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Abstract
In recent years, there has been a move away from the use of static in vitro 2D cell culture mod-
els for testing the chemical safety and efficacy of drugs. Such models are increasingly being
replaced by more physiologically relevant cell culture systems featuring dynamic flow and/or
3D structures of cells. Whilst it is acknowledged that such systems provide a more realistic
environment within which to test drugs, progress is being hindered by a lack of understand-
ing of the physical and chemical environment that the cells are exposed to. Mathematical and
computational modelling may be exploited in this regard to unravel the dependency of the cell
response on spatiotemporal differences in chemical and mechanical cues, thereby assisting with
the understanding and design of these systems. In this paper, we present a somewhat general
mathematical modelling framework that characterises the fluid flow and solute transport in per-
fusion bioreactors featuring an inlet and an outlet. To demonstrate the utility of our model, we
simulated the fluid dynamics and solute concentration profiles for a variety of different flow
rates, inlet solute concentrations and cell types within a specific commercial bioreactor cham-
ber. Our subsequent analysis has elucidated the basic relationship between inlet flow rate and
cell surface flow speed, shear stress and solute concentrations, allowing us to derive simple but
useful relationships that enable prediction of the behaviour of the system under a variety of
experimental conditions, prior to experimentation. We describe how the model may used by ex-
perimentalists to define operating parameters for their particular perfusion cell culture systems
and highlight some operating conditions that should be avoided. Finally, we critically comment
on the limitations of mathematical and computational modelling in this field, and the challenges
associated with the adoption of such methods.

Keywords
3D cell culture, bioreactor, mathematical and computational modelling, fluid dynamics, mass
transport, drug testing.



1 Introduction
Drug discovery is a long and expensive process, with the development of a single drug taking
many years to complete and the cost increasing significantly at each stage of testing [1, 2]. In
addition, regulation states that animal usage in drug testing must be minimised or avoided [3].
Therefore, it is critical that the drug discovery process is as efficient as possible in order to
develop drugs quickly whilst lowering costs and reducing the use of animals.

The first stage of drug development is to identify and optimise lead compounds to create
potential drug molecules. Properties such as absorption, metabolism and toxicity are tested
in preclinical studies (in vitro cell-based and in vivo animal-based experiments) before human
clinical trials take place prior to marketing and approval of the drug. In order to maximise
the efficiency of the screening process, drugs which are likely to fail need to be eliminated
as early as possible. In vitro experiments conducted at the initial stages of testing are often
poorly representative of the in vivo environment since cells are typically cultured under static
conditions in a two-dimensional (2D) array, whereas in reality, cells in three-dimensional (3D)
configurations are able to communicate with other cells whilst being exposed to flow. Animal
studies are unethical, costly and often poorly predictive of the human response due to species
differences. Thus, it is essential that new drug testing systems are developed which do not
involve (or limit the use of) animals and which reflect the physiological environment so that
drugs likely to fail will be eliminated earlier in the screening process [1, 2].

Mathematical modelling can be useful in the design and optimisation of novel drug testing
systems. For example, prototypes of new devices can be built virtually and features such as ge-
ometry can be easily modified allowing the ‘best’ design to be chosen prior to fabrication of the
device. Despite the fact that experiments are usually run with constant inlet solute concentra-
tions (e.g. oxygen (O2), drug, nutrients) and flow rates, spatial gradients and time-dependencies
in solute concentrations and fluid forces (shear stress) often emerge, meaning that cells are not
exposed to a homogeneous environment. Mathematical and computational modelling may be
exploited in this regard to unravel the dependency of the cellular response on spatiotemporal dif-
ferences in chemical and mechanical cues, thereby assisting with the understanding and design
of these systems. A range of suitable operating parameters can then be established depending on
the desired experimental outcome, allowing for the accurate configuration of devices with less
reliance on a ‘trial and error’ approach.

Perfusion bioreactors are dynamic cell culture systems which have been gaining much at-
tention in recent years. These systems allow cells to be cultured in 2D and 3D configurations
whilst being exposed to flow. Improved cell viability and metabolic function has been observed
under cell culture conditions provided by bioreactors: the presence of flow provides a supply of
nutrients to the cells, co-culture promotes cell-cell interactions and cells cultured in 3D config-
urations are able to retain their physiological morphology [4].

There are a number of existing studies in the literature which use mathematical modelling to
characterise certain perfusion bioreactors. For example, models of fluid flow and solute trans-
port have been employed to optimise chamber design [5], design a gradient generator for drug
toxicity testing [6], predict concentration gradients [7] and maximise mass transfer whilst con-
trolling shear stress levels [8]. Most relevant to this study, a model was developed to optimise
the design of a modular bioreactor chamber [9] and to assess if the O2 delivery and shear stress
levels would be acceptable for the culture of hepatocytes within a hydrogel layer [10]. More
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recently, models were developed to predict flow patterns, O2 transport and test compound distri-
bution within three different bioreactors to identify which of the systems would be most suitable
for long-term culture of hepatocytes within alginate beads [11].

A key limitation of these existing models is that they account for very specific experiments
and cell types (e.g. culturing hepatocytes within a hydrogel layer or alginate beads). Since perfu-
sion bioreactors are increasingly being used for a variety of applications incorporating different
cell types and solutes with different mechanisms of action, it is important to consider poten-
tial differences in the environment and operating conditions. In this paper, we present a more
general modelling framework that characterises the fluid flow and solute transport in perfusion
bioreactors featuring an inlet and an outlet. We start by presenting the model equations, initial
and boundary conditions that describe the environment within an arbitrary bioreactor chamber.
We consider two common types of solute reaction with the cells - nonlinear saturable binding
and Michaelis-Menten (M-M) kinetics - and we use mathematical arguments to justify simplifi-
cations of the underlying equations in certain cases. We then provide simple relationships which
allow for the rapid prediction of cell surface solute concentration profiles in single and connected
chambers, prior to experimentation. To demonstrate the utility of our model, we simulate the
fluid dynamics and solute concentration profiles for a variety of input flow rates, inlet concen-
trations and cell types within a specific bioreactor chamber: the Kirkstall QV900. For single
and connected chambers, we examine the relationships between input flow rate and cell surface
flow speeds, shear stress levels and solute concentrations and investigate the effect of varying
cell-specific parameters on solute concentration profiles at the cell surface. Finally, we critically
comment on the limitations of mathematical and computational modelling in this field, and the
challenges associated with the adoption of such methods.

2 Mathematical and computational methods
We begin by considering an arbitrary geometry to represent a sealed bioreactor chamber featur-
ing an inlet, an outlet and assuming that cells are cultured at the base of the chamber, either in a
3D region or within a monolayer. We note that the model is applicable to any chamber geometry
with these properties. Fig. 1 illustrates how we set up the model equations to describe fluid flow
and solute transport and this will be discussed in detail in the following text.
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Figure 1: Schematic drawing of an arbitrary bioreactor geometry featuring an inlet and an outlet with
cells cultured at the base of the chamber to illustrate the model set-up. For full details of the equations,
the reader is referred to the text.

2.1 Fluid dynamics in the chamber
Assuming we have an incompressible Newtonian fluid, the flow velocity and pressure are de-
scribed using the continuity and Navier-Stokes equations:

∇ · u = 0, (1)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µ∇2u, (2)

where u (m s−1) is the velocity field, p (Pa) is the pressure, ρ is the fluid density and µ is the
dynamic viscosity. Initially, the fluid velocity is zero (u = 0) in the chamber. At the inlet, we
assume a parabolic velocity profile with magnitude derived from the volumetric flow rate, Q,
which can be controlled in experiments (see Supplementary Material). We assume zero pressure
(p = 0) at the outlet and no slip and no penetration conditions (u = 0) are imposed on all interior
walls.

2.2 Solute transport in the chamber
The transport of each solute through the fluid is described using a convection-diffusion equation:

∂cj
∂t

+ (u · ∇)cj = Dj∇2cj, (3)

where cj (mol m−3) is the concentration of solute j andDj is the diffusion coefficient associated
with solute j. We assume that each solute is present at a sufficiently low concentration such that
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the presence of one solute has no impact on the transport of another (dilute assumption). We
further assume no binding of solute j to components of the fluid (e.g. proteins) but note that
Dj may be adjusted to account for this process [12]. Initially, the solute concentration is zero
(cj = 0) in the chamber. A constant supply of each solute (cj = cinj ) is prescribed at the inlet
and a convective flux (−n ·Dj∇cj = 0, where n is an outward facing normal) is imposed at the
outlet. We assume the walls of the chamber are impermeable and impose a zero flux condition
of the form n · (−Dj∇cj + ucj) = 0 on all interior walls.

2.3 Solute reaction with the cells
We assume the cells are cultured at the base of the chamber either (i) within a 3D region of
thickness hc or (ii) as a monolayer. To demonstrate how we may characterise different types of
reaction between the solute and the cells, we then present two common reaction mechanisms.
First, we consider a reaction governed by nonlinear saturable binding kinetics. Then, we con-
sider a reaction governed by Michaelis-Menten (M-M) kinetics.

2.3.1 Reaction within a 3D cell region

Within the 3D cell region, we assume no appreciable flow and so we describe solute transport
using a reaction-diffusion equation:

∂cj
∂t

= ∇ ·
(
Dcell

j ∇cj
)
−R3D

j , (4)

where Dcell
j , the diffusivity tensor associated with solute j, is assumed to capture any hetero-

geneity in the cell population and, here, R3D
j (mol m−3 s−1) describes the bulk reaction between

solute j and the cells. Initially, the solute concentration is zero (cj = 0) in the cell region and
we assume continuity of concentration and flux across the boundary.

2.3.2 Reaction within a monolayer

If we are interested in estimating only cell surface solute concentration profiles of a monolayer,
we may replace the 3D cell region with a flux boundary condition of the following form:

n · (−Dj∇cj + ucj) = R2D
j , (5)

where, here, R2D
j (mol m−2 s−1) describes the surface reaction between solute j and the cells.

We note that (5) may also be used if we are interested in estimating solute concentrations on the
surface of a 3D region of cells (as in Section 2.3.1) in the special case of homogeneous transport
properties (i.e. isotropic diffusion) with the cell region.

2.3.3 Reaction governed by nonlinear saturable binding kinetics

We describe the first type of reaction by nonlinear saturable binding:

R3D
j = kfj cj(Bj − bj)− krj bj, (6)
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where cj (mol m−3) is the concentration of free drug, Bj is the local density of binding sites and
kfj and krj are the forward and reverse reaction rates, respectively. Here, we require an additional
equation to track the concentration of bound drug, bj (mol m−3), in the 3D cell region:

∂bj
∂t

= kfj cj(Bj − bj)− krj bj. (7)

We remark that nonlinear saturable irreversible binding and linear binding kinetics may be re-
covered as special cases of (7) through appropriate choice of the model parameters. We also
note that although we have chosen to model the binding process within a 3D cell region, these
equations may be easily adapted to describe the binding process via a flux boundary condition,
as in (5), by defining bj in units of mol m−2 and employing an appropriate mass conservation
condition.

2.3.4 Reaction governed by Michaelis-Menten kinetics

We describe the second type of solute reaction by M-M kinetics, commonly used in the literature
to describe O2 consumption [5, 7–11] and paracetamol (APAP) metabolism [13, 14]. These
kinetics describe the relationship between the concentration of solute and speed of a reaction:
as solute concentration increases, the reaction rate increases before approaching a maximum
for higher solute concentrations [15, 16]. In this case, we have chosen to model the metabolic
process using a flux boundary condition but, again, these equations may be easily adapted to
describe the metabolic process within a 3D cell region by suitably adjusting the units of the
model parameters. A general M-M reaction term has the following form:

R2D
j =

m∑
i=1

V i
j cj

Ki
j + cj

, (8)

where m is the number of metabolic pathways involved in the reaction, Ki
j is the M-M constant

for solute j and pathway i and V i
j is the maximum reaction rate for solute j and pathway i. It

may be readily shown that:

R2D
j ≈


m∑
i=1

V i
j when

Ki
j

cj
� 1

m∑
i=1

V i
j cj

Ki
j

, when
Ki
j

cj
� 1

, (9)

so that when the ratio of Ki
j to cj satisfies the above criteria, we can reasonably replace the full

M-M kinetics (8) by the approximate expressions (9).

2.4 Derivation of relationships to inform experimental operating condi-
tions

For each type of reaction mechanism we provide simple relationships which allow for the rapid
prediction of steady-state solute concentrations, prior to experimentation.
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2.4.1 Predicting steady-state solute concentrations when reaction is governed by nonlin-
ear saturable binding kinetics

It may readily be shown (see Supplementary Material) that in the case of isotropic diffusion,
we are able to reduce the nonlinear saturable binding model in the limit of rapid binding by
combining (4) and (7) to obtain

∂Tj
∂t

= ∇ · (D∗
j∇Tj), D∗

j ≈
Dcell
j

1 + Bkd
(kd+cj)2

, (10)

where Tj = cj + bj is the total drug concentration, D∗
j is the effective diffusion coefficient

and kdj = krj/k
f
j is the equilibrium dissociation constant. It is clear that the role of binding is

accounted for through a reduced diffusion coefficient. From (7) it follows that at steady-state we
have:

bj =
Bcj

kd + cj
. (11)

Substituting this expression into Tj = cj + bj yields a quadratic equation in cj which we solve
to obtain:

cj = −1

2
(kdj +Bj − Tj)±

1

2

√
(kdj +Bj − Tj)2 + 4kdjTj. (12)

For physically meaningful results, we require cj ≥ 0 so we consider only the positive root.
Since no drug is lost from the system in this model (it is either bound or unbound), at steady-
state the total drug concentration should be equal to the inlet concentration, i.e. Tj = cinj , and
thus we may use (11) and (12) to calculate the partitioning of drug between bj and cj prior to
experimentation. Note that since these expressions rely only on the parameters kdj and Bj , they
may be used to calculate the steady-state concentrations for any drug whose interaction with the
cells is governed by nonlinear saturable binding kinetics, given that the drug is supplied as a
constant source and diffusion of drug within the cell region is isotropic.

2.4.2 Predicting steady-state cell surface solute concentrations when reaction is governed
by Michaelis-Menten kinetics

Since experiments can span over many days and it is often possible to connect multiple bioreac-
tor chambers together for high throughput testing, it would be useful to establish relationships
between the inlet and cell surface concentrations in single and connected chambers so that cell
surface solute concentration profiles may be predicted a priori. When the solute reaction is gov-
erned by M-M kinetics, the rate of metabolism is dependent on the solute concentration at the
cell surface i.e. metabolism is variable unless the cell surface solute concentration is uniform.
However, if the solute concentration is high enough i.e. cj � Ki

j , then from (9) the rate of
metabolism is approximately constant and is estimated as V i

j . In this case, if we vary only the
inlet concentration, cinj , then the shape of the cell surface solute concentration profile will stay
approximately the same since the fluid dynamics are unchanged and approximately the same
amount of solute is metabolised across the entire cell surface; however, the magnitude of the
cell surface solute concentration will change according to the difference in the inlet concentra-
tion. Thus, provided that Rj ≈

∑m
i=1 V

i
j , if the cell surface concentration profile is known for
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a given cinj , we may predict the cell surface concentration profile for any cinj via the following
equation:

c∗j(y) ≈ cj(y) + ∆cinj , ∆cinj = cin
∗

j − cinj , (13)

where y is the axis through the centre of the cell surface from the inlet side to the outlet side
of the chamber, c∗j(y) is the unknown concentration profile across the centre of the cell surface,
cj(y) is the known concentration profile across the centre of the cell surface and ∆cinj is the
difference between the inlet concentrations for which the solute concentration profile across the
centre of the cell surface is unknown and known, respectively. Note we have verified that this
equation may be generalised to predict the concentration profile across the entire surface of the
cells, but for simplicity we consider only the profile across the centre of the cell surface.

We can extend this idea to chambers connected in series: clearly, the solute concentration
will decrease from the first to the last chamber due to metabolism so it would be useful to es-
tablish a relationship between the cell surface solute concentration profiles in the first chamber
and in subsequent chambers. This would enable the prediction of the cell surface solute concen-
tration profile in chamber n based only on knowledge of the profile in chamber 1. Similarly to
(13), we have:

cnj (y) ≈ c1j(y) + ∆cinj , ∆cinj = cin
n

j − cin
1

j ,

where cnj (y) is the unknown concentration profile across the centre of the cell surface in chamber
n, c1j(y) is the known concentration profile across the centre of the cell surface in chamber 1 and
∆cinj is the difference between the unknown inlet concentration in chamber n and the known
inlet concentration in chamber 1. Thus, in order to make use of this equation we need to be able
to estimate cinn

j .
Let us first consider the flux entering and leaving chamber 1. At steady-state, the mol s−1

leaving the chamber must be equal to the mol s−1 entering the chamber minus the mol s−1

metabolised in the chamber, i.e.∫
Aout

n ·
(
−Dj∇c1out + u1

outc
1
out

)
dAout =

∫
Ain

n ·
(
−Dj∇c1in + u1

inc
1
in

)
dAin

−
∫
Acells

m∑
i=1

V i
j dAcells, (14)

where c1out and c1in (mol m−3) are the concentrations at the outlet and the inlet faces of chamber
1, respectively, and Aout, Ain and Acells are the areas of the outlet face, the inlet face and the cell
surface, respectively. Note that again we assume the metabolism is approximately constant and
for convenience we define α =

∫
Acells

∑m
i=1 V

i
j dAcells.

Also at steady-state, the mol s−1 leaving chamber 1 must be equal to the mol s−1 entering
chamber 2, i.e.∫

Aout

n ·
(
−Dj∇c1out + u1

outc
1
out

)
dAout =

∫
Ain

n ·
(
−Dj∇c2in + u2

inc
2
in

)
dAin, (15)

and combining (15) with (14) gives:∫
Ain

n ·
(
−Dj∇c2in + u2

inc
2
in

)
dAin =

∫
Ain

n ·
(
−Dj∇c1in + u1

inc
1
in

)
dAin − α. (16)
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We know that c1in is constant across Ainlet and if we also assume that c2in is constant then we
have:

−Dj∇c2in = −Dj∇c1in = 0.

This means that we will neglect the diffusive flux and this assumption will always be appropriate
when the system is convection-dominated. Then, from (16) we have:

c2in

∫
Ain

u2
in · n dAin = c1in

∫
Ain

u1
in · n dAin − α,

and if we assume that the velocity profiles at the inlet to each chamber are identical then we
obtain:

c2in

∫
Ain

u1
in · n dAin = c1in

∫
Ain

u1
in · n dAin − α =⇒ c2in = c1in −

α∫
Ain

u1
in · n dAin

= c1in −
α

Q
,

where Q (m3 s−1) is the input flow rate. Similarly, we have:

c3in = c2in −
α

Q
= c1in −

2α

Q
,

and for n chambers we obtain:

cnin = c1in −
(n− 1)α

Q
.

Thus, provided thatRj ≈
∑m

i=1 V
i
j , the cell surface concentration profile in chamber 1 is known,

the inlet concentrations are constant and the velocity profile at all inlets are the same, we may
predict the cell surface concentration profile in chamber n via the following equation:

cnj (y) ≈ c1j(y)− (n− 1)α

Q
. (17)

As before, we have verified that this equation may be generalised to predict the concentration
profile across the entire surface of the cells, but for simplicity we consider only the profile across
the centre of the cell surface.

2.5 Computational geometry
In order to demonstrate the utility of our model, we choose the geometry of a specific commer-
cial perfusion cell culture system which is gaining popularity: the QV900 (Fig. 2a) manufac-
tured by Kirkstall Ltd. (Rotherham, UK). The QV900 is a modular system comprising 6 cell
culture chambers that can be connected together in any combination. This allows experiments
to be performed either in parallel or in series, providing a high degree of flexibility as well as
the potential to culture cells over a defined set of conditions.

Initially, a 3D representation of a single chamber (Fig. 2b) was constructed. The overall
height of a single chamber ranges from 18.6 mm at the inlet side to 20.7 mm at the outlet side.
The diameter of the chamber is taken to be 16.0 mm, whilst the inner diameter of the inlet and
the outlet is 1.0 mm and 1.8 mm, respectively. The cells are assumed to be cultured at the base
of the chamber in either a 3D region of height hc or a monolayer.
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We subsequently created a geometry to represent 6 chambers connected in series. Each
chamber is connected by a cylindrical tube of length 100 mm and diameter 2.4 mm. This is
representative of a typical connecting tube, although it is noted that there is a choice of various
tube lengths; however, we have verified that this feature does not significantly influence the
results since employing various tube lengths from 5−100 mm alters the results by approximately
1% or less.

(a) (b)

Figure 2: (a) The QV900. [www.kirkstall.org] (b) Idealised 3D geometry of a single QV900 chamber,
showing the orientation of the x, y and z axes where the origin is located at the centre of the base
(indicated by the red dot). Note that length scales are in m.

2.6 Parameter values
There are a number of parameters in the model that can be adjusted to represent different cell
culture conditions. Variable parameters such as input flow rate and inlet concentration are spec-
ified for each set of results and Table 1 presents the remaining parameters. For simplicity, the
values of ρ and µ are chosen under the assumption that the fluid is water; however, it is recog-
nised that these parameters may vary depending on the specific fluid used. Also note that for this
study we assume isotropic diffusion of solute within the 3D cell region and choose Dcell

j = Dj ,
but we acknowledge that in reality these parameters may differ. To illustrate the results of our
model, we choose representative parameters for three different solutes. For the reaction gov-
erned by nonlinear saturable binding, we describe the action of sirolimus (a drug with potent
anti-proliferative and immunosuppressive properties commonly used to coat arterial stents) on
smooth muscle cells. For the reaction goverened by M-M kinetics, we describe O2 consump-
tion for four different cell types (rat cardiomyocytes, human cardiomyocytes, rat hepatocytes
and HepG2 cells) and we describe APAP metabolism using parameters obtained from a study
performed in vivo in humans. Note that the maximum reaction rate for M-M kinetics is often
provided in varying units for different solutes; in order to balance the equations we need to either
multiply this parameter by the cell density or divide this parameter by the cell area for O2 and
APAP, respectively.
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Parameter description Value Reference
Fluid parameters:
Density (ρ) 9.94× 102 kg m−3 [17]
Dynamic viscosity (µ) 6.89× 10−4 Pa s [17]
Diffusion coefficients:
Sirolimus (DS) 2.50× 10−10 m2 s−1 [18]
O2 (DO2

) 3.00× 10−9 m2 s−1 [9]
APAP (DAPAP ) 6.00× 10−10 m2 s−1 [19]
Binding parameters for sirolimus:
Forward reaction rate (kf ) 2.00 mol−1 m3 s−1 [18]
Reverse reaction rate (kr) 5.20× 10−3 s−1 [18]
Local density of binding sites (B) 3.63× 10−1 mol m−3 [18]
Michaelis-Menten constants:
O2 (KO2

) 6.60× 10−4 mol m−3 [9]
Glucuronidation (K1

APAP ) 6.89 mol m−3 [14]
Sulphation (K2

APAP ) 9.70× 10−2 mol m−3 [14]
Oxidation (K3

APAP ) 3.03× 10−1 mol m−3 [14]
Maximum O2 consumption rates:
Rat cardiomyocytes (VO2 ) 4.01× 10−8 mol m−2 s−1 [20]
Human cardiomyocytes (VO2

) 9.81× 10−8 mol m−2 s−1 [20]
Rat hepatocytes (VO2

) 2.39× 10−8 mol m−2 s−1 [21]
HepG2 cells (VO2

) 1.17× 10−8 mol m−2 s−1 [21]
Maximum APAP metabolic rates:
Glucuronidation (V 1

APAP ) 8.86× 10−2 mol m−2 s−1 [14]
Sulphation (V 2

APAP ) 1.02× 10−3 mol m−2 s−1 [14]
Oxidation (V 3

APAP ) 3.41× 10−4 mol m−2 s−1 [14]
General parameters:
Total number of cells (N ) 1.00× 105 cell this study
Volume of a smooth muscle cell (Vcell) 1.50× 10−14 m3 [22]
Area covered by the cells (A) 2.01× 10−4 m2 this study
Thickness of 3D cell region (hc = NVcell/A) 7.46× 10−6 m this study
Cell density (d = N/A) 4.97× 108 cell m−2 this study

Table 1: Parameter values.

2.7 Numerical implementation
Since the equations describing fluid flow are independent of solute concentration, we first solved
the fluid equations and then used this solution to subsequently solve the transport equations. The
computational geometry was constructed and the finite element method was implemented in
COMSOL Multiphysics. Since preliminary simulations showed that the solution to the problem
is symmetric about the y, z plane passing through the origin, we used symmetry of the geometry
to reduce the computational cost of the model so that only half of the problem was solved
numerically. The computational mesh was generated using the physics-controlled ‘Extremely
fine’ setting. The final mesh consisted of 2, 152, 947 elements with size ranging from 0.03 to
0.46 mm and, where we modelled the cells as a 3D region, we generated a swept triangular mesh
in this domain. Note that we consider only the steady-state results since we assume equilibrium
is established relatively quickly, but the model may be used to generate time-dependent solutions
if required.

10



3 Results

3.1 Fluid dynamics
We describe the velocity profile and cell surface shear stress in a single chamber for
Q = 100 − 1000 µL min−1, covering a realistic range of operating flow rates. As an exam-
ple, we display only the results for Q = 100 µL min−1 (Fig. 3) and the corresponding results
for the remaining flow rates can be found in the Supplementary Material. In this case, some
small zones of recirculation arise around the periphery at the base of the chamber and the peak
flow speed (4.20 × 10−3 m s−1) is located at the inlet. Given the considerable decrease in flow
speed with chamber depth, in Fig. 3b we use a log scale to plot the velocity magnitude in order
to better emphasise the variation in flow speed throughout the chamber. The magnitude of the
cell surface shear stress is of the order of 10−8 Pa and the shear stress profile displays symmetry,
rising from all sides of the chamber towards the peak (6.39× 10−8 Pa) located at the centre. As
input flow rate is increased, the recirculation zones increase in size and eventually merge to form
one large zone which takes up the majority of the chamber. The cell surface shear stress rises in
magnitude with increasing input flow rate and the symmetric profile changes most substantially
between Q = 200 µL min−1 and Q = 500 µL min−1, where the flow pattern transforms dra-
matically. We note that for chambers connected in series there is no significant difference in the
fluid dynamics in downstream chambers (not shown).

(a) (b)

(c)

Figure 3: Simulation results for Q = 100 µL min−1. (a) Streamlines and magnitude of velocity through
the centre of the chamber on the y, z plane. (b) Magnitude of velocity through the centre of the chamber
on the y, z plane using a log scale. (c) Magnitude of shear stress at the cell surface on the x, y plane.
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The peak cell surface flow speed and shear stress increase with input flow rate in a nonlinear
manner (Fig. 4). As input flow rate increases, the peak cell surface flow speed and shear stress
increase until around Q = 300 µL min−1 where the profiles dip. After Q = 400 µL min−1

the peak cell surface flow speed and shear stress increase rapidly with increasing input flow
rate. We deduced that a significant change in the pattern of flow is responsible for the dip: up
to Q = 200 µL min−1 and after Q = 500 µL min−1 the behaviour of the flow is relatively
unchanging, whereas in between we observe substantial differences in the appearance of the
streamlines (most noticeably in the merging of the recirculation zones) and cell surface shear
stress profiles (see Supplementary Material).

(a) (b)

Figure 4: Relationship between input flow rate and peak cell surface flow speed (a) and shear stress (b)
with the inset plots illustrating each relationship up to Q = 400 µL min−1. Note that since the velocity
is equal to zero on the cell surface, we evaluate the ‘cell surface’ flow speed just above the cell surface.

3.2 Reaction governed by nonlinear saturable binding kinetics
We examine drug concentration profiles in the chamber for an input flow rate ofQ = 100 µL min−1

and a nominal inlet sirolimus concentration of cinS = 5.00 × 10−3 mol m−3. Our simulations
confirm (not shown) that at steady-state the concentration profiles are uniform in the chamber
and within the cell layer, in line with our rationale described in Section 2.4.1. The significance
of this result is that since the steady-state concentration profiles are uniform throughout, this im-
plies the binding model is effectively a 1D problem which suggests the geometry of the chamber
and the flow profile within the chamber are irrelevant features. To confirm this, we compared
results between identical simulations using: (i) the QV900 geometry versus a simple cylindrical
geometry, and (ii) flow versus no flow. The results were identical (data not shown).

3.3 Reaction governed by Michaelis-Menten kinetics
We examine solute concentration profiles in the chamber and at the cell surface for an input flow
rate of Q = 100 µL min−1. For the O2 profiles (Fig. 5), we show results for rat cardiomy-
ocytes as an example and we set cinO2

= 0.21 mol m−3 to represent atmospheric O2 levels [9].
Corresponding results for the remaining cell types are detailed in the Supplementary Material.
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The O2 concentration decreases from cinO2
= 0.21 mol m−3 at the top of the chamber to approxi-

mately 0.07 mol m−3 at the base of the chamber. The cell surface O2 concentration ranges from
approximately 0.07 to 0.09 mol m−3.

(a) (b)

Figure 5: Simulation results for rat cardiomyocytes withQ = 100 µL min−1 and cinO2
= 0.21 mol m−3.

(a) O2 concentration profile through the centre of the chamber on the y, z plane. (b) O2 concentration at
the cell surface on the x, y plane

Similar trends are observed for the APAP profiles (Fig. 6). Here we show the results for
human liver cells with an inlet concentration of cinAPAP = 0.4 mol m−3 to represent a dose of
60 mg/kg [14]. The APAP concentration decreases from cinAPAP = 0.4 mol m−3 at the top of
the chamber to approximately 9.15 × 10−7 mol m−3 at the base of the chamber. The APAP
concentrations are very low at the cell surface, ranging from approximately 9.15 × 10−7 to
1.86× 10−6 mol m−3, suggesting that the majority of the APAP is metabolised by the cells.

(a) (b)

Figure 6: Simulation results for human liver cells withQ = 100 µL min−1 and cinAPAP = 0.4 mol m−3.
(a) APAP concentration profile through the centre of the chamber on the y, z plane. (b) APAP concentra-
tion at the cell surface on the x, y plane

In Fig. 7 we plot the average cell surface concentration versus flow rate for both O2 and
APAP. In the case of oxygen consumption we consider four cell types (rat cardiomyocytes,
human cardiomyocytes, rat hepatocytes and HepG2 cells), whilst for APAP we consider only
human liver cells due to the available data. The results of the simulations show that the average
cell surface concentration tends to increase as input flow rate increases across all cell types.
As with the profiles for the peak cell surface flow speed and shear stress, we observe a dip in
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average cell surface concentration at around Q = 300 µL min−1 which is explained by changes
in the flow pattern between Q = 200 µL min−1 and Q = 500 µL min−1.

(a) (b)

Figure 7: Relationship between input flow rate and average cell surface O2 (a) and APAP (b). These
results correspond to input solute concentrations of cinO2

= 0.21 mol m−3 and cinAPAP = 0.4 mol m−3,
respectively.

Next, we test our hypotheses (13) and (17) which should allow for the prediction of the
solute concentration profiles at the cell surface in single and connected chambers, respectively.
Recall that these relationships inherently assume that the rate of metabolism is constant and
so only hold true for cj � Ki

j . For the parameters in Table 1, this criteria is not satisfied by
APAP and so we consider O2 as an example and illustrate the results for rat cardiomyocytes. In
Fig. 8a we compare our prediction of the cell surface O2 concentration profile from (13) to the
results of the simulation when we increase the inlet concentration from cinO2

= 0.21 mol m−3 to
cinO2

= 0.3 mol m−3, and excellent agreement is found. Integrating (13) with respect to y over
the diameter of the cell surface (−r < y < r) gives:∫ r

−r c
∗
j(y) dy −

∫ r
−r cj(y) dy

2r∆cinj︸ ︷︷ ︸
γ1

≈ 1. (18)

The quantity γ1 provides a measure of how good the approximation (13) is. Therefore, to test the
validity of our hypothesis for predicting the cell surface solute concentration profile in a single
chamber when the inlet concentration is varied, we evaluated (18) for
Q = 100 µL min−1 and Q = 1000 µL min−1 with cinO2

= 0.21 mol m−3. Fig. 8b demon-
strates that γ1 ≈ 1 for the majority of these cases, with the prediction improving for higher inlet
concentrations where cO2 � KO2 and metabolism is therefore approximately constant. The ap-
proximation is weakest for the lowest values of cinO2

where this criteria is not satisfied. Note that
the prediction is better for the higher flow rate: increasing input flow rate gives rise to higher
cell surface concentrations and so the assumption of cO2 � KO2 is more accurate in this case.

In certain cases, it may be that the quantity of interest is the mean cell surface concentration,
rather than spatial profiles. We have demonstrated that our formula (13) extends to the case
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of predicting mean concentrations (Fig. 8c and Fig. 8d). Moreover, we have established that
there is a linear relationship between the inlet O2 concentration and the mean cell surface O2

concentration for the majority of inlet O2 concentrations considered: the linear relationship
breaks down when cell surface O2 concentrations are sufficiently low that our approximation
cO2 � KO2 is no longer valid. We note from Fig. 8c and Fig. 8d that the approximation breaks
down at higher inlet O2 concentrations for the lower flow rate.

(a) (b)

(c) (d)

Figure 8: Single chamber predictions. (a) Comparison between our prediction using (13) (dashed line)
and the simulation (solid line) when we increase the inlet concentration from cinO2

= 0.21 mol m−3

to cin
∗

O2
= 0.3 mol m−3. (b) Calculated γ values for Q = 100 and 1000 µL min−1 with cinO2

=
0.21 mol m−3. (c) Relationship between inlet O2 concentration and mean cell surface O2 concentra-
tion for Q = 100 µL min−1. (c) Relationship between inlet O2 concentration and mean cell surface O2

concentration for Q = 1000 µL min−1.

To test the validity of our hypothesis for predicting the cell surface solute concentration
profile in chamber n given that the profile is known in chamber 1, we first simulated the en-
vironment in chamber 1 to obtain c1j(y) and then used (17) to predict cnj (y) in six connected
chambers for Q = 100 µL min−1 and cinO2

= 0.21 mol m−3. Fig. 9a compares the predictions
(dashed lines) with the results obtained from simulations (solid lines), confirming that the pre-
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dictions from (17) are in good agreement with the simulation results. As with the single chamber
predictions, our formula holds also for mean cell surface concentrations (Fig. 9b) and there is a
linear relationship between mean cell surface O2 concentration and chamber number, provided
that cO2 � KO2 .

(a) (b)

Figure 9: Connected chamber predictions for Q = 100 µL min−1 and cinO2
= 0.21 mol m−3. (a)

Simulated (solid lines) vs. predicted (dashed lines) cell surface O2 concentration profiles. (b) Simulated
vs. predicted mean cell surface O2 concentrations.

4 Discussion
Our findings have a number of important implications that should be considered carefully when
deciding on the operating conditions of perfusion cell culture systems.

Cell surface flow speed and shear stress critically depend on the choice of input flow rate
Varying the input flow rate over a realistic range of operating flow rates gives rise to quite dif-
ferent fluid dynamics within the chamber and strongly influences the cell surface flow speed
and shear stress levels. This means not only that the choice of flow rate is critical, but also that
different flow rates should be chosen for different applications. For example, if one wishes to
test the response of cells to a drug where it is known that the cells are exposed to flow in vivo,
then the model presented here may be utilised to calculate the input flow rate that gives rise to
the desired cell surface flow speed. For some applications, it may be that the cells should be ex-
posed to slow-flow, while for other cell types it may be that high flow speeds at the cell surface
are desired. Similarly, if it is known that a given cell type tolerates a known level of shear stress,
then again the model may be used to select a sensible flow rate that ensures cell surface shear
stress is kept within the desired range.

Spatial placement of cells influences the flow speed and shear stress that they experience
Fig. 3c shows clearly that there is a spatial distribution of shear stress at the cell surface. This
means that the choice of where cells are placed has an impact on the level of shear stress they will
experience. For example, in the case Fig. 3c, depending on the application, it may be wise not to
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culture cells in the centre of the chamber, due to the peak in shear stress that occurs there. The
spatial distribution of shear stress changes with flow rate (see Supplementary Material), most
substantially between Q = 200− 500 µL min−1. For flow rates outside of this range the peak is
observed at the centre, whereas for flow rates within this range the pattern is not symmetric and
is less predictable. Therefore, depending on the application it may well be wise to avoid these
flow rates. It is also important to note that the flow speed (and consequently the magnitude of
the shear stress) decreases as we move down the chamber (Fig. 3b). Therefore, one may also
change the flow environment the cells are exposed to by raising the position of the cells in the
chamber. The model presented here may therefore be used to optimise the spatial placement of
cells within the chamber.

Flow rate and Michaelis-Menten parameters dictate cell surface solute concentrations
Fig. 7 highlights that the cell surface solute concentration is strongly influenced by both flow
rate and the cell-specific M-M parameters. With the exception of the dip between Q = 200 −
500 µL min−1 (due to the change in fluid dynamics as described earlier), increasing the flow rate
corresponds to increasing the solute concentration that arrives at the cell surface and is available
for reaction. The variation in cell surface solute concentration across the different cell types
confirms that the M-M reaction at the cell surface also has an important influence on the cell
surface solute concentration. Relationships derived from the model, such as those in Fig. 7, can
therefore be utilised when configuring the input flow rate for experiments in which the desired
cell surface concentration is known.

Steady-state solute concentrations may be predicted a priori
In the case of reaction governed by nonlinear saturable binding kinetics, steady-state free and
bound solute concentrations within the cells may be calculated a priori using (11-12). Since
(11-12) rely only on the parameters kdj and Bj , they may be used to calculate the steady-state
concentrations for any drug whose interaction with the cells is governed by nonlinear saturable
binding kinetics, given that the drug is supplied as a constant source and diffusion of drug within
the cell region is isotropic. In the case of reaction governed by M-M kinetics, we have uncov-
ered simple relationships between inlet solute concentrations and cell surface concentration in
single and connected chambers, provided that cj � Kj (Fig. 8 and Fig. 9). Our simple for-
mula (13) may be used to predict changes in cell surface solute concentrations when the inlet
solute concentration is altered, whilst (17) may be used to predict cell surface concentrations
in downstream chambers. These relationships could be extremely useful to help determine the
inlet concentration required to achieve a desired cell surface concentration, and moreover to de-
cide on a suitable number of chambers to connect before concentrations fall below some desired
level. Where possible, it is advisable to stay within the regime cj � Kj so that the results
remain predictable.

5 Challenges
The focus of this paper has been on utilising modelling and simulation to help inform experi-
mental operating parameters. However, these two endeavours are, of course, intrinsically linked.
Mathematical and computational models require physical parameters (e.g. diffusion coefficients
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and metabolism rates) and these are not always known to a great degree of accuracy. It is partic-
ularly common for parameters to be gleaned from a variety of data sets, where experiments may
not have been performed consistently, nor on the same type of cells or species. Sensitivity anal-
ysis may be used where there is some uncertainty over parameter values, but this has limitations,
especially when the model results are highly sensitive to changes in the unknown parameters.
Models, such as the one presented here, are most valuable when used in a predictive sense.
However, before one may gain confidence in the model predictions, it is crucial that the model is
validated. Therefore, it is critical that in silico tools are compared with experimental data, even
if such data is limited. This can be challenging for a number of reasons. For example, it may not
be easy (or possible) to take non-destructive measurements (e.g. cellular drug concentrations
or O2 concentrations at the cell surface) within certain in vitro perfusion systems. Advanced
imaging methods can help in this regard, but these may be limited by the optical properties of
the system at hand. Oxygen probes are available, but again, these cannot easily be used without
disrupting the experiments. Whilst the difficulty of providing validation may be viewed as a
disadvantage of modelling, it could also be seen as an advantage, i.e., modelling can allow us to
obtain insight into quantities that we cannot easily measure experimentally.

The real value in modelling lies in the ability to reduce the number of experiments that have
to be performed. For example, even if a system has been experimentally characterised under a
given set of operating parameters, it may not be obvious how the environment changes when
these operating parameters are altered. In this respect, a validated model can be invaluable, even
if the validation is performed over a limited set of conditions.

The issue of model verification is also highly pertinent in this field, i.e., ensuring the numer-
ical implementation of the model is correct. It is tempting to ‘believe’ results produced from
computational software. However, great care must be taken to ensure the correctness and accu-
racy of the results. In this sense, mesh sensitivity studies and common-sense checks are both
an integral part of computational modelling. However, these aspects are perhaps less familiar to
non-experts, underlining the critical role of computational modellers.

These challenges only emphasise the importance of interdisciplinarity in this exciting field
and that modelling and experimentation should go hand-in-hand, each complementing the other.
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Supplementary material for “Mathematical modelling of fluid
flow and solute transport to define operating parameters for in
vitro cell sulture systems”

Obtaining the parabolic inlet velocity profile from the volumetric flow rate

Here, we outline how we obtain the parabolic inlet velocity profile from the volumetric flow rate
Q. Let us assume that the tube has circular cross section of radius a. Then the volumetric flow
rate, Q, is given by

Q = 2π

∫ a

0

u(r)rdr, (1)

where r is the distance from the inlet cylinder axis. Assuming a steady parabolic inlet velocity
profile of the form u(r) = C(a2 − r2) (C constant), then carrying out the integration in (1) and
rearranging yields

C =
2Q

πa4
,

so that the inlet velocity profile takes the form

u(r) =
2Q

πa4
(
a2 − r2

)
=

2Q

πa2

(
1− r2

a2

)
= 2u0

(
1− r2

a2

)
,

where the parameter u0 has units of velocity (m s−1).

Obtaining the reduced nonlinear saturable binding model

Here, we outline how we are able to reduce the nonlinear saturable binding model in the limit of
rapid binding. Recall that for this type of reaction, within the 3D cell region we have:

∂cj
∂t

= Dj∇2cj − kfj cj(Bj − bj) + krj bj, (2)

∂bj
∂t

= kfj cj(Bj − bj)− krj bj. (3)

By adding together (2) and (3) and setting Tj = cj + bj we obtain:

∂Tj
∂t

= Dj∇2cj

= Dj

(
∂2cj
∂x2

+
∂2cj
∂y2

+
∂2cj
∂z2

)
(4)

1



= Dj

[
∂

∂x

(
∂cj
∂x

)
+

∂

∂y

(
∂cj
∂y

)
+

∂

∂z

(
∂cj
∂z

)]
= Dj

[
∂

∂x

(
dcj
dTj

∂Tj
∂x

)
+

∂

∂y

(
dcj
dTj

∂Tj
∂y

)
+

∂

∂z

(
dcj
dTj

∂Tj
∂z

)]
= Dj∇ ·

(
dcj
dTj
∇Tj

)
= ∇ · (D∗

j∇Tj), D∗
j = Dj

dcj
dTj

.

Assuming that binding occurs rapidly, from (3) we obtain:

bj ≈
Bjcj
kdj + cj

, (5)

where kdj = krj/k
f
j is the equilibrium dissociation constant. Substituting (5) into Tj = cj + bj

gives:

Tj ≈ cj +
Bjcj
kdj + cj

=⇒ dTj
dcj
≈ 1 +

Bjk
d
j

(kdj + cj)2
=⇒ dcj

dTj
≈ 1

1 +
Bjkdj

(kdj+cj)2

.

Results: Fluid dynamics

Figs. 1 - 9 show the velocity profile and cell surface shear stress for increasing input flow rate.
For the lowest input flow rates, small zones of recirculation are observed at the periphery of
the base of the chamber and the magnitude of the cell surface shear stress has a fully symmetric
profile with the peak located in the centre. As input flow rate is increased, the small recirculation
zones at the base of the chamber increase in size and another zone of recirculation forms just
beneath the inlet. Between Q = 300 µL min−1 and Q = 500 µL min−1, these zones merge
together to form one large recirculation zone which takes up a sizeable part of the chamber.
For this range of input flow rates, the profile for the magnitude of the cell surface shear stress
changes dramatically and no longer displays symmetry about the y axis. Increasing the input
flow rate further sees little change in the pattern of flow; however, the magnitude of the cell
surface shear stress continues to increase and symmetry about the y axis is restored with the
peak once again located in the centre.
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(a) (b)

Figure 1: Results for Q = 200 µL min−1. (a) Flow profile through the centre of the chamber on the y, z
plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.

(a) (b)

Figure 2: Results for Q = 300 µL min−1. (a) Flow profile through the centre of the chamber on the y, z
plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.

(a) (b)

Figure 3: Results for Q = 400 µL min−1. (a) Flow profile through the centre of the chamber on the y, z
plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.
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(a) (b)

Figure 4: Results for Q = 500 µL min−1. (a) Flow profile through the centre of the chamber on the y, z
plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.

(a) (b)

Figure 5: Results for Q = 600 µL min−1. (a) Flow profile through the centre of the chamber on the y, z
plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.

(a) (b)

Figure 6: Results for Q = 700 µL min−1. (a) Flow profile through the centre of the chamber on the y, z
plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.
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(a) (b)

Figure 7: Results for Q = 800 µL min−1. (a) Flow profile through the centre of the chamber on the y, z
plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.

(a) (b)

Figure 8: Results for Q = 900 µL min−1. (a) Flow profile through the centre of the chamber on the y, z
plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.

(a) (b)

Figure 9: Results for Q = 1000 µL min−1. (a) Flow profile through the centre of the chamber on the
y, z plane. (b) Magnitude of shear stress at the cell surface on the x, y plane.
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Results: Reaction governed by Michaelis-Menten kinetics

Figs. 10 - 12 show the O2 concentration profiles in the chamber and at the cell surface for various
cell types with input flow rate of Q = 100 µL min−1 and inlet concentration of 0.21 mol m−3.
For each cell type, an O2 concentration gradient is observed throughout the chamber. The O2

concentration is highest (and equal to the inlet concentration) at the top of the chamber and
lowest at the base of the chamber where the cells consuming O2 are located. At the cell surface,
the peak O2 concentration is located at the inlet side of the chamber with the magnitude of the
concentration varying between the cell types due to differences in the maximum O2 consumption
rates.

(a) (b)

Figure 10: Results for human cardiomyocytes. (a) O2 concentration profile through the centre of the
chamber on the y, z plane. (b) O2 concentration profile at the cell surface on the x, y plane.

(a) (b)

Figure 11: Results for rat hepatocytes. (a) O2 concentration profile through the centre of the chamber
on the y, z plane. (b) O2 concentration profile at the cell surface on the x, y plane.
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(a) (b)

Figure 12: Results for HepG2 cells. (a) O2 concentration profile through the centre of the chamber on
the y, z plane. (b) O2 concentration profile at the cell surface on the x, y plane.
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