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Neotropical Rivers host a highly diverse ichthyofauna, but taxonomic uncertainty
prevents appropriate conservation measures. The Doce River Basin (DRB), lying within
two Brazilian threatened hotspots (Atlantic Forest and Brazilian Savanna) in south-
east Brazil, faced the worst ever environmental accident reported for South American
catchments, due to a dam collapse that spread toxic mining tailings along the course of
its main river. Its ichthyofauna was known to comprise 71 native freshwater fish species,
of which 13 endemic. Here, we build a DNA barcode library for the DRB ichthyofauna,
using samples obtained before the 2015 mining disaster, in order to provide a more
robust biodiversity record for this basin, as a baseline for future management actions.
Throughout the whole DRB, we obtained a total of 306 barcodes, assigned to 69
putative species (with a mean of 4.54 barcodes per species), belonging to 45 genera,
18 families, and 5 orders. Average genetic distances within species, genus, and families
were 2.59, 11.4, and 20.5%, respectively. The 69 species identified represent over
76% of the known DRB ichthyofauna, comprising 43 native (five endemic, of which
three threatened by extinction), 13 already known introduced species, and 13 unknown
species (such as Characidium sp., Neoplecostomus sp., and specimens identified only
at the sub-family level Neoplecostominae, according to morphological identification
provided by the museum collections). Over one fifth of all analyzed species (N = 16)
had a mean intraspecific genetic divergence higher than 2%. An integrative approach,
combining NND (nearest neighbor distance), BIN (barcode index number), ABGD
(automatic barcode gap discovery), and bPTP (Bayesian Poisson Tree Processes model)
analyses, suggested the occurrence of potential cryptic species, species complex,
or historical errors in morphological identification. The evidence presented calls for
a more robust, DNA-assisted cataloging of biodiversity-rich ecosystems, in order to
enable effective monitoring and informed actions to preserve and restore these delicate
habitats.

Keywords: barcode, biodiversity, cryptic diversity, Doce River, ichthyofauna, molecular identification

Abbreviations: BIN, barcode index number; BOLD, Barcode of Life Data System; DRB, Doce River Basin; NND, nearest
neighbor distance.
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INTRODUCTION

Neotropical rivers host an extremely diverse ichthyofauna, but
anthropogenic impact associated with the occurrence of many
still undescribed or unknown species may hamper conservation
effort (Reis et al., 2016; Ely et al., 2017). Due to increasing, rapid
anthropogenic environmental impacts (e.g., pollution, siltation,
mining, damming), biodiversity in Neotropical rivers may be lost
before scientists can fully describe and comprehend it (Agostinho
et al., 2005).

Effective biodiversity conservation relies on unequivocal and
precise species identification, especially in the case of ecosystems
that underwent degradation and require restoration. However,
high biodiversity regions, such as the neotropics, and the
increasingly reduced budget for basic taxonomical research,
have led to the so-called “taxonomic impediment” or “poor
taxonomy”, in which the shortage of funding and trained
taxonomists, and the gaps in taxonomic knowledge, have delayed
advances in assessment and description of biodiversity or even
contributed to overestimate or underestimate species richness
due to species misidentification or taxonomic confusions (Taylor,
1983; Ely et al., 2017).

The DNA barcoding initiative offers a powerful and cost-
effective tool to assist with the detection of cryptic species and
flag potentially problematic taxa, with the standard universal COI
marker having proven particularly successful in invertebrates
(Hebert et al., 2004a), birds (Hebert et al., 2004b), and fish (Ward
et al., 2005; Hubert et al., 2008; Valdez-Moreno et al., 2009;
Carvalho et al., 2011; Rosso et al., 2012). For effective DNA
barcode performance, intraspecific variability must be lower than
variability among congeneric species, the so-called ‘Barcode Gap’
(Meyer and Paulay, 2005). While the barcode gap tends to be
around <1–2% sequence variability within species in most fish,
there are exceptions (Hurst and Jiggins, 2005), especially in
the case of recently diverged species (Vinas and Tudela, 2009;
Shum et al., 2017). Moreover, the unambiguous identification
of species from early larval stage to adulthood can aid a
variety of conservation management actions. Accurate molecular
identification may contribute to improving management and
sustainability of long term fisheries (Metcalf et al., 2007),
tracking invasive species (Corin et al., 2007; Carvalho et al.,
2009), offer insights into community ecology (Pfenninger et al.,
2007) and genetic certification of species used in restocking
programs (Metcalf et al., 2007), as well as improving fundamental
knowledge on cryptic and putatively new species (Pereira et al.,
2011). Furthermore, molecular identification of eggs and larvae
can provide data regarding spawning and recruitment areas,
supporting a definition of priority areas for conservation (Becker
et al., 2015; Frantine-Silva et al., 2015).

DNA barcode libraries have been developed for several
Neotropical river systems as a biodiversity identification tool,
and have contributed to reveal the existence of putatively
cryptic/new fish species (Carvalho et al., 2011; Pereira et al.,
2011; Gomes et al., 2015; Pugedo et al., 2016; Nascimento et al.,
2016). However, the biodiversity complexity remains unknown
in many already impacted catchments in Brazil. One emblematic
case is that of the Doce River Basin (DRB), which faced the

worst environmental accident reported for any South American
catchment, in the form of the largest tailings dam burst in modern
history; as a result, a toxic mud (i.e., extreme high concentration
of iron) spread along its main river course, affecting wild
communities, as well as the local human populations (Fernandes
et al., 2016; Neves et al., 2016). As the local riverine human
communities rely on fisheries for their livelihood (e.g., source of
income and subsistence, resource for ecotourism), understanding
the impacts of this disaster on the ichthyofauna is crucial for
effective management actions (Ecoplan-Lume, 2010; GFT, 2015;
Neves et al., 2016). Moreover, the recovery of fish populations
in DRB, after the ecological disaster, relies on the recolonization
of the main course of this river and on the diversity, size,
and conservation status of the remnant fish populations in the
tributaries (Olds et al., 2012).

The DRB runs through two Brazilian biodiversity hotspots
(Atlantic forest and Brazilian Savanna) located in south-east
Brazil (Myers et al., 2000). The river is 853 km long and the
catchment covers a total drainage area of 83.400 km2, between
the states of Minas Gerais (86%) and Espírito Santo (14%),
an area inhabited by three million people. DRB harbors a
rich ichthyofauna, including several undescribed species, with
the number of presently recognized native species summing
up to 71 (Vieira, 2009). The Santo Antônio River, the second
largest tributary of the Doce, was selected as a conservation
priority area, since it hosts a great number of species considered
endemic and threatened by extinction (Vieira et al., 2000; Vieira
and Alves, 2001; Rosa and Lima, 2005). Historically, DRB
is affected by human impacts by many ways. Native forest
cover only 27% of DRB area (ANA, 2016), and the remained
area is used to cattle, forestry, agriculture, and mining (Vieira,
2009), resulting in high rate of siltation (da Silva et al., 2011).
Habitat fragmentation lead by hydroelectric construction is also
affecting DRB, where there are 40 hydroelectric built along main
channel of Doce River and its principal tributaries (ANEEL,
2010). However, without accurate biodiversity knowledge,
species conservation may be hindered in this river system,
and it had already been suggested that the environmental
disaster involving the mining collapse could have led to the
depletion/extinction of many still unknown endemic species
(Fernandes et al., 2016). Here, we develop a DNA barcode
library for the DRB ichthyofauna, using data obtained prior
to the dam burst environmental disaster, contributing to an
improved biodiversity baseline record for this recently impacted
ecosystem.

MATERIALS AND METHODS

Sampling
We obtained fish tissue samples from 306 specimens collected
between 2011 and 2015 along the main river channel and
tributaries (Figure 1), identified and deposited by taxonomists
in four Brazilian ichthyological collections: PUC Minas Natural
History Museum (MCNIP), Museu de Biologia Professor Mello
Leitão (MBML), Museu de Zoologia da Universidade Estadual
de Campinas (ZUEC), and Núcleo de Pesquisas em Limnologia,
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FIGURE 1 | Map of Doce River Basin, including sample sites distribution.

Ictiologia e Aquicultura (NUPELIA). All analyzed specimens
were photographed, geo-referenced, and identified to the lowest
taxonomic level from identification keys or previously published
works (Vari, 1992; Albert et al., 1999; Castro and Vari, 2004;
Zanata and Camelier, 2009).

Ethics Statement
All fish analyzed in this study were collected in accordance with
Brazilian legislation (Collection license 6421-1, number 5498740)
or obtained from Ichthyological collections. Fish were collected,
and euthanized; samples of fins were clipped from each individual
and stored in absolute ethanol for subsequent molecular analysis.
Specimens were fixed in 10% formaldehyde and then stored in
70% ethanol.

DNA Extraction, Amplification, and
Sequencing
Genetic analyses were conducted, whenever possible, on a
minimum of five specimens from different sample sites per
species. DNA extraction followed the salting out protocol
(adapted from Aljanabi and Martinez (1997)). The cytochrome
c oxidase I (COI) gene ( 650 bp) was amplified by polymerase
chain reaction (PCR) using the primers FishF1/FishR1 described
by Ward et al. (2005) and the Cocktail COI-3/C_FishF1t1-
C_FishR1t1 described by Ivanova et al. (2007), and following
the PCR protocol described in Gomes et al. (2015). The PCR
products were visualized on 1% agarose gel, alongside negative
controls and a size ladder, and positive amplifications were
selected for DNA sequencing. DNA sequencing was conducted
in both directions in an automated DNA analyzer ABI 3500 (Life
Technologies).

Data Analysis
Barcode sequences were edited using DNA Baser R© v.3.5.4 (DNA
Sequence Assembler v4 (2013), Heracle BioSoft1) and SeqScape
v.2.1.1 (Applied Biosystems, Foster City, CA, United States) (Díaz
et al., 2016) softwares. DNA alignment was conducted using
the CLUSTAL W alignment tool (Thompson et al., 1997). The
neighbor-joining (NJ) trees (Saitou and Nei, 1987) and genetic
distances estimations, using the K2P (Kimura-2-parameter)
nucleotide evolution model (Kimura, 1980) were generated using
MEGA 7 software (Kumar et al., 2016).

Intra- and inter-specific genetic distances, nearest neighbor
distance (NND), and the barcode gap were calculated in the
on-line Barcode of Life Data System (BOLD) Workbench2

(Ratnasingham and Hebert, 2007). The NND was used to
estimate the minimum genetic distance between pairs of species.
Different approaches were used to delimitate the Molecular
Operational Taxonomic Units (MOTUs), two clustering
algorithms [barcode index number (BIN) and Automatic
Barcode Gap Discovery (ABGD)] and one phylogenetic-
coalescent method Bayesian Poisson Tree Processes model
(bPTP). The BIN (Ratnasingham and Hebert, 2013) was
estimated automatically in BOLD Workbench and allowed
comparing DNA barcodes obtained here with other river basins
that have a comprehensive DNA Barcode library, such as the São
Francisco, the Mucuri, the Jequitinhonha, the Paraná, and the
Paranaíba River Basins (Carvalho et al., 2011; Pereira et al., 2011;
Gomes et al., 2015; Díaz et al., 2016; Pugedo et al., 2016). Using
this approach, it is possible to identify endemic lineages and
shared ichthyofauna. ABGD analyses (Puillandre et al., 2012)

1www.DnaBaser.com
2http://www.boldsystems.org
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were performed using the web interface (3web version ‘May
31 2017’) with a relative gap width value of X = 1.0 and two
available distance metrics [JC69 (Jukes and Cantor, 1969) and
K2P (Kimura, 1980)], while the other parameter values employed
default settings. The bPTP was conducted using both ML
(maximum likelihood) and Bayesian approaches (Zhang et al.,
2013). The PTP file input consisted in a nexus tree generated in
MrBayes (Ronquist and Huelsenbeck, 2003) using six random
parsimony trees, with the GTRGAMMA substitution model
(obtained by MEGA 7 under BIC criteria), without rooting and
applying the parameters of 20 million MCMC generations and a
burn-in of 10%. Analysis was conducted applying default values
through the bPTP server (500,000 generations, thinning = 100,
burn-in = 10%).

All data, including fish photos, GPS coordinates of
each sample site, vouchers numbers, detailed taxonomic
identifications, and the corresponding sequence data and trace
files were submitted to the BOLD (2see Ratnasingham and
Hebert, 2007) within the project file ‘DNA Barcoding of DRB’.

Species Delimitation and Hidden
Biodiversity
Species delimitation based on integrative approaches that
combine a diverse range of statistical methods has been
extensively used to identify hidden biodiversity (i.e., Padial
et al., 2010; Costa-Silva et al., 2015; Gomes et al., 2015;
Rossini et al., 2016; Ramirez et al., 2017). Here, species with
>2% of intraspecific genetic divergences, still undescribed
or unknown and identified only at genus or family level
were investigated individually to detect the occurrence
of new molecular operational taxonomic units (MOTUs)
according to the congruence among BIN, ABGD, bPTP
outputs.

Undescribed species or those only identified at genus or
family level were checked using the BIN and NND analyses in
order to verify their occurrence in clusters composed by other
nominal species, and their genetic divergence from the nearest
neighbor (including species from DRB and/or distinct Brazilian
basins). Were considered as new MOTUs when intraspecific
genetic divergence was higher than 2% for described species
and distinguished clusters identified by BIN, ABGD, and bPTP
outputs.

RESULTS

Morphological identification on the 306 specimens yielded 69
species (see Supplementary Table S1) in of which 43 are native
species (five endemic, three threatened by extinction and one
endemic and threatened), 13 non-native species and 13 unknown
species to the DRB (see Supplementary Table S2), representing
over 76% of its known freshwater ichthyofauna (Vieira, 2009). We
then obtained 306 partial sequences of the COI gene, consisting
of 665 bp on average, and no insertions, deletions, or stop codons
were detected, indicating that there was no case of NUMTS

3http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html

TABLE 1 | Distance summary reports for sequence divergence between species,
genus, and family level, including minimum, mean, and maximum genetic
distances (K2P).

Minimum Mean Maximum

distance (%) distance (%) distance (%)

Within species 0 2.59 21.82

Within genera 0 11.4 24.2

Within families 0 20.5 30.99

(Nuclear mitochondrial DNA sequences) (Song et al., 2008;
Hazkani-Covo et al., 2010).

A mean of 4.54 individuals per species were sequenced,
comprising 45 genera, 18 families, and 5 orders [Characiformes
(41.9%), Siluriformes (40.6%), Perciformes (9.4%),
Gymnotiformes (4.7%), and Cyprinodontiformes (3.4%)].
Species represented by one or two specimens (N = 19) were
not included in the estimation of intraspecific divergences
(Callichthys callichthys, Cichla kelberi, Clarias gariepinus,
Hoplosternum littorale, Hyphessobrycon bifasciatus, H. eques,
Hypostomus sp., Lophiosilurus alexandri, Metynnis maculatus,
Parotocinclus maculicauda, Pimelodus maculatus, Poecilia
vivipara, Prochilodus vimboides, Pygocentrus nattereri, Salminus
brasiliensis, Steindachneridion doceanum, Trichomycterus aff.
auroguttatus, T. cf. brasiliensis, and T. longibarbatus). The NJ
tree identified species-specific clades for 80.9% of all species.
The mean genetic distances found within species, genera, and
families were: 2.59, 11.4, and 20.5% (Table 1), respectively.

Over 65% of the analyzed species showed genetic distances
lower than 1% and for 70% of the species the divergence value was
below 2% (Figure 2A). When considering intra-generic distance,
19% of the species had a divergence higher than 20% (Figure 2B),
suggesting the possibility of taxonomic errors or cryptic species.

Intra- and Inter-Specific Divergence
Intraspecific distance varied from 0 to 21.82%. Particularly high
genetic distances (>10%) were recovered among specimens of
Astyanax fasciatus (20.69%), Astyanax scabripinnis (21.82%),
Astyanax sp. (20.5%), Characidium sp. (10.17%), Crenicichla
lacustris (21.36%), Harttia sp. (12.2%), Poecilia reticulata
(14.34%), and Trichomycterus aff. alternatus (18.49%), flagging
possible new MOTUs (i.e., hidden diversity) or problems related
with taxonomic morphological identification.

The NJ tree encompassing all species showed the occurrence
of monophyletic clades and absence of shared haplotypes for
44 of the 69 analyzed species. The interspecific genetic distance
showed that 63.2% of the analyzed species had a K2P divergence
higher than 2% to their closest neighbor, with the exception
of: Astyanax spp., Deuterodon pedri, H. eques, Characidium sp.
and Characidium gr. timbuiense, Gymnotus spp., Oligosarcus
argenteus and O. acutirostris, P. reticulata and P. vivipara, and T.
aff. alternatus and T. longibarbatus (Supplementary Figure S1).

Incongruences between morphological and barcode
identifications (BIN, ABGD, bPTP) (i.e., one BIN/ABGD/bPTP
cluster containing more than one morphological species,
morphological species represented by more than one
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FIGURE 2 | Genetic divergences found for all sequences analyzed at species (A) and genus (B) levels.

BIN/ABGD/bPTP cluster, and/or >2% of intraspecific
genetic distance and <1% of interspecific divergence)
were observed within species of the genus Astyanax,
Characidium, Crenicichla, Deuterodon, Gymnotus, Harttia,
Hoplias, Hyphessobrycon, Hypostomus, Knodus, Neoplecostomus,
Oligosarcus, Pareiorhaphis, Poecilia, Prochilodus, Rhamdia, and
Trichomycterus (Supplementary Table S2).

Identification of Molecular Operational
Taxonomic Units (MOTUs)
The BIN analysis identified 81 clusters, including 48
taxonomically concordant, 17 discordant, and 16 singletons.
The ABGD analysis detected 54–133 MOTUs when varying
the prior maximal distance from P = 0.001 to P = 0.1000
(applying both the K2P and JC69 nucleotide evolution methods).
The partition that recovered 81 groups (intraspecific distance
P = 0.0077) was chosen due to its consistency with our BIN
analysis. The bPTP analyses (Bayesian and ML approaches)
resulted in the same number of clusters obtained by BIN,
except for Harttia sp. (three BIN and ABGD clusters and one
bPTP) and Prochilodus costatus (two BIN, and one ABGD and
bPTP clusters). ABGD species delineation was in agreement
with all the BIN clusters with the following exceptions,
which contain more than one BIN for each morpho-species:
A. scabripinnis (BIN: AAC5910, ABGD: 36 and 81), Knodus
moenkhausii (BIN: AAM1485, ABGD: 46 and 49), P. costatus
(BIN: ADC2568 and ADC2571, ABGD: 10), Trichomycterus
sp./T. aff. alternatus/T. aff. auroguttatus/T. longibarbatus (BIN:
ACJ1164 and ACJ1161, ABGD: 64), Trichomycterus sp./T.
cf. brasiliensis (BIN: ACK5393 and ACT6325, ABGD: 65)
(Supplementary Table S2).

Identification of Hidden Biodiversity
Sequences from fifteen undescribed species or identified only at
genus or family level were compared to other species available
in BOLD database through NND and BIN analyses (Table 2).
Within undescribed or unknown species, we recovered new
MOTUs from the following genera: Astyanax, Characidium,
Gymnotus, Harttia, Hisonotus, Neoplecostomus, Pareiorhaphis,
Phalloceros, and Trichomycterus. The other six species were not
considered new MOTUs (Brycon sp., Hasemania sp., Hypostomus
sp., Imparfinis sp., Neoplecostominae, and Pimelodella sp.) since
they were included in BINs composed by another nominal
species and showed interspecific divergence <2% with the nearest
neighbor.

Among species with deep intraspecific divergence (>2%) we
recovered additionally at least three putative cryptic species
due to the congruence among BIN, ABGD, bPTP, and genetic
distance methods for C. lacustris, Hoplias malabaricus, and
Rhamdia cf. quelen (Table 3). A. fasciatus and A. scabripinnis
despite showing a congruence of BIN and ABGD analyses were
included in clusters comprising another species of the genus.
K. moenkhausii had a maximum intraspecific divergence of
3.07% and two distinct ABGD numbers, however, only one clade
and one BIN was recovered for this species. Astyanax lacustris,
A. taeniatus, P. reticulata, P. costatus, T. aff. alternatus, and T. aff.
immaculatus despite showing a high intraspecific genetic distance
were included in BINs comprised by another nominal species and
thus, were not considered as putative cryptic species.

DISCUSSION

DNA Barcoding Effectiveness
We analyzed 306 fish specimens obtained before the dam burst
in 2015 and provided genetic data for the ichthyofauna of
the DRB, highlighting the occurrence of cryptic and previously
unrecognized biodiversity. Therefore, we significantly extend the
knowledge on this river system, whose previous surveys mostly
focused on the middle course of the river and in lakes located
inside the Doce State Park and its surroundings (Sunaga and
Verani, 1987; Vieira, 1994; Vono and Barbosa, 2001; Latini and
Petrere, 2004). This baseline offers a more robust platform for any
future attempt to restore biodiversity and ecosystem functions to
a level comparable to pre-disaster conditions.

Using DNA barcoding, we observed an intraspecific genetic
distance considerably higher than previously reported for
freshwater fish species from other Brazilian basins. On the
other hand, intrageneric divergences were found to be similar
to previous studies (Carvalho et al., 2011; Pereira et al., 2011;
Pugedo et al., 2016). These results suggest a higher occurrence
of hidden biodiversity in DRB when compared to other studied
Brazilian basins (Table 4).

Hidden Biodiversity
DNA barcoding has already been used to reveal hidden
biodiversity, such as cryptic species and new candidate fish
species in the São Francisco (Carvalho et al., 2011), Mucuri
(one species – Gomes et al., 2015), and Jequitinhonha (15
species – Pugedo et al., 2016) River catchments. In DRB,
from 69 morphologically identified species, the barcode analyses
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TABLE 2 | List of undescribed species, including the nearest neighbor, BIN, and genetic similarity (%).

Species NND (nearest neighbor species) BIN BIN classification Maximum similarity (%)

Astyanax sp. Astyanax fasciatus AAC5910 Discordant 99.2

Deterodon pedri ACJ9650 Discordant 99

Astyanax intermedius ACT0040 Singleton 93.7

Astyanax fasciatus, A. bockmanni AAY4812 Discordant 99.2

Brycon sp. Brycon ferox ACH8616 Concordant 100

Characidium sp. Characidium sp. ACS9348 Concordant 100

Characidium cf. timbuiense ACJ1226 Discordant 100

Characidium cf. timbuiense ACI3743 Discordant 100

Gymnotus sp. Gymnotus carapo AAB6216 Discordant 100

Gymnotus sylvius AAB6212 Concordant 100

Gymnotus sp. ACT0768 Concordant 100

Harttia sp. Harttia sp. ACJ1000 Singleton 100

Harttia sp. ACI6845 Concordant 100

Harttia sp. ACO6155 Singleton 100

Hasemania sp. Hasemania hanseni AAO6055 Concordant 100

Hisonotus sp. Hisotonus sp. ACW1732 Concordant 100

Hypostomus sp. Hypostomus auroguttatus AAB9690 Discordant 100

Hypostomus heraldoi 98.52

Hypostomus luetkeni 99.51

Hypostomus strigaticeps 99.01

Imparfinis sp. Imparfinis minutus AAC2103 Concordant 99.28

Imparfinis mirini 98.98

Neoplecostomus sp. Neoplecostomus sp. AAX6581 Concordant 100

Neoplecostomus sp. ACT2675 Concordant 100

Neoplecostominae Pareiohaphis cf. bahianus ACC0721 Concordant 98.3

Pareiorhaphis sp. Pareiohaphis scutula AAX0824 Discordant 99.8

Pareiorhaphis sp. ACI5663 Concordant 100

Phalloceros sp. Phalloceros sp. AAB7265 Concordant 100

Pimelodella sp. Pimelodella lateristriga AAC5327 Concordant 99.85

Trichomycterus sp. Trichomycterus aff. immaculatus/T. cf. pradensis ACI3868 Discordant 99.26

Trichomycterus aff. auroguttatus ACJ1164 Discordant 100

Trichomycterus sp. ACJ9705 Singleton 98

Trichomycterus cf. brasiliensis ACK5393 Singleton 98.57

Trichomycterus cf. brasiliensis ACT6325 Discordant 99.8

TABLE 3 | List of described species with high intraspecific divergence (>2%), showing the maximum and mean intraspecific genetic distance, clades and number of
BIN, ABGD, and bPTP clusters.

Species Maximum genetic distance (%) Mean genetic distance (%) Clades BIN ABGD bPTP

Astyanax fasciatus 20.69 10.09 3 3 3 3

Astyanax lacustris 3.35 1.67 2 2 2 2

Astyanax scabripinnis 21.82 9.12 2 2 3 2

Astyanax taeniatus 3.96 1.48 2 2 2 2

Characidium sp./Characidium cf. timbuiense∗ 10.17/9.9 5.51/5.98 4 4 4 4

Crenicichla lacustris∗ 21.36 10.76 2 2 2 2

Hoplias malabaricus∗ 6.7 3.27 2 2 2 2

Knodus moenkhausii 3.07 1.21 1 1 2 1

Poecilia reticulata 14.34 9.48 2 2 2 2

Prochilodus costatus 2.6 1.32 2 1 1 2

Rhamdia cf. quelen∗ 3.48 1.25 2 2 2 2

Trichomycterus aff. alternatus 18.49 10.8 2 2 2 2

Trichomycterus aff. immaculatus 5.84 2.23 2 2 2 2

∗Occurrence of cryptic species.
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TABLE 4 | Comparison among DNA barcoding studies conducted in Brazilian basins, including the number of sequences and species analyzed, and intraspecific and
intrageneric distances (minimum and maximum. The mean is inside the parentheses).

Reference Basin Number of sequences Number of species Intraspecific distance (%) Intrageneric distance (%)

Pugedo et al., 2016 Jequitinhonha 260 52 0−11.43 (0.44) 1.09−21.55 (12.16)

Nascimento et al., 2016 Itapecuru 440 64 0−8.9 (0.80) 2.65−7.70 (5.13)

Benzaquem et al., 2015∗ Amazon 110 14 0−9.8 (2.8) 2.2−22.5 (19.0)

Gomes et al., 2015 Mucuri 141 37 0−3.24 (0.74) 4.29−18.44 (9.5)

Pereira et al., 2013 Upper Paraná 1244 254 0−8.5 (1.3) 0−24.9 (6.8)

Carvalho et al., 2011 São Francisco 431 101 0−10.54 (0.5) 0−22.88 (10.61)

Pereira et al., 2011 Paraíba do Sul 295 58 0−3.48 (0.13) 0.93−22.89 (10.36)

Present study Doce 306 68 0−21.82 (2.59) 0−24.2 (11.4)

∗Only Nannostomus spp.

recovered 12 putative cryptic species within Astyanax sp.,
Characidium sp., C. gr. timbuiense, C. lacustris, Gymnotus
sp., Harttia sp. (two putative cryptic species), H. malabaricus,
Neoplecostomus sp., R. cf. quelen, Trichomycterus sp. (two
putative cryptic species). The high intraspecific genetic distance
estimation found for the DRB fish was related to the occurrence
of cases of well-known species complexes – e.g., Astyanax
spp. (maximum intraspecific distance reaching 21.82% in
A. scabripinnis), Gymnotus sp. (6.32%), H. malabaricus (6.7%), R.
cf. quelen (3.48%) and also due to the deep intraspecific barcode
divergence found to putative overlooked cryptic MOTUs – e.g.,
C. lacustris (21.36%).

DNA barcoding allows for the identification of cryptic
variation among morphologically similar species, indicating
the occurrence of more than one species and reinforcing
the need of an integrative approach combining molecular
and morphological characters (Nascimento et al., 2016). By
combining distinct species delimitation methods, we were able to
identify new MOTUs from nine undescribed species (Astyanax
sp., Characidium sp., Gymnotus sp., Harttia sp., Hisonotus
sp., Neoplecostomus sp., Pareiorhaphis sp., Phalloceros sp., and
Trichomycterus sp.). Other species showed a high similarity
with already described species from another river basins (e.g.,
specimens of Brycon sp. were assigned as B. ferox from Mucuri
River basin) and were not considered as possible new MOTUs
(Table 2) as shown by the BIN analysis.

Among the undescribed species, we were able to highlight
new MOTUs within five morpho-species due to their high
intraspecific genetic divergence and based on BIN, ABGD, and
NND analyses. For instance, Harttia sp. showed mean divergence
of 4.67% and three clades, which were congruent within the
BIN and ABGD clustering methods, suggesting the occurrence
of three new MOTUs in this genus. Specimens of Hisonotus sp.
were included in the same BIN/ABGD/bPTP cluster and had an
exclusive BIN containing only specimens from DRB suggesting
a new MOTU exclusive to this catchment. Neoplecostomus
doceensis is the only loricariid from this genus described for
DRB, however, we found two possible cryptic MOTUs within
this taxon, as the DNA barcodes from Neoplecostomus sp. did
not cluster with barcodes available for this species and had
two additional distinct BIN and ABGD clusters. Furthermore,
exclusive BIN/ABGD clusters were recovered for Pareiorhaphis

sp. and Phalloceros sp. suggesting at least one new MOTU for
each genus endemic to the DRB.

Notwithstanding the high intraspecific genetic distance and
species delimitation methods detecting more than one MOTUs,
we did not consider new MOTUs for species showing a high
similarity with another nominal species (e.g., species comprised
in the same BIN cluster as another nominal species). Species with
high intraspecific divergence were recovered within Astyanax
spp. (A. fasciatus, A. lacustris, A. scabripinnis, and A. taeniatus).
Despite showing a deep intraspecific divergence, and congruence
of BIN/ABGD clusters, these species were not considered as
comprising new MOTUs due to its high genetic similarity with
another nominal species (e.g., Astyanax parahybae, A. vermilion,
Hyphessobrycon spp., Deuterodon sp.) observed within the BIN
and NND analysis, and also, because this highly diverse group
is a well-known complex of species in need of more systematic
studies (Garutti, 1995; Froese and Paulay, 2010; Eschmeyer,
2015).

High intraspecific divergence was also found for T. aff.
alternatus and T. aff. immaculatus. These species, despite showing
a high intraspecific distance (18.49 and 5.84%, respectively), were
included in BINs comprised by another nominal species (e.g.,
T. longibarbatus) indicating it may be a case of morphological
misidentification and not the occurrence of new MOTUs. This
genus has an extensive geographical range and its morphological
identification is complex due to the lack of consistent
synapomorphies (Barbosa and Costa, 2003). Therefore, further
studies combining an integrative approach focusing in these
species are required in order to investigate the occurrence of
putative cryptic species.

Prochilodus costatus showed a high intraspecific divergence
(2.6%) and occurrence of two clusters (NJ and BIN analyses).
However, this non-native species was not considered as a
putative cryptic species since it was included in BINs comprising
another non-native species (e.g., Prochilodus argenteus, P. hartii).
As suggested in previous studies, the incongruence between
morphological and molecular identification of P. costatus may
indicate the occurrence of Prochilodus hybrids and not due to new
MOTUs (Gomes et al., 2015; Sales et al., 2018).

Poecilia reticulata is a species introduced worldwide, occuring
in more than 69 countries outside of its native range (Deacon
et al., 2011). A high intraspecific divergence (14.34%) was found
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for this species in the DRB. However, two specimens of P.
reticulata were assigned to a BIN comprising specimens of P.
vivipara (BIN AAC0279) and the high intraspecific divergence
was due to the incongruence between morphological and
molecular identification and not due to the occurrence of new
MOTUs. Hybridization process between congeneric species of
Poecilia (P. velifera or P. petenensis and P. mexicana or P. orri) and
between different populations of P. reticulata have already been
reported (Kittell et al., 2005; Lampert and Schartl, 2008; Sievers
et al., 2012) and the incongruence detected in this study might
be a case of hybridization between P. reticulata and P. vivipara
or misidentification during the deposit in the museum collection
and not due to the occurrence of cryptic species.

Hidden biodiversity was found within the genera
Characidium, Crenicichla, Gymnotus, Hoplias, and Rhamdia
due to high intraspecific genetic divergence and congruence
among clustering methods BIN, ABGD, and bPTP (Table 3).
Species of the genera Rhamdia, Characidium, Pareiorhaphis,
Gymnotus were also flagged as cryptic and/or candidate species
in other Brazilian basins (Carvalho et al., 2011; Gomes et al.,
2015; Pugedo et al., 2016).

For instance, within the genera Characidium spp. we detected
a mean intraspecific divergence of 5.82% and the occurrence of
four clades, of which: two mixed clades comprising specimens
identified as C. gr. timbuiense (n = 3 and n = 4) and Characidium
sp. (n = 1), one clade exclusive to C. gr. timbuiense (n = 1)
and one clade exclusive to Characidium sp. (n = 4). C. lacustris
showed intraspecific divergence of 10.76% and presence of two
different clades and BIN/ABGD/bPTP clusters (one for samples
collected in Manhuaçu River and one for samples collected
below the Baguari Dam). The electric knifefishes Gymnotus spp.
had an intraspecific divergence above 2% and occurrence of
three different clades corroborated by 3 BIN, ABGD, and bPTP
clusters. All Gymnotus specimens were initially morphologically
identified as Gymnotus sp. and Gymnotus cf. carapo. However,
similarly to the findings obtained for this genus in Mucuri
River Basin, these clusters may represent two different known
species (G. carapo and the overlooked species Gymnotus sylvius)
and a new MOTU yet to be analyzed and properly described
(Gymnotus sp.). Two congruent BIN, ABGD, and bPTP clusters
were identified for both H. malabaricus and Rhamdia cf. quelen
(mean intraspecific divergence of 6.7 and 3.48%, respectively)
suggesting the occurrence of cryptic species for each of these taxa.
The divergence found in H. malabaricus may be due to allopatric
speciation resulting from geographical barriers enhanced by
its sedentary habitat, since one cluster comprised exclusively
specimens from Jose Pedro River and the other was exclusive for
specimens from Corrente Grande River. High genetic diversity
was already reported for this species in other studied systems
(Paraná and Tibagi Rivers) suggesting distinct evolutionary
lineages, population structuring or occurrence of cryptic species
(Dergam et al., 1998; Blanco et al., 2011; Oliveira et al., 2015).

The increase of available barcodes in BOLD database,
including adjacent basins, may contribute to expose endemic
cryptic species and reduce the risk of synonymies (Gomes
et al., 2015). However, Pugedo et al. (2016) highlighted the
concern of using solely DNA barcodes in defining species (e.g.,

using NND, BIN, ABGD, and bPTP analyses) due to the fact
that Neotropical DNA barcode libraries are not yet complete.
Furthermore, specimens included in BINs composed by different
nominal species should be re-evaluated by a taxonomist to verify
the data and check for potential misidentifications (Díaz et al.,
2016).

Thus, a thorough analysis should be done for each flagged
species to verify the correspondence of new MOTUs with
putative new candidate species based on accurate morphological
taxonomy analysis and to evaluate the divergence causes and
the correlation of speciation process to natural or anthropogenic
causes (e.g., presence of dams).

Importance of DNA Barcoding Library for
the Doce River Ichthyofauna
This newly developed DNA barcode reference library for the
DRB fish detected the occurrence of new MOTUs and suggested
the existence of hidden biodiversity. This baseline information
will provide a platform for several applications and management
efforts, such as ichthyoplankton identification for the detection
of fish recruitment areas, unambiguous choice of species to be
used in restocking programs, and environmental DNA research.
This data may contribute as a baseline for restoration programs
in this catchment, by pointing out new MOTUs and suggesting
the occurrence of overlooked and cryptic species among the
DRB ichthyofauna, highlighting the complexity of Neotropical
biodiversity.

The evidence presented here calls for a more robust, DNA-
assisted cataloging of biodiversity-rich ecosystems, in order to
enable effective monitoring and informed actions to preserve
and restore delicate habitats, such as the DRB. Furthermore,
studies should verify the extent to which fish biodiversity has been
affected by the Doce dam collapse disaster, and what hotspots
of diversity within the catchment can be identified as potential
sources of replenishment. At the same time, the approaches
used here, and additional high through-put methodologies
(e.g., metabarcoding of water and sediment samples) should be
increasingly employed to monitor biodiversity at a pace that can
cater for the management needs of these increasingly impacted
biodiverse habitats.
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