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Abstract

Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids) showing the symptoms of a newly emergent foliar disease
known as ‘spring sickness’ were investigated for associated fungi. The cause(s) of this disease remain obscure. We isolated
repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA
sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent
a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight) which is a major pathogen of cultivated
Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures.
Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid
tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important
contributor to the development of ‘spring sickness’ symptoms. Pathogenesis may be promoted by developmental and
environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to
have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our
investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-
bred plants.
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Introduction

The emergence of new fungal pathogens in cultivated and wild

plants is a major cause for concern [1] and many disparate factors

influence such patterns of emergence and establishment. Inter-

specific hybridisation between different fungal species may be a

major contributor to the evolution of novel diversity [2]. In plant

pathogens, it has been demonstrated recently that unusually rapid

genome evolution and host shifts may occur after hybridisation

events. For example, establishment of a new species of Zymoseptoria,

Z. pseudotritici, exhibiting an expanded host range on grasses took

place within just a few hundred generations of a hybridisation

event between Z. tritici and an unidentified species [3]. There is

also considerable evidence that the commensal endophytic state

and a parasitic, pathogenic state can be highly plastic [2,4].

Indeed, there is confirmation that several fungal diseases of plants

can exist as a symptomless, endophytic infection – as, for instance,

in the necrotrophic generalist Botrytis cinerea (grey mould) [5,6] and

obligate biotrophic Albugo species [7]. Anthropogenic change to

natural environments is also likely to be a major factor in

promoting the emergence of new pathogens [1]. Important issues

such as climate change, degradation of natural environments (such

as forest clearance and loss of genetic diversity in natural plant

populations), dispersal of plants and their associated fungi to new

areas and dependence on agricultural monoculture systems are

likely to dramatically enhance the probability of new diseases

emerging, establishing and spreading. The initial emergence

events are likely to go unreported and uninvestigated not only

because of their infrequency, but also because the damage

resulting from a new pathogen could be casually attributed to

other microbial species or to abiotic stress-induced damage.

The genus Hemerocallis (daylily) of the family Hemerocallidaceae

in the order Asparagales has been cultivated for thousands of years

[8]. This small genus of petaloid monocotyledons has been valued

extensively as a food crop, as a medicinal plant and as an

ornamental. The native range extends from eastern Asia, with a
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centre of diversity in Japan, Korea and China, possibly as far west

as central Europe. Widespread cultivation has led to naturalisation

of the genus in many parts of the world [8]. Cultivated Hemerocallis

in North America, where the numerous hybrids are exceptionally

popular ornamental garden plants, were recently challenged by

the accidental introduction of a genus-specific biotrophic rust

pathogen, Puccinia hemerocallidis (daylily rust) [9,10]. This pathogen

caused a rapidly-spreading epidemic. The lack of resistance

amongst hybrid cultivars - with the one study showing only a

minority of the cultivars tested exhibiting any resistance to even a

single P. hemerocallidis isolate - demonstrated the susceptibility of

cultivated varieties that have been bred outside of their native

range in the absence of any pressure from this specific pathogen

[11]. Other emerging threats to cultivated daylily include the first

reports of infection by the Armillaria genus [12,13]. Both in the

West and in China, anthracnose diseases caused by various

Colletotrichum species have been identified and a new species of

Colletotrichum, C. hemerocallidis, was recently described from infected

leaf and scape material in China [14].

However, the aetiology of one emerging disease of cultivated

Hemerocallis in Western gardens has remained elusive. ‘Spring

sickness’ describes a group of disease symptoms that primarily

affect the emergent post-winter foliar growth of the plant, causing

distortion, stunting, chlorosis, ragged leaf edges and necrotic

lesions [15]. These symptoms not only disfigure the foliage but also

weaken the plant, resulting in reducing flowering, and -in severe

cases - the affected growing point dies. The first reports of this

disease come from the U.S.A. in the 1970s [16] and widespread

notification of these symptoms has occurred only over the past 20

years. To date, there has not been a report in peer-reviewed

published literature of filamentous fungal species being isolated

from Hemerocallis material showing such symptoms. Nevertheless,

there is considerable speculation that fungal pathogens may be

responsible or contribute to disease development [15,16,17].

Here, we report the isolation of a new species of Botrytis from

foliar material of Hemerocallis from the United Kingdom that

showed a range of symptoms that correspond to ‘spring sickness’.

We demonstrate that this new species is distinct at the molecular

and morphological level from its closest relative, B. elliptica (lily

blight, fire blight), and that the two species have diverged in their

host range. Our data shows that cryptic fungal species and

perplexing fungal diseases can still be identified from common

cultivated plants outside of their natural range, suggesting that

there may be a significant reservoir of fungal diversity from which

new diseases may emerge.

Results

Isolations and Preliminary Identification
Over a period of 4 years, leaf samples of Hemerocallis cultivars

that showed symptoms typical of or closely related to ‘spring

sickness’ such as necrotic patches, necrotic lesions, distortion and

chlorosis (Fig. 1a,b) were found to be associated with an

unidentified filamentous fungus after the material was rigorously

surface-sterilised and plated on malt extract agar (MEA).

Occasionally, fungal growth was visible on the symptomatic plant

material in the form of dense, short mycelia producing microco-

nidia (Figure S1a,b) suggesting that a filamentous fungus triggers

symptom development. However, no macroconidia could be

observed on the plant material. In total, 6 independent isolates

were collected (Table 1). Vegetative growth at room temperature

(25uC) with ambient light and supplemental near-UV light was

rapid, but significant macroconidial sporulation did not occur

(Figure 2). Although microconidia were readily identified, only a

very small number of macroconidia could be found on older

cultures at the edges of the Petri dish in two isolates (B2 and B4).

The overall morphology suggests the isolates are members of the

genus Botrytis. Immunological tests of surface washings of plate

cultures of the isolates using the Botrytis-specific monoclonal

antibody BC-12.CA4 [18,19,20] gave strong positive results

(Table 1) indicating that they are all members of the genus

Botrytis. These results together with the appearance of Botrytis-like

melanised sclerotia in older cultures (Figure 2) prompted further

investigations and DNA analyses.

Sequence Analyses
To determine their identity, all 6 isolates were subjected to

DNA sequence analysis. Sequencing of the ITS region confirm

they all represent Botrytis species. Interestingly, all 6 isolates shared

a unique polymorphism, an indel, in the highly conserved ITS

sequence (Figure 3). BLAST analysis of Genbank data showed that

no other known member of the genus possesses this sequence

variant.

ITS sequence does not permit sufficient resolution to the species

level. To further resolve the relationships of these isolates to other

species in the genus Botrytis, analysis of nuclear protein-coding

gene sequences that are known to be phylogenetically informative

to the species level was undertaken. Five genes previously used to

build phylogenies of the genus Botrytis [21,22] were used. Three

were single-copy housekeeping genes - encoding glyceraldehyde-3-

phosphate dehydrogenase (G3PDH), a heat-shock protein (HSP60)

and a DNA-dependent RNA polymerase subunit II protein (RPB2)

[21] - and two were single-copy genes encoding proteins with roles

in phytotoxicity (NEP1 and NEP2) [22].

From the first isolate, B1, combined analysis of 5 sequences

(G3PDH, HSP60, RPB2, NEP1 and NEP2) confirmed the

distinction (Figure 4). Analysis showed that except for HSP60

gene, all gene sequences showed sequence differences between B1

and other known members of Botrytis (Figures S2, S3, S4, S5, S6).

The HSP60 sequence was found to be identical to B. elliptica and

the other sequences were also close to this species, suggesting that

its nearest relation was B. elliptica. Phylogenetic analysis confirmed

that this isolate was most closely related to B. elliptica and formed a

monophyletic group with B. elliptica and B. squamosa (Figure 4).

Divergence at synonymous sites between the new isolate and B.

elliptica and B. squamosa was 1.160.32%, while divergence at

synonymous sites between B. elliptica and B. squamosa was

1.060.31%.

For the other 5 isolates, two phylogenetically informative

sequences (G3PDH and NEP1) were obtained. The presence of a

polymorphism in the ITS1 sequence (Figure 3), as well as multiple

sequence differences at other genes, strongly suggests that they

represent an undescribed species [23]. G3PDH, NEP1 and ITS

sequences from all six isolates were identical confirming genetic

similarity of isolates. Genetic similarity of isolates together with

significant divergence between the new isolates and B. elliptica and

B. squamosa strongly suggests that the new isolates represent an

undescribed species.

Further supporting our notion that this species may be involved

in development of ‘spring sickness’ symptoms, PCR amplification

of a NEP1 fragment from DNA extracts of symptomatic leaf

material generated sequences corresponding to this natural

phylogenetic group (Figure S7). Asymptomatic leaf material did

not, however.

Sequences from fungal specimens were submitted to the

Genbank database with accession numbers HG799518-

HG799538.

Novel Botrytis Associated with New Disease
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Morphological Analyses
Non-sporulating colonies are smooth to slightly fluffy and

occasionally form aerial mycelia; colonies typically whitish to pale

brown in colour on malt extract agar. The distance between septa

ranges from 38.5 mm to 127 mm in length. Typically, sclerotia

development is seen only as cultures mature; formation varies

between isolates and depending on environmental conditions

(Table S1 in File S1). Growth in darkness promotes sclerotia

formation. On oatmeal agar, sclerotia are formed within 4 weeks

at 15uC in darkness. Sclerotia are hemispherical convex in shape

and with a concave surface, sometimes hollow in the centre.

Sclerotia are black with size ranging from 2 to 6 mm (and on

average 3 mm) in diameter.

The initial absence of significant macroconidial development

upon isolation indicates that such conditions are sub-optimal for

promotion of asexual sporulation. Exclusion of light and exposure

to supplemental near-UV light in the presence of daylight

individually fails to trigger sporulation. Surface-sterilised host leaf

material and sterile, crude extracts of host leaf material also do not

stimulate sporulation. Sporulation is more reliably initiated after a

minimum of 7 days exposure to near-UV light in the absence of

other light sources, though this varies with the isolate and the

medium (Table S2 in File S1). One isolate, B2, does not appear to

Table 1. Table of fungal isolates identified in this study.

Isolate name Host name Host symptoms Date of isolation Culture S.I.

B1 Hemerocallis ‘Jurassic Spider’ Developing necrosis, distortion
and chlorosis of young foliage

30 November 2009 42

B2 Hemerocallis ‘Lola Branham’ Severe necrosis, distortion and
chlorosis of young and maturing
foliage

19 February 2010 35

B4 Hemerocallis unnamed tetraploid hybrid Necrosis of mature outer leaves
just above soil level

9 June 2010 11

B5 Hemerocallis ‘Gerda Brooker’ Severe necrosis of young and
mature foliage

15 April 2011 50

P1 Hemerocallis ‘Free Bird’ Severe necrosis, distortion and
chlorosis of aerial parts; eventual
death of tissues back to rhizome

15 April 2011 55

B6 Hemerocallis ‘Ruby Storm’ Severe necrosis and chlorosis of
leaves emerging from dormancy

12 March 2012 53

Host name, host symptoms and the date of isolation are described. The post-isolation fungal culture signal intensity (S.I.), from tests of PBST suface washings of fungal
cultures, with EnviroLogix Botrytis QuickStix using the anti-Botrytis-monoclonal antibody BC-12.CA4, is shown.
doi:10.1371/journal.pone.0089272.t001

Figure 1. Spring foliage of Hemerocallis cultivars showing
symptoms typical of ‘spring sickness’ disease. Areas of chlorosis,
necrotic lesions and distortion of leaf development are typical of this
disease. Botrytis deweyae was isolated from this material. Scale bars
indicate 1 cm. A. Foliage of Hemerocallis ‘Free Bird’ showing advanced
tissue necrosis with destruction of tissue at leaf margins (1) and death in
the youngest emerging leaves (2). B. Leaf material of Hemerocallis ‘Lola
Branham’ showing large necrotic lesions developing along the central
parts of the leaf (3).
doi:10.1371/journal.pone.0089272.g001

Figure 2. Development after isolation of Botrytis deweyae
cultures from surface-sterilised Hemerocallis material. The initial
development of multiple melanised sclerotia distributed across the
colony surface can be seen in this maturing culture. Scale bar indicates
1 cm.
doi:10.1371/journal.pone.0089272.g002

Novel Botrytis Associated with New Disease
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sporulate under these conditions. The dependence on specific

environmental conditions is a contrast to B. elliptica and B. cinerea

which efficiently initiate macroconidia formation even when plates

are exposed to daylight. The optimum temperature for sporulation

of these isolates is 20uC. Conidiophores are erect, septate, opposite

branched and slightly swollen at the top. The macroconidia

develop in a botryose cluster and are oblong to spherical in shape

(but sometimes ovoid), tapering and pointed at one end with their

length in a range of 6.5 to 18 mm (mean 12.5 mm, n = 50) and

width in a range of 3.5 to 11 mm (mean 7 mm, n = 50). Fungal

material from cultures producing macroconidia are illustrated in

Figure 5a,b. A scanning electron micrograph of the typical

macroconidia is shown in Figure S8. A comparison to other

described species can be found in Table S3 in File S1.

Pathogenicity Assays
To determine whether Botrytis isolates induce the symptoms of

the plant material from which they were originally isolated, basic

assays were performed using excised surface-sterilised leaf material

of Hemerocallis on plates. Inoculation of mycelial plugs directly onto

the leaf surfaces resulted in a rapid formation of a spreading water-

soaked lesion (Table S4 in File S1). Inoculation with B. elliptica did

not produce visible lesions after the same period. Testing the novel

isolates from Hemerocallis on the leaves of several other petaloid

monocots such as Lilium did not produce lesions, indicating that

the host range may be restricted. However, B. elliptica did induce

similar lesions on Lilium material but not on Hemerocallis or any

other species tested (Table S4 in File S1). Inoculation of

Hemerocallis leaf material with conidial suspensions did not result

in necrosis, though the conidia germinated and grew out into

hyphae which after 10 days had covered the leaf surface.

Inoculation of Hemerocallis plantlets from in vitro culture demon-

strated that these isolates had the capacity to cause severe necrosis

and death of plantlets. Within 10–14 days of inoculation, plantlets

showed chlorosis, necrosis, collapse and death of leaf tissue,

although the roots and meristematic region were comparatively

intact (Figure 6, Figure 7). Although these experiments on plantlets

cannot exactly replicate the ‘spring sickness’ seen on mature

plants, nevertheless the disease phenotypes are sufficient to satisfy

basic Koch’s postulates. Tests on plant material extracts after

inoculation with B1, B2 and B4 isolates using the Botrytis-specific

monoclonal antibody BC-12.CA4 [18,19,20] gave strong positive

results with signal intensity values ranging between 34 and 46

whilst the control plant tissue without fungal inoculation gave a

signal intensity value of 0. B1 isolates appeared to be the most

virulent, rapidly causing complete necrosis and collapse of all

inoculated plant material within 14 days (Figure 6, Figure 7).

Although microconidia could be found developing on leaf tissue,

typical conidiophores producing macroconidia are not produced

on the host under these conditions. Plantlets representing a range

of different Hemerocallis cultivars were tested to determine if there

may be easily recognised resistance to infection with isolate B1. All

the tested cultivars developed similar symptoms of tissue necrosis,

collapse and death within 14 days of inoculation.

Mating Type
PCR analysis of the mating locus, MAT1, of Botrytis revealed

that different isolates had different alleles (Table S5 in File S1).

Reciprocal crosses between pairs of strains of opposite mating

types, using a method well established for B. cinerea [24,25], in all

cases failed to result in the development of apothecia. Possibly this

was due to the developmental condition of the sclerotia that had

developed on plates and were used in the attempted sexual crosses

in this study.

Formal Description
Based on the molecular, morphological and host specificity data

presented herein, this fungal isolate from Hemerocallis represents a

new species:

Description. Botrytis deweyae van Kan, Terhem & Grant-

Downton, sp. nov. MycoBank MB804656; Myconame ID 512235.

Conidiophores erect, septate, medium brown, smooth, mostly

unbranched, with slightly swollen basal and apical cells, 3–

4 mm610–20 mm. Conidiogenous cells predominantly terminal, pale

brown, giving rise to botryose clusters of conidia. Conidia ellipsoid

to ovoid, becoming oblong and 1-septate with age, or irregular and

somewhat distorted, hyaline to medium brown, smooth, apex

obtuse, base with small flattened abscission scar, 6.5–18 mm63.5–

11 mm (av. = 12.567 mm, n = 50). No sporulation observed on leaf

tissue. Sclerotia hemispherical, convex, sometimes hollow in the

center, with concave surface; black, 2–6 mm (av. 3 mm) diam.

Sclerotia develop in oatmeal agar within four weeks of incubation

at 15uC in the dark. Sclerotia are scattered; cultures normally

develop 25–30 sclerotia per plate.

Culture characteristics: Colonies incubated in the dark on MEA,

optimal growth at 25uC, minimum at 4uC, maximum at 37uC.

Colony growth rate 0.4–15.8 mm/d; surface dirty white to pale

brown, reverse ochreous [26], with moderate to abundant aerial

Figure 3. Alignment of a region of partial ITS sequence from various Botrytis/Botryotinia species. The aligned region shows the indel
identified in all 6 examined isolates of B. deweyae.
doi:10.1371/journal.pone.0089272.g003

Novel Botrytis Associated with New Disease
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mycelium, creating fluffy appearance. Colonies also sporulate on

MEA under near-ultraviolet light at 20uC.

Typus: UK, Oxford, from host plant Hemerocallis ‘Jurassic

Spider’, Robert Grant-Downton, 30th November 2009, holotype

CBS H-21133; culture ex-type CBS 134650.

Distribution and host range. Known only from cultivated

specimens of Hemerocallis from the UK but likely to be widespread

on Hemerocallis in cultivation and possibly in the wild due to the

cryptic nature of this species and its broad temperature tolerance.

Etymology. Named after Dr. Molly Dewey in recognition of

her outstanding contributions to plant pathology and mycology, in

particular relating to the genus Botrytis.

Discussion

We report the discovery of a new species of the ascomycete

fungal genus Botrytis from cultivated material of Hemerocallis

(commonly known as the daylily) showing a range of symptoms

corresponding to those reported for a mysterious disease, ‘spring

sickness’. Recently, several new species of Botrytis have been

reported, such as B. sinoallii from China which is pathogenic on

Allium crops [27], B. fabiopsis from central China which is

pathogenic on broad bean [28] and B. caroliniana from North

America which is pathogenic on blackberry fruits and broad bean

leaves [29]. Other as yet undescribed pathogenic Botrytis species

are likely to interact with cultivated plants, for example a foliar

pathogen of Hosta (also in the order Asparagales) that is closely

related to B. tulipae [30]. This new species, B. deweyae, represents

the first novel and morphologically distinctive species to be

identified in Europe for many years, as compared with recently

described B. pseudocinerea that is genetically but not morphologically

distinct from B. cinerea [31]. It is likely that B. deweyae has evaded

detection as 1) the critical diagnostic morphological feature of

macroconidia do not seem to develop on infected plant material

nor are they produced from laboratory cultures except under a

specific environmental regime, 2) isolation from infected material

has not employed sufficiently stringent surface sterilization to

prevent overgrowth from less systemic/pathogenic fungi, 3) the

disease symptoms are relatively subtle, have a short temporal

manifestation and can easily be attributed to another causative

agent, and 4) it is probable that this species has a highly restricted

host range.

Whilst there have been some reports of investigations of ‘spring

sickness’ disease by specialist growers of Hemerocallis [15,17], the

causative agent had not been identified although other fungal

species, such as the yeast-like Aureobasidium microstictum (daylily leaf

streak) have been implicated [17]. The rigorous surface-sterilisa-

tion procedure we employed in isolations is likely to have been an

important factor in finding this new species, as other opportunistic

microbial species colonising damaged tissue more superficially

would have been removed. In our studies, B. deweyae was

repeatedly isolated from diseased material over a 4 year period.

Whilst our pathogenicity assays using detached leaf material and

Figure 4. Phylogeny of Botrytis based on the combined analysis
of 5 different genes. Sequences of G3PDH, HSP60, RPB2, NEP1 and
NEP2 were used. The phylogenetic position of B. deweyae (B1 isolate,
type) is underlined. The phylogeny was constructed using the genus
Sclerotinia as the outgroup.
doi:10.1371/journal.pone.0089272.g004

Figure 5. Development of Botrytis deweyae showing production
of conidiophores and macroconidia. The conidiophore (1)
terminating in a botryose cluster producing multiple macroconidia (2)
is shown. Scale bar indicates 10 microns.
doi:10.1371/journal.pone.0089272.g005

Novel Botrytis Associated with New Disease
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plantlets in vitro under laboratory conditions cannot fully replicate

mature plants growing in gardens in the colder months of the year,

the rapid development of similar leaf tissue necrosis suggests this

species has the capacity to be the major contributor to initiating

symptom development. Other microbial species, such as A.

microstictum, may opportunistically infect as secondary colonisers

and aggravate disease development. The rapidity with which

plantlet destruction took place was surprising but this is likely to

have been enhanced by the absence of any other microbial flora in

these cultures. Numerous microbial species have been shown to

act antagonistically to Botrytis infections of plants (reviewed in

[32]). For instance, infection of Lilium by B. elliptica can be

antagonised by specific bacteria [33]. Our hypothesis that B.

deweyae is the main agent of ‘spring sickness’ disease development is

supported by a report of its closest relative, B. elliptica, infecting

spring growth of Hemerocallis fulva in Korea [34]. In this case,

symptoms were similar with necrosis and death of young leaf

tissue, but it was accompanied by significant production of

macroconidia. Tests in vitro indicated that B. elliptica was only

capable of infecting Hemerocalis tissue after physical damage that

wounded the plant [34]; this suggests that B. elliptica lacks the

capacity to infect uninjured Hemerocallis tissues, as seen in our

experimental controls. There have been no other reports of B.

elliptica infecting Hemerocallis.

The infection of Hemerocallis with B. elliptica demonstrates that

although this species has been most commonly associated with

infections of bulbous true lily (Lilium, Liliaceae sensu stricta) - where

it is a major disease of cultivated lily bulb crops [35] - it is also

capable of infecting other distantly related petaloid monocots such

as Hemerocallis (Hemerocallidaceae) and Tricytris (Convallariaceae)

[34,36]. There is also evidence that B. elliptica can infect

dicotyledonous hosts [37,38], albeit under unnatural conditions.

Whether B. deweyae is an emergent pathogen that has evolved from

a B. elliptica population that has undergone a host-shift to

Hemerocallis is a matter that remains open for further study. The

significant morphological and DNA sequence divergences from

any described B. elliptica strain suggest that this would not have

been a recent event. As 2 mating loci (MAT1) alleles are present in

just 5 tested isolates, recent and rapid sympatric speciation from B.

elliptica would appear unlikely. To date, only cultivated material

from Britain has been examined but it is almost certain that B.

deweyae, like its closest relative B. elliptica [35,39], is cosmopolitan

and will be detected in cultivated populations of hybrid Hemerocallis

elsewhere in the world and perhaps also in native and naturalised

Hemerocallis populations in nature.

Given the lack of any report of this species from indigenous

Hemerocallis populations, its morphology and the nature of disease

development, it is plausible that B. deweyae may be an endophyte

that is undergoing the transition to a more aggressive pathogenic

state. There was apparent variation in pathogenicity amongst

three isolates tested on plantlets, with the isolate B1 being the most

Figure 6. Sterile plantlets of Hemerocallis ‘Jurassic Spider’ inoculated with Botrytis deweyae and Botrytis elliptica isolates. Plantlets were
grown in vermiculite with growth medium and are shown from above, 10 days after inoculations. A. B. deweyae B1 isolate. B. B. deweyae B2 isolate. C.
B. deweyae B4 isolate. D. B. elliptica. E. control (no fungal inoculation).
doi:10.1371/journal.pone.0089272.g006

Figure 7. Effect of inoculation of Hemerocallis plantlets with
Botrytis deweyae. A.Control Hemerocallis ‘Jurassic Spider’ plantlets
(uninoculated with Botrytis) (left) and Hemerocallis ‘Jurassic Spider’
plantlets infected with B. deweyae (right) after inoculation with B1
isolate, shown 10 days after inoculation. The plant material was excised
from sterile vermiculite. Scale indicates 10 cm. B. Close-up of tissue
necrosis on the basal portion of a Hemerocallis ‘Jurassic Spider’ plantlet
following B. deweyae infection, following colonisation of leaf bases.
Scale indicates 5 mm.
doi:10.1371/journal.pone.0089272.g007
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pathogenic, whilst isolates B2 and B4 were visibly less aggressive.

Endophytic Botrytis have been identified using sequencing methods

from naturalised populations of Centaurea stoebe [40], clearly

demonstrating that outside of their native range plant species

can retain or acquire endophytic Botrytis species. Five putative new

endophytic species were discovered in this study alone. Intrigu-

ingly, there is also evidence that pathogenic B. cinerea (grey mould)

can exist as a systemic endophyte without causing pathogenesis in

plants [5,6]. By some mechanism, B. cinerea must be capable of

substantially down-regulating gene expression responsible for

aggressive, necrotrophic pathogenesis thereby permitting it to

co-exist and grow within plant tissues without damaging them or

even triggering defence responses. In the case of B. deweyae the

absence of identifiable macroconidia in nature, after growth on the

host in vitro and even the absence of sporulation on plates (except

under specific conditions) suggests that this development is usually

highly suppressed, as might be expected of an endophytic lifestyle

[4]. In common with other specialised Botrytis species that infect

petaloid monocotyledons [35], additional studies are required to

identify the precise details of the life cycle. Whether, as in B.

elliptica [39,41], sexual reproduction is important in natural

populations of B. deweyae requires further investigations.

As this disease has become prevalent only in the past 20 years,

one factor that may be precipitating the evolution of pathogenesis

is the increasing loss of genetic diversity in the host plant through

in-breeding of the cultivated hybrid lines, as demonstrated by an

AFLP study [42]. It is known from studies of Colletotrichum that the

ability for a fungal isolate to exhibit pathogenic or mutualistic

behaviour can depend on the host genotype [43]. The emergence

of in-breeding depression and loss of vigour amongst Hemerocallis

hybrids may favour the emergence of strains that are able to

effectively take advantage of weakened resistance systems in the

plant and hence exploit the host in a more parasitic manner. In

hybrid daylily, it is conceivable that the effects of combining

divergent genomes followed by multiple generations of in-breeding

and selection for novel traits have compromised the effectiveness

of mechanisms that regulate pathogen resistance and endophyte

activity in planta. Such a biotic environment may facilitate the

emergence of new diseases, including transitions from endophytes

to parasites and host shifts.

Other factors may have assisted the emergence of this disease.

The clonal propagation of cultivars by division, which creates large

wounds, and the tendency to plant Hemerocallis as monocultures or

near-monocultures by enthusiasts may assist spread of strains with

emerging pathogenic tendencies. A role for bulb mites (for

example members of the genus Rhizoglyphus) in spreading fungal

material such as mycelium fragments to new infection sites appears

plausible [17,44,45]. Anecdotal reports suggest that both treat-

ment by both acaricides and fungicides may reduce the incidence

of ‘spring sickness’, supporting this view [17]. Young, emerging

leaf tissues in late winter and spring may be particularly vulnerable

to pathogenesis not only due to injury by fluctuating environments

(such as tissue damage by freezing weather) but also due to rapid

mobilisation of stored compounds from the tuberous roots to

sustain new growth. Both factors may tip the balance in favour of

fungal development.

Our discovery suggests that other potentially important

pathogenic fungi could be easily overlooked and many are likely

to remain unknown to science. The large reservoirs of endophytic

fungi residing in plants [46], for example those found in wild

grasses (Poaceae) [47], may be a source of important biological

diversity for the evolution of new plant pathogens, especially with

continued erosion of genetic diversity in cultivated plants and in

fragmented natural habitats [1]. As threats from emerging

pathogens to crop and wild plant resources continue to grow,

investment in surveillance and detection systems for new plant

diseases should be made a priority. This case in particular

demonstrates that diagnostic tools using immunological and DNA

sequencing methods, in combination with more conventional

morphological and pathology assays, will need to work together in

the future if other new plant diseases are to be identified

effectively. Widespread ‘cryptic’ diseases of this kind with a small

detrimental impact on the host may be important indicators of

host and pathogen groups in which more virulent diseases are

likely to be emergent.

Materials and Methods

Permission to use plant material for the study was provided by

the owner of the private collections. The studies did not involve

endangered or protected species.

Isolation from Plant Material
Samples were collected from collections of hybrid Hemerocallis

growing in gardens in England, from Oxfordshire, Wiltshire and

Somerset. Pieces of asymptomatic and symptomatic leaf tissue,

each approximately 6 mm2, were surface-sterilized by immersing

in 30% (v/v) sodium hypochlorite-based domestic bleach contain-

ing detergent (Parazone; Jeyes, Cambridge, UK) for 30 min

followed by 465 min washes in sterile distilled water. Surface-

sterilized leaf pieces were plated out on 2% (w/v) malt extract agar

(MEA) (Oxoid, Basingstoke, UK) and grown under natural

ambient light. The 6 isolates, labelled B1, B2, B4, B5, B6 and

P1, were routinely grown on 2% MEA and stock cultures were

maintained at 4uC in the dark. Stocks were also preserved as

excised mycelial material from plate cultures in Eppendorfs in

sterile 50% (v/v) glycerol at 280uC.

Immunological Tests of Fungal Isolates and Plant Extracts
for Botrytis Antigens

Plate cultures of fungal isolates were washed with 5 ml

phosphate buffered saline, pH 7.4 (Sigma) plus 0.05% Tween 20

(Sigma) (PBST). 1 ml was removed by suction, centrifuged briefly

at 13,0006g in a microcentrifuge and 400 ml of the supernatant

tested with EnviroLogix Botrytis QuickStixs (Portland, Maine,

USA) which employs the anti-Botrytis-monoclonal antibody, BC-

12.CA4, raised and employed in previous studies [18,19,20]. Tests

were performed by incubating a QuickStix in the supernatant for

10 minutes, the lower pad was then removed and the intensity of

the test line (signal intensity, SI) was determined using an

EnviroLogix Quickstix reader [19,20]. Extracts of leaf tissues

were made by crushing leaf material in an extraction bag (Noegen,

UK) with PBST, 1:5 (w/v). 400 ml of the resulting non-particulate

extract was tested with EnviroLogix Botrytis QuickStix system as

above.

DNA Extraction, PCR Amplification and Sequencing
Genomic DNA was extracted from plugs of cultured mycelial

material that were frozen and ground in liquid nitrogen. DNA was

purified from tissue powder using the DNEasy kit (Qiagen,

Manchester, UK) and quantified using a Nanodrop spectropho-

tometer. PCRs were performed using approximately 4–12 ng

genomic DNA at in a 50 ml reaction using the proof-reading

Phusion polymerase kit (Finnzymes, Thermo Scientific, UK)

according to the manufacturer’s instructions. Cycling conditions

for the amplifications were as follows:

98uC for 1 minute; 10 cycles of 98uC for 10 seconds, primer-

specific annealing temperature 1 for 30 seconds, extension at 72uC
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for 45 seconds; 15 cycles of 98uC for 10 seconds, primer-specific

annealing temperature 2 for 30 seconds, extension at 72uC for

45 seconds; final extension at 72uC for 5 minutes.

The 18S rRNA sequence was amplified using ITS1 primers

previously described [21] (Table S6 in File S1). The primer-

specific annealing temperatures 1 and 2 were 60uC and 56uC
respectively. The amplification of the G3PDH, HSP60 and RPB2

sequences was achieved using primers for the genus Botrytis

described in [19] (Table S6 in File S1). Primer-specific annealing

temperatures 1 and 2 were 62uC and 60uC respectively for G3PDH

and HSP60, and 60uC and 56uC respectively for RPB2. NEP1 was

amplified using primers NEP1for and NEP1revB [22] (Table S6 in

File S1) with primer-specific annealing temperatures 1 and 2 of

62uC and 60uC respectively. NEP2 was amplified using primers

NEP2forE and NEP2revE (Table S6 in File S1) [22] with primer-

specific annealing temperatures 1 and 2 of 62uC and 60uC
respectively. PCRs were run on 1.5% (w/v) agarose gels, the bands

were cut out with a clean razor and extracted using Qiaex II kit

(Qiagen, Manchester, UK). Purified PCR fragments were then

cloned into pJET sequencing vector (CloneJET PCR cloning kit;

Thermo Scientific, UK) and transformed into E. coli DH5a
competent cells. Transformants were selected on LB-ampicillin

plates (with 100 mg ampicillin per ml of medium) and colonies with

inserts identified by PCR screening. Plasmid DNA was extracted

from selected colonies using GeneJET Plasmid Miniprep Kit

(Thermo Scientific, UK) and sequenced by Source Biosciences

(Nottingham, UK).

Genomic DNA was extracted from leaf material showing

symptoms and from leaf material of the same cultivar without

symptoms, collected on the same day. Leaf material was derived

from the cultivars ‘Gerda Brooker’ and ‘Free Bird’. Small sections

of leaf material approximately 262 cm were ground to a fine

powder in liquid nitrogen. DNA was purified from tissue powder

using the DNEasy kit (Qiagen, Manchester, UK) and quantified

using Nanodrop spectrophotometer. PCRs were performed using

approximately 100 ng genomic DNA as template at in a 50 ml

reaction using the proof-reading Phusion polymerase kit (Finn-

zymes, Thermo Scientific, UK) according to the manufacturer’s

instructions. NEP1 primers that amplify the promoter to 39 end -

NEP1(2207for) and NEP1(+1124rev) - [22] (Table S6 in File S1)

were used in a primary PCR with cycling as follows.

98uC for 1 minute; 10 cycles of 98uC for 20 seconds, 64uC for

30 seconds, extension at 72uC for 45 seconds; 10 cycles of 98uC
for 20 seconds, 60uC for 30 seconds, extension at 72uC for

45 seconds; 15 cycles of 98uC for 20 seconds, 58uC for 30 sec-

onds, extension at 72uC for 45 seconds; final extension at 72uC for

5 minutes.

A 2 ml aliquot of primary PCR was then used as a template in a

50 ml reaction with NEP1for and NEP1revB primers [22] (Table

S6 in File S1) as follows:

98uC for 1 minute; 15 cycles of 98uC for 10 seconds, 64uC for

30 seconds, extension at 72uC for 20 seconds; 15 cycles of 98uC
for 10 seconds, 60uC for 30 seconds, extension at 72uC for

20 seconds; final extension at 72uC for 5 minutes.

PCRs were run on 1.5% (w/v) agarose gels, the PCR fragments

were then removed, purified, cloned and sequenced as described

above.

Phylogenetic Analysis
We obtained sequences of Botrytis genes from GenBank (www.

ncbi.nlm.nih.gov/genbank) and aligned them with newly se-

quenced genes from the six isolates using MUSCLE [48].

Phylogenies for single gene and combined datasets were recon-

structed using a maximum-likelihood inference conducted with

RAxML version 7.2.6 [49] via the raxmlGUI interface [50]. We

conducted five independent runs from different starting points to

assess convergence within two likelihood units of the best tree,

which was consistently selected. The parameters of partition were

allowed to vary independently under the GTRGAMMA model of

evolution as implemented in RAxML. Maximum-likelihood nodal

support was calculated by analysing 1000 bootstrap replicates.

Induction of Sporulation and Sclerotia Formation
To determine whether presence of host material stimulated

macroconidia production, 1% water agar on which surface-

sterilized pieces of greenhouse-grown Hemerocallis ‘Jurassic Spider’

young leaf tissue had been placed. Plates were also made with 1%

water agar with 0.5 ml plant extract added. The plant extract was

made by thoroughly crushing young leaf tissue in an extraction

bag (Neogen, Ayr, UK) with PBST at 1:5 (w/v). The extract was

passed through a 0.25 micron filter (Millipore) attached to a

syringe for sterilisation before addition to molten agar. To attempt

to stimulate production of macroconidia, MEA plates were

incubated without light and under a mixture of day light and

near UV light at room temperature (,20uC) for 7 to 10 days.

Plates were also incubated in the dark except for a continuous

near-UV light source. Isolates were also grown on oatmeal agar

(OMA) (Difco, Becton Dickinson BV, Breda, The Netherlands),

potato dextrose agar (PDA) (Oxoid, Basingstoke, UK), Czapeks

Dox medium (Oxoid, Basingstoke, UK), V8 agar (prepared with

200 ml V8 vegetable juice (Campbell Soup Company, Camden,

NJ, USA), 20 g agar, 800 ml water, pH adjusted to 6.0 with

NaOH).

Light Microscopy
Sporulating structures were mounted on slides with filter-

sterilised MilliQ water. Observations were made with a Nikon

Eclipse 90i (Nikon Instruments, Badhoevedorp, The Netherlands)

compound microscope with a Nikon DS-5MC camera attached.

Measurements were performed using N.I.S. Elements AR 2.30

software (Nikon Instruments, Badhoevedorp, The Netherlands).

Electron Microscopy
Spores were removed from the edges of mature cultures of B2

and B4 using a sticky pad mounted in a SEM stub. Samples were

directly coated with gold/palladium in a Polaron SC7640 sputter

coating unit (Quorum Technologies, Ashford, UK). Spores were

also trapped using poly-lysine coated slides and subsequently

treated in osmium tetroxide vapour for 3 hours, followed by 4%

paraformaldehyde in phosphate buffer for 3 hours, dehydrated

then subsequently sputter coating as described. Images were taken

using a JEOL JSM-5510 scanning electron microscope unit

(JEOL, Welwyn Garden City, UK) operating at 15 kV.

Nomenclature
The electronic version of this article in Portable Document

Format (PDF) in a work with an ISSN or ISBN will represent a

published work according to the International Code of Nomen-

clature for algae, fungi, and plants, and hence the new names

contained in the electronic publication of a PLOS ONE article are

effectively published under that Code from the electronic edition

alone, so there is no longer any need to provide printed copies.

In addition, new names contained in this work have been

submitted to MycoBank from where they will be made available to

the Global Names Index. The unique MycoBank number can be

resolved and the associated information viewed through any

standard web browser by appending the MycoBank number
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contained in this publication to the prefix http://www.mycobank.

org/MB/. The online version of this work is archived and

available from the following digital repositories: PubMed Central

and LOCKSS etc.

Pathogenicity Assays
Pathogenicity tests were carried out using detached leaves of the

following plants: Alstroemeria hybrid; Tricyrtis formosana; Lilium

Oriental hybrid; Hemerocallis fulva and Hemerocallis ‘Jurassic Spider’.

Leaves were placed on 0.3% water agar in large Petri dishes Four

replicates were made with the leaf adaxial and abaxial sides

upwards. The exposed surfaces were inoculated with a 0.5 cm

mycelial plug from MEA cultures of isolates B1, B2 and B4. The

Petri dishes were sealed and incubated at 25uC under 12 hours

light and monitored for up to 14 days. As a control, plugs of B.

elliptica (isolate 9601), grown on MEA agar under identical

conditions, were used. A sterile MEA agar control was also

performed.

Macroconidia of B4 and B5 from sporulating plates were

collected in sterile potato dextrose broth (1.2 g/l) and adjusted to

concentrations of 16105 and 16106 ml21. Excised Hemerocallis

leaves on water agar were inoculated with 5 ml droplets of spore

suspensions on their upper sides and three replicates performed for

each. The material was sealed in a plastic box with a .90%

humidity at 25uC and monitored for up to 10 days after

inoculation.

Pathogenicity tests were also carried out on axenic plantlets of

Hemerocallis ‘Jurassic Spider’ as follows. Previously established

cultures of Hemerocallis ‘Jurassic Spider’ were maintained at 4uC on

a 0.6% agarose growth medium composed of Murashige and

Skoog macroelements [51] with Heller’s microelements [52] and

5 ml/litre of 1% ferric ammonium citrate solution, adjusted to pH

5.5 before autoclaving. The clumps of shoots were divided, with

the leaves and roots trimmed. The plantlets derived from division

were grown in Magenta boxes containing sterilised 100 ml

vermiculite plus 80 ml liquid growth medium (as above, but

lacking the 0.6% agarose). In each box, 5 divisions were planted

and chilled at 4uC in the dark for 2 weeks, then removed in a well-

lit growth room at 20uC with 16 hour photoperiod for 2 weeks to

allow wound healing and establishment prior to inoculation.

Individual plantlets were inoculated with a 0.5 mm mycelial plug

from a plate culture of one of the fungal isolates (B1, B2, B4) and

incubated at 25uC under 16 hours direct light in a growth room

for up to 10 days. For controls, B. elliptica (isolate 9601) and sterile

MEA plugs were used. For each fungal isolate and for each

control, three replicate Magenta boxes were inoculated.

To confirm Botrytis infection of Hemerocallis tissue, extracts of

plant tissues were made by crushing sections of aerial material in

an extraction bag (Neogen, UK) with PBST, 1:5 (w/v). 400 ml of

the resulting non-particulate extract was tested with EnviroLogix

Botrytis QuickStix system as above.

To determine if pathogenicity varied depending on the host

cultivar that was challenged, plantlets of a range of cultivars were

tested using the same method except that one plantlet per

Magenta box was used. Two replicates were performed for each

plant genotype. These pathogenicity assays were all performed

with the B1 isolate. The 15 cultivars were as follows: ‘Running

Late’, ‘Lavender Curls’, ‘Dark Mosaic’, ‘Heavenly Flight of

Angels’, ‘Golden Chimes’, ‘Barbara’, ‘Party Array’, ‘Rococo’,

‘Bo Knows’, ‘Cayenne’, ‘Corky’, ‘Miss Jessie’, ‘flava clone 3’,

‘Persian Pattern’, ‘Jellyfish Jealousy’.

Identification of Mating Types and Sexual Crosses
Five isolates were analysed (B1, B2, B4, B5 and P1) to identify

the mating type alleles. Gentra Puregene DNA purification kit

(Qiagen, Venlo, The Netherlands) was used for DNA extraction

from freeze-dried mycelia following the manufacturer’s instruc-

tions. 10–50 ng genomic DNA was used in 25 ml reaction volume.

PCRs were performed with GoTaq polymerase (Promega)

according to manufacturer’s instructions. Primers used were

MAT1-1 forward/reverse and MAT1-2 forward/reverse (Table

S6 in File S1). Amplification conditions were as follows: 95uC
5 minutes, then 35 cycles of 94uC for 30 seconds, 52uC for

30 seconds and 72uC for 2 minutes, followed with a final

extension of 72uC for 5 minutes. PCR products were visualised

on gel to determine the mating type of each isolate. Crosses were

set up between isolates carrying different mating types [24].

Isolates B1 and B5 (each of the MAT1-1 mating type) were mated

with isolates B2 and B4 (each of the MAT1-2 mating type). To

develop sclerotia, strains were plated on oatmeal agar and

incubated in darkness for 1 month at 15uC, followed by incubation

at 0uC in darkness for 1 month. For mating, sclerotia were

sampled from the plates, rinsed in water with a soft toothbrush and

place in a 6-well microtitre plate. Mycelial cultures were flooded

with sterile water and a suspension of mycelial fragments and

microconidia was obtained by gently rubbing the surface with a

spatula. The sclerotia were fertilised by addition of this suspension

at 3 ml per well. Reciprocal crosses were set up in this manner,

with each partner as a female (sclerotial) or male (microconidial)

parent. As a control, sclerotia that were not exposed to

microconidia and kept in sterile water were used. The microtitre

plates were sealed and incubated at 12uC in normal artificial light

with a 12 hour photoperiod.

Supporting Information

Figure S1 Exceptional examples of spring foliage of
Hemerocallis that is exhibiting symptoms of ‘spring
sickness’ and also extensive, visible fungal growth. A.

Immature emergent foliage of a Hemerocallis cultivar (H. ‘Ruby

Storm’), showing severe necrosis and chlorosis. Botrytis deweyae was

isolated from this material. Scale bar indicates 1 cm. B. Close-up

of fungal growth of B. deweyae on infected Hemerocallis (H. ‘Gerda

Brooker’) leaf material. The fungal growth is showing production

of microconidia. Scale bar indicates 500 microns.

(TIF)

Figure S2 Phylogeny of Botrytis using NEP1 sequences.
The phylogenetic position of B. deweyae - B1 (type) isolate - is

underlined. The phylogeny was generated using Sclerotinia

sclerotiorum as the outgroup.

(TIFF)

Figure S3 Phylogeny of Botrytis using NEP2 sequences.
The phylogenetic position of B. deweyae - B1 (type) isolate - is

underlined. The phylogeny was generated using Sclerotinia

sclerotiorum as the outgroup.

(TIFF)

Figure S4 Phylogeny of Botrytis using G3PDH sequenc-
es. The phylogenetic position of B. deweyae - B1 (type) isolate - is

underlined. The phylogeny was generated using the Sclerotinia

fungal group as the outgroup.

(TIFF)

Figure S5 Phylogeny of Botrytis using HSP60 sequences.
The phylogenetic position of B. deweyae - B1 (type) isolate - is
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underlined. The phylogeny was generated using the Sclerotinia

fungal group as the outgroup.

(TIFF)

Figure S6 Phylogeny of Botrytis using RPB2 sequences.
The phylogenetic position of B. deweyae - B1 (type) isolate - is

underlined. The phylogeny was generated using the Sclerotinia

fungal group as the outgroup.

(TIFF)

Figure S7 Phylogeny of Botrytis NEP1 sequences ampli-
fied from infections of Botrytis deweyae in planta. The

plant material was showing ‘spring sickness’ symptoms. Phyloge-

netic positions of sequences of NEP1 from B. deweyae from two

different cultivars showing ‘spring sickness’ are shown in red.

(TIFF)

Figure S8 Scanning electron micrograph of a macroco-
nidia of Botrytis deweyae. Scale bar indicates 2 mm.

(TIF)

File S1 Supporting information file containing Tables
S1–S6.

(DOCX)
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