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Abstract 

Mycobacterium tuberculosis (Mtb) SapM is a secreted virulence factor critical for 

intracellular survival of the pathogen. The role of SapM in phagosome maturation arrest 

in host macrophages suggests its potential as a drug target to assist in the clearance of 

tuberculosis infection. However, the mechanism of action of SapM at the molecular level 

remains unknown. In this study, we provide new insights into the mechanism of catalysis, 

substrate specificity and inhibition of SapM, and we identify the critical residues for 

catalysis and substrate binding. Our findings demonstrate that SapM is an atypical 

monoester alkaline phosphatase, with a serine-based mechanism of catalysis probably 

metal-dependent. Particularly relevant to SapM function and pathogenesis, is its activity 

towards PI(4,5)P2 and PI3P, two phosphoinositides that function at the early stages of 

microbial phagocytosis and phagosome formation. This suggests that SapM may have a 

pleiotropic role with a wider importance on Mtb infection than initially thought. Finally, we 

have identified two inhibitors of SapM, L-ascorbic acid and 2-phospho-L-ascorbic, which 

define two different mechanisms by which the catalytic activity of this phosphatase could 

be regulated. Critically, we demonstrate that 2-phospho-L-ascorbic reduces 

mycobacterial survival in macrophage infections, hence confirming the potential of SapM 

as a therapeutic drug target.  
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Introduction 

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one 

of the leading causes of death and poverty worldwide. The rise of multi-drug resistant 

(MDR), rifampicin resistant (RR), and extensively drug-resistant (XDR) TB poses 

major challenges in the treatment and eradication of this disease, which claims over 

1.6 million lives every year (WHO TB Report 2017).  

Mtb is an intracellular pathogen that prevents its clearance in the host by blocking 

critical phagosome maturation events inside alveolar macrophages1,2,3. Subversion of 

phosphoinositide (PI) metabolism and dynamics is a key mechanism used by Mtb and 

other bacterial pathogens to arrest phagolysosome fusion thus preventing bacterial 

killing4,5. PIs are essential for the recruitment of effector proteins like EEA1 and the 

membrane remodelling ESCRT complexes, which drive the progression of early 

phagosomes to the degradative lysosomal pathway to eliminate the pathogen5. For 

Mtb infection, two secreted phosphatases have been implicated in subverting PI 

metabolism in the host to promote intracellular survival, MptpB6,7,8 and SapM9,10. 

 

SapM, was initially described as a nonspecific acid phosphatase11, and later reported 

to dephosphorylate PI3P9 a central player in phagosomal maturation12,13. Studies 

involving sapM deficient Mtb mutants supported a role for this protein in phagosome 

maturation arrest10,14 by preventing Rab5-Rab7 exchange15. In addition, SapM 

appears to have a role in immunogenicity14,16,17 and autophagy inhibition18. Notably, 

deletion of the sapM gene attenuated Mtb intracellular growth in human and mouse 

macrophages10,14 and reduced the mycobacterial burden in guinea pig models of 

infection10. However, deletion of sapM did not affect mycobacterial growth in 
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extracellular cultures10 thus confirming its role as a virulence factor important for 

intracellular mycobacterial survival.  

 

The growing evidence on the importance of SapM in pathogenesis makes it an 

attractive drug target for TB therapy, particularly since antivirulence drugs are 

gathering momentum as new therapeutic approaches to fight antimicrobial 

resistance8,19,20,21. However, the molecular mechanism of catalysis and mode of action 

of SapM is still largely unknown. This knowledge is crucial to fully exploit its potential 

as a pharmacological target, and to guide the design of specific inhibitors for drug 

development. To date a full biochemical and kinetics characterisation of this 

phosphatase has not been possible due to challenges in producing recombinant 

SapM. We have now successfully expressed SapM in E. coli and purified it to 

homogeneity for enzymatic profiling and inhibition studies. The enzyme kinetics 

analysis and mutagenesis of conserved residues, indicates that SapM follows a 

serine-based mechanism of catalysis similar to alkaline phosphatases. The substrate 

specificity and inhibition profiles for SapM show differences with classical alkaline 

phosphatases indicating that SapM is an atypical member of this family.  

 

In addition, we provide evidence of SapM activity towards a wide range of PIs with 

preference for PI(4,5)P2 and PI3P. This suggests a potential new role for this 

phosphatase in pathogenesis by acting at the early stages of phagocytosis as well as 

in phagosomal maturation. Finally, we report that 2-phospho-L-ascorbic acid (2P-AC) 

is a competitive inhibitor of SapM and that reduces intracellular survival of Mtb in 

infected macrophages. This is the first evidence that inhibition of SapM could be 
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exploited to control Mtb infection and underlines the potential for anti-virulence 

approaches to develop new therapies to treat TB. 
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Results 

SapM shares conserved functional residues with acid and alkaline 

phosphatases. 

Bioinformatics approaches were used to analyse the sequence of SapM and related 

proteins. A BLAST search revealed orthologues of SapM in all mycobacterial species 

with 70-99% pairwise identity (Fig. 1A). SapM-related sequences were also found in 

other bacterial and fungal organisms, although with lower identity (30-50%). Most of 

these proteins are currently annotated either as hypothetical proteins, uncharacterised 

or acid phosphatases, but their catalytic mechanism is unknown. These searches did 

not identify related sequences in higher eukaryotes.  

InterPro analysis showed that SapM possesses a signature match to the 

phosphoesterase domain that is present in the superfamily of alkaline 

phosphatases22,23 and in the superfamily of acid phosphatases and phospholipases C 

(PLC/phosphatase superfamily)24. A prototype of classic alkaline phosphatases 

(AlkPs) is the Escherichia coli alkaline phosphatase (Ec-AlkP)25, which shares 23% 

sequence similarity (16% identity) to SapM (Fig. 1A). Likewise, a well-characterised 

member of the PLC/phosphatase superfamily, the Francisella tularensis AcpA (Ft-

AcpA), with a 3D structure similar to alkaline phosphatases26, shares 25% sequence 

similarity (15% identity) to SapM.  

The low pairwise identity values made difficult a direct assignment of this enzyme to 

any of these families, but a multiple sequence alignment with representatives across 

the different superfamilies and the SapM-related sequences (Fig. 1A) highlighted the 

conservation within the phosphoesterase domain, of residues essential for catalysis 

and substrate binding in Ft-AcpA26,27, and Ec-AlkP25. This conservation includes the 
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nucleophile serine (S175 in Ft-AcpA and S102 in Ec-AlkP), metal binding and 

substrate binding residues (Fig. 1A). Thus, the analysis suggested that SapM may 

share a similar serine-based, potentially metal-dependent, mechanism of catalysis 

with these enzymes, despite the modest overall conservation. To elucidate the 

catalytic mechanism of SapM, we carried out a comprehensive biochemical and kinetic 

characterisation of the enzyme.  

 

The optimal enzymatic activity for SapM is at a basic pH 

The SapM mature secreted native protein comprises residues 44 to 29911, which 

contains the whole phosphoesterase domain (Fig. 1B). A construct with a His-tagged 

version of the mature sequence was expressed in E. coli C41 (DE3), taking advantage 

of the periplasmic localisation sequence provided by the pET22b vector (Novagen). 

Soluble SapM was successfully obtained after treatment of the bacterial cell pellet with 

the ionic surfactant sarkosyl28 (see methods for details). Subsequently, purification by 

nickel-affinity chromatography produced 95% pure protein (Fig. 2A). SapM migrates 

according to the predicted molecular weight of 28.8 kDa for the mature protein plus 

the His6-tag (as calculated in ProtParam29). The identity of the purified protein was 

confirmed by tryptic digestion followed by LC/MS/MS analysis, and the intact mass 

calculated as 28,772.3 ± 0.19 Da. To the best of our knowledge, this is the first report 

of SapM being produced as a soluble recombinant protein following expression in E. 

coli.   

Next, we evaluated the enzymatic activity of the purified SapM protein by measuring 

the conversion of p-Nitrophenyl phosphate (pNPP) into p-nitrophenol at different pH 

values and in the presence or absence of dithiothreitol (DTT). The optimal activity for 
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SapM was obtained at pH 7.5 in the absence of DTT (Fig. 2B). We also confirmed the 

optimal activity at this pH for the protein after cleavage of the His-tag (Suppl. Fig. 1). 

This is in agreement with the enzyme activity pH range (6.5-7.5) reported for the native 

SapM11. 

The addition of 3 mM DTT resulted in a considerable reduction of the specific activity 

at any pH, with a drop of activity of about 70% at pH 7.5 (Fig. 2B). Usually, DTT is 

used to prevent disulfide bond formation by reduction of Cys residues, which is 

particularly critical in Cys-based phosphatases where oxidation of the catalytic 

cysteine abolishes enzyme activity30. However, SapM protein lacks the hallmark active 

site P-loop motif (CX5R) present in Cys-based phosphatases31. Therefore, the effect 

of DTT potentially suggests a different mechanism in reducing enzyme activity. DTT 

can also act as a metal chelator due to its ability to form stable coordination complexes 

with metals32,33. Since the metal-binding residues identified in Ft-AcpA and Ec-AlkP 

are conserved in SapM, a potential explanation would be that the effect of DTT is due 

to chelation of a bound metal. Alternatively, DTT may impact on a metal oxidation 

state, which could similarly result in metal dissociation. These findings are therefore 

consistent with the suggestion that SapM is also a metal-dependent enzyme.  

 

Mutagenesis of conserved residues suggests an alkaline-like mechanism of 

catalysis 

Our bioinformatics analysis showed that SapM shares conserved catalytic residues 

with Ec-AlkP and Ft-AcpA (Fig. 1A), both of which also follow an alkaline mechanism 

of catalysis25,26. Ft-AcpA and Ec-AlkP both use a serine (S175 in Ft-AcpA and S102 

in Ec-AlkP) as the nucleophile, which is activated by metal ions, three in the case of 
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Ec-AlkP (two Zn2+ and Mg2+)25,34 and only one in the case of Ft-AcpA26. The crystal 

structure of Ft-AcpA in complex with vanadate26 revealed four histidines (H106, H287, 

H288 and H350) critical for substrate binding. In the Ft-AcpA structure the metal ion is 

coordinated by seven oxygen atoms from residues N44, E43, D386, D387 and the 

vanadate molecule (Fig. 3A). Key catalytic residues in Ft-AcpA are also present in the 

structure of Ec-AlkP25 (Fig. 3A). Based on the multiple sequence alignment, up to eight 

residues important in Ft-AcpA catalysis and substrate binding are conserved in SapM 

(Fig. 1A, 3A).  

We explored the role of these conserved residues in SapM, by mutagenesis and 

enzyme activity assays. The SapM mutants S95A, N60A, E59A, D238A, E239A, 

H160A and H204A exhibited no activity towards pNPP, even at longer incubation times 

of up to 90 min (Fig. 3B). Using the catalytic mechanism described for Ft-AcpA as a 

reference, we propose S95 to act as the nucleophile in SapM.  Residues E59, N60, 

D238 and E239 align with the metal-binding site described for Ft-AcpA, and an 

analogous role in metal-binding is supported by their requirement for SapM-mediated 

catalysis. The residues H160 and H204 may be involved in substrate binding as their 

cognate residues H288 and H350 in Ft-AcpA. In fact, mutation of Ft-AcpA H288 and 

H350 to alanine, also resulted in lack of enzyme activity in that enzyme27. 

Interestingly, the SapM K159A mutant showed only reduced activity towards pNPP 

with respect to the wild-type enzyme (Fig. 3B), indicating that it is important but not 

essential for catalysis. Analogous residues H287 in Ft-AcpA27 and R166 in Ec AlkP25, 

appear to have a role in substrate binding as well. Our mutagenesis studies thus 

confirmed the importance of the conserved residues S95, N60, E59, D238, E239, 

H160, H204 and K159 in SapM catalysis and substrate binding. These data and the 

proposed role for these residues indicate that SapM follows a serine-based alkaline-
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like mechanism of catalysis similar to that of Ec-AlkP and Ft-AcpA with S95 acting as 

the nucleophile.  

 

Influence of metal ions in SapM enzymatic activity  

In order to study the potential role of metal ions in SapM activity, we performed 

enzymatic assays in the presence of a range of transition (Co2+, Ni2+, Zn2+, Mn2+, 

Cu2+and Fe3+) and alkaline metals (Ca2+ and Mg2+). The activity of SapM was totally 

inhibited by zinc, and reduced by >50% in the presence of copper, cobalt and nickel. 

Magnesium was the only metal that did not affect the enzymatic activity of SapM (Fig. 

4A). Next, using electron paramagnetic resonance (EPR) spectroscopy, we tested for 

the presence of Fe3+, Zn2+, Mn2+, Cu2+. No signal for any of these metal ions was 

detectable, indicating that none of these metals are bound to the enzyme under the 

conditions tested. We also carried out inductively coupled plasma mass 

spectrometry (ICP-MS) analysis of purified SapM, which failed to detect the presence 

of protein associated metals (Mg, Ca, Cr, Co, Ni, Cd, Cu, Zn or Fe). Thus, whilst none 

of these metals are co-purified with SapM, it remains possible that they can bind to 

SapM and inhibit activity by displacing an as yet unidentified metal-cofactor. It is 

noteworthy that these experiments were repeated with SapM purified with EDTA-free 

buffers (including lysis buffer), but the results were unchanged. 

High concentrations of DTT (10 mM) completely inhibited SapM activity (Fig. 4B), 

supporting the idea that DTT may be acting (chelating or changing oxidation state) on 

a unknown metal that is resistant to high concentrations (10 mM) of the divalent 

chelators ethylenediaminetetraacetic acid (EDTA) and egtazic acid (EGTA) (Fig. 4B).  

SapM is an atypical monoester alkaline phosphatase 
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Next, we tested a wide range of phospho-substrates to establish the specificity of 

SapM. SapM hydrolysed a wide range of different phospho-substrates and fifteen of 

them with a specific activiy of at least 50% with respect to pNPP (Fig. 5A), indicating 

a broad specificity. Kinetic analysis of the best substrates showed that SapM displays 

the highest efficiency (kcat/Km) towards the triphosphate nucleosides ATP and GTP 

(Fig. 5B). SapM also hydrolysed cysteamine S-phosphate, a substrate for classic 

alkaline phosphatases35, with a specific activity of 57% with respect to pNPP hydrolisis 

(Fig. 5A). 

 

The activity of SapM towards the phosphodiester substrates bis-p-nitrophenyl 

phosphate (Bis pNPP) and adenosine 3′,5′-cyclic monophosphate (c-AMP), typical 

substrates of phosphodiesterases36,37, was less than 5% with respect to pNPP 

hydrolisis. SapM therefore shows a clear preference for phosphomonoesters over 

phosphodiester substrates, ruling out that it functions as a phosphodiesterase.  

 

Next we tested common inhibitors of protein phosphatases. The oxyanions, vanadate 

and molybdate, which are inhibitors of classic phosphotyrosine phosphatases 

(PTPs)38, abolished SapM activity (Fig 4B). High concentrations (10 mM) of 

tetramisole hydrochloride, an alkaline phosphatase inhibitor35, did not inhibit the 

enzyme activity. Likewise, SapM activity was resistant to sodium fluoride (acid 

phosphatase inhibitor) and sodium tartrate (acid phosphatase and Ser/Thr 

phosphatase inhibitor) (Fig. 4B). These findings suggest a mixed type of inhibition 

profile for SapM matching neither classic acid phosphatases, nor alkaline 

phosphatases. 
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The broad substrate specificity of SapM, together with the optimal pH of 7.5 is similar 

to that observed in the alkaline phosphatase family. However, SapM shares only 16% 

identity with the closest classical alkaline phosphatase, Ec-AlkP, and lacks the 

characteristic catalytic motif present in alkaline phosphatases, DSA (D101, S102 and 

A103 in Ec-AlkP), where S is the nucleophile residue25. Instead, SapM has a PSE 

motif, conserved in all mycobacterium orthologues and microbial related sequences 

(Fig. 1A), which contains the catalytic S95.  

 

Previous studies suggested that SapM could be a nonspecific acid phosphatase 

(NSAP) or a His-based phosphatase11. Our analyses indicate that SapM does not 

contain the characteristic motifs found in His-based phosphatases, such as the 

catalytic RHGXRXP motif39, where the histidine is the nucleophile. SapM is also 

missing the conserved active site motif CX5R of acid phosphatases31, and does not 

present any of the characteristic motifs of NSAP described up to now40. These data, 

together with the identification of the catalytic residues, indicate that SapM behaves 

as an atypical alkaline phosphatase with broad monoesterase activity.  

 

SapM shows specificity for PI(4,5)P2 and PI3P 

Previous studies9 suggested that the native SapM was able to dephosphorylate mono-

phosphorylated phosphoinositides (PIs), specifically PI3P. However, nothing was 

reported about SapM activity towards the di and tri-phosphorylated PIs. Surprisingly, 

the isolated SapM can hydrolyse a wide range of phosphoinositides (Fig. 6A), but 

preferentially dephosphorylates PI(4,5)P2 and PI3P, showing higher kcat/Km values 

over the rest. In contrast, SapM shows 5 to 10 times lower catalytic efficiency towards 
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the mono-phosphorylated PI4P and PI5P due to a much lower affinity (Km) for these 

compounds (Fig. 6B).  

Interestingly, the K159A mutant showed less than 2% activity towards PI(4,5)P2, and 

PI3P whilst retaining 21% and 13% activity for pNPP and ATP, respectively (Fig. 6C). 

Kinetic analyses also revealed a 2-fold increase in Km and a 10-fold decrease in kcat/Km 

for K159A towards ATP (Fig. 6D), confirming its role in substrate binding as proposed 

for its analogues H287 in Ft-AcpA27 and R166 in Ec-AlkP41. Hence, similarly to R166 

in Ec-AlkP25, K159 may provide additional stabilisation of the negatively charged 

phosphosubstrates, which is clearly critical for hydrolysis of phosphoinositides that 

contain extra negatively charged phosphate groups.  

The specificity of SapM for PI(4,5)P2 in addition to PI3P is intriguing and suggests that 

this phosphatase may have more than one role in infection and pathogenesis, since 

these PIs localise to the plasma/phagocytic membrane and early phagosome 

membrane, respectively. 

 

Inhibition of SapM enzymatic activity 

Inhibition studies indicated that L-ascorbic acid (L-AC) and 2-phospho-L-ascorbic acid 

(2P-AC) inhibit the enzymatic activity of Ft-AcpA27. Since SapM shares a similar 

mechanism of catalysis with Ft-AcpA, we speculated that these compounds may also 

inhibit SapM. An initial test showed that 10 mM of L-AC and 2P-AC completely 

abolished the enzyme activity of SapM. Subsequently we determined the IC50 to be 

241 µM for L-AC and 234 µM for 2P-AC (Fig. 7A, B). The mechanism of inhibition by 

these compounds differs. L-AC acts as uncompetitive inhibitor as noted by variations 
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of the Vmax and the Km at different inhibitor concentrations (Fig. 7C). L-AC is a potent 

oxidant and thus its inhibition may be the result of metal oxidation in the enzyme-pNPP 

complex42, explaining the uncompetitive mechanism of inhibition observed.  In 

contrast, 2P-AC behaves as a competitive inhibitor, since variations in its 

concentration produced marked changes in the Km while the Vmax remained 

unchanged (Fig. 7D). Since SapM can also hydrolyse 2P-AC (Fig. 5), this compound 

may inhibit SapM activity in a two-way mechanism: by competing with pNPP for 

binding to the active site, and as a metal oxidant, as a result of its ascorbic acid 

production due to hydrolysis.  

 

 2-phospho-L-ascorbic acid reduces survival of M. tuberculosis in infected 

macrophages, although does not affect extracellular growth  

Next, we evaluated the effect of these SapM inhibitors on Mtb extracellular growth. 

For this, growth of the Mtb H37Rv strain was monitored over the course of 11 days 

(Fig. 8A) with and without the addition of the inhibitors. Cultures were treated with 

different concentrations of L-AC and 2P-AC added in day 0 and 1, and growth was 

monitored using optical density (OD600). Mycobacterial growth was severely reduced 

from day 2 with 4 mM L-AC, and even a lower concentration (1 mM) L-AC had a 

significant (p=0.0039) effect in growth reduction (Fig. 8A). These findings are in 

agreement with previous studies showing the effect of L-AC on mycobacterial 

growth43. In contrast, treatment with 1 mM 2P-AC did not affect mycobacterial growth 

(Fig. 8A), while treatment with 4 mM 2P-AC showed only significant reduction of 

mycobacterial growth from day 7 (p=0.0048). The delayed effect of 2P-AC may be due 

to slow spontaneous hydrolysis in solution of the phosphate group to generate 
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ascorbic acid, as previously reported44, plus hydrolysis by the secreted SapM. Thus, 

while L-AC shows a severe effect on inhibiting Mtb extracellular growth, the presence 

of the phosphate group in 2P-AC appears to have a protective effect, during the first 

7 days post-treatment.  

Previous studies have demonstrated that deletion of the sapM gene, results in 

reduction of mycobacterial burden within macrophages and guinea pig models of 

infection10,14,15. We hypothesised that chemical inhibition of SapM may recapitulate 

the effect of the sapM knockout, thus reducing intracellular mycobacterial survival. To 

test this, we assessed the efficacy of 2P-AC in reducing Mtb (H37Rv) survival in resting 

human THP1 macrophages. We observed a significant (p=0.0365) reduction in 

bacterial burden at 72 h post-infection of 39% upon treatment with 4 mM 2P-AC 

compared to the non-treated control (Fig. 8B). Control experiments showed that 2P-

AC has no detrimental effect on macrophage viability (Fig. 8B inset). In addition, 

inhibition of 2P-AC is specific for SapM, as it did not inhibit the other secreted 

mycobacterial phosphatases MptpA and MptpB when tested at 4 mM concentration. 

Importantly, 2P-AC showed no effect on extracellular cultures of Mtb at 72 h, therefore 

the reduction in bacterial burden observed is consistent with the proposed role of 

SapM in mycobacterial intracellular survival10,14. These findings demonstrate that 

SapM inhibition may be effective in assisting mycobacterial clearance during infection, 

thus providing a novel mechanism of action for TB treatment. 

 

Discussion  

In this study, we provide new insights into the mechanism of catalysis, substrate 

specificity and inhibition of SapM. Our findings demonstrate that SapM is an atypical 

monoester alkaline phosphatase, with a serine-based mechanism of catalysis 
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probably metal-dependent. Particularly relevant to SapM function and pathogenesis, 

is its activity towards PI(4,5)P2 and PI3P, two PIs that act at the early stages of 

microbial phagocytosis and phagosome formation. This suggests that SapM may have 

a pleiotropic role with a much wider impact on Mtb infection than initially thought. 

Finally, we have identified two inhibitors of SapM, 2P-AC and L-AC, which define two 

different mechanisms (competitive and metal oxidation) by which the catalytic activity 

of this phosphatase could be regulated. Critically we demonstrate that 2P-AC reduces 

mycobacterial survival in macrophage infections.  

Our bioinformatics analysis revealed that SapM and orthologues share a conserved 

phosphoesterase domain with the superfamily of alkaline phosphatases (Fig. 1A). 

Consistent with this, we have demonstrated that SapM is a monoester phosphatase 

capable of hydrolysing a broad range of phosphosubstrates including cysteamine S-

phosphate, an alkaline phosphatase substrate, and ATP for which the enzyme showed 

the highest specificity (Fig. 5A, B). Based on the multiple sequence alignment and 

using mutagenesis and activity assays, we have identified for the first time the key 

catalytic residues of SapM, including the nucleophile S95 and residues (E59, N60, 

D238 and E239 H160 and H204) which are associated with metal and substrate 

binding (Fig. 3A, B). Furthermore, we have identified Lys159, as critical for 

phosphoinositide binding (Fig. 6C, D).  

SapM shares a similar mechanism of catalysis with another phosphatase, Ft-AcpA, 

which is critical for survival of F. tularensis in host cells. Inhibition of Ft-AcpA with 2P-

AC impaired survival of F. tularensis in infected macrophages27. We have 

demonstrated in this study, that 2P-AC is a competitive inhibitor of SapM (Fig. 7D) with 

efficacy in reducing mycobacterial burden in infected macrophages, despite having no 

effect on extracellular bacterial cultures (Fig. 8A, B). We expect that more potent 
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inhibitors, perhaps based on the 2P-AC scaffold, would provide good starting points 

for drug development and further validation of SapM as a drug target.  

Manipulation of the host phosphoinositide metabolism is a common mechanism in 

microbial pathogenesis to promote colonisation of macrophages during 

infection4,5,45,46. This is particularly relevant for Mtb infections where alteration in PI 

dynamics affects phagosomal maturation and enables long-term survival of the 

bacteria in alveolar macrophages. We show in this study that SapM is able to 

hydrolyse all seven phosphoinositides albeit with higher specificity for PI(4,5)P2 and 

PI3P, and to our knowledge, SapM is the first bacterial phosphatase to show such a 

broad PI activity.  

Previously, another two secreted phosphatases, MptpA and MptpB, have been 

implicated in the regulation of phagosomal maturation by Mtb8,47,48,49. Based on the 

current knowledge and our new data on the activity of SapM, we propose a model in 

which these three mycobacterial phosphatases MptpA, MptpB and SapM, could be 

acting in a coordinated manner to control phagosome biogenesis, acidification and 

maturation, blocking phagolysosome fusion and thus promoting survival of Mtb in the 

macrophage (Fig. 9). 

The role of Mtb in phagosome maturation arrest is a complex mechanism where many 

players take part at different stages5 (Fig. 9). Initial phagosome formation and scission 

from the plasma membrane requires hydrolysis of PI(4,5)P2
50. This is a critical step for 

pathogenic invasion as described for Salmonella51 and Yersinia52. In this context, 

PI(4,5)P2 hydrolysis by SapM could represent a critical step to facilitate Mtb uptake 

and colonisation of the host.  
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The early phagosome membrane is characterised by the presence of PI3P critical for 

phagosomal maturation downstream events5,9. Hydrolysis of PI3P by SapM has been 

implicated in phagosome maturation arrest9. We have previously reported that MptpB, 

also dephosphorylates PI3P49, and that inhibition of MptpB, affects PI3P dynamics in 

infected macrophages8. Hence, it is probable that the combined hydrolysis of PI3P by 

both SapM and MptpB enhances maturation arrest at this early stage. MptpB also 

dephosphorylates PI(3,5)P2
49, a key lipid for late phagosome formation and fusion to 

lysosomes53. 

Another critical event that promotes Mtb survival is the prevention of phagosome 

acidification. Acidification is triggered by V-ATPase (proton-pumping ATPase) 

recruitment, which requires ATP to translocate protons (H+) creating the acidic 

environment inside the phagosome54. MptpA inhibits V-ATPase trafficking to the 

mycobacterial phagosome by dephosphorylation of VPS33B (human vacuolar protein 

sorting 33B)47, thus preventing acidification. Since SapM hydrolyses ATP with high 

efficiency, this could also contribute to prevent acidification. Therefore, arrest of 

phagolysosomal fusion and subsequent bacterial destruction may be controlled by the 

coordinated activities of these three secreted phosphatases to enhance mycobacterial 

survival in the host (Fig. 9). Testing this model and the spatio-temporal involvement of 

three Mtb phosphatases in phagosome maturation and PI dynamics will be the focus 

of future work. 
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Material and Methods  

Bioinformatics analysis 

BLAST searches in the UniProt Knowledgebase (UniProtKB)55, were performed using 

the full length sequence to identify SapM-related sequences. Next, using InterPro 

database56 conserved domains and families were identified57. For the BLAST 

searches, the E-Threshold was set at two values: 0.0001 and 10. Multiple sequence 

alignments were performed using Clustal Omega58 and manually edited using the 

program Jalview Version 2.10.3b159. 

 

Cloning and mutagenesis of SapM  

The open reading frame of Rv3310, encoding the SapM gene, was amplified from 

Mycobacterium tuberculosis (Mtb) H37Rv DNA. The amplicon from residues 44 to 299,  

corresponding to the mature protein11 was cloned into pET22b (Novagen) vector using 

the forward (5’-GCTGCTCCATGGCGAGTGCCCTGCCGACC-3’) and reverse (5’- 

GCTCGTGCGGCCGCGTCGCCCCAAATATCGGTTATTGG-3’) primers containing 

NcoI and NotI restriction sites (New England Biolabs, UK) to generate the C-terminal 

His6-tagged SapM construct. Site directed mutagenesis was carried out using 

AccuzymeTM DNA Polymerase (BIOLINE) for thermal cycling and the PCR product 

inserted into pET22b vector. The His6-tagged SapM construct was used as a template. 

DNA sequence analyses confirmed that residues E59A, N60A, S95A, K159A, H160A, 

H204A, D238A and E239A were mutated and that no additional changes were 

introduced.  
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Overexpression and purification of recombinant SapM 

Constructs (wild-type and mutants) were transformed into Escherichia coli C41 (DE3) 

strain for expression of recombinant proteins. Single colonies of E. coli C41 (DE3) 

were inoculated in 10 ml of LB (Luria-Bertani) broth supplemented with ampicillin (100 

µg/ml) and 1% glucose and incubated overnight. Subsequently the overnight culture 

was diluted into 400 ml of auto-induction media60 and grown at 37°C with shaking (220 

rpm) until OD600 reached ~0.4. The culture temperature was reduced at 20 °C for 

protein expression and culture was harvested (6500 g for 15 min at 4 °C) 24 h later. 

Recombinant SapM (wild-type and mutants) was purified by nickel-affinity 

chromatography using an AKTA purification system (GE Healthcare). Cell pellets were 

re-suspended in lysis buffer containing 50 mM HEPES, 500 mM NaCl, with 1 mM 

ethylenediaminetetraacetic acid (EDTA), 1 mg/ml lysozyme, 1% N-lauroylsarcosine 

sodium salt (sarkosyl) (Sigma-Aldrich), 38 units/ml of benzonase nuclease (Sigma-

Aldrich) and complete EDTA-free protease inhibitor cocktail (Roche), pH 7 and 

incubated on ice for 30 min. Cells were disrupted by sonication (Sonics Vibra-Cell). 

Lysates were cleared by centrifugation at 12,000 g for 1 h at 4 °C. The cell lysate was 

filtered through a 0.45 µm flask filter and loaded onto a 1 ml HisTrapTM HP column 

(GE Healthcare) in binding buffer containing 50 mM HEPES, 500 mM NaCl and 0.05% 

sarkosyl, pH 7 and washed with buffer containing 50 mM HEPES, 500 mM NaCl and 

0.05% Sarkosyl, and 60 mM imidazole, pH 7. Protein was eluted with a gradient of 

imidazole (from 60 mM to 250 mM) in the elution buffer. Fractions containing the 

protein were further purified using a second 1 ml HisTrapTM HP column and eluted with 

200 mM imidazole in elution buffer (50 mM HEPES, 500 mM NaCl and 0.05% 

Sarkosyl). Purity of fractions was verified in a coomassie-stained 10% SDS-PAGE run 

under reducing conditions with beta-mercaptoethanol. The identity of SapM was 
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confirmed by trypsin digestion and mass spectrometry (LC/MS/MS) using a sample 

protein excised from an acrylamide gel corresponding to the second IMAC purification. 

Multiangle light scattering analysis confirmed a molecular mass of 30.3 kDa and that 

the sample was monodisperse after IMAC purification. 

 

Overexpression and purification of MptpA and MptpB.  

The N-terminal histidine tagged constructs for MptpA and MptpB were generated as 

previously described7,8. Constructs were transformed into E. coli BL21(DE3) and 

expression induced at 18 °C with 0.5 mM IPTG (isopropyl-β-D-thiolgalactopyranoside) 

for MptpB and  0.1 mM IPTG for MptpA for 16 h. Purification of both MptpA and MptpB 

was done by nickel affinity chromatography followed by a size exclusion 

chromatography using a Superdex75 (10/300) column  (GE Healthcare). MptpB and 

MptpA proteins were eluted in buffer containing 20 mM Tris-Base, 150 mM NaCl, 3 

mM EDTA, pH 7.  

 

Activity assays using p-Nitrophenyl phosphate (pNPP) 

Enzymatic activity of SapM was assessed by hydrolysis of p-Nitrophenyl phosphate 

(pNPP) (Sigma-Aldrich) according to the manufacturer’s protocol. Briefly, we tested 

pH ranges 4 to 6, using a 150 µl reaction mixture containing 0.5 µg protein, 1 mM 

pNPP in 50 mM Tris-Base, 150 mM sodium acetate with/without 3 mM dithiothreitol 

(DTT) and pH ranges 7 to 9.5 in 50 mM Tris-Base, 150 mM NaCl and with/without 3 

mM DTT. Samples were incubated at 37 °C for 30 min at which time the reaction was 

quenched by adding 50 µl of NaOH 1 M. The absorbance was subsequently read at 
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405 nm using a Multiskan® Spectrum spectrophotometer (Thermo Scientific). The 

concentration of p-nitrophenol produced was determined using a p-nitrophenol 

standard curve (15 µM – 2000 µM of Sigma-Aldrich p-nitrophenol standard solution). 

Optimal pH was tested using the His6-tagged and naked SapM protein (without the 

tag). The assay was optimized with respect to time and protein concentration so that 

the reaction is performed within the linear range of the initial velocity. 

The effect of metals and inhibitory compounds were tested using a 150 µl reaction 

mixture containing 1 µg of protein in 50 mM Tris-Base, 150 mM NaCl, pH 7.5 and the 

different metals or inhibitory compounds (metals and inhibitory compounds at 10 mM, 

except FeCl3 at 1 mM) and incubated for 30 min at room temperature, followed by the 

addition of pNPP to a final concentration of 500 µM and further incubated for 30 min 

at 37 °C. The reaction was quenched by adding 50 µl of NaOH 1 M followed by the 

steps explained above. Metals and compounds sodium tartrate (Na-Tr), egtazic acid 

(EGTA), sodium fluoride (NaF), 2-phospho-L-ascorbic acid (2P-AC), sodium 

orthovanadate (Na-OV), sodium molybdate (Na-Mb), L-ascorbic acid (L-AC) were all 

from Sigma-Aldrich. EDTA, (Fisher Scientific) and tetramisole hydrochloride (THC) 

(Fluorochem). 

The phosphatase activity of SapM  (wild-type and mutants) was determined using a 

150 µl reaction mixture containing 0.5 µg of protein and 1 mM pNPP  in 50 mM Tris-

Base, 150 mM NaCl, pH 7.5 and incubated at 37 °C for 30 min , 60 min and 90 min. 

The absorbance was read at 405 nm every 30 min after quenching the reaction. 

Concentration was calculated as explained above. All the experiments were performed 

in triplicates in 96-well microplates F-bottom clear plates (Greiner bio-one) in at least 

two separate studies. 
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Activity assays using the Malachite Green Assay 

The amount of free phosphate during the dephosphorylation of phosphosubstrates 

was determined with the malachite green assay (Sigma-Aldrich) according to the 

manufacturer’s protocol. The substrates tested were: phosphoinositide substrates 

diC8-PI3P, diC8-PI(3,4)P2, diC8-PI(3,5)P2, diC8-PI4P, diC8-PI(4,5)P2, diC8-PI5P, and 

diC8-PI(3,4,5)P3 (all from Echelon Bioscience), O-phospho-L-tyrosine (P-Tyr), O-

phospho-L-serine (P-Ser), O-phospho-L-threonine (P-Thr), cysteamine S-phosphate 

sodium salt (CysS-P), bis-(p-nitrophenyl) phosphate sodium salt (Bis pNPP), 

phosphorylcholine chloride (PC), O-phosphorylethanolamine (PETh), mono-sodium 

phosphoenolpyruvate hydrate (PEP), glycerophosphate disodium salt hydrate (GlyP), 

inosine 5′-monophosphate disodium salt hydrate (IMP), guanosine 5′-monophosphate 

disodium salt hydrate (GMP), guanosine 5′-triphosphate sodium salt hydrate (GTP), 

adenosine 5′-triphosphate (ATP) disodium salt hydrate, adenosine 5′-diphosphate 

sodium salt (ADP), adenosine 5′-monophosphate disodium salt (AMP), trehalose 6-

phosphate dipotassium salt (T6P), D-fructose 6-phosphate disodium salt hydrate 

(F6P), phytic acid (PhyA), α-Naphthyl phosphate (α –NP), β-nicotinamide adenine 

dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH), riboflavin 5′-

monophosphate sodium salt hydrate (FMN), adenosine 3′,5′-cyclic monophosphate 

sodium salt monohydrate (c-AMP), D-Glucose 6-phosphate sodium salt (G6P) (all 

from Sigma-Aldrich), and adenosine 5'-monophosphate sodium salt (AMP) (Fisher 

Scientific). 

The specific activity of SapM towards the 34 substrates was determined using a 100 

µl reaction mixture containing reaction buffer (50 mM Tris-Base, 150 mM NaCl, pH 
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7.5), 80 µM of substrate and 1 µg of protein. The reaction mixtures were incubated at 

37 °C for 30 min prior to the addition of 15 µl of malachite green reagent. 

Subsequently, the reaction was further incubated for 15 min at room temperature (21 

°C). The absorbance was read at 620 nm using a Multiskan® Spectrum 

spectrophotometer (Thermo Scientific). The concentration of free phosphate produced 

was determined using a phosphate standard curve (25 – 3000 pmol of Sigma-Aldrich 

phosphate standard solution).  

Specificity activity (wild-type and mutants) towards pNPP, ATP, PI3P and PI(4,5)P2 

was evaluated with 80 µM of substrate and 0.1 µg of protein. For kinetic measurements 

(wild-type and mutants), we used 3-750 µM of substrate and 0.1 µg of protein. 

Incubation was at 37 °C for 1 h. Following steps were the same as explained above. 

All the experiments were performed in triplicates in 96-well microplates F-bottom clear 

plates in at least two separate studies. 

 

Kinetic analysis 

The Michaelis-Menten kinetic parameters Vmax and Km were calculated using non-

linear regression fit in GraphPad Prism 7.01 for Windows by plotting velocity as a 

function of pNPP concentration. The kcat was determined by dividing the Vmax by the 

molar enzyme concentration. Values are calculated as average of at least two 

separate studies performed in triplicates with ± SEM.  
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EPR and ICP-MS studies  

Both analyses were performed using a sample containing ~4 mg/ml of protein in 200 

mM NaCl, 20 mM HEPES, pH 7 with and without EDTA present. For EPR, continuous‐

wave EPR spectra were recorded at 9.4 GHz (X‐band) on a Bruker EMX spectrometer 

equipped with a Super‐high‐Q rectangular cavity and an Oxford ESR‐900 liquid helium 

cryostat. Instrument operating conditions were modulation amplitude 4.0 G, 

modulation frequency 100 kHz, microwave power 0.3 mW, temperature 5.0 K. For 

ICP-MS, sample was treated with Nitric Acid 65 % and measured in an Agilent 7500 

ICP-MS (Agilent technologies, UK). The equipment was fitted with an auto sampler 

(ASX-500 series), a quartz double-pass spray chamber (Peltier-cooled, Scott-type), a 

concentric MicroMist nebuliser and a third generation Octopole Reaction System 

(ORS3). This allows for the correction of spectral interferences by the addition of He 

or H2 gas to the collision cell, producing ions of a lower kinetic energy that enable the 

analyte ions with a higher energy than the multipole to be transmitted to the mass 

analyser. The digested sample solution was added via a T-piece before nebulisation, 

along with the internal standard solution. Ion standards are made up from single stocks 

and mixed element standards supplied by VWR and Johnson Matthey. 

 

Inhibition assays 

The IC50 of 2-phospho-L-ascorbic acid (2P-AC) and L-ascorbic acid (L-AC) was 

determined using a 150 µl reaction mixture containing 0.5 µg of protein in 50 mM Tris-

Base, 150 mM NaCl, pH 7.5 and the different inhibitors (0.02 µM- 20 mM). The reaction 

was incubated for 30 min at room temperature, followed by the addition of pNPP to a 

final concentration equal to its Km value and incubated for 30 min at 37 °C. The reaction 

was quenched by adding 50 µl of NaOH 1 M to measure absorbance at 405 nm. The 
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concentration of p-nitrophenol produced was determined using a p-nitrophenol 

standard curve and expressed as a percentage of the specific activity. Data was 

plotted as a function of log inhibitor concentration to calculate the IC50 using a four-

parameter dose-response curve in GraphPad Prism 7.01. Selectivity assays for MptpA 

and MptpB were done by determining specific activity towards pNPP in the presence 

of 4 mM 2P-AC in a reaction assay containing 5 µg of protein, 50 mM Tris-Base, 50 

mM Bis-Tris, 100 mM Sodium Acetate, pH 6 and incubating for 30 min at room 

temperature. 

To determine the type of inhibition of 2P-AC and L-AC, different inhibitor 

concentrations were used (for L-AC 146 µM, 243 µM and 365 µM; for 2P-AC 140 µM, 

234 µM and 351 µM) in a 150 µl reaction mixture containing 0.5 µg of protein in 50 

mM Tris-Base, 150 mM NaCl, pH 7.5. Samples were incubated for 30 min at room 

temperature, followed by addition of different concentrations of pNPP (62.5 µM, 125 

µM, 250 µM, 500 µM, 1 mM and 2 mM) and further incubated for 30 min at 37 °C. The 

reaction was quenched by adding 50 µl of NaOH 1 M. Velocity (V) was plotted as a 

function of pNPP concentration and fit in a Lineweaver-Burk plot (double-reciprocal) 

using GraphPad Prism 7.01. All the experiments were performed in triplicates in at 

least two separate studies.  

 

Cell and bacterial culture conditions 

THP1 macrophages cells (ATCC) were cultured in Roswell Park Memorial Institute-

1640 medium (RPMI-1640) (R8758-Sigma-Aldrich) containing L-glutamine 

supplemented with 10% heat inactivated fetal bovine serum (FBS, Invitrogen) at 37 °C 

in a 5% CO2. M. tuberculosis (Mtb) laboratory strain H37Rv was grown on Middlebrook 
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7H9 broth (BD Diagnostics) at 37 °C in 5% CO2 or Middlebrook 7H10 agar (both 

mediums were supplemented with 0.05% Tween 80, 0.2% glycerol and 10% OADC). 

Mtb cultures were prepared using 1 ml of mid-log phase stock into 20 ml of fresh media 

and incubated static for 6 days prior to being used in infection assays or inhibitory 

assays. All experiments with Mtb were carried out in a biosafety level 3 containment 

facility. 

 

Extracellular growth of Mycobacterium tuberculosis and macrophage infections 

2-phospho-L-ascorbic acid (2P-AC) and L-ascorbic acid (L-AC) effect on extracellular 

cultures of Mtb was assessed by adding 1 mM or 4 mM of the compounds in 20 ml of 

Middlebrook 7H9 broth. Compounds were added to the culture in day 0 and 1 and 

allowed to grow over 11 days. Mycobacterial growth was monitored by optical density 

(OD) at 600 nm. Experiments were performed in triplicates in at least two separate 

studies. For statistical analyses, OD values were evaluated by two-way ANOVA 

followed by a multiple comparison analyses of variance by Bonferroni test (GraphPad 

Prism 7.01 for Windows). Differences were considered significant at the 95% level of 

confidence. 

 

For the macrophage infections, THP1 cells were seeded in 24-well culture plates 

(Corning) at a density of 1 x 105 cells per well (in 500 µl media) and treated with 200 

nM PMA for 2 h. After treatment, media was changed for fresh RPMI (with 10% FBS) 

overnight. The following day, media was removed and cells were washed with PBS 

and 500 µl of fresh RPMI was added containing 2P-AC (1 mM and 4 mM dissolved in 

water) before infecting the cells with Mtb at MOI of 5:1 (bacteria:macrophage). After 4 
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h of infection, THP1 cells were washed three times with Dulbecco’s PBS and fresh 

RPMI was added containing 2P-AC. After 24 h the media was removed and cells were 

washed twice with PBS prior to the addition of RPMI containing 2P-AC. At 72 h post 

infection cells were lysed with ice-cold water and plated onto 7H10 agar. Colonies 

were counted after 14 days. All experimental points were plated as 10-fold dilutions in 

triplicates. Each sample was setup in triplicates in at least two independent 

experiments. For statistical analyses, CFU/ml values were evaluated by one-way 

ANOVA followed by a multiple comparison analyses of variance by Bonferroni test 

(GraphPad Prism 7.01 for Windows). Differences were considered significant at the 

95% level of confidence. All experiments with Mtb were carried out in a biosafety level 

3 containment facility. 

 

Cytotoxicity assays 

MTT assay was performed as described previously61. Briefly, THP1 cells were seeded 

in 96-well culture plates (Corning) at a density of 5 x104 (in 200 l media) and treated 

with 200 nM PMA for 2 h. After treatment, media was changed for fresh RPMI (with 

1% FBS) and leaved it overnight. The following day media was removed and fresh 

RPMI was added supplemented with 2P-AC inhibitor. Inhibitor was added to each well 

at 0 h and 24 h. After 48 h, cells were washed once with PBS and 200 l of fresh RPMI 

was added. At 72 h, media was removed and changed for 200 l of fresh RPMI. Cell 

viability was assessed by adding 50 µl of filter sterilised MTT (5 mg/ml in PBS) to each 

well followed by a 2 h incubation period at 37 °C in a 5% CO2. Media was removed 

and the blue formazan crystals trapped in cells were dissolved by adding 200 µl of 

DMSO and 25 µl of Sorensen’s glycine buffer. The absorbance at 570 nm was 

measured in a plate reader. Each sample was setup in triplicates in at least two 
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independent experiments. 
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Figure 1. Sequence alignment and domain architecture of SapM. (A) Multiple 
sequence alignment showing the active site region of SapM orthologues and related 
sequences. Alignment is shaded blue according to sequence conservation 
(conservation is also given by numbers from 1 to 10, with 10 (*) being 100% 
conservation). Numbers above the alignment correspond to SapM residue numbering. 
The catalytic residues are denoted on red background with white letters. Gene names 
are included alongside with microbial pathogen names. Alignment was performed 
using Clustal Omega58 and figure with Jalview Version 2.10.3b159. Two asterisks 
denote pairwise identity. Black dots denote the catalytic motif in both SapM 
orthologues (PSE) and alkaline phosphatase (DSA). (B) Domain architecture of SapM 
with boundaries for the mature protein annotated. 

 

 

Figure 2. Expression, purification and enzymatic activity of SapM. (A) Coomassie 

stained 10% SDS-PAGE gel shows expression and purification of recombinant SapM 

(Mw 28.8 kDa) (lane E). Solubilisation was achieved using 1% sarkosyl in the lysis 

buffer. Purification was done by nickel-affinity chromatography and eluted with 200 

mM imidazole. U: uninduced, I: induced, TCE: total cell extract, P: pellet, S: soluble, 

W: wash, and E: elution. (B) Enzymatic activity of SapM was assessed using the p-



Mechanism of catalysis and inhibition of SapM  Fernandez-Soto et al. 

 32 

Nitrophenyl phosphate (pNPP) assay. Hydrolysis of pNPP was measured at pH values 

ranging from 4 to 9 in the presence and absence of 3 mM dithiothreitol (DTT). Specific 

activity (SA) was calculated as nanomoles of p-nitrophenol (pNP) released per mg of 

protein and min of the reaction. Error bars represent standard deviation of the mean 

(SD) of triplicates.  

 

 

Figure 3. Identification of catalytic residues in SapM. (A) Schematic diagram 
showing the active site residues of AcpA from F. tularensis (Ft-AcpA in black). 
Conserved residues in SapM (in blue) and in the alkaline phosphatase from E. coli 
(Ec-AlkP in red) are shown. The metal ion has an octahedral coordination made of 
oxygens in AcpA and the vanadate that occupies the substrate-binding site 26. The 
underlined residues from Ec-AlkP occupy similar structural location with Ft-AcpA. 
SapM residues involved in metal binding (underlined in orange) and substrate binding 
(underlined in green) are highlighted. (B) Specific Activity (SA) of wild-type and 
mutants of the conserved residues in SapM measured by pNPP assay. Mutant K159A 
shows reduced activity with respect to the wild-type whereas the other mutations 
completely abolish the enzymatic activity of SapM (values overlap along the X-axis). 
Specific activity was calculated as nanomoles of p-nitrophenol (pNP) released per mg 
of protein and min of the reaction. Error bars indicate standard error of the mean (SEM) 
of two independent experiments. 
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Figure 4. Effect of metals and inhibitors on the enzymatic activity of SapM. 
Enzymatic activity of SapM was assessed using the pNPP assay. (A) SapM activity is 
tested in the presence of various metals (10 mM, except for FeCl3 that was used at 
1mM). (B) SapM activity was tested in the presence of 10 mM of metal chelators 
ethylenediaminetetraacetic acid (EDTA) egtazic acid (EGTA) and inhibitory 
compounds: orthovanadate (Na-OV) and sodium molybdate (Na-Mb), tetramisole 
hydrochloride (THC), sodium tartrate (Na-Tr), sodium fluoride (NaF) and dithiothreitol 
(DTT). Percentage of specific activity is calculated relative to the amount of p-
nitrophenol released from the hydrolysis of pNPP of the control (without metals or 
inhibitors). Error bars in A and B indicate SEM of two independent experiments. 
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Figure 5. Substrate specificity profile for SapM. Enzymatic activity of SapM protein 
was assessed using the malachite green assay. (A) SapM was tested for hydrolysis 
of phosphosubstrates at 80 µM. Percentage of specific activity is calculated relative to 
the amount of inorganic phosphate (Pi) released from the hydrolysis of pNPP 
substrate. Arrow highlights a substrate specific for alkaline phosphatases (AlkP). Error 
bars indicate SEM of three independent experiments. (B) Kinetic parameters for SapM 
dephosphorylation of substrates with specific activity >50% with respect to pNPP 
substrate. Values indicate SEM of two independent experiments. ATP (adenine 
triphosphate), G6P (glucose 6-phosphate), GTP (guanosine triphosphate), P-Tyr 
(phosphotyrosine), ADP (adenosine diphosphate), PEP (phosphoenolpyruvate), α –
NP (α-Naphthyl phosphate), 2P-AC (2-phospho ascorbic acid), AMP (adenosine 
monophosphate), F1,6bP (fructose 1,6-bisphosphate), NADPH (nicotinamide adenine 
dinucleotide 2′-phosphate reduced), P-Ser (phosphoserine), CysS-P (cysteamine S-
phosphate), FMN, (riboflavin monophosphate), F6P (fructose 6-phosphate), GMP 
(guanosine monophosphate), IMP (inosine monophosphate), GlyP 
(glycerophosphate), PEth (O-phosphorylethanolamine), T6P (threalose 6-phosphate), 
PhyA (phytic  acid), P-Thr (phosphothreonine), PC (Phosphorylcholine chloride), Bis 
pNPP (bis p-nitrophenyl phosphate), c-AMP (adenosine 3′,5′-cyclic monophosphate). 
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Figure 6. SapM hydrolyses phosphoinositides (PIs). Enzymatic activity of SapM 
protein was assessed using the malachite green assay. (A) SapM activity was tested 
on seven phosphoinositides at 80 µM. Percentage of specific activity is calculated 
relative to the amount of inorganic phosphate (Pi) released from the hydrolysis of 
pNPP substrate. (B) Kinetic parameters for SapM dephosphorylation of 
phosphoinositides. PI(3,4)P2 (phosphoinositide 3,4 di-phosphate), PI(3,4,5)P3 
(phosphoinositide 3,4,5 tri-phosphate), PI(4,5)P2 (phosphoinositide 4,5 di-phosphate), 
PI(3,5)P2 (phosphoinositide 3,5 di-phosphate), PI3P (phosphoinositide 3 phosphate), 
PI4P (phosphoinositide 4 phosphate), PI5P (phosphoinositide 5 phosphate). (C) The 
enzymatic activity of K159A mutant was tested on pNPP, ATP, PI(4,5)P2 and PI3P at 
80 µM. Specific activity was calculated as nanomoles of inorganic phosphate released 
per mg of protein and min of the reaction. (D) Kinetic analysis of the K159A towards 
ATP respect to the wild-type enzyme. Values and error bars in A, B, C and D indicate 
SEM of two independent experiments. 
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Figure 7. Mechanism of inhibition of SapM activity by L-ascorbic acid and 2-
phospho-L-ascorbic acid. Inhibition curves for L-ascorbic acid (L-AC) (A) and 2-
phospho-L-ascorbic acid (2P-AC) (B) using the pNPP assay. Percentage of specific 
activity is calculated relative to the amount of p-nitrophenol released in the absence of 
inhibitor. Lineweaver-Burk plots of SapM activity towards pNPP at increasing 
concentrations of L-AC (C) and 2P-AC (D). L-AC behaves as uncompetitive inhibitor 
as noted by variations of the Vmax and the Km at different inhibitor concentrations, 
whereas 2P-AC behaves as a competitive inhibitor as observed by changes of the Km 

while the Vmax remained unchanged at different inhibitor concentrations. Error bars in 
A, B, C and D represent SD of triplicates. 
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Figure 8. Effect of L-AC and 2P-AC on Mycobacterium tuberculosis H37Rv 
growth. (A) The inhibitory effect of L-AC and 2P-AC on the extracellular growth of M. 
tuberculosis (Mtb) H37Rv was monitored by measuring optical density (OD600) over 
time. Cultures were treated with 1 mM or 4 mM of the inhibitors at day 0 and 1 and 
grown over 11 days. Statistical significance was evaluated by two-way ANOVA 
(Bonferroni test) where **p=0.0039; **p=0.0048; **p=0.0059; ***p=0.0010 and **** 
p<0.0001. Control is without inhibitor. (B) Effect of 2P-AC on intracellular Mtb survival 
in human THP1 macrophages. Significant reduction of mycobacterial growth 
(*p=0.0365 by one-way ANOVA, Bonferroni test) is observed at 4 mM compared to 
the control (without inhibitor). Plots represent the average of CFU/ml at 72 h post 
infection. Inset shows THP1 viability at 72 h upon treatment with 2P-AC. Error bars in 
A and B indicate SEM of two independent experiments. 

 

Figure 9. M. tuberculosis secreted phosphatases regulate phagocytosis and 
phagosome maturation. After target recognition pseudopodia extension is triggered 
by an increment of PI(4,5)P2 in the plasma membrane together with actin 
polymerization. Sealing of the phagosome is characterised by actin depolymerization 
and loss of PI(4,5)P2.  SapM may accelerate actin depolymerization by hydrolysing 
PI(4,5)P2 to ensure Mtb uptake by the host. The early phagosome is characterised by 
the presence of Rab5, PI3P and EEA1, essential molecules to allow early phagosome-
endosome fusion. Hydrolysis of PI3P by SapM and MptpB prevents the Rab5-Rab7 
exchange that mediates the transition to late phagosome. Phagosomal acidification 
occurs by acquisition of V-ATPase that uses ATP. SapM may contribute in preventing 
acidification by hydrolysis of ATP. MptpA inhibits phagosome acidification by 
hydrolysis of VPS33B and inhibition of V-ATPase trafficking to the late phagosome. 
MptpB hydrolyses PI(3,5)P2, which is required for late phagosome/phagolysosome 
fusion. The coordinated action of the three secreted phosphatases prevents 
phagolysosome fusion and pathogen destruction thus promoting Mtb survival in the 
host. 
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