Behaviour-aware Malware Classification: Dynamic
Feature Selection

1% Phai Vu Dinh
Le Quy Don Techincal University
Department of Information Security
Hanoi, VietNam
dinhphai88 @ gmail.com

4™ Qi Shi
Liverpool John Moores University
Department of Computer Science
Liverpool, UK
g.shi@ljmu.ac.uk

Abstract—Despite the continued advancements in security
research, malware persists as being a major threat in this
digital age. Malware detection is a primary defence strategy
for most networks but the identification of malware strains is
becoming increasingly difficult. Reliable identification is based
upon characteristic features being detectable within an object.
However, the limitations and expense of current malware feature
extraction methods is significantly hindering this process. In this
paper, we present a new method for identifying malware based
on behavioural feature extraction. Our proposed method has
been evaluated using seven classification methods whilst analysing
2,068 malware samples from eight different families. The results
achieved thus far have demonstrated promising improvements
over existing approaches.

Index Terms—Malware Behaviours, Malware Classification,
Feature Extraction, Machine Learning

I. INTRODUCTION

Despite advancements in cyber security technology, the use
of malware as an attack mechanism shows no sign of relenting.
This is demonstrated by the 10.5 billion malware-based attacks
that occurred globally in 2018. This figure is up by 22% from
2017 and 34% from 2016 [1].

Nearly all modern networks utilise some form of anti-
virus protection as a primary defence mechanism. However,
the challenge of reliably identifying malware is becoming
increasingly more difficult. This is raising many concerns,
as in 2019 there will be an estimated 908.25 million unique
malware samples generated (an increase of 1830.4% in just
under a decade) [2]. No equilibrium has ever been reached -
highlighting the fact that the state-of-art defence cannot match
the pace of malware development.

Most anti-virus software heavily relies upon signature
matching but threats must be known and analysed before such

The authors would like to thank World Bank and the Ministry of Science
and Technology for their support provided through the FIRST Foreign Talents
STI Grant.

978-1-7281-3003-3/15/$31.00 © 2019 IEEE

27 Nathan Shone
Liverpool John Moores University
Department of Computer Science
Liverpool, UK
n.shone @ljmu.ac.uk

5% Nguyen Viet Hung
Le Quy Don Techincal University
Department of Information Security
Hanoi, VietNam
hungnv @lqdtu.edu.vn

3" Phan Huy Dung
Le Quy Don Techincal University
Department of Information Security
Hanoi, VietNam
phanhuydungcao @gmail.com

6™ Tran Nguyen Ngoc
Le Quy Don Techincal University
Department of Information Security
Hanoi, VietNam
ngoctn@lqdtu.edu.vn

signatures can be created. This approach is unsustainable given
the estimated 2.5 million malware samples expected to be
generated each day. Additionally, these mechanisms are unable
to handle 0-day threats or advanced evasion techniques, such
as those encountered in oligomorphic, polymorphic or meta-
morphic malware. When including such samples, detection
accuracy rates range from between 25% to 50% [3]

Taking this into consideration, it is unsurprising that static
malware analysis (analysis malware source/assembly code) is
highly ineffective in comparison to dynamic malware analy-
sis (run-time behavioural observations). Automated malware
behaviour analysis sandbox environments such as Cuckoo [4]
can drastically improve the comprehensiveness of the analysis
results returned.

Recently, many behaviour-based malware detection solu-
tions have been proposed using shallow learning techniques
such as k-Nearest Neighbour (kNN), Support Vector Machine
(SVM) and decision trees. As opposed to deep learning,
shallow learning approaches offer a much faster and more
resource-efficient decision process when it comes to malware
detection. One downside to such approaches is the high
false positive rates, which can usually be attributed to either
malware complexity or sub-standard feature selection.

Poor feature selection for behavioural malware tends to be
as a result of narrowly-focused feature sets, which fails to
give an accurate holistic view of the behaviour. Alternatively,
feature selection can be too inflexible, which fails to account
for the dynamic nature of malware behaviour.

In this paper, we propose a novel method for improving
behaviour-based malware detection, through enhancing the
feature selection process. The method is split into two key
stages. Firstly, suspicious files undergo a holistic behavioural
analysis in a Cuckoo sandbox environment. The subsequent
findings are processed and the optimum features are extracted
and used to create training and test datasets. Secondly, the
extracted feature datasets are then used to train and test a

classification model to correctly identify the malware.

The main contribution of our work is the novel approach to
extracting the best indicative features from malware behaviour.
We have then evaluated an implementation of our proposed
method using real-world malware samples. Additionally, we
have compared the results against those achieved using the
unigram extraction method.

The remainder of this paper is structured as follows. Sec-
tion II presents a summary of recent related work. Section
III details our proposed malware classification methodology.
Section IV details the experiments performed and the results
obtained and finally the paper is concluded in Section V.

II. RELATED WORK

In recent research, there is a growing trend concerning the
application of machine learning within the field of malware
detection. The ability of machine learning models enables
them to analyse and learn from data. Therefore, making them
ideally-placed to evolve alongside malware itself.

Many recent works have focused upon three main shallow
learning approaches:

o Supervised Learning - Predominantly ground truth-based
algorithms have been proposed to classify malware such
as Nave Bayes [5], Support Vector Machine (SVM)
[6], Random Forest [7], Decision Tree and Gradient
Boosting Decision Tree [8]. Although high accuracy rates
are achievable, the reliance on pre-labelled training data
is infeasible when aiming to detect 0-day or evolving
malware.

e Unsupervised - Many clustering-based approaches have
been proposed to detect malware such as: k-means,
Bayesian [9], DBSCAN and x-means.

o Semi-supervised - learning methods, a litter experiment
is tested. Recently, the paper [10] applied genetic for
malware detection and the paper [11] brought the fuzzy
Logic Paradigm in these fields that may give some
interesting approaches.

The literature has also identified a rise in the applica-
tion of deep learning for malware detection. As it enables
more complex, hidden or unstructured behavioural patterns
to be identified. Some proposed techniques for malware
detection involve the use of: stacked auto-encoders, Deep
Belief Networks (DBN), Long Short-Term Memory (LSTM),
Convolution Neural Networks (CNN) and Multi-Task Neural
Networks.

One major disadvantage of using deep learning in malware
detection is the slow and resource-intensive nature of the
process. To overcome these limitations, some researchers
are proposing a hybrid approach that combines shallow and
deep learning. For example, Yuan’s paper [3] outlines the
DeepMalware, which uses shallow learning to identify clear
cases of malicious or benign software. Whereas, borderline or
uncertain software is analysed using a CNN and LSTM-based
deep learning model.

An important pre-requisite for a shallow learning-based
methodology is feature selection. This process is commonly

overshadowed by a focus on classification algorithm selec-
tion or model optimisation. Ineffective feature selection can
significantly affect the performance of any shallow learning
model regardless. It is apparent from the literature that many
behaviour-based malware analysis approaches use a non-
adaptive or overly-narrow set of features. The consequences
of this are that due to the complex and evolving nature of
malware behaviour, it can negatively impact on detection ac-
curacy. A more holistic approach is required to better represent
malware behaviour.

Frequently, dynamic behavioural features are sequential e.g.
op codes or system calls. To maximise feature extraction these
are commonly expressed as n-grams [12].

Khammas et al. [13] also present a comparison of feature
selection approaches for improving malware detection. These
methods included chi-squared, CFsSubset, Principle Compo-
nent Analysis (PCA), information gain and gain ratio. The
authors concluded that information gain offered the best results
overall.

Similarly, Singh and Hofman [6] also proposed the use of
chi-squared to select Android kernel system calls. It was found
that using this approach only 37 of 337 calls were suitable
malware predictors.

It is apparent from the literature that there is no consen-
sus over feature extraction methods for malware behaviour.
Therefore, further work needed in this area to improve the
effectiveness of future malware detection.

III. METHODOLOGY

| 1 1 1 1 1 1 -~
!/ Train Dataset

Classlfieation
Algorithms

Malware Dataset Cuckoo Sandbox

I Malware Families
Classification model

. EANS /

!
!
!
!
!
!
!
!
!
!
\

Fig. 1. Overview of Our Proposed Approach

In this section, this paper will present the general methodol-
ogy for our malware classification based on behaviour analysis
approach. As can be seen from Figure 1, this methodology
is separated into two stages, namely, feature extraction and
model construction. To specify, the former commences with
the malicious file being taken into Cuckoo sandbox machine.
This is followed by JSON reports which are generated from the
Cuckoo software before it is separated into two sub-datasets,
training dataset and testing dataset, respectively. At the next
step, malware attributes will be extracted from the JSON
reports, making it one of the most important contributions in
this work.

When it comes to the second stage of the methodology,
we will use various classification algorithms for training and

testing e.g. SVM, Random Forest, kNN, and Artificial Neural
Network. The final step involved in the evaluation is to
compare with other approaches.

In this work, we used the Cuckoo sandbox installed on
Windows 7 x64, running in VirtualBox. To enable the malware
to show all behaviours, the Windows OS is not updated and
all anti-virus software, firewall and UAC are disabled, and
Adobe Acrobat Reader is installed. In order to obtain data
relating to malware behaviours, the Cuckoo sandbox will
record monitoring observations in blocks of 30 minutes.

A. Feature Extraction Method

1) Unigram (I-gram): In principle, this is a fairly robust
mechanism that has demonstrated promising results in recent
research. The JSON report produced by Cuckoo can be treated
as a simple text file. This is followed by using unigrams to
extract information from the file. Nevertheless, the high time
and memory requirements are the most challenging aspect of
this method. For example, with around 30GB worth of JSON
files, we will get a dictionary with above 6 million words.
Thanks to a method from [13], we may overcome the problem
of memory usage. Specifically, (1) in terms of each JSON file,
extract its unigrams, (2) concatenate all unigrams to obtain a
dictionary, (3) for each word in dictionary, count the number of
its appearance in each file, (4) select top 20,000 with highest
value, finally, turn each unigram into a vector with 20,000
dimensions [14].

2) Malware Behaviour Analysis: Although unigram is a
common approach for extracting information from JSON files,
to some extent it does not illustrate the principle of malware
behaviours. Each JSON file will likely contain meaningless
information such as brackets, captions etc., which feature
extraction algorithms may find a challenge. However, the more
useful malware behaviour characteristics extracted, the greater
the potential classification accuracy will be. In this section,
we will outline four malware characteristic categories that we
will be extracting from the Cuckoo JSON report: Network,
Signatures, Behaviours and Others.

File_open
file_read
file_recreated
regkey_open
directory_enumerated

genertic
apistarts
processes
processtree
summal

Behavior
Metadata

markcount
families
description
serverity
marks
references
name

Fig. 2. JSON Structure

Behavioural: Two of the most important reporting features
for malware classification are Apistats and summary. Apistats
provides information about the API calls utilised by the mal-
ware during its execution, whilst summary shows the malware
functions that have been deployed.

Signature: The report files generated by Cuckoo will detail
identified signs of malicious behaviour. During the analysis
process, malware will be matched against current malware
signatures. This enables a quicker and more effective iden-
tification of known malware. There are several important
observations features for each signature, namely severity and
‘pe_features’. While the former one shows the degree of
danger of the malware, the latter identifies whether the ex-
ecutable’s file header structure is unusual, which is a common
trait of packed malware.

Network: For malware communicating over the Internet, we
will monitor and analyse the network protocols used. We will
focus on common communication protocols such as HTTP,
IRC, TCP, UDP, ICMP, and SMTP etc. The particular feature
will focus on the number of times the malware used each
protocol.

Others: Other important information will also be extracted
including the runtime duration, assigned category and assigned
score for the malware file. Memory usage will be extracted
from the procmemory section and file size will be extracted
from the Target section. The number of anti-virus software
that reported this file will be picked up in Virustotal section
and the number of strings is extracted from the String section.

3) Behavioural Malware Extraction (BME): The proposed
BME algorithm is shown in Figure 3.

Json files,
ary{}

isContain 7
False’ ans, behavior;

Json files,
dictionary

isContain ?
ans, behavior:

Create a dictionary

'n
o
@

Create a vector

Add to dictionary Malware vectors

Fig. 3. Behavioural Malware Extraction

The BME commences by generating a Python dictionary to
hold the extracted features. The required features will then be
extracted from the JSON file by finding a new key-value pair.
The key-value pairs will include observations belonging to the
four main feature categories (behaviours, signatures, networks
and other). If a new JSON key-value pair is identified, it will be
appended to the dictionary. The value stored for the dictionary
entry will usually be the same value that is stored located in the
JSON file. However, for some observations it will be necessary
to instead store the number of occurrences of the particular
JSON key. After this process is completed, a malware vector
will be generated for each JSON file parsed. As the Python
dictionary is used, the malware vector can be initialised with
the same size as the number of key-value pairs stored in the
dictionary.

4) Classification Algorithms: In our evaluation, we will
be utilising seven different classifiers, to provide an in-depth
comparison of our BME method against the unigram method.
We will be using k-Nearest Neighbour (kNN), Nave Bayes

(NB), Support Vector Machines (SVM), Artificial Neural
Networks (ANN), Random Forest (RF), Decision Tree (DT)
and Logistic Regression (LR).

B. Assessment and Evaluation Criteria

In this section, we show outline the assessment measures
and simulation methods used to compare the BME method
with unigram approach. True Positive (TP) - correctly identi-
fied as malware; False Positive (FP) - incorrectly identified as
malware; True Negative (TN) - correctly identified as benign;
False Negative (FN) - incorrectly identified as benign.

Additionally, the following measures will be used in the
evaluation of the classification algorithm:

e Accuracy = (TP+TN)/(TP+TN+FP+FN) which indi-

cates the rate of the total number of correct classifications

o Precision=TP/(TP+FP) which determines the number
of correct classifications penalised by the number of
incorrect classifications.

e Recall=TP/(TP+FN) which measures the number of
correct classifications penalised by the number of missed
entries.

o F-score=2*(Precision*Recall)/(Precision+Recall) that
is used as an effective measurement using the harmonic
mean of precision and recall.

In order to provide a comprehensive evaluation, we will also
be comparing performance on datasets that have been pre-
processed using feature reduction techniques. Firstly, we will
use PCA as it is widely utilised to emphasise features and
extract strong patterns within a dataset. The second method
is a Stacked Auto-Encoder (SAE). An auto-encoder is an
unsupervised extraction algorithm, which learns the best pa-
rameters required to reconstruct its output as close to its input
as possible. In this paper, the data points are extracted from
the hidden layer before these are brought into the classifiers
[15].

IV. EXPERIMENTS AND RESULTS
A. Dataset

In our experiments, we will be using real-world malware
samples obtained from virusign.com. These evaluations will
be undertaken using samples from eight malware families:
Dridex, Kelihos, Locky, Ramnit, Sality, Simda, Vawtrak and
Zeus. The breakdown of the number of samples in each
malware family is shown in Table L.

TABLE I
MALWARE DATASET
Dridex Kelihos Locky Ramnit Sality Simda Vawtrak Zeus Total
173 271 135 421 180 469 60 359 2068

Using a script, each malware sample file is submitted to the
Cuckoo sandbox. The algorithm presented in Figure 3 will
then return a set of features. In this example, the malware
is represented by a vector with 846 elements in total, with
differing numbers of features representing the aforementioned
categories: 316 Behaviours features, 496 Signature features,
18 Network features and 16 Other features.

TABLE II
BME VS 1-GRAM WITH RATE (70-30)
AC Precision Recall F-score

BME | lgram| BME| Igram| BME | lgram| BME| Igram
DT | 9742 93.11 | 96.23| 91.21 | 96.91| 89.77 | 96.56| 90.32
KNN 94.53| 87.95 | 93.53| 87.88 | 93.95| 80.72 | 93.68| 81.23
LR | 95.81| 93.66 | 94.00[92.90 | 95.02| 91.92 | 94.43| 92.38
ANN| 95.81| 87.05 | 94.45| 88.67 | 95.23| 83.55 | 94.77| 85.21
NB | 92.11| 68.66 | 91.38| 72.46 | 90.32| 61.48 | 90.53| 58.43
RF | 95.97| 94.70 | 96.10| 95.09 | 94.83| 92.88 | 95.38| 93.86
SVM 90.34| 36.36 | 92.69| 13.84 | 87.13| 24.51 | 88.94| 16.53

TABLE III
BME VS 1-GRAM WITH RATE (60-40)
AC Precision Recall F-score

BME | lgram| BME| Igram| BME | lgram| BME| Igram
DT | 95.17| 94.34 | 93.88| 91.18 | 94.44| 90.89 | 94.10| 90.95
KNN 93.48| 91.08 | 92.31| 88.84 | 92.98| 90.73 | 92.54| 89.51
LR | 95.65| 95.30 | 94.39| 9391 | 95.01| 94.70 | 94.60| 94.21
ANN| 95.65| 91.33 | 94.43| 90.74 | 94.99| 90.48 | 94.58| 90.53
NB | 91.43| 68.92 | 90.95| 76.03 | 89.27| 65.57 | 89.77| 60.81
RF | 96.38| 96.39 | 95.89| 95.70 | 95.52| 95.41 | 95.68| 95.54
SVM| 85.63| 37.23 | 79.02| 14.08 | 74.44| 24.30 | 75.63| 16.60

B. Results

Whilst comparing our BME method against the unigram
method, we have used seven classifiers and four different
assessment measurements (as outlined in Section III-C. The
results obtained are presented in Tables II and III.

TABLE IV
BME VS 1-GRAM UTILIZED PCA
AC Precision Recall F-score
BME | lgram| BME| Igram| BME | lgram| BME| Igram
DT | 91.95| 89.57 | 89.10| 85.47 | 90.83| 86.99 | 89.89| 86.10
KNN| 94.69| 91.17 | 94.05| 88.84 | 94.34| 88.19 | 94.10| 88.41
LR | 93.88| 85.07 | 93.06| 87.80 | 92.90| 76.39 | 92.82| 77.47
ANN| 93.88| 80.26 | 93.23| 63.00 | 92.90| 61.42 | 92.92| 60.62
NB | 72.14| 4543 | 52.04| 26.64 | 49.06| 28.70 | 45.56| 23.62
RF | 95.33| 94.38 | 94.05| 92.62 | 94.68| 92.17 | 94.35| 92.38
SVM 85.67| 42.05 | 80.27| 26.99 | 72.82| 26.59 | 74.94| 20.79
TABLE V
BME Vs 1-GRAM UTILIZED SAE
AC Precision Recall F-score
BME | lgram| BME| lgram| BME | Igram| BME| lgram
DT | 91.47| 83.31 | 89.03| 78.28 | 89.68| 76.09 | 89.30| 76.78
KNN 95.17| 88.28 | 94.64| 86.35 | 94.56| 83.54 | 94.58| 84.41
LR | 9549 92.46 | 94.20| 91.23 | 94.97| 91.19 | 94.53| 90.96
ANN| 95.33| 91.65 | 93.87| 89.76 | 94.83| 91.09 | 94.25| 90.14
NB | 92.11| 75.60 | 89.55| 67.70 | 91.12| 72.35 | 89.84| 66.43
RF | 95.01| 92.13 | 94.61| 91.32 | 94.16| 89.65 | 94.34| 90.39
SVM| 94.04| 87.96 | 93.74| 88.30 | 93.02| 81.98 | 93.29| 84.30

Table II shows the experiment with a training:test ratio of
70%:30%, whilst Table III shows the results of a 60%:40%
ratio. As can be seen from both tables, BME has produced
superior results for all measures, in comparison to the unigram
method. The one exception to this is the AC measurement with
RF in Table III, where the unigram method is slightly higher
(96.38 vs 96.39). Examining the best score (using AC and F-
score) shows that BME performed best with the DT classifier
(97.42 and 96.56) in Table II, whilst unigram performed best

Dridex H e
Kelihos
Locky
Ramnit
sality .
simda '™
Vawtrak
a2{ e Zeus az

1-gram uses SAE BME uses SAE

20 _- 1-gram uses PCA

Fig. 4. BME vs 1-gram

Behaviours
Signatures
Networks
Others

0.025 -

0.020

0.015 -

Values

0.010

0.005 -

0.000

o 200 400 600 800
Features

Fig. 5. Features Ranking

with the RF classifier (96.39 and 95.68) in Table III.

Table IV and V compare BME against the unigram method
when analysing datasets pre-processed using different feature
reduction techniques. Table IV presents a PCA-based com-
parison, whilst V presents the SAE-based comparison. Each
malware vector is reduced in size to 50 dimensions for both
of these techniques.

The results show that BME outperforms unigram in all of
the accuracy measurements. It is evident that most of the
measurement values have decreased overall. More specifically,
the AC and F-score of BME for all classifiers show an
average decline of 0.48% and 1.24% in the two tables. A
more significant average decline can be seen for unigram with
7.13% and 4.83% in the two tables. To some extent, this can
be explained by the fact that reduction techniques can bring
malware families dimensionally closer together. Therefore,
classifiers will face greater difficulties in separating this data.

Figure 4 presents a comparison plot featuring both reduced
datasets created using BME and unigram. As can be seen, the
unigram data points stacked and mixed together. By contrast,
those created using BME are more clearly distinguishable
and have much clearer separation and distribution. There is
therefore strong evidence to support the claims that BME is
better than unigram for extracting malware features.

Figure 5 shows the use of forests of trees to evaluate
the importance of features in the dataset extracted by BME.
In summary, the Signature category of features contribute
the most in terms of malware classification, followed by
the Behaviours category. For instance, 26.41% of Signature
features are greater than the average value of ranking features,

while Behaviours accounts for 16.77%. All features from the
Network and Others category are under the average value.

V. CONCLUSION & FUTURE WORK

In this paper, we have discussed the problems faced by
existing malware classification. Our novel BME method for
malware extraction based on malware behaviours is proposed.
We have presented a thorough analysis of our proposed method
using 2,068 malware samples from eight different families.
The results of this have clearly demonstrated that our proposed
method enhances malware classification significantly in com-
parison to the main existing unigram approach. Similarly, we
also demonstrated importance of the extracted features using
the a featuring ranking analysis.Due to the page limit, only a
brief analysis is provided in this paper.

In our future work, we would like to further build upon the
method proposed in this paper, to implement a fully automated
approach for malware analysis.

REFERENCES

[1] “Number of malware attacks per year 2018 — statista,”
https://www.statista.com/statistics/873097/malware-attacks-per-year-
worldwide/, accessed: 2019-06-13.

[2] “Malware statistics and trends report — av-test,” https://www.av-
test.org/en/statistics/malware/, accessed: 2019-06-13.

[3] X. Yuan, “Phd forum: Deep learning-based real-time malware detection
with multi-stage analysis,” in 2017 IEEE International Conference on
Smart Computing (SMARTCOMP), May 2017, pp. 1-2.

[4] “Github - cuckoosandbox/cuckoo,” https://github.com/cuckoosandbox/cuckoo,

accessed: 2019-06-13.

[5] A. Razaque, Z. Xihao, W. Liangjie, M. Almiani, Y. Jararweh, and M. J.
Khan, “Nave bayesian and fuzzy c-means algorithm for mobile malware
detection precision,” in loTSMS 2018, Oct 2018, pp. 239-243.

[6] L. Singh and M. Hofmann, “Dynamic behavior analysis of android
applications for malware detection,” in 2017 International Conference
on ICCT, Dec 2017, pp. 1-7.

[71 R. Vyas, X. Luo, N. McFarland, and C. Justice, “Investigation of mali-
cious portable executable file detection on the network using supervised
learning techniques,” in 2017 IFIP/IEEE Symposium on IM, May 2017,
pp. 941-946.

[8] E. M. Rudd, R. Harang, and J. Saxe, “Meade: Towards a malicious email
attachment detection engine,” in 2018 IEEE International Symposium on
HST, Oct 2018, pp. 1-7.

[9] M. E. Ahmed, S. Nepal, and H. Kim, “Medusa: Malware detection using

statistical analysis of system’s behavior,” in 2018 IEEE 4th International

Conference on CIC, Oct 2018, pp. 272-278.

T. A. Le, T. H. Chu, Q. U. Nguyen, and X. H. Nguyen, “Malware detec-

tion using genetic programming,” in the 2014 Seventh IEEE Symposium

on CISDA, Dec 2014, pp. 1-6.

E. Gandotra, D. Bansal, and S. Sofat, “Malware threat assessment using

fuzzy logic paradigm,” Cybernetics and Systems, vol. 48, no. 1, pp. 29—

48, 2017.

C. D. Morales-Molina, D. Santamaria-Guerrero, G. Sanchez-Perez,

H. Perez-Meana, and A. Hernandez-Suarez, “Methodology for malware

classification using a random forest classifier,” in 2018 IEEE Interna-

tional Autumn Meeting on ROPEC, Nov 2018, pp. 1-6.

B. M. Khammas, S. Hasan, R. A. Ahmed, J. S. Bassi, and 1. Ismail, “Ac-

curacy improved malware detection method using snort sub-signatures

and machine learning techniques,” in 2018 10th Computer Science and

Electronic Engineering (CEEC), Sep. 2018, pp. 107-112.

E. David and N. Netanyahu, “Deepsign: Deep learning for automatic

malware signature generation and classification,” 07 2015, pp. 1-8.

N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach

to network intrusion detection,” IEEE TETCI, vol. 2, no. 1, pp. 41-50,

Feb 2018.

[10]

(11]

[12]

[13]

[14]

[15]

