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a b s t r a c t

We first generalise ideas discussed by Kiss et al. (2015) to prove a theorem for generating exact closures (here

expressing joint probabilities in terms of their constituent marginal probabilities) for susceptible-infectious-

removed (SIR) dynamics on arbitrary graphs (networks). For Poisson transmission and removal processes,

this enables us to obtain a systematic reduction in the number of differential equations needed for an exact

‘moment closure’ representation of the underlying stochastic model. We define ‘transmission blocks’ as a

possible extension of the block concept in graph theory and show that the order at which the exact moment

closure representation is curtailed is the size of the largest transmission block. More generally, approximate

closures of the hierarchy of moment equations for these dynamics are typically defined for the first and second

order yielding mean-field and pairwise models respectively. It is frequently implied that, in principle, closed

models can be written down at arbitrary order if only we had the time and patience to do this. However,

for epidemic dynamics on networks, these higher-order models have not been defined explicitly. Here we

unambiguously define hierarchies of approximate closed models that can utilise subsystem states of any

order, and show how well-known models are special cases of these hierarchies.

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A primary method for incorporating spatial structure and other

contact structures into epidemic models is to use a network of con-

tacts [1]. While simulation of stochastic models is straightforward on

these networks, obtaining differential equation descriptions of the

relevant time series is more complex. Here we consider the construc-

tion of a hierarchy of moment equations which, in statistical physics,

is sometimes known as the Bogoliubov–Born–Green–Kirkwood–Yvon

(BBGKY) hierarchy after the names of its originators. The method was

applied to population-level network-based epidemic and ecological

models in the 1990s where truncation of the hierarchy was made

at second order yielding pair-approximation models [2–5]. Higher-

order truncation of this hierarchy at the level of triples has also been

investigated [2,6,7]. With increasing computational resources it has

also become numerically viable to consider these hierarchies in terms

of individuals, rather than population-level quantities [8–10]. A par-

ticularly important feature of the individual-level representation is

that it enables us to establish exactness for finite populations in
∗ Corresponding author. Tel.: +44 151 794 4023.

E-mail address: kjs@liv.ac.uk (K.J. Sharkey).
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ertain circumstances (see [11] and also [12] and [13] by different

ethods).

Here we generalise ideas discussed by Kiss et al. [12] and also noted

y Newman [14], and apply them to arbitrary directed networks. We

lso observe that they apply to non-Markovian as well as Markovian

IR dynamics. Depending on the network, we find that for Markovian

ynamics, exact closed models exist at all levels of the hierarchy of

oment equations. The exact models and exact closures considered

n [11] and [12] then represent special cases.

While the majority of moment closure models do not go beyond

losure at the level of pairs (second order), it is frequently stated that,

n principle, closed models at any order can be constructed. However,

uch higher-order models are rarely defined explicitly. Here, in the

arkovian SIR epidemic context, we shall define hierarchies of closed

odels that can be constructed unambiguously at all orders by a sys-

ematic truncation method. In fact, we shall define and investigate

everal hierarchies of approximate models. All of these converge to

xact representations at truncation orders which depend on the un-

erlying network structure and all of them have either the pair-level

odel discussed in [8,9] or the variant of this model discussed in [11]

s the lowest (zeroth) order level of truncation.

The next section discusses the relevant background concepts upon

hich our work builds. Section 3 introduces the exact closure the-

rem which defines the conditions under which simplifications to
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he hierarchy of equations can be made for particular networks.

ection 4 introduces approximate closures leading to complete hi-

rarchies of approximate models.

. Background concepts

Apart from Theorem 3.1 which applies more generally, we shall

onsider a Markovian class of SIR models on contact networks. In par-

icular, we consider a directed graph D = (V, A) consisting of N = |V|

ndividuals/nodes and a set A of arcs. We also label each individual

ccording to some arbitrary ordering such that if i � V then i � {1,

, . . . , N}. Each individual can be in only one of three states S, I, or

at any given time. Node j � V, when infectious, makes ‘infectious

ontacts’ to node i � V via a Poisson process of rate Tij � 0, where

ij > 0 ⇔ (j, i) � A and where we assume that Tii = 0 for all i � V.

f node i is susceptible when it receives an infectious contact then it

mmediately becomes infectious. It will then remain infectious for an

xponentially distributed period, with parameterγ i, after which it be-

omes recovered – which is an absorbing state for the individual. We

hus have a continuous-time Markov chain with a state space of size
N. Except where otherwise stated, we also assume initial conditions

uch that the states of all nodes are initially statistically independent.

his assumption encompasses all pure-state initial conditions, such

s a specific individual being infectious with all others susceptible,

nd it also incorporates binomially distributed initial conditions. Uni-

orm initial conditions can also be exactly represented with additional

omputation [13].

efinition 2.1. Si, Ii and Ri denote the indicator random variables

or the events that node i � V is susceptible, infectious and removed

espectively. Depending on the context, it will also be convenient to

efer to Si, Ii and Ri as the corresponding events themselves.

The hierarchy comprises of a sequence of equations containing the

rst moments and mixed moments of the random variables Si and Ii.

sing angle brackets to denote expectation values, it can be shown [9]

hat the master equation (or Kolmogorov forward equations) implies

he following rate equations:

Ṡi〉 = −
N∑

j=1

Tij〈SiIj〉,

İi〉 =
N∑

j=1

Tij〈SiIj〉 − γi〈Ii〉. (1)

here SiIj is a product of the indicator random variables which also

pecifies a state of the subsystem of order two comprising of the pair

f nodes i and j. For this pair state we have:

˙SiIj〉 =
N∑

k �=i

Tjk〈SiSjIk〉 −
N∑

k �=j

Tik〈SiIjIk〉 − Tij〈SiIj〉 − γj〈SiIj〉. (2)

ore generally, for these models, the master equation allows us to

rite down a rate equation for the probability of any subsystem state

f size n in terms of subsystem states of size n and subsystem states

f size n + 1. We state this as a theorem below (Theorem 2.1).

Following prior work [11], but with a notational simplification

rought about by using the same index for all system and subsystem

tates, we define an alternative notation to Definition 2.1 that is useful

or keeping track of the hierarchy of moment equations in this context.

efinition 2.2. We use the following notation to denote subsystem

tates.

• ψW is a subsystem comprising of the set of nodes W � V.
• Let A be a mapping from the elements of W to {S, I, R}, and let Ai be

the image of node i � W under A. Thus, A can also be interpreted

as a pure state for subsystem ψW, i.e. the state where, for all i �
W, individual i is in state A .
i
• ψA
W denotes the indicator random variable for the event that ψW

is in state A. Thus the probability of the event that subsystem ψW

is in state A is P(ψW = A) = 〈ψA
W〉. As in Definition 2.1, it is also

convenient to refer to ψA
W as the event that ψW is in state A.

emark. For the event where node i is in a susceptible state, we can

raw the following correspondence between the notations: ψS
i

= Si,

nd similarly for the infectious and removed states.

efinition 2.3. Let k � W � V and X � {S, I, R} and let A be a state of

ubsystem ψW. Then, hX
k
(ψA

W) denotes the indicator random variable

r event ψA
W , but where the state of node k is changed to state X

eaving the states of all other nodes unchanged. Note that if Ak = X

hen hX
k
(ψA

W) = ψA
W .

heorem 2.1. For any subsystem ψW, the probability that it is in state

is governed by the rate equation:

˙
ψA

W

〉
=

∑
k∈W

1(Ak = S)

[
−

∑
n∈W

Tkn1(An = I)
〈
ψA

W

〉

−
∑

n∈V\W

Tkn

〈
ψA

W In

〉]

+
∑
k∈W

1(Ak = I)

[ ∑
n∈W

Tkn1(An = I)
〈
hS

k

(
ψA

W

)〉
− γk

〈
ψA

W

〉]

+
∑
k∈W

1(Ak = I)

[ ∑
n∈V\W

Tkn

〈
hS

k

(
ψA

W

)
In

〉]

+
∑
k∈W

1(Ak = R)
[
γk

〈
hI

k

(
ψA

W

)〉]
, (3)

here here, and throughout this paper, the indicator 1(·) is equal to 1 if

ts argument is true and is equal to zero otherwise.

This theorem is proved in [11]. Starting with subsystem states that

re only composed of susceptible or infectious individuals, repeated

pplication of Eq. (3) to each of these states as well as to any subsystem

tates that arise on its right-hand side can never result in subsystem

tates with a removed individual. This is due to the absence of hR
k

in

q. (3). Hence, for these subsystem states, 1(Ak = R) = 0 for all k � W

o Eq. (3) becomes:

˙
ψA

W

〉
=

∑
k∈W

1(Ak = S)

[
−

∑
n∈W

Tkn1(An = I)
〈
ψA

W

〉

−
∑

n∈V\W

Tkn

〈
ψA

W In

〉]

+
∑
k∈W

1(Ak = I)

[ ∑
n∈W

Tkn1(An = I)
〈
hS

k

(
ψA

W

)〉
− γk

〈
ψA

W

〉]

+
∑
k∈W

1(Ak = I)

[ ∑
n∈V\W

Tkn

〈
hS

k

(
ψA

W

)
In

〉]
. (4)

qs. (1) and (2) can now be seen to be special cases of this theorem.

By applying Eq. (4) to every individual in the network for states

and I and then reapplying to every new subsystem state which

merges, we obtain a closed set of differential equations for a set M of

ubsystem states. However, |M| will generally be very large for most

ystems, preventing numerical solution.

To reduce the number of equations, we need to introduce a mech-

nism to curtail the generation of new subsystem states. In the next

ection, we discuss scenarios in which this can be done where the

merging system is still an exact representation of the underlying

tochastic process. Following this, we shall consider hierarchies of

pproximate closed models.
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(a) (b) (c)

Fig. 1. Three examples of network states where the location of the susceptible nodes

allows the application of the exact closure theorem. Here directed links have arrow-

heads and undirected links do not.
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3. Exact closed models

Here we prove a theorem pertaining to arbitrary SIR dynamics on

arbitrary networks. We then use this to derive a class of exact models

for Markovian SIR dynamics on arbitrary networks. We illustrate this

with some examples, and finally state a theorem specifying the maxi-

mum size of subsystem needed to exactly represent the dynamics on

any given network.

3.1. Exact closure theorem

For a given directed graph D = (V, A) with set V of nodes/individuals

and set A of arcs, we make the following definitions:

Definition 3.1. IN(X) is the set of individuals that can reach at least

one member of X � V by following a directed path. Note that X � IN(X).

Definition 3.2. Let X, Y, Z�V be disjoint and non-empty. The set of

nodes Z is ‘dynamically partitioning’ with respect to X and Y if and

only if we have fE(X, Y, Z) = 1 where:

fE(X, Y, Z) =
{

1 if IN(X)∩ IN(Y) = ∅ (in D − Z)
0 otherwise

(5)

and D − Z is the vertex-set deleted subgraph consisting of nodes V�Z.

Here, E is chosen to represent ‘exact’; this is appropriate since we shall

now see that fE(X, Y, Z) = 1 implies the existence of an exact closure

relation.

Remark. If the network is undirected then fE(X, Y, Z) = 1 if and only

if there is no path between X and Y in D − Z.

Theorem 3.1. We consider stochastic SIR dynamics defined on a time-

invariant network where the initial conditions are such that the states of

individual nodes are initially statistically independent. Let ψA
X ,ψB

Y and

ψC
Z be indicator random variables or events where X, Y, Z � V are disjoint

and nonempty. If Z is dynamically partitioning with respect to X and Y,

and all nodes in subsystem state C are susceptible (Ci = S �i � Z), then

provided that 〈ψC
Z 〉 �= 0,

〈
ψA

X ψB
Y ψC

Z

〉
=

〈
ψA

X ψC
Z

〉〈
ψB

Y ψC
Z

〉
〈
ψC

Z

〉 . (6)

Proof. If the infection has not passed through Z (which is guaranteed

by all nodes in state C being susceptible), the states of the individuals

in X are statistically independent of the states of the individuals in Y.

This is true since fE(X, Y, Z) = 1 implies that there are no individuals

from which both a member of X and a member of Y can be reached

without traversing a member of Z. We have:

P
(
ψA

X ,ψB
Y ,ψC

Z |ψC
Z

)
= P

(
ψA

X ,ψC
Z |ψC

Z

)
P
(
ψB

Y ,ψC
Z |ψC

Z

)
.

Given that P(ψC
Z ) �= 0, we have:

P
(
ψA

X ,ψB
Y ,ψC

Z

)

P
(
ψC

Z

) =
P
(
ψA

X ,ψC
Z

)

P
(
ψC

Z

) P
(
ψB

Y ,ψC
Z

)

P
(
ψC

Z

) ,

from which the result follows. �

Remark. For the case of zero denominator, note that P(ψC
Z ) = 0 im-

plies that P(ψA
X ,ψB

Y ,ψC
Z ) = 0.

Notice that we made no assumptions about the SIR dynamics in

proving this theorem and that it is therefore not restricted to Marko-

vian systems, although it is the Markovian case that we shall be ap-

plying it to in the remainder of this paper.

The theorem is a generalisation of the main result in [12] which

is stated in terms of single dynamically partitioning individuals on

undirected networks. In that context they are referred to simply as
artitioning individuals due to their correspondence to graph parti-

ioning. Some examples of where the exact closure theorem can be ap-

lied are shown in Fig. 1. In this figure and throughout the remainder

f the paper, network links without arrowheads denote undirected

inks whereas those with arrowheads denote directed links. Fig. 1a

s typical of the dynamical partitioning we shall consider in this pa-

er. Applying Theorem 3.1, we see that there is dynamical partition-

ng about node 2, so we have 〈I1S2S3I4S5〉 = 〈I1S2〉〈S2S3I4S5〉/〈S2〉.

or Fig. 1b we can dynamically partition about a cluster of sus-

eptible nodes. In fact there are two exact closures we can write

own: 〈I1I2S3S4S5S6I7I8S9〉 = 〈I1I2S3S4S6〉〈S3S4S5S6I7I8S9〉/〈S3S4S6〉 =
I1I2S3S4S5S6〉〈S3S4S5I7I8S9〉/〈S3S4S5〉. In Fig. 1c we can apply the ex-

ct closure theorem to obtain 〈S1I2S4S5I6I7〉 = 〈S1I2S4〉〈S4S5I6I7〉/〈S4〉.

ote that I3 is not included in this closure.

For our purposes, we are interested in a special case of the exact

losure theorem which is captured by the following corollary.

orollary 3.1. For subsystem state A of ψW, if Ak = S where k � W, and

f fE(n, W�k, k) = 1 where n � V�W, then

ψA
W In

〉
=

〈
ψA

W

〉
〈SkIn〉

〈Sk〉 . (7)

This corollary is illustrated by the example in Fig. 1a. By applying

his to Eq. (4) we obtain:

˙
ψA

W

〉
=

∑
k∈W

1(Ak = S)

[
−

∑
n∈W

Tkn1(An = I)
〈
ψA

W

〉]

+
∑
k∈W

1(Ak = I)

[ ∑
n∈W

Tkn1(An = I)
〈
hS

k

(
ψA

W

)〉
− γk

〈
ψA

W

〉]

−
∑
k∈W

1(Ak = S)
∑

n∈V\W

Tkn

[
(1 − fE(n, W \ k, k))

〈
hS

k

(
ψA

W

)
In

〉

+ fE(n, W \ k, k)

〈
hS

k

(
ψA

W

)〉
〈SkIn〉

〈Sk〉
]

+
∑
k∈W

1(Ak = I)
∑

n∈V\W

Tkn

[
(1 − fE(n, W \ k, k))

〈
hS

k

(
ψA

W

)
In

〉

+ fE(n, W \ k, k)

〈
hS

k

(
ψA

W

)〉
〈SkIn〉

〈Sk〉
]
. (8)

For an arbitrary network, by applying Eq. (8) to the indicator ran-

om variables Si and Ii for all i � {1, 2, . . . , N}, and then reapplying it to

very new subsystem state that emerges, a closed set of differential

quations for the exact time-evolution of the probability of an indi-

idual being in a particular state is obtained for all individuals. The

umber of equations that will be needed is limited by the closures

hat are made possible by the exact closure theorem.

efinition 3.3. For a given network, the induced set ME of subsystem

tates is obtained by applying Eq. (8) to every individual (for states S

nd I)in the network, and then reapplying to every new subsystem state



K.J. Sharkey, R.R. Wilkinson / Mathematical Biosciences 264 (2015) 74–85 77

(a) (b) (c)

Fig. 2. Some example graphs. For dynamics on these graphs, we assume a generic

removal rate g and a transmission rate of 1 across all links.
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hat emerges. ME is then the full set of subsystem states that emerge

uring this process.

emark. It follows that Si and Ii (�i � V) and SiIj (�i, j � V : Tij > 0)

epresent members of ME for any network.

.2. Examples

Before determining the network structures under which dynami-

al partitioning occurs more generally, we consider some examples.

or further examples in the context of undirected networks the reader

s directed to [12].

.2.1. Example 1

efinition 3.4. A network is a tree network if and only if its under-

ying graph (all directed edges are replaced by undirected edges) is a

ree or forest.

heorem 3.2. For Markovian SIR dynamics on a tree network where

he states of all individuals are initially statistically independent, the

ollowing equations hold exactly:

Ṡi〉 = −
N∑

j=1

Tij〈SiIj〉,

İi〉 =
N∑

j=1

Tij〈SiIj〉 − γi〈Ii〉,

˙SiIj〉 =
N∑

k=1,k �=i

Tjk

〈SiSj〉〈SjIk〉
〈Sj〉 −

N∑
k=1,k �=j

Tik

〈SiIk〉〈SiIj〉
〈Si〉 ,

− Tij〈SiIj〉 − γj〈SiIj〉,
˙SiSj〉 = −

N∑
k=1,k �=j

Tik

〈SiSj〉〈SiIk〉
〈Si〉 −

N∑
k=1,k �=i

Tjk

〈SiSj〉〈SjIk〉
〈Sj〉 . (9)

roof. For such tree networks, every individual is dynamically parti-

ioning relative to any two of its neighbours on the underlying graph.

ence, the above system follows directly from repeated application

f Eq. (8), starting with 〈Si〉, 〈Ii〉 �i � V. �

emark. This is the pairwise model that was shown to be exact for

ree networks in [11].

.2.2. Example 2

Consider the graph in Fig. 2a. Let us suppose that all nodes have

he same removal rate g and that the transmission rate across all

etwork links is unity. For simplicity we shall also make this assump-

ion through the remainder of the explicit examples in this paper.

e can apply Corollary 3.1 which is embedded in Eq. (8) to build up

he induced subsystem states ME. Let us just consider the infectious

robability of node 1 to see how this works. We have:

˙I1〉 = 〈S1I2〉 − g〈I1〉.
Here and throughout the paper we order nodes according to the

umerical order of their labels; the relevant motif structures need to
e understood with reference to the associated graph. Now, node 2 is

ynamically partitioning with respect to nodes 1 and 3, and it is also

ynamically partitioning with respect to nodes 1 and 4. Hence:

˙S1I2〉 = 〈S1S2I3〉 + 〈S1S2I4〉 − 〈S1I2〉 − g〈S1I2〉
= 〈S1S2〉〈S2I3〉

〈S2〉 + 〈S1S2〉〈S2I4〉
〈S2〉 − (1 + g)〈S1I2〉.

ather than a complete analysis of all induced subsystem states that

rise, we take the single pair state S2I3 from this equation as an ex-

mple. Here, node 3 is not dynamically partitioning with respect to

odes 2 and 4 but node 2 is dynamically partitioning with respect to

and 3 so:

˙S2I3〉 = 〈S2S3I4〉 − 〈I1S2〉〈S2I3〉
〈S2〉 − 〈I4S2I3〉 − (1 + g)〈S2I3〉.

hen for 〈S2S3I4〉, node 2 is dynamically partitioning with respect to

ode 1 and nodes 3 and 4 so:

˙S2S3I4〉 = −〈I1S2〉〈S2S3I4〉
〈S2〉 − (2 + g)〈S2S3I4〉.

e see that here, ME represents a significant dimensional reduction

n the number of induced subsystem states compared to the full set

f induced subsystem states M.

.2.3. Example 3

For the undirected graph in Fig. 2b there is dynamical partitioning

bout node 1. Starting with (for example) the infectious probability

or node 1, we have:

˙I1〉 = 〈S1I2〉 + 〈S1I4〉 + 〈S1I5〉 + 〈S1I6〉 − g〈I1〉,
here again we are assuming transmission rates of unity and a re-

oval rate g for each node. Now, choosing the first of these pairs to

evelop one part of the induced set ME gives:

˙S1I2〉 = 〈S1S2I3〉 − 〈S1I2I4〉 − 〈S1I2〉〈S1I5〉
〈S1〉 − 〈S1I2〉〈S1I6〉

〈S1〉
− (1 + g)〈S1I2〉, (10)

nd then for the first of these triples:

˙S1S2I3〉 = 〈S1S2S3I4〉 − 〈S1S2I3I4〉 − 〈S1S2I3〉〈S1I5〉
〈S1〉

− 〈S1S2I3〉〈S1I6〉
〈S1〉 − (1 + g)〈S1S2I3〉.

or the first of these quads we have:

˙S1S2S3I4〉 = −〈S1S2S3I4〉〈S1I5〉
〈S1〉 − 〈S1S2S3I4〉〈S1I6〉

〈S1〉
− (2 + g)〈S1S2S3I4〉.

ere, the maximum size of a subsystem state is four. We note that

his is equal to the size of the largest simple cycle and that this was

lso true for example 2. However, this is not always the case as shown

y the next example.

.2.4. Example 4

Fig. 2c shows a network where the maximum simple cycle size is

but the maximum size of a subsystem state in ME is 5. Starting with

he infectious probability of node 1 we have:

˙I1〉 = 〈S1I2〉 + 〈S1I4〉 + 〈S1I5〉 − g〈I1〉.
hen, taking just the subsystem state in the first term:

˙S1I2〉 = 〈S1S2I3〉 − 〈S1I2I4〉 − 〈S1I2I5〉 − (1 + g)〈S1I2〉,
nd again taking just the first term:

˙S1S2I3〉 = 〈S1S2S3I4〉 + 〈S1S2S3I5〉 − 〈S1S2I3I4〉 − 〈S1S2I3I5〉
− (1 + g)〈S1S2I3〉. (11)
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Fig. 3. Examples of networks that decompose into transmission blocks. The trans-

mission blocks are highlighted by the shaded rectangles. Darker areas are where two

transmission blocks overlap. (a) An undirected network where the effectiveness of dy-

namical partitioning is made clear by the number of distinct biconnected subgraphs

which resemble structured households. (b) A directed network where identifying the

transmission blocks is more complicated.

(a) (b)

(d)(c)

Fig. 4. Four directed graphs. Graph (a) is not a transmission block whereas graphs (b)

and (c) are transmission blocks. Graph (d) contains a transmission block as a subgraph.
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Finally, taking the first term again gives:

˙〈S1S2S3I4〉 = −2〈S1S2S3I4I5〉 − (2 + g)〈S1S2S3I4〉. (12)

In this case we see that the maximum size of a subsystem state is at

the size of the system (5 nodes) and is not constrained by the largest

simple cycle (4 nodes). This leads to the question: What aspect of a

network specifies the largest subsystem size that appears in ME? We

answer this question in the following section.

3.3. System size

Here we define the type of network structures that are amenable

to dynamical partitioning. We start from single node subsystems and

expand out, via Eq. (8), until the largest subsystem is reached in-

corporating that individual before dynamical partitioning prevents

larger subsystems emerging. For the undirected case, the situation

simplifies considerably [12] since all dynamically partitioning in-

dividuals are also cut-vertices (individuals which, when removed,

increase the number of connected components). It is then helpful

to represent the network as a collection of blocks (maximal bicon-

nected subgraphs) where the between-block structure is tree-like (see

Fig. 3a). This makes it straightforward to assess the feasibility of

constructing a solvable exact system by making use of dynamical

partitioning. Notice that it is possible for a node to belong to more

than one block as in the top right of Fig. 3a although the overlap be-

tween any two blocks can only be a single node. It is interesting that

this representation of the network resembles the household model

structure where analytic progress can also be made [15]. For directed
etworks, the situation is more complicated. Here we define ‘trans-

ission blocks’ to play a similar role to blocks. Indeed, blocks and

ransmission blocks will have equivalent definitions in the undirected

ase. We use the term transmission block rather than block since there

re likely to be other useful extensions of the block concept for di-

ected networks.

efinition 3.5. Let D = (V, A) be a directed graph with set V of nodes

nd set A of arcs. Let W � V. Then D[W] is the subgraph formed from

he nodes of W and arcs with endpoints both in W.

efinition 3.6. The subgraph D[W] is a ‘directed sub-block’ if and

nly if there is at least one node reachable from all others in D[W] and

ts underlying graph is biconnected.

emark. According to this definition, any block in an undirected net-

ork is also a directed sub-block. Hence, the blocks illustrated in

ig. 3a are all directed sub-blocks.

efinition 3.7. We will refer to a directed sub-block D[W] as a ‘trans-

ission block’ if and only if there does not exist U � W such that D[U]

s also a directed sub-block.

The shaded boxes in Fig. 3 are examples of transmission blocks.

ig. 3b gives an example of these on a directed graph. Notice that now

t is possible for transmission blocks to overlap by more than one node

the darker shaded triangle belongs to two transmission blocks). This

appens when a region of the network has paths to two or more other

egions that do not have paths between each other. Fig. 4 shows some

ore examples of these definitions for directed networks. Fig. 4a and

have underlying graphs that are biconnected. Fig. 4b also has a node

node 1) which is reachable from all others and so it is a directed sub-

lock whereas Fig. 4a is not. Fig. 4b is also a transmission block since

t is maximal. Additionally, neither have sub-graphs of the underlying

raphs that are biconnected and so neither contain directed sub-

locks as subgraphs. Fig. 4c is a transmission block (the underlying

raph is biconnected and node 2 is reachable from all others). It also

ontains several directed sub-blocks (for example nodes 1, 2 and 3).

ig. 4d contains a transmission block as a subgraph (nodes 1, 2, 3, 4)

nd contains several directed sub-blocks.

We can now state the main result on subsystem size:

heorem 3.3. The largest subsystem state in ME consists of the same

umber of individuals as the largest transmission block, or it contains 2

ndividuals if there are no transmission blocks.
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roof. The theorem follows from Corollary A.1 and Lemma A.4 (see

ppendix A). From Corollary A.1, the individuals contained in a sub-

ystem state larger than a pair appearing in ME belong to some trans-

ission block. From Lemma A.4, any transmission block appears as a

ubsystem state in ME. �

. Hierarchies of approximate models

The systems of equations in the previous section are exact, but

imited in applicability because of the limited scope for dynamical

artitioning in most networks. To suitably curtail the large number

f equations, the networks need to have a structure which is roughly

ree-like.

More typically, we want to trade off some exactness for models

hich are numerically tractable and provide a good, rather than ex-

ct description of the underlying dynamics. The pair-level SIR model

Eq. (9)) is exact for tree networks but is also a reasonably good ap-

roximation for SIR dynamics on a wide range of networks. Higher-

rder models will typically be more accurate, but will have consider-

bly greater computational cost. Here we formally define hierarchies

f approximate models that can be applied to Markovian SIR dynam-

cs on any network.

We define ‘pseudo-partitioning’ according to different crite-

ia. We define two hierarchies of models via what we term

cycle-partitioning’ and ‘size-partitioning’. We then also consider

‘hybrid-partitioning’ hierarchy utilising both methods. Although

hese pseudo-partitionings can be defined more generally, as in the

ase of dynamical partitioning itself, we shall restrict our attention

ere to dynamical partitioning with respect to single susceptible

odes.

Generalising from the case of dynamical partitioning, we define

function fp(X, Y, i) to specify some pseudo-partitioning of subsets

and Y with respect to node i and enable a systematic curtailing of

he number of subsystem states necessary for a solvable model. By

nalogy with Eq. (8), we have:

˙
ψA

W

〉
≈

∑
k∈W

1(Ak = S)

[
−

∑
n∈W

Tkn1(An = I)
〈
ψA

W

〉]

+
∑
k∈W

1(Ak = I)

[ ∑
n∈W

Tkn1(An = I)
〈
hS

k

(
ψA

W

)〉
− γk

〈
ψA

W

〉]

−
∑
k∈W

1(Ak = S)
∑

n∈V\W

Tkn

[
(1 − fp(n, W \ k, k))

〈
hS

k

(
ψA

W

)
In

〉

+ fp(n, W \ k, k)

〈
hS

k

(
ψA

W

)〉
〈SkIn〉

〈Sk〉
]

+
∑
k∈W

1(Ak = I)
∑

n∈V\W

Tkn

[
(1 − fp(n, W \ k, k))

〈
hS

k

(
ψA

W

)
In

〉

+ fp(n, W \ k, k)

〈
hS

k

(
ψA

W

)〉
〈SkIn〉

〈Sk〉
]
. (13)

o, when fp(X, Y, i) = 1, we treat i as if it is dynamically partitioning

ith respect to X and Y and so the right-hand-side of the rate equa-

ion does not generate larger subsystem states. The specific type of

pproximate model depends on how fp(X, Y, i) is defined and is formed

y assuming equality between the left and right hand sides.

Note that Eq. (13) defines a solvable model that is based on the

losure in Eq. (7). However, other closures such as the Kirkwood-

losure 〈ψA
i
ψB

j
ψC

k
〉 ≈ 〈ψA

i
ψB

j
〉〈ψB

j
ψC

k
〉〈ψC

k
ψA

i
〉/(〈ψA

i
〉〈ψB

j
〉〈ψC

k
〉) fall

utside of this scheme. It is, however, straightforward to define a solv-

ble hierarchy of approximate models that incorporates the standard

irkwood closure as a special case.

Let us denote the adjacency matrix for the underlying graph by U

Uij = sgn(Tij + Tji) for all i, j � V). Then, for the probability of subsystem
W being in state A, we can approximate:

ψA
W

〉
≈

∏
i,j∈W:j<i

〈
ψAi

i
ψ

Aj

j

〉Uij

∏
i∈W

〈
ψAi

i

〉mi−1
(14)

here mi = 	j � WUij is the number of neighbours of node i in W in

he underlying graph and is also the number of times that the state of

ode i appears on the numerator. For a fully connected subsystem of

hree nodes, this is seen to reproduce the standard Kirkwood closure.

sing this general idea but keeping the state ψA
W intact as before,

e can write an alternative to Eq. (7). For ψA
W , if Ak = S, k � W and

� V�W and we suppose there is an arc from n to k, then we can

pproximate:

ψA
W In

〉
≈

〈
ψA

W

〉
〈SkIn〉

〈Sk〉
∏

j∈W\k

⎡
⎣

〈
ψ

Aj

j
In

〉
〈
ψ

Aj

j

〉
〈In〉

⎤
⎦

Unj

. (15)

xamples of the application of this approximation can be found in

ection 4.4.

We use this approximation to motivate the following hierarchy:

˙
ψA

W

〉
≈

∑
k∈W

1(Ak = S)

[
−

∑
n∈W

Tkn1(An = I)
〈
ψA

W

〉]

+
∑
k∈W

1(Ak = I)

[ ∑
n∈W

Tkn1(An = I)
〈
hS

k

(
ψA

W

)〉
− γk

〈
ψA

W

〉]

−
∑
k∈W

1(Ak = S)
∑

n∈V\W

Tkn

[
(1 − fp(n, W \ k, k))

〈
hS

k

(
ψA

W

)
In

〉

+ fp(n, W \ k, k)

〈
hS

k

(
ψA

W

)〉
〈SkIn〉

〈Sk〉
∏

j∈W\k

⎛
⎝

〈
ψ

Aj

j
In

〉
〈
ψ

Aj

j

〉
〈In〉

⎞
⎠

Unj ]

+
∑
k∈W

1(Ak = I)
∑

n∈V\W

Tkn

[
(1 − fp(n, W \ k, k))

〈
hS

k

(
ψA

W

)
In

〉

+ fp(n, W \ k, k)

〈
hS

k

(
ψA

W

)〉
〈SkIn〉

〈Sk〉
∏

j∈W\k

⎛
⎝

〈
ψ

Aj

j
In

〉
〈
ψ

Aj

j

〉
〈In〉

⎞
⎠

Unj ]
.

(16)

Either Eq. (13) or (16) can be used in conjunction with suitable

efinitions of fp(X, Y, i) to generate hierarchies of approximate mod-

ls. We shall mostly use Eq. (13) for explicit examples. However, for

ompleteness, we shall briefly discuss Eq. (16) in Section 4.4.

It is worth noting that both of these closures are based around a

ingle IS arc being added each time. Other schemes with more com-

lex closures should also be possible. For example, Theorem 3.1 allows

losures where we do not necessarily need to have only singlet states

n the denominator (see Fig. 1b).

.1. Cycle-partitioning

With reference to Fig. 5, although node i is not dynamically par-

itioning with respect to W�i and node j, we might observe that it is

n some sense ‘approximately’ dynamically partitioning because the

ath length between j and W is reasonably long when i is deleted. It

eems sensible to define a type of pseudo-partitioning according to

his path length.

efinition 4.1. The set of individuals that can reach at least one mem-

er of X�V, by traversing a ∈ N arcs or less, is denoted INa(X). Here

nd elsewhere, N = {0, 1, 2, . . .}.

efinition 4.2. Node i � V is ‘cycle-partitioning’ at order x ∈ N with

espect to disjoint and non-empty subsets X, Y�V, where i
X�Y,
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Fig. 5. An example of a node i � W which is not dynamically partitioning with respect

to node j and W�i, but it is cycle-partitioning up to x = 2.
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if and only if we have fC(x)(X, Y, i) = 1 where:

fC(x)(X, Y, i)

=
{

1 if INa(X)∩ INb(Y) = ∅ ∀ a, b : a + b = x (in D − i)
0 otherwise

(17)

where a, b ∈ N.

We make the following observations: (i) If the network is undi-

rected then fC(x)(X, Y, i) = 0 if and only if there is at least one path

of length x or less between some member of X and some member of

Y when i is deleted. (ii) An individual who is dynamically partition-

ing with respect to two subsets is also cycle-partitioning at all orders

with respect to those subsets. (iii) In Fig. 5, node i is cycle-partitioning

with respect to W�i and j for x = 0, x = 1, and x = 2, but not x > 2. (iv)

Any individual i � V is always cycle-partitioning at order x = 0 with

respect to any other two subsets.

Adapting Corollary 3.1 such that cycle-partitioning individuals of

order x � {0, 1, 2, . . . } are ‘treated’ as dynamically partitioning indi-

viduals, we substitute fp(n, W�k, k) = fC(x)(n, W�k, k) into Eq. (13).

Remark. By applying this rate equation to every individual in the

network for states S and I and then reapplying to every new subsystem
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Fig. 6. Cycle-partitioning applied to the scenario in Fig. 2b with x = 0 which corresponds to

Here we assume that all individuals are susceptible at time t = 0 with probability 5/6 and in

have assumed a transmission rate of unity across each link and a removal rate of unity.
tate which emerges, we obtain a closed set of differential equations

hich form the xth model in a hierarchy of approximating models

note that the model corresponding to x = 0 is the pair-level model

iven by Eq. (9)). The associated set of induced subsystem states will

e denoted by MC(x).

.1.1. Examples

We can consider cycle-partitioning for the network in Fig. 2b. If

e cycle-partition at x = 1, then the first two terms of Eq. (10) are

losed at the level of pairs. Specifically, for the first term, node 2 is

ycle-partitioning with respect to nodes 1 and 3. For the second term,

ode 1 is cycle-partitioning with respect to nodes 2 and 4. This gives:

˙S1I2〉 ≈ 〈S1S2〉〈S2I3〉
〈S2〉 − 〈S1I2〉〈S1I4〉

〈S1〉 − 〈S1I2〉〈S1I5〉
〈S1〉 − 〈S1I2〉〈S1I6〉

〈S1〉
− (1 + g)〈S1I2〉.

hus, triples within the square are no longer ‘kept intact’, and so,

ithin the square, the model closes at the level of pairs. However,

riples made up of the members of the triangle are kept intact. For

xample, we have:

˙S5I6〉 = 〈I1S5S6〉 − 〈I1S5I6〉 − (1 + g)〈S5I6〉.
Fig. 6 shows this hierarchy of models. Here, the x = 0 model is the

air-level model (Eq. (9)). The x = 1 model is an improvement since it

icks up the triangle. The x = 2 model picks up the square as well and

s equivalent to the exact closure model (consistent with the master

quation).

If we apply cycle-partitioning to Fig. 2c instead, then the x = 0

odel is the pair-level model as always. The x = 1 model is also

he pair-level model and the x = 2 model is equivalent to the exact

losure model. Hence, cycle-partitioning does not necessarily lead

o improved models as x increases and it does not always lead to

reduction in system size with respect to the exact closure model.

he results from the x = 0 pair-level model and the exact model
3 4 5 6
ime

ed hierarchy

x=0

x=1

x=2 (exact)

the pair-level model through x = 1 and finally x = 2 which is exact for this scenario.

fected otherwise (the states of individuals are initially statistically independent). We
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Fig. 7. A triangle lattice – an extreme example where cycle-partitioning at order

greater than x = 0 requires subsystem states which contain all individuals.
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pplied to Fig. 2c can be seen in the section on size-partitioning below

Fig. 8) and so are not reproduced here.

An extreme example of the failure of cycle-partitioning to produce

arge hierarchies of approximate models is given by the triangular

attice shown in Fig. 7. Here, the x = 0 model is the pair-level model.

or x = 1, consider the triple A3S1C4 (�A, C � {S, I}). Here we do not

ave cycle-partitioning since by deleting node 1, there is a path of

ength 1 between nodes 3 and 4. As we move to order 4 motifs, (e.g.

dding a node to the above triple either by the edge (1,2) or the edge

3,2)), it is readily seen that there will always exist motifs which do

ot cycle-partition for x = 1 at all orders. Hence for the triangle lattice,

ven for x = 1 cycle-partitioning, we obtain a model with motif states

t the size of the full network. Some cycle-partitioning does occur

owever, so the resulting model is not exact. For example, for the

riple A2S1C4, deleting node 1 means that the shortest path from 2 to

is via node 3 and is of length 2. So we have cycle-partitioning here.

e also have it for states A7S1C4. This state is also cycle-partitioning

t x = 2 (the path length from node 7 to node 4 after deletion of

ode 1 is 3) but we no longer cycle-partition A2S1C4. Finally, at x = 3,

o cycle-partitioning occurs anywhere and we have an exact model

ontaining subsystem states at the size of the system (MC(3) = M).

In general, if the largest transmission block in a network has n

ndividuals, then any cycle-partitioning model of order x � n − 2

s exact (see Theorem B.1 in Appendix B). This is illustrated by the

etwork in Fig. 2b where the largest transmission block is of size

= 4 and the x = 2 cycle-partitioning model is exact (Fig. 6). This

s also the case for the graph in Fig. 2c where n = 5 and the x = 3

odel is exact (the x = 2 model is also happens to be exact here as

ell). Another general result is that if the smallest directed sub-block

onsists of n individuals, then the cycle-partitioning models of order

< n − 2 are all equivalent to the pair-level (x = 0) models (see

heorem B.2 in Appendix B). This is illustrated by the graph in Fig. 2c

here the smallest directed sub-block is n = 4, and we found that the

= 1 cycle-partitioning model is the same as the pair-level model.

.2. Size-partitioning

The issues arising in some networks such as Fig. 2c, where even

ycle-partitioning at x = 2 requires subsystem states containing all

ndividuals, and the extreme example of the triangular lattice, moti-

ate an alternative pseudo-partitioning approach whereby the sizes

f subsystem states are more directly constrained.

efinition 4.3.

S(x)(X) =
{

1 if |X| = x + 1
0 otherwise

(18)

here X�V and x ∈ N.

Here we make the substitution fp(n, W�k, k) = fS(x)(W�k)

nto Eq. (13).
emark. As with previous pseudo-partitioning, a complete approxi-

ate model arises from the equations for the individual-level states

nd then repeatedly applying this equation to each subsystem state

hat emerges. As with cycle-partitioning, the x = 0 size-partitioning

odel corresponds to the pair-level model.

.2.1. Examples

As an example, consider the x = 1 size-partitioning model

or Fig. 2c, where the cycle-partitioning hierarchy was redundant.

q. (11) now becomes:

˙S1S2I3〉 ≈ 〈S1S2S3〉〈S3I4〉
〈S3〉 + 〈S1S2S3〉〈S3I5〉

〈S3〉
− 〈S1S2I3〉〈S1I4〉

〈S1〉
〈S1S2I3〉〈S1I5〉

〈S1〉 − (1 + g)〈S1S2I3〉.
or x = 2 size-partitioning, Eq. (11) is left untouched since the ex-

ct rate equation for a subsystem state of size 3 does not involve

ubsystem states larger than 4. However, Eq. (12) becomes:

˙S1S2S3I4〉 ≈ −〈S1S2S3I4〉〈S1I5〉
〈S1〉 − 〈S1S2S3I4〉〈S3I5〉

〈S3〉
− (2 + g)〈S1S2S3I4〉.

n this way, we obtain three different approximate models: x = 0,

= 1 and x = 2. For x > 2, the model is exact. Fig. 8 shows results

rom the application of each of these three approximate models and

he exact x = 3 model to SIR dynamics on the network depicted in

ig. 2c. An interesting feature that should be noted for the x = 2

odel is that it very slightly underestimates the rate of spread of the

pidemic. Typically, experience shows that the closure of these equa-

ions leads to over-estimation of the rate of spread, but this provides

counter example.

While size-partitioning will generate a large hierarchy of approx-

mate models where cycle partitioning fails to do so (such as for the

riangular lattice), it has problems of its own. Specifically, we see

rom Fig. 8 that since the smallest cycle size in Fig. 2c is 4, the x =
size-partitioning model is almost identical to the x = 0 pair-level

odel. The x = 3 and x = 2 models are also almost identical. Hence,

he extra computation in evaluating at x = 1 and x = 3 is wasteful.

n this sense, cycle-partitioning has an advantage by only picking up

omplete cycles in the network.

An additional problem with size-partitioning is that it ignores

enuine dynamical partitioning. For example, for Fig. 2b, we would

equire motif sizes of 6 (x = 4) to describe this exactly within the

ize-partitioning scheme. However, if we permit genuine dynamical

artitioning, we only need motif sizes of less than or equal to 4. This

ssue is readily resolved by considering the modified scheme:

E,S(x)(X, Y, i) =
{

1 if fE(X, Y, i) = 1 or fS(x)(Y) = 1
0 otherwise

(19)

hich incorporates genuine dynamical partitioning into size-

artitioning. With this rule, in Fig. 2b, the genuine dynamical par-

itioning around node 1 is utilised wherever possible.

.3. Hybrid-partitioning

Both cycle-partitioning and size-partitioning have their merits.

ize-partitioning avoids unnecessarily large motif states where cycle-

artitioning cannot be effectively implemented beyond an early stage,

uch as in the triangle lattice. On the other hand, cycle-partitioning

icks out cycles in the network and closes at the pair level unless

omplete cycles can be incorporated, avoiding wasteful computation

ith minimal gain in accuracy.

We can construct a hybrid-partitioning scheme that captures the

enefits of both cycle-partitioning and size-partitioning while avoid-

ng the problems of both. We define this hybrid-partitioning as:
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Fig. 8. Size-partitioning applied to the scenario in Fig. 2c with x = 0 which corresponds to the pair-level model through x = 1, x = 2, and finally x = 3 which is exact for this scenario.

An individual is assumed to be initially susceptible with probability 4/5 and infected otherwise (the states of individuals are initially statistically independent). We have assumed

a transmission rate of unity across each link and a removal rate of unity.

w

〈

i

〈

w

i

〈

Definition 4.4.

fC(x)S(x)(X, Y, i) =
{

1 if fC(x)(X, Y, i) = 1 or fS(x)(Y) = 1
0 otherwise.

(20)

This leads to a hierarchy of models defined by substituting fp(n,

W�k, k) = fC(x)S(x)(n, W�k, k) into Eq. (13). This also has the pair-level

model for x = 0. We also note that alternative hierarchies could be

designed with different values of x for the size-partitioning and the

cycle-partitioning parts.

This closure benefits from the advantages of both cycle-

partitioning and size-partitioning. Firstly, if there are only large cy-

cles, the hierarchy is closed at a low order by cycle-partitioning. This

is desirable since, as illustrated in Fig. 8, continuing on generates little

benefit unless we are able to continue to the size of the smallest cycle.

However, if the system is not amenable to cycle-partitioning, as in the

triangular lattice, then size-partitioning is required. A network illus-

trating the benefits of this is shown in Fig. 9. For hybrid-partitioning
Fig. 9. A graph that illustrates the benefits of hybrid-partitioning. Expanding from

node 1 using x = 1, we utilise both cycle-partitioning and size-partitioning capturing

the advantages of both.
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m

ith x = 1, let us start with the probability that node 1 is infectious:

˙I1〉 = 〈S1I2〉 + 〈S1I5〉 + 〈S1I6〉 + 〈S1I7〉 − g〈I1〉. (21)

For the first of these terms on the right-hand-side, the correspond-

ng approximate differential equation is:

˙S1I2〉 ≈ 〈S1S2〉〈S2I3〉
〈S2〉 − 〈S1I2〉〈S1I5〉

〈S1〉 − 〈S1I2〉〈S1I6〉
〈S1〉

−〈S1I2〉〈S1I7〉
〈S1〉 − (1 + g)〈S1I2〉

here we have employed x = 1 cycle-partitioning. For the term 〈S1I5〉
n Eq. (21) we obtain:

˙S1I5〉 ≈ 〈S1S5〉〈I4S5〉
〈S5〉 + 〈S1S5I6〉 − 〈S1I5〉〈S1I2〉

〈S1〉
−〈S1I5I6〉 − 〈S1I5〉〈S1I7〉

〈S1〉
here, again, x = 1 cycle-partitioning has been implemented where

ossible. For the second term in this expression, we have:

˙S1S5I6〉 ≈ 〈S1S5S6〉〈S6I7〉
〈S6〉 − 〈S1S5I6〉〈S1I7〉

〈S1〉
−〈S1S5I6〉〈I4S5〉

〈S5〉 − 〈S1S5I6〉〈S1I2〉
〈S1〉 − (2 + g)〈S1S5I6〉.

ere, the closures on the first line are via x = 1 size-partitioning,

hereas the closures on the second line are via meeting the criteria

or both x = 1 size-partitioning and x = 1 cycle-partitioning.

So, this hybrid-partitioning obtains the best of both methodolo-

ies. Cycle-partitioning avoids unnecessarily including extra terms in

he large cycle 1-2-3-4-5-1 which we have seen (Fig. 8) generates

inimal extra accuracy. Size-partitioning forces partitioning where
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Fig. 10. Two simple examples of applying the alternative closure rule as encoded by

Eq. (16). The shaded region specifies the initial subsystem state, and there is a new IS

link towards it in accordance with the way in which the induced state spaces are built.

The dashed lines represent additional links between the new node and the original

subsystem (these would be ignored by the closure rule in Eq. (13)).
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he motif sizes get beyond a specified level, here constraining the

aximum motif size to be 3.

.4. Alternative closure

Before leaving this section, we include a brief aside on using the

lternative closure defined in Eq. (15). In this case, we can still apply

he cycle, size and hybrid methods, but we use Eq. (16) in place of

q. (13). Two examples of applying this are illustrated in Fig. 10. Here

he shaded regions represent the existing subsystem states and the

olid lines coming out of these regions represents the new infectious

ode being added on. The dashed lines represent other links between

he new infectious nodes and the original subsystems. Supposing that

he criteria for pseudo-partitioning is met at this stage (i.e. the rele-

ant fp(·) = 1), for Fig. 10a we obtain

I1S2I3〉 ≈ 〈I1S2〉〈S2I3〉〈I1I3〉
〈I1〉〈S2〉〈I3〉 ,

nd for Fig. 10b, we obtain

I1S2S3I4I5〉 ≈ 〈I1S2S3I4〉〈I1I5〉〈S2I5〉〈S3I5〉
〈I1〉〈S2〉〈S3〉〈I5〉2

.

We note that for cycle-partitioning with x > 0, both closure meth-

ds become equivalent (Eq. (16) reduces to Eq. (13)) since the types

f additional links drawn in Fig. 10 could not be present.

Notice that when the closure of triples always occurs (e.g. x = 0

ycle-partitioning or x = 0 size-partitioning), the variant of the pair-

evel models introduced in [8] and [9] is obtained under this closure.

his variant is expected to be able to handle clustered networks more

ccurately than the variant considered in [11] and [12] that follows

rom Eq. (13).

. Discussion

Recently it has been possible to establish exact and practicable rep-

esentations of stochastic epidemic dynamics on finite tree networks

11] using closure methodologies evaluated at the level of individu-

ls [8,9]. Message-passing also gives exact representations on trees

16] and this can be shown, under some circumstances with Poisson

ransmission processes, to be equivalent to moment closure mod-

ls [13]. Under suitable and very restrictive homogeneity assump-

ions, population-level versions of these closed models (e.g. [5]) can

lso be exactly derived on idealised graphs with homogeneous initial

onditions [8].

Within the individual-level closure construction, it is possible to go

eyond trees and obtain exact representations of epidemic dynamics

n some networks with cycles using the idea of dynamical partition-

ng on the graph [12]. Here we defined dynamical partitioning on

rbitrary networks and also observed that it applies to both Marko-

ian and non-Markovian SIR dynamics. In the Markovian case with

oisson transmission and removal processes, we can use dynamical

artitioning to define exact SIR moment closure models. The extent
o which these models are computationally viable depends primarily

n the underlying structure of the network.

More specifically, starting from the probabilities of the states of

ndividual nodes in a given network, we uniquely defined the full set

f exact induced moment equations by automatically implementing

ynamical partitioning where applicable. We also defined transmis-

ion blocks as a natural decomposition of a network for the closure

f SIR models. Transmission blocks represent a possible extension of

he block concept in graph theory into directed networks. Using this

oncept, we proved a theorem stating that the size of the largest sub-

ystem state appearing in the set of moment equations is equal to the

ize of the largest transmission block.

We also investigated hierarchies of approximate moment closure

odels. In the epidemic literature, it is normally the case that moment

losure models are constructed at the level of pairs, or occasionally for

riples or quads [2,6,7]. This is often accompanied with an assertion

hat higher order models exist. However, to our knowledge, these

igher order epidemic models have never been defined explicitly. This

s understandable since these models rapidly become too complex to

e of real practical relevance, but it does leave open the theoretical

uestion of how these models can be defined [9]. To address this, we

ntroduced ‘pseudo-partitioning’ to construct complete hierarchies

f approximate closed models that are well-defined at all orders. In

act, we defined several hierarchies of closed models; one in terms

f motif size, one in terms of the size of cycles in the network, and

hybrid method taking the best of both of the previous methods.

ndoubtedly other hierarchies can be defined as well. In addition,

e investigated two mechanisms of closure – one based on exact

ynamical partitioning and the other which is more related to the

irkwood closure.

The closure based directly around dynamical partitioning has the

ariant of the closure model considered by [11] as its zeroth order

ariant (for all of the size, cycle and hybrid approaches). The hierar-

hies based around the alternative closure all have the model intro-

uced in [8] and [9] as their zeroth order variant (this is designed to

andle networks with clustering in a more effective way). We also

bserved that the conditions for cycle-partitioning at orders greater

han zero mean that both methods of closure become equivalent.

The hierarchies of models generated some interesting observa-

ions concerning the convergence to exactness with order. For exam-

le, for size-partitioning, the models converge to the exact solution

ith increasing order, but this convergence is not always monotonic

see Fig. 8). It is typical for moment closure models of SIR epidemics

o over-exaggerate the spread of an epidemic, but here we observed

counter example (see also [9] where this is discussed as a possi-

ility). An unanswered question is whether the approximate models

lways increase in accuracy as the order of the hierarchy increases.

ntuitively we would expect that they do, and this is validated by the

xamples so far investigated.
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ppendix A. Proof of the underpinning results for Theorem 3.3

Theorem 3.3 follows from Corollary A.1 and Lemma A.4 below.

efinition A.1. A set Wn�V of size |Wn| = n can be ‘generated’ from a

et Wm�V of size |Wm| = m where 2 � m < n if and only if a sequence

f sets Wm, . . . , Wi, . . . , Wn exist where Wi + 1 = Wi�{k}, where k is

single node in V�Wi, and there exists an arc from k towards some

ndividual j � Wi which is not dynamically partitioning relative to k

nd W �{j}.
i

http://dx.doi.org/10.13039/501100000266
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(a) (b)

(c) (d)

Fig. 11. Demonstration for Lemma A.2: ‘ways’ in which a set W3 = {i, j, k} can be

generated from the pair {i, j}, where j is connected towards i. Note that W3 is always a

subset of some directed sub-block, and i is reachable from all others in both D[W3] and

the directed sub-block. The dashed arrows represent paths which may consist of any

number of vertices.
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Remark. The above definition is constructed such that there exists a

subsystem state A: W → {S, I} belonging to ME, where |W| > 2, if and

only if W can be generated from some connected pair. This follows

from the definition of ME via Eq. (8).

Lemma A.1. If a set W can be generated from some connected pair, then

there exists X  W such that D[X] is a directed sub-block. There also exists

some node i � W that is reachable from all other nodes in both D[W] and

D[X].

Proof. The proof follows by induction. Lemma A.2 proves the state-

ment for the case |W| = 3 while Lemma A.3 establishes the inductive

step. �

Corollary A.1. If A: W → {S, I} is a subsystem state belonging to ME,

where |W| > 2, then there exists X  W such that D[X] is a directed

sub-block.

Proof. This follows directly from Lemma A.1 and Definition A.1. �

Lemma A.2. If a set W where |W| = 3 can be generated from some

connected pair, then there exists X  W such that D[X] is a directed sub-

block, and some i � W is reachable from all others in both D[W] and

D[X].

Proof. We focus only on directed links since directed sub-blocks

cannot be destroyed by making links undirected. With reference to

Fig. 11, if a set W3 = {i, j, k} can be generated from the pair W2 =
{i, j}, with j connected towards i, then there is a link from k to either

i or j. Further, from the definition of dynamical partitioning and the

generating rule, there are two possibilities: (1) there exists two vertex
(a) (b)

Fig. 12. Demonstration for Lemma A.3. Here, the single node in X�W is illustrative of the no

underlying graph G[X] is biconnected. We have placed node k outside of X, but k � X�W is also

to W and (b) shows k as the penultimate individual in a path from a node in W to a differen

D[Y] is a directed sub-block in which i is reachable from all others (and i is reachable from al
isjoint paths P1, P2 from some individual (which could be k) to both

embers of W2, and where k is the penultimate individual in one of

hese paths (see Fig. 11a and c), or (2) there exists a path P3 from one

ember of W2 to the other, and k is the penultimate individual in this

ath (see Fig. 11b and d). Note that in all cases depicted in Fig. 11, W3

s a subset of some directed sub-block in which i is reachable from all

thers (and i is reachable from all others in D[W3]). �

emma A.3. If the statement made in Lemma A.1 is true for the case

here |W| = n, then it is also true when |W| = n + 1.

roof. Firstly, note that Wn + 1, where |Wn + 1| = n + 1, can be gen-

rated from some connected pair if and only if it can be generated

rom some set Wn, where |Wn| = n, which can itself be generated

rom some connected pair. Now suppose that Lemma A.1 is true for

he case where |W| = n, and let Wn be a set of size n that can be

enerated from some connected pair. Then we have a set XWn such

hat D[X] is a directed sub-block where, without loss of generality,

� Wn � X is reachable from all others in both D[Wn] and D[X]. With

eference to Fig. 12, and again focusing only on directed links, if a set

n + 1 = Wn�{k} (k
Wn) can be generated from Wn, then either there

xist two vertex disjoint paths P1, P2 from some individual to two

ifferent members of Wn and k is the penultimate individual in one

f these paths (Fig. 12a), or there exists a path P3 from one member

f Wn to a different member of Wn and k is the penultimate individ-

al in this path (Fig. 12b). This follows from the generating rule and

he definition of dynamical partitioning. Note that if P1, P2 exist then

[X�P1�P2] is a directed sub-block in which i is reachable from all

thers (and i is reachable from all others in D[Wn + 1]). Similarly, if P3

xists then D[X�P3] is a directed sub-block in which i is reachable

rom all others (and i is reachable from all others in D[Wn + 1]). �

emma A.4. If there exists X�V such that D[X] is a directed sub-block,

hen there exists a subsystem state A: X → {S, I} belonging to ME.

roof. If D[X] is a directed sub-block in which i � X is reachable

rom all others, then there exists at least one arc (j, i) in D[X]. The

emma then follows from Lemma A.5 below which proves that X can

e generated from {i, j}. �

emma A.5. Let D[X] be a directed sub-block and let i � W�X, where

W| � 2, be reachable from all others in both D[W] and D[X]. In this case,

ome set W�{k}, where k � X�W, can be generated from W, and i is

eachable from all others in D[W�{k}].

roof. From Fig. 12 but with k � X we note that some set W�{k},

here k � X�W, can be generated from W if and only if there exist

wo vertex disjoint paths P1, P2 from some individual to two different

embers of W and where k is the penultimate individual in one of

hese paths, or there exists a path P3 from one member of W to a

ifferent member of W and k is the penultimate individual in this

ath. Our proof is by contradiction. We shall assume that neither of
des in this set which must be connected by at least one path to node i, and where the

permitted. (a) Shows k belonging to one of two vertex disjoint paths from some node

t node in W. In either case, Wn�{k} is seen to always be a subset of some YX where

l others in D[Wn�{k}]).
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(a) (b) (c) (d)

Fig. 13. Demonstration for Lemma A.5: shows the ways in which k � X�W can be

connected to W. We have cases (a) the underlying graph of D[X] is not biconnected,

(b) existence of path P3, (c) existence of paths P1 and P2 and (d) existence of a node

from which W cannot be reached. Cases (a) and (d) are not directed sub-blocks so the

existence of paths P1 and P2, or path P3, is established.
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hese scenarios hold and show that this contradicts the assumption

hat D[X] is a directed sub-block.

Every individual in X�W is at the start of a path to i in D[X].

ig. 13 shows the different ways in which an individual k � X�W may

e connected to an individual of W in D[X]. Firstly, the underlying

raph in Fig. 13a is not biconnected so here D[X] is not a directed sub-

lock. Secondly, Fig. 13b and c corresponds to the existence of path

3 and the existence of paths P1, P2 respectively and hence W � {k}

s generated. Finally, Fig. 13d has an individual from which W cannot

e reached and so D[X] is not a directed sub-block. Other more com-

licated variants of this path will also contain such individuals from

hich W cannot be reached. Hence, if paths P1 and P2 do not exist,

nd path P3 does not exist, then D[X] is not a directed sub-block. �

ppendix B. Proof of general results on cycle-partitioning

The main results of this appendix are stated as Theorem B.1 and

heorem B.2.

emma B.1. Any induced subsystem state A: W → {S, I} belonging to

C(x) consists of a set of individuals W � V where there is at least one

ndividual reachable from all others in D[W].

roof. Follows from the way in which MC(x) is constructed via

q. (13) (or Eq. (16)). �

heorem B.1. If the largest transmission block in a network consists of

individuals, then any cycle-partitioning model of order x � n − 2 is

xact.

roof. For any W � V where at least one individual is reachable from

ll others in D[W], if any i � W is cycle-partitioning at order x � n −
with respect to some j
W and W�i, where (j, i) is an arc, then i is

lso dynamically partitioning with respect to j and W�i. This follows

ecause if i is not dynamically partitioning, but is cycle-partitioning

t order x > n − 2, then this implies the existence of a directed sub-

lock containing j, i and at least one other member of W, and which

onsists of more than n individuals. Therefore, by Lemma B.1, MC(x)
nly utilises genuine dynamical partitioning and we have MC(x) = ME

or x � n − 2. �

heorem B.2. If the smallest directed sub-block consists of n individuals,

hen all cycle-partitioning models of order x < n − 2 are equivalent to

he pair-level models.

roof. For any connected pair W � V (|W| = 2), if i � W is not cycle-

artitioning at order x < n − 2 with respect to j 
 W and W�i, where

j, i) is an arc, then there exists a directed sub-block containing W �
, and which consists of less than n individuals. Therefore, no such j

an exist. From the way in which MC(x) is constructed, this means that

o subsystem states larger than connected pairs emerge and we have

he pair-level model, i.e. MC(x) = MC(0) for x < n − 2. �

emark. Together, Theorems B.1 and B.2 imply that the difference in

ize between the largest directed sub-block (or largest transmission

lock) and smallest directed sub-block gives an upper bound on the

umber of distinct models that the cycle-partitioning approach can

rovide. If all directed sub-blocks are the same size then no models

hat are distinct from the pair-level model and the exact dynamical

artitioning model emerge. However, even when this difference is

arge the number of distinct models may sometimes be small, as was

hown to be the case for the triangle lattice (where the difference

s N − 3).
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