

LJMU Research Online

Peace, A, Pinna, V, Timmen, F, Speretta, G, Jones, H, Lotto, RR, Jones, IS and Thijssen, DHJ

Role of blood pressure in mediating carotid artery dilation in response to sympathetic stimulation in healthy, middle-aged individuals

http://researchonline.ljmu.ac.uk/id/eprint/11412/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Peace, A, Pinna, V, Timmen, F, Speretta, G, Jones, H, Lotto, RR, Jones, IS and Thijssen, DHJ (2019) Role of blood pressure in mediating carotid artery dilation in response to sympathetic stimulation in healthy, middle-aged individuals. American Journal of Hypertension. ISSN 0895-7061

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

1	Role of blood pressure in mediating carotid artery dilation in response
2 3	to sympathetic stimulation in healthy, middle-aged individuals.
4	Arron Peace ^{1,2} , Virginia Pinna ^{2,3,4} , Friso Timmen ^{1,3} , Guillherme Speretta ^{2,5} , Helen Jones ² , Robyn
5	Lotto ¹ , Ian Jones ¹ , Dick Thijssen ^{2,3}
6	1: Faculty of Education, Health and Community, Liverpool John Moores University. Liverpool, United
7	Kingdom.
8	2: Research institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool,
9	United Kingdom
10	3: Department of Physiology, Radboudumc, Nijmegen, The Netherlands
11	4: Department of Medical Sciences and Public Health, Sports Physiology Lab, University of Cagliari,
12	Via Porcell 4, 09124, Cagliari, Italy.
13	5: Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa
14	Catarina (UFSC), Florianópolis, SC, Brazil
15	
16	WORD COUNT : 4,837
17	ABSTRACT WORD COUNT: 235
18	FIGURES: 3
19	TABLES: 3
20	
21	Author for correspondence:
22	Prof. Dr. Dick Thijssen, Research Institute for Sport and Exercise Sciences, Liverpool John
23	Moores University, Tom Reilly Building, Byrom Street L3 3AF, Liverpool, United Kingdom
24	Email: D.Thijssen@ljmu.ac.uk, Tel: +441519046264
25	DISCLOSURES

26 No conflicts of interest, financial or otherwise, are declared by the author(s).

27 ABSTRACT

Objectives. Carotid artery diameter responses to sympathetic stimulation, i.e. carotid artery reactivity (CAR), represents a novel test of vascular health and relates to cardiovascular disease/risk. This study aims to understand the relationship between the increase in blood pressure and carotid artery diameter response during the CAR-test in healthy, middle-aged men.

Methods. Sample consisted of 40 normotensive men (aged 31-59) with no history of cardiovascular disease of currently taking medication. Non-invasive ultrasound was used to measure carotid artery diameter during the cold pressor test (CPT), with CAR% being calculated as the relative change from baseline (%). Mean arterial pressure (MAP) was measured with beat-to-beat blood pressure recording.

Results. CAR% was $4.4\pm5.4\%$, peaking at $92\pm43s$. MAP increased from 88 ± 9 mmHg to 110 ± 15 mmHg, peaked at 112 ± 38 seconds, which was significantly later than the diameter peak (P=0.04). The correlation between resting MAP and CAR% was weak (r=0.209 *P*=0.197). Tertiles based on resting MAP or MAP-increase revealed no significant differences between groups in subject characteristics including age, BMI or CAR% (all *P*>0.05). Subgroup analysis of individuals with carotid constriction (n=6) *versus* dilation (n=34), revealed no significant difference in resting MAP or increase in MAP (*P*=0.209 and 0.272, respectively).

43 Conclusion. Our data suggests that the characteristic increase in MAP during the CPT does not
 44 mediates carotid artery vasomotion.

45

46 **KEYWORDS:** Endothelial function, coronary arteries, carotid artery reactivity test, cold pressor test,
47 cardiovascular risk, blood pressure

48 Introduction

49 Cardiovascular disease (CVD) is the leading cause of mortality, accounting for approximately 31% of 50 all deaths worldwide (1). Coronary artery disease (CAD) is the largest subtype of CVD and a growing 51 burden due to modern lifestyle and an ageing population, is (1). The vascular endothelium plays an 52 important role in regulating vascular tone, thereby contributing to the health and integrity of the 53 vasculature. Several studies have revealed the importance of a healthy endothelium in the prevention 54 of progression of atherosclerosis and development of cardiovascular disease (2-5). The sympathetic 55 nervous system, largely through α - and β -adrenergic receptors on the endothelium, contribute to the 56 regulation of vascular tone (6). Indeed, sympathetic stimulation leads to marked vasodilation in 57 central arteries, including the coronary arteries. In the progression of atherosclerosis, function and/or 58 presence of endothelial α - and β -adrenergic receptors may be altered, resulting in vasoconstriction in 59 response to sympathetic stimulation in patients with established cardiovascular disease (6, 7). 60 Interestingly, the presence of coronary artery constriction during sympathethic stimulation has 61 independent prognostic value for future cardiovascular events (8)

62

Similar to coronary arteries, carotid artery dilation occurs during sympathetic stimulation in healthy individuals using the cold pressor test (9). Furthermore, we found that this carotid artery reactivity (CAR) relates to the magnitude of coronary artery vasomotion (9), but also has independent prognostic value for future cardiovascular events in patients with peripheral artery disease (10). Whilst the role of the sympathetic nervous system in mediating coronary and carotid artery responses are well established, relatively little is known about the potential role of the increase in blood pressure *per se*.

Recently, we found that an alpha-1-receptor blocker partially abrogated the increase in carotid artery
diameter during the CAR-test, but also attenuated the blood pressure increase (11). In the same study,
lower body negative pressure, another stimulus for sympatho-excitation, did not cause an increase in
blood pressure or carotid artery diameter. Also others have linked changes in blood pressure, directly

74 linked to increases in sympathetic activity, to conduit artery dilation(12). Furthermore, an increase in 75 blood pressure may affect vasomotion as a hemodynamic stimulus, whilst the magnitude of blood 76 pressure increase may reflect sympathetic drive (13, 14). Therefore, an increase in blood pressure may 77 represent the dilator stimulus for the carotid artery diameter during the CAR-test. To better 78 understand the link between blood pressure and carotid artery vasomotion, we investigated the 79 relationship between the timing and magnitude of the sympathetically-induced elevation in blood 80 pressure and carotid artery diameter responses in healthy, middle-aged men. We included this group 81 as they demonstrate a good diversity of blood pressure and diameter responses to the cold pressor 82 test, which will help to better answer our research question.

83

84 Methods

85 Participants

Forty healthy men aged 31-59 years old with no history of CVD were recruited. Exclusion criteria were:
a history of CVD, history of diabetes, currently using cardiac medication for heart rate, blood pressure
or cholesterol, Raynaud's syndrome. Local ethical approval from the Liverpool John Moores University
was sought and gained (17/NW/0347). Informed consent was obtained and formally documented.
Participants completed a health questionnaire, including medical history and CVD related lifestyle risk
factors.

92 Procedure

Participants were asked to abstain from smoking for at least 6 hours, from vigorous exercise for at
least 24 hours prior to attending the laboratory and to avoid dietary products that can influence
endothelial function, such as caffeine, alcohol, chocolate, and vitamin C for at least 18 hours (9, 15).
Upon arrival participants body weight and height were measured, and were instructed to lie on a bed
in a quiet, light and temperature controlled room. A finometer (Finapres Medical Systems,

Amsterdam, The Netherlands) was used to measure beat-to-beat blood pressure and the resting blood pressure was measured with an automated sphygmomanometer (Dinamap Procare 100, GE Medical Systems Ltd., Buckinghamshire, UK). Participants laid supine for at least 5 minutes before they underwent the cold pressure test (CPT). The Cold Pressor Test is a sympathetic nervous system stimulus consisting of 1 minute baseline, 3 minutes with the left hand submerged in cold water (~4°C). During the CPT, carotid artery diameter and blood flow velocity were measured continuously using ultrasound sonography (Terason 3300, Terason Labs, Burlington, Massachusetts, USA).

105 Measurements

106 Blood pressure

107 The blood pressure was measured with an automated sphygmomanometer (16) on the left arm while 108 the participant was laying supine. This measure was used to determine the resting blood pressure and 109 to calibrate the beat-to-beat blood pressure values. The finometer cuff was attached on the second 110 phalanx of the right index or middle finger. The finometer was calibrated to the height of the heart 111 and was allowed to auto-calibrate for 2 minutes. This has previously been demonstrated to be a 112 reliable and reproducible measure of beat-to-beat blood pressure monitoring (17).

113 Cold pressor test

During the CPT, the left hand was immersed in a bucket of cold water (~4°C). The water temperature 114 115 was measured with a digital thermometer (Quartz digi-thermo, Fischer scientific, Loughborough, UK) 116 and controlled by adding crushed ice to maintain a stable water temperature. The participant was 117 asked to position themselves close to the left edge of the bed, to ensure the hand could easily move 118 into the water without significant movement of the neck. This enabled assessment of the carotid 119 artery. After a 1 minute baseline diameter recording, participants were instructed to place their hand 120 in the ice water for 3 minutes. They were instructed not to speak, and to breathe normally during the 121 ultrasound assessment of the carotid artery in order to prevent hyperventilation (9, 18, 19).

122 Carotid Artery Diameter

Peace et al

123 The left common carotid artery diameter was assessed using ultrasound sonography (Terason 3300, 124 Terason Labs, Burlington, Massachusetts, USA). Using a longitudinal view of the artery, the carotid 125 bulb was identified as an anatomical landmark to standardise approximate scanning area between 126 individuals. The common carotid artery, proximal from the carotid bulb, was identified and image was 127 optimised so that the artery walls were clearly defined (figure 1). Doppler velocity assessments were 128 also recorded at the lowest possible insonation angle (always <60°). The carotid artery diameter was 129 calculated with edge detection software (20). On-screen calibration points were selected with the 130 calibration tool which the software calculated the pixel-to-centimetre ratio. Calibration points were 131 used for the diameter and the pulse wave velocity. A rectangle containing the largest straight artery 132 segment was selected as the Region of Interest (ROI), ensuring that the vessel walls were in focus. The 133 software marked the vessel walls within the ROI with lines and calculated the number of pixels in each 134 vertical column between the lines. From the pixel distance the software calculated the lumen 135 diameter in centimetres.

136 Carotid Artery Response (CAR%)

137 The CAR% is the relative change in carotid artery diameter above or below baseline expressed as a 138 percentage. The average diameter during the 1 minute baseline measurement was calculated and set 139 as the baseline value. Subsequently, the diameter of the carotid artery was measured during the CPT, 140 and averaged over 10 second periods, resulting in 24 periods. The average, maximum and minimum percentages, were calculated. If the average percentage change was an increase in diameter (dilation), 141 142 the CAR% is expressed as the maximum percentage. Conversely, if the average percentage change 143 was a decrease in diameter (constriction), the CAR% is expressed as the minimum percentage (9, 18, 19). 144

145 Blood pressure

146 The beat-to-beat blood pressure data was processed in the same was as the CAR% calculation. Beat-147 to-beat blood pressure was measured and then MAP calculated. Baseline was the average mean

148 arterial pressure (MAP) during the 1 minute. Next, the average MAP during the CPT is calculated for 149 each 10 second period, matching the epochs for diameter as described earlier. The systolic and 150 diastolic blood pressure measured with the sphygmomanometer is used to calculate the MAP before 151 testing. The beat-to-beat blood pressure data was calibrated using assessment of resting blood 152 pressure using an automated sphygmomanometer (Dynamap) placed around the left arm and 153 performed twice (with a 5-minute rest period in between). The maximum change in blood pressure 154 was expressed as the maximum increase (Δ MAP) and maximum percent increase in MAP (relative 155 Δ MAP) compared to baseline during the CPT.

156 Statistical analysis

157 All data were presented as mean ± SD. Statistical analysis was performed using IBM SPSS Statistics 25 158 (IBM SPSS; IBM Corp., Armonk, New York, USA). Pearson correlations were employed to examine the relation between baseline MAP and the change in blood pressure during the cold pressor test (Δ MAP) 159 160 versus the CAR% (i.e. relative change in diameter compared to baseline), whilst we also examined the 161 relation between the timing of the peak responses in BP versus CAR%. Participants were divided in 162 tertiles based on the relative change in BP during the CPT: low (<15%), medium (15-30%) and high 163 (>30%). One-way ANOVA was used to examine difference between groups in general characteristics 164 including age, BMI and cardiovascular risk and CAR%. Tukey post-hoc analysis was performed to 165 examine which groups differed from each other. Statistical significance was at p<0.05.

166 Results

167 In response to the CPT, diameter immediately changed and demonstrated a gradual increase with an 168 average peak at 92±43 seconds, which was followed by a gradual decline (Figure 2A). The mean CAR% 169 was 4.4%±5.4, with six participants demonstrating a constriction of the carotid artery during the CPT 170 (ranging from -7.6 to -0.74%). During the CPT, MAP began to increase within 30s, followed by a 171 gradual increase that peaked at 112±38 seconds (Figure 2A). The timing of the peak MAP (112±38s) 172 was significantly later than the peak in diameter (92±43s, difference in peak 20±5s, Wilcoxon-test;

P=0.04). There was no significant correlation between peak CAR% and peak MAP (R=0.03 P=0.29), nor
between the timing of the CAR% and MAP (R=0.03 P=0.30).

175

After dividing the group into tertiles (based on the relative increase in blood pressure), no significant differences were found between groups in subject characteristics (e.g. age, weight, BMI, MAP and family history), baseline diameter or CAR% (Table 3). No differences were found between groups when, individuals were divided into tertiles based on absolute blood pressure responses (data not shown). There was no correlation between the relative increase in blood pressure and CAR% (r=0.27 p=0.09).

182

Based on the distinct vasomotor responses during the CPT, we compared groups with carotid artery dilation (n=34) *versus* constriction (n=6). Nevertheless, baseline diameter and CAR% were similar (Table 4). Importantly, participants who demonstrated carotid artery constriction revealed a similar increase in BP compared to individuals with carotid dilation (Table 4).

187

188 Discussion

189 Our primary aim was to understand the relationship between changes in blood pressure and carotid artery diameter during the CPT. We present the following findings. First, the start of dilation and the 190 191 timing of the peak carotid artery diameter response preceded blood pressure changes during the cold 192 pressor test. Second, we found no differences in baseline characteristics including age, weight, BMI or 193 in the magnitude of carotid artery dilation when comparing groups based on the magnitude of blood 194 pressure increase. This finding is supported by the lack of correlation between the relative changes in 195 carotid artery diameter and blood pressure during the CPT. Finally, individuals who demonstrated 196 carotid artery vasoconstriction also demonstrated a comparable increase in blood pressure during 197 sympathetic stimulation compared to those with vasodilation. Taken together, our study suggests that

the characteristic increase in blood pressure during sympathetic stimulation may not directly relate tocarotid artery vasomotion in healthy middle-aged men.

200

201 The CPT is a frequently used procedure to activate the sympathetic nervous system in humans. As 202 expected, and in line with several previous studies, blood pressure gradually increased after a period 203 of 20-30 seconds. The increase in blood pressure is most likely the result of (nor)adrenaline release, 204 mediating a vasoconstriction response in peripheral arteries that cause an increase in total peripheral 205 resistance. (21, 22) Interestingly, we found that the timing of the start of carotid artery dilation, but 206 also the timing of the peak diameter change, significantly preceded the blood pressure response. This 207 suggests that, contrary to our hypothesis, carotid artery response is not directly linked or driven by 208 the increase in blood pressure response during the cold pressor test. To further support this 209 conclusion, we found no relation between the degree of blood pressure increase and the CAR% during 210 the CPT. However, it should be noted that the lack of correlation may relate to the presence of 211 confounding factors influencing vascular tone. Closely controlling for factors potentially affecting 212 endothelial function (e.g. drugs, supplements, behavioural aspects) at least partly prevented such 213 impacts. A final strong argument against a key role for blood pressure in mediating the carotid artery 214 vasomotor response during the cold pressor test is the presence of vasoconstriction in some 215 individuals. Intriguingly, a significant increase in blood pressure was found in these individuals, which 216 did not differ from the blood pressure response found in subjects with carotid artery dilation.

217

Despite the absence of a relation between the diameter and blood pressure response, both responses seem strongly related to sympathetic stimulation. In fact, a previous study found that muscle sympathetic nerve activity bursts are associated with concomitant increases in blood pressure and peripheral conduit artery diameter responses(12). Furthermore, catecholamine-release during sympathetic stimulation seem directly related to carotid artery responses, whilst catecholamines may Peace et al

223 also be responsible for the increased peripheral artery resistance and blood pressure changes (23). 224 Differences in sensitivity of receptors or mechanisms contributing to vasomotion between central (i.e. 225 carotid) and peripheral arteries may explain the difference in timing of the blood pressure and 226 diameter responses. Nonetheless, given their dependence on catecholamines (24), we expected a 227 relation between the magnitude of blood pressure and diameter response. One potential explanation 228 for the lack of relation is that catecholamine-release is less strongly related to vascular responses than 229 anticipated. Indeed, Cummings et al. found adrenalectomised participants do not demonstrate an 230 increase in adrenaline, noradrenaline or dopamine during the CPT, despite the presence of an increase 231 in blood pressure of comparable magnitude as in healthy individuals. Therefore, peripheral artery 232 responses (and therefore blood pressure) to the CPT may be independent of catecholamine release 233 (25), whilst catecholamines may be important for carotid artery diameter responses. At least, our data 234 suggests no direct link between blood pressure per se and carotid artery diameter response to the CPT 235 in healthy individuals, despite both parameters change markedly in response to CPT. Based on the 236 important role of blood pressure during the CPT, and the possible link with vasomotion, we 237 recommend performing beat-by-beat blood pressure measurements when examining the CAR.

238

239 An important factor to consider is that structural properties of the artery may influence the dilator 240 response. A previous study demonstrated a negative correlation between baseline carotid diameter 241 and CAR% in non-diseased average risk, high risk, and coronary artery disease patients, but not with 242 the carotid artery intima-media wall thickness (IMT) (7). In contrast, Van Mil et al. reported no 243 correlation between the baseline carotid diameter or IMT and CAR% in healthy people (9), whilst also 244 others found no correlation between coronary artery baseline diameter and dilation response (26). In 245 our study, we found a significant, but weak, inverse correlation between the baseline carotid diameter 246 and the CAR%, implying that a smaller baseline diameter correlates with a larger CAR%. This 247 observations fits with several previous studies examining peripheral arteries, where a smaller brachial 248 or femoral artery is related to a larger dilation in response to increases in shear stress (27, 28). The

249 presence of a correlation between diameter and CAR% in our study, whilst largely absent in previous 250 work, may relate to the inclusion of healthy individuals only. For example, previous work in peripheral 251 arteries also found a weaker or non-existing correlation between baseline diameter and dilator 252 responses in older and diseased populations. This may be explained by the impact of older age and/or 253 cardiovascular risk factors in those groups that affect both baseline diameter and dilator response, 254 consequently affecting the (weak) inverse relation between both parameters in healthy young 255 individuals. At least, our observation suggests that structural characteristics of the artery wall should 256 be considered when examining the CAR% responses, but unlikely affect or interfere with the blood 257 pressure increase (and subsequent diameter response) during the CPT.

258

259 Limitations. One potential limitation is that the results of our study only apply to middle-aged men, 260 making extrapolation to other (diseased) groups difficult. This is important since distinct populations 261 have demonstrated different CAR% and/or blood pressure response (29, 30), whilst also physical 262 activity may affect the blood pressure and/or CAR% (31). Nonetheless, it seems unlikely that these confounding factors, despite their role in changing blood pressure and/or CAR%, affects the relation 263 264 between the blood pressure and diameter increase during the CPT. Another limitation is that our study 265 did not explore the causal link between blood pressure and CAR%. Such a study would require direct 266 manipulation of the blood pressure response during sympathetic stimulation. Monahan et al (2013) examined the impact of the CPT on the left anterior descending artery with α - and β -adrenergic 267 268 antagonists (32), and found adrenergic blockage to abolished coronary artery vasodilation. In 269 agreement, we examined carotid and coronary artery responses during the CPT with and without α_1 -270 receptor blockade, and reported abolished carotid and coronary artery responses when combined 271 with α_1 -receptor blockade(33). Whilst this provides evidence for the role of adrenergic receptors in 272 contributing to carotid (and coronary) artery vasodilation during the cold pressor test, the presence

of an increase in blood pressure during blockade hampered conclusions pertaining to the role of bloodpressure *per se*.

276	In conclusion, findings from our study suggest that carotid artery diameter changes during the CPT
277	may not be related to the characteristic increase in blood pressure. The start and peak of the diameter
278	precedes that of the blood pressure, whilst no correlation is present between the magnitude of the
279	blood pressure response and CAR%. Moreover, even individuals who present carotid artery
280	vasoconstriction demonstrate an increase in blood pressure, making it unlikely that the blood pressure
281	rise should be regarded as the dilator stimulus. Nonetheless, the change in blood pressure during the
282	CAR% may still be relevant, especially to understand the link to the sympathetic nervous system. This
283	work suggests the CAR% provides relevant information, independent of the increase in blood pressure
284	during the CPT.

285 References

286 1. Organization WH. Cardiovascular Disease Fact Sheet: World Health Organization, 2018 2018 [Available from: http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-287 288 (cvds). Juonala M, Viikari JS, Laitinen T, Marniemi J, Helenius H, Ronnemaa T, et al. Interrelations 289 2. 290 between brachial endothelial function and carotid intima-media thickness in young adults: the 291 cardiovascular risk in young Finns study. Circulation. 2004;110(18):2918-23. 292 Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, et al. Endothelial function 3. 293 predicts progression of carotid intima-media thickness. Circulation. 2009;119(7):1005-12. 294 Glowinska-Olszewska B, Tolwinska J, Urban M. Relationship between endothelial 4. 295 dysfunction, carotid artery intima media thickness and circulating markers of vascular inflammation 296 in obese hypertensive children and adolescents. J Pediatr Endocrinol Metab. 2007;20(10):1125-36. 297 Kobayashi K, Akishita M, Yu W, Hashimoto M, Ohni M, Toba K. Interrelationship between 5. 298 non-invasive measurements of atherosclerosis: flow-mediated dilation of brachial artery, carotid 299 intima-media thickness and pulse wave velocity. Atherosclerosis. 2004;173(1):13-8. 300 Barbato E. Role of adrenergic receptors in human coronary vasomotion. Heart (British 6. 301 Cardiac Society). 2009;95(7):603-8. 302 Rubenfire M, Rajagopalan S, Mosca L. Carotid artery vasoreactivity in response to 7. 303 sympathetic stress correlates with coronary disease risk and is independent of wall thickness. 304 Journal of the American College of Cardiology. 2000;36(7):2192-7. 305 Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator 8. 306 dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 307 2000;101(16):1899-906. 308 van Mil AC, Hartman Y, van Oorschot F, Heemels A, Bax N, Dawson EA, et al. Correlation of 9. 309 carotid artery reactivity with cardiovascular risk factors and coronary artery vasodilator responses in 310 asymptomatic, healthy volunteers. Journal of hypertension. 2017;35(5):1026-34. 311 van Mil A, Pouwels S, Wilbrink J, Warle MC, Thijssen DHJ. Carotid Artery Reactivity Predicts 10. 312 Events in Peripheral Arterial Disease Patients. Annals of surgery. 2017. 313 van Mil AC, Tymko MM, Kerstens TP, Stembridge M, Green DJ, Ainslie PN, et al. Similarity 11. 314 between carotid and coronary artery responses to sympathetic stimulation and the role of alpha-1 315 receptors in humans. J Appl Physiol (1985). 2018. 316 12. Fairfax ST, Padilla J, Vianna LC, Holwerda SH, Davis MJ, Fadel PJ. Influence of spontaneously 317 occurring bursts of muscle sympathetic nerve activity on conduit artery diameter. Am J Physiol Heart 318 Circ Physiol. 2013;305(6):H867-74. 319 13. Youssef M, Ghassemi A, Carvajal Gonczi CM, Kugathasan TA, Kilgour RD, Darlington PJ. Low 320 Baseline Sympathetic Tone Correlates to a Greater Blood Pressure Change in the Cold Pressor Test. 321 Aerospace medicine and human performance. 2018;89(6):503-9. 322 14. Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular Adaptation to Exercise 323 in Humans: Role of Hemodynamic Stimuli. Physiological reviews. 2017;97(2):495-528. 324 Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-15. 325 mediated dilation in humans: a methodological and physiological guideline. American journal of 326 physiology. 2011;300(1):H2-12. 327 Skirton H, Chamberlain W, Lawson C, Ryan H, Young E. A systematic review of variability and 16. 328 reliability of manual and automated blood pressure readings. J Clin Nurs. 2011;20(5-6):602-14. 329 17. Waldron M, David Patterson S, Jeffries O. Inter-Day Reliability of Finapres. Sports Med Int 330 Open. 2018;2(1):E9-E15. 331 Flück D, Ainslie PN, Bain AR, Wildfong KW, Morris LE, Fisher JP. Extra- and intracranial blood 18. flow regulation during the cold pressor test: influence of age. J Appl Physiol (1985). 332

333 2017;123(5):1071-80.

van Mil ACCM, Pouwels S, Wilbrink J, Warlé MC, Thijssen DHJ. Carotid Artery Reactivity
 Predicts Events in Peripheral Arterial Disease Patients. Ann Surg. 2017.

Potter K, Green DJ, Reed CJ, Woodman RJ, Watts GF, McQuillan BM, et al. Carotid intima medial thickness measured on multiple ultrasound frames: evaluation of a DICOM-based software
 system. Cardiovascular ultrasound. 2007;5:29.

Wirch JL, Wolfe LA, Weissgerber TL, Davies GA. Cold pressor test protocol to evaluate cardiac
 autonomic function. Appl Physiol Nutr Metab. 2006;31(3):235-43.

22. von Baeyer CL, Piira T, Chambers CT, Trapanotto M, Zeltzer LK. Guidelines for the cold

pressor task as an experimental pain stimulus for use with children. J Pain. 2005;6(4):218-27.
Gordan R, Gwathmey JK, Xie LH. Autonomic and endocrine control of cardiovascular

344 function. World J Cardiol. 2015;7(4):204-14.

34524.Currie GF, EM. Perry, CG. Domiiczek, AF. . Disorders of blood pressure regulation-role of346catecholamine biosynthesis, release and metabolism. Curr Hypertens Resp. 2012;14(1):38-45.

25. Cummings. M SP, Mahar. L, Frewin. D, Russel. W,. The role of adrenal medullary

catecholamine release in the response to a cold pressor test. Cardiovasc Res. 1983;17(4):189-91.

- Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, et al. Coronary
 vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation.
 1990;81(2):491-7.
- 27. Padilla J, Simmons GH, Vianna LC, Davis MJ, Laughlin MH, Fadel PJ. Brachial artery
 vasodilatation during prolonged lower limb exercise: role of shear rate. Experimental physiology.
 2011;96(10):1019-27.
- Thijssen DH, Dawson EA, Black MA, Hopman MT, Cable NT, Green DJ. Heterogeneity in
 conduit artery function in humans: impact of arterial size. American journal of physiology.
 2008;295(5):H1927-34.
- Treiber FA, Musante L, Braden D, Arensman F, Strong WB, Levy M, et al. Racial differences in
 hemodynamic responses to the cold face stimulus in children and adults. Psychosomatic medicine.
 1990;52(3):286-96.

361 30. Adamopoulos D, Ngatchou W, Lemogoum D, Janssen C, Beloka S, Lheureux O, et al.

Intensified large artery and microvascular response to cold adrenergic stimulation in African blacks.American journal of hypertension. 2009;22(9):958-63.

364 31. Padilla JS, G. Bender, Shawn. Arce-Esquivel, A. Whyte, J. Laughlin, M. . Vascular Effects of
 365 Exercise: Endothelial Adaptions Beyond Active Muscle Beds. Physiology. 2011;26(3):132-45.

366 32. Monahan KD, Feehan RP, Sinoway LI, Gao Z. Contribution of sympathetic activation to
 367 coronary vasodilatation during the cold pressor test in healthy men: effect of ageing. J Physiol.

- 368 2013;591(11):2937-47.
- 369 33. van Mil ACCM, Tymko MM, Kerstens TP, Stembridge M, Green DJ, Ainslie PN, et al. Similarity
 370 between carotid and coronary artery responses to sympathetic stimulation and the role of α. J Appl
 371 between carotid and coronary artery responses to sympathetic stimulation and the role of α. J Appl
- 371Physiol (1985). 2018;125(2):409-18.

373 <u>Tables</u>

Table 1. Correlation between CAR% and the blood pressure variables during CPT for all participants and the dilation group. Δ BP is the absolute difference between peak and baseline blood pressue, whereas relative Δ BP is the percent increase from baseline to the peak blood pressure. A: BP Change defined as low (<15%), medium (15-30%) and high (>30%)

378

	All participants		Dilation group (N=34)	
	Pearson correlation	p-value	Pearson correlation	p-value
Baseline diameter	-0.354	0.025	-0.588	< 0.001
Baseline MAP	0.209	0.197	0.298	0.087
Peak MAP	0.359	0.023	0.422	0.013
ΔΜΑΡ	0.326	0.040	0.327	0.059
Relative ∆BP	0.272	0.089	0.226	0.199
MAP change _A	0.331	0.037	0.271	0.121

- **Table 2**. CAR and blood pressure results of the groups divided based on relative ΔMAP (low= <15%,
- 381 medium = between 15% and 30%, high = >30%). Relative Δ MAP is the percent increase from baseline

to the peak MAP.

	Low relative	Medium relative	High relative	p-value
	ΔBP (n=8)	ΔBP (n=20)	ΔBP (n=12)	
Age	42.6 ± 9.3	40.9 ± 9.2	44.3 ± 10.6	0.613
Weight (kg)	83.5 ± 12.3	81.2 ± 11.7	83.9 ± 15.3	0.823
Height (m)	1.76 ± 0.08	1.77 ± 0.07	1.79 ± 0.07	0.599
BMI (kg/m ²)	26.7 ± 2.2	26.0 ± 3.5	26.1 ± 4.6	0.889
Positive family history	1.5 ± 0.76	1.2 ± 0.8	1.3 ± 0.8	0.664
Baseline diameter (cm)	0.67 ± 0.05	0.65 ± 0.05	0.69 ± 0.08	0.219
CAR%	1.3 ± 4.6	4.5 ± 4.5	6.4 ± 6.5	0.109
Baseline MAP (mmHg)	95 ± 11	85 ± 8	90 ± 9	0.053
Peak MAP(mmHg)	102 ± 13	106 ± 10	125 ± 15 ^{ab}	<0.001
Relative Δ MAP (%)	7.5 ± 4.3	23.7 ± 3.9 °	38.0 ± 4.0^{ab}	<0.001

383 *a Post-hoc significantly different from group 1*

384 ^b Post-hoc significantly different from group 2.

385

386

- **Table 3:** Participant characteristics and CAR% when divided into groups based on the presence of
- diameter dilation or vasoconstriction. P-values refer to an unpaired t-test.

390

	Dilator (34)	Constrictor (6)	p-value
Age	42.08±9.3	43.17±12	0.904
Weight (kg)	81.05±11.2	90.3±18.7	0.343
Height (m)	1.779±0.072	1.750±0.050	0.648
BMI (kg/m²)	25.58±2.9	29.37±5.3	0.060
Number of risk factors	0.441±0.504	0.167±0.408	0.372
Baseline diameter (cm)	0.67±0.054	0.66±0.104	0.430
CAR%	5.7±4.7	-2.9±2.48	<0.001
Baseline MAP (mmHg)	88.7±7.4	91.5±8	0.464
Peak MAP (mmHg)	110±15	109±19	0.288
Relative Δ MAP (%)	22.3±10	20±15	0.518

391

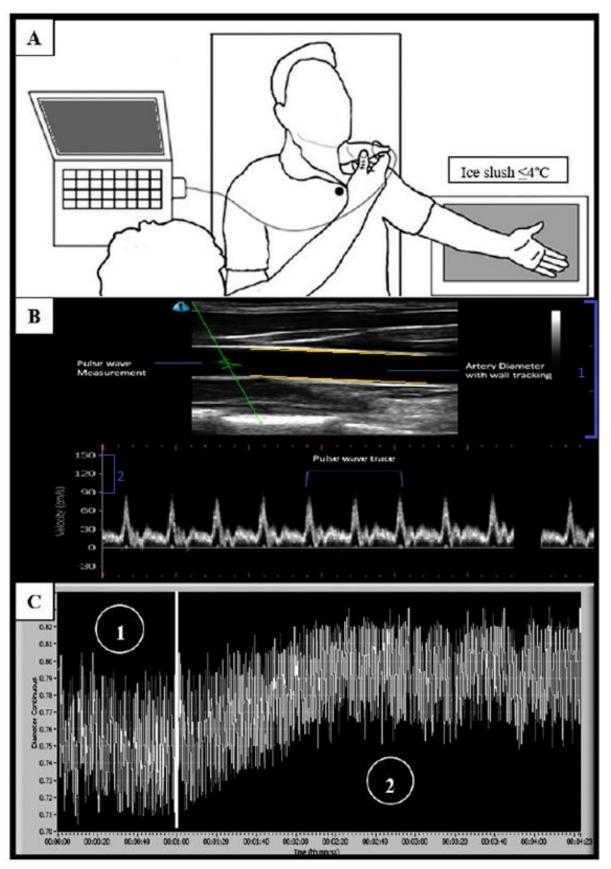
Peace et al

393 Figure Legends

Figure 1. A) Carotid artery ultrasound alongside the cold pressor test (CPT). B) A healthy ultrasound
 image demonstrating wall tracking (yellow) used to calculate vessel diameter and C)
 Diameter of the carotid artery during both 1: Baseline measurement and 2: In response to
 the CPT. Demonstrating a healthy dilatory response. Adapted from (19).

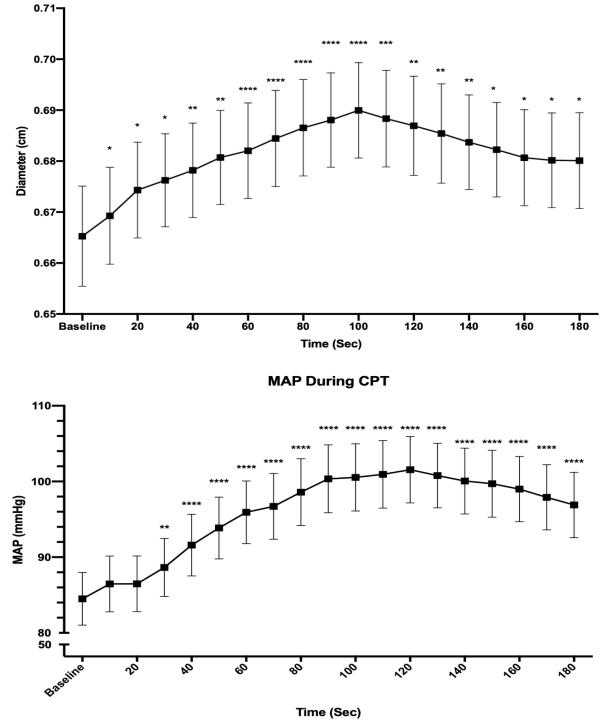
398

Figure 2. Mean and Standard Deviation participants during the cold pressor test (CPT) A) Mean arterial
 pressure (MAP) response to the CPT and B) Diameter response to the CPT. One-Way ANOVA
 performed to compare baseline vs increase in both MAP and diameter. * denotes P= >0.05


402

403

404


Figure 1

Carotid Artery Diamater During CPT

