best performance with MAE and RMSE values of 1.6396
and 2.0659, respectively. Ultimately, it can be concluded that
machine learning algorithms can be efficient in predicting the
risk level of insurance applicants.

Future work relates to the more in-depth analysis of the
problem and new methods to deal with specific mechanisms.
Customer segmentation is the division of the data set into
groups with similar attributes can be implemented to segment
the applicants into groups with similar characteristics based
on the attributes present in the dataset. For example, similar
employment history, insurance history, and medical history.
Following the grouping of the applicants, predictive models
can be implemented to contribute to a different data mining
approach for the life insurance customer data set.

The dashboards can be extended depending on the avail-
ability of the data. For instance, financial dashboards can
be built showing the premiums received and claims paid by
the firm within a given period to ease profit and loss analy-
sis. Another report can be of sales showing policy sales by
different customers and time of the year, so that marketing
strategies could be improved.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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