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Abstract 

Oil palm is the fastest expanding equatorial crop, and is one of the biggest threats to carbon-

rich tropical peatlands in Malaysia. Smallholder plantations cover a vast area of peatlands in 

Peninsular Malaysia and follow varied cropping systems. Here we analyse the impacts of 

specific crops and the effects of proximity to such crops, upon GHG emissions from the soil, 

and the soil microbial community phenotype. We found that only mature oil palm plants in 1st 

generation oil palm mono-cropping potentially had significant autotrophic contributions to 

total CO2 emissions with 33.5% increase in locations closer to mature oil palm stems. The 

sampling locations closer to younger oil palms and other crops did not significantly increase 

total CO2 emissions. CH4 emissions were significantly greater for sampling locations near 

plants with adventitious root system such as yam and pineapple crops. However CH4 

emissions were very low in comparison to CO2 emissions, and their contribution to carbon 

loss was limited in these sites. Surface peat microbial community structure was unaffected by 

proximity to different crops within each cropping system, possibly due to a lack of influence 

of rhizosphere in the surface peat layers (0-5 cm). The results suggest that most of the total 

CO2 emissions from these agro-ecosystems contribute to C loss due to microbial 

decomposition of the peat soil, unlike greater autotrophic contributions to total emissions in 

forested peatlands reported in other studies. Hence without appropriate above-ground 

vegetation or hydrology conducive to peat formation, ancient carbon stored in these peatlands 

is gradually lost into the atmosphere via greater heterotrophic respiration under agricultural 

management on such peat-based ecosystems. 

Keywords: Histosols, Microbial phenotypic community structure, GHG emissions, oil palm 

plantations, intercropping, tropical peatlands. 
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1. Introduction 

Peatlands are formed because of primary production exceeding microbial decomposition of 

such produced material, resulting in accumulation of partially-decomposed plant organic 

matter (DAF, 2009; Miettinen et al., 2012; Parish et al., 2008). Peatlands cover about 2.85% 

of the global land surface area (Xu et al., 2018), yet store one third of the total global soil 

carbon pool (Hapsari et al., 2017). Though most peatlands are located in the northern 

hemisphere, there is a considerable cover of these carbon rich ecosystems in the tropics, 

which store 18% of total global peat carbon (Hapsari et al., 2017; Strack, 2008), most of 

which are in South East Asia (Dohong et al., 2017). Hydrology is a major driving factor in 

the formation of tropical peatlands, inhibiting aerobic decomposition by reducing oxygen 

availability (Parish et al., 2008; Wösten et al., 2008). Drainage of peatlands for agriculture 

and logging have severely affected the South East Asian peatlands and their functions in 

recent decades (Couwenberg et al., 2010). 

Agricultural expansion, especially oil palm plantation, remains one of the biggest threats to 

Malaysian forests including peatlands (Lo and Parish, 2013; Tan et al., 2009). Oil palm is 

native to west Africa and was first introduced to Malaysia as an ornamental plant in 1875 

(Abdullah et al., 2009). The commercial plantations started in the early 20th century on a 

smaller scale, and these have grown extensively at an industrial scale over recent decades, to 

the extent that Malaysia is currently the second largest producer of palm oil in the world, and 

has the greatest deforestation rate in the 21st century globally (Abdullah et al., 2009; Hansen 

et al., 2013; Strack, 2008). The peatlands are usually drained and completely cleared of forest 

vegetation to establish oil palm plantation, effecting carbon loss above-ground with loss of 

dense and large vegetation structures (Bruhl and Eltz, 2010; Luskin and Potts, 2011; ; Tonks 

et al., 2017; Dhandapani et al., 2019b). Though most of the rapid expansion in last few 
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decades has been via industrial plantations, there is also considerable cover of smallholder 

plantations in Malaysia (Miettinen et al., 2016), particularly in Peninsular Malaysia, where 

about half of the managed peatlands are smallholder scale (Miettinen et al., 2016). 

Smallholder plantations follow different cropping systems depending on local needs, and 

vary greatly in intensity compared to industrial plantations (Azhar et al., 2011). Furthermore, 

smallholders often practice intercropping and multiple cropping with oil palm. The functions 

of undisturbed peatlands are significantly altered by disturbance into secondary forested 

peatlands (Dhandapani et al., 2019b) .The conversion of secondary forest peatlands to oil 

palm plantations were known to further increase pH, reduce C stocks, and alter peat physico-

chemical properties through increased decomposition, causing some irreversible damage to 

the ecosystem services provided by them (Tonks et al., 2017). Though intercropping systems 

were known to ameliorate such damage to peat properties (Dhandapani et al., 2019a), 

individual influence of the oil palm and intercrops on peat properties, peat microbial 

phenotypic structure and GHG emissions are virtually unknown. 

Varied cropping systems result in an increased diversity in aboveground vegetation, which is 

known to impact temporal and spatial variations in soil respiration (Han et al., 2014; Johnson 

et al., 2008). Plants also induce rhizosphere microbial communities to a habitat, often with 

cell densities that are greater than the cell density of the root system itself (Mendes et al., 

2013), which could possibly impact GHG emissions from soil. Increased diversity in 

vegetation aboveground can also diversify the carbon sources that are available for microbial 

decomposition, thus potentially affecting both microbial community composition and activity 

(Blagodatskaya and Anderson, 1998), which could in turn affect GHG emissions. Multiple 

cropping systems generate varied patches of microclimate, with high habitat heterogeneity 

that creates uncertainty in the estimation of GHG emissions from a habitat (Azhar et al., 

2015; Han et al., 2014). Therefore, understanding the rhizosphere influence of different plants 
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on total GHG emissions is crucial to evaluate the environmental impacts of these different 

cropping systems followed in tropical peatlands. 

Total soil respiration is composed of autotrophic root respiration, and microbial 

decomposition through heterotrophic activity (Hergoualc’h et al., 2017). Root respiration 

does not contribute to C loss, and often contributes to a larger portion of total emissions 

measured in ecosystems with dense and large trees such as tropical peat swamp forests 

(Hergoualc'h and Verchot, 2011; Murdiyarso et al., 2010). Oil palm has a fibrous root 

systems that is divided into primary, secondary, tertiary and quaternary roots (Dariah et al., 

2014). The root density decreases with increasing distance from the stem (Dariah et al., 2014) 

and the majority of roots are present within the first 60 cm from the surface (Mutert, 1999). 

The contribution of the oil palm rhizosphere to total soil respiration was observed to be 

dependent on the age of the oil palm plants with increased autotrophic contribution with 

greater age of oil palm (Dariah et al., 2014). There are a few, albeit limited, number of studies 

on autotrophic and heterotrophic components of GHG emissions from oil palm plantations, 

but the microbial communities associated with the variability in GHG emissions between 

bulk soil and rhizosphere remain unexplored. 

To address this knowledge gap, we studied two intercropping systems, and two mono-

cropping systems of two different ages and generations to evaluate the influence of the 

proximity of plants on surface peat characteristics, GHG emissions and microbial community 

structure. We hypothesised that the environmental parameters, GHG emissions and surface 

peat microbial community structure are contingent on the nearby vegetation and its age 

within a cropping system, due to the influence of such vegetation on microclimate, carbon 

substrate supply, and associated rhizosphere microbial communities. We also hypothesised  

there would be increased GHG emissions near the crops due to increased contribution from 

root respiration. 
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2 Materials and Methods 

2.1 Study sites 

2.1.1 First generation oil palm mono-cropping site 

The oil palm monocropping site (3°25'25.8"N 101°20'12.9"E) was located adjacent to Raja 

Musa forest reserve on the southern edge of the North Selangor peatlands. Indicative views of 

all sampled sites are shown in Supplementary information 1. The oil palm plantations were 

about 15 years old. The site borders other oil palm plantations which were abandoned for 

forest regeneration inside Raja Musa protected forest reserve. A drainage ditch, running down 

the middle, divided the site into two halves. The site had a sizeable cover of understorey 

vegetation, predominantly ferns. There was abundant decaying dead wood of non-oil palm 

plants on the site. There were some dead cut stems of other plants and trees of previous land 

use, visibly protruding from the surface. There was no observable change in the physical 

environment such as vegetation, surface flooding etc., at this site between wet season and dry 

season sampling periods. This site is denoted as ‘1st gen OP’ hereafter. 

2.1.2 Second generation oil palm mono-cropping site  

This young oil palm site (3°24'51.3"N 101°19'42.7"E) was located in Kampung Raja Musa 

village. The plantation itself is second generation, 3-5 years old. The first generation oil palm 

trees were killed off chemically and were still standing on the site. Most of the site surface 

was covered with dead, dried and brown grass. During the wet season, there were green algal 

growths on the surface under the shade of young oil palm trees. 

During the dry season measurements, most of the grass on surface was cleared and there was 

no algal growth on the surface. This site is denoted as ‘2nd gen OP’ hereafter. 

2.1.3 Second generation oil palm and pineapple intercropping 

The oil palm and pineapple intercropping site (3°25'20.6"N 101°19'56.6"E) in Kampung Raja 

Musa consisted of circa one year-old oil palm plants in rows with pineapple planted densely 
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between the oil palm rows. There were two drainage ditches along the border on either side 

of the site, but none within the site. There was stagnant water over most of the site during the 

wet season measurements. Some open regions without any stagnant water were covered with 

grass. During dry season measurements, the pineapple plants were fully grown and covered 

any remaining open spaces between pineapple rows and there was no stagnant water at the 

surface. The site is denoted as ‘pineapple intercropping’ hereafter.  

2.1.4 Second generation oil palm and yam intercropping site 

The oil palm and yam intercropping site (3°25'22.7"N 101°18'46.7"E) was a site containing 

one year-old oil palms planted in rows with ample space in between, where four to six rows 

of yams were planted. There was a cleared open space between each of the paired yam and 

oil palm rows. The surface of the site was relatively dry and flat with numerous dead oil palm 

roots of the previous generation of plantation. The edge of the site was cropped with 

pineapple plants in the available spaces in between yam and oil palm rows. 

During the dry season, yam crops were harvested and a new pineapple crop was planted in 

the open areas. The pineapple crop was newly planted and presumably the root structures 

were in their preliminary stage. There were smaller yam saplings in place of the older 

harvested yam. The site is denoted as ‘yam intercropping’ hereafter, for both wet and dry 

season results. 

2.2 Sampling strategy 

Sampling was carried out during both the wet and dry seasons, as described in Dhandapani et 

al. (2019a); Dhandapani et al. (2019b). The wet season sampling was carried out during 

November 2016 to January 2017 and the dry season sampling was done during July 2017. 

Each site was visited three times during each season. At each time, samples were collected 

from 25 random points distributed over the site, and proximity to neighbouring plants were 
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noted. At each sampling point, greenhouse gas measurements were taken and soil samples 

were collected for laboratory analyses. 

The sampling locations within a site were represented depending on whether they were 

proximal or distant from a plant. The notation used here is ‘P’ for proximal with subscript 

explaining the neighbouring plant, followed by the distance from the plant, and ‘D’ for 

sampling location distant from plants. A sampling location was considered distant, when the 

location was >3 m away from mature oil palm for 1st generation oil palm monocropping, >2.5 

m away from nearest oil palm in 2nd generation oil palm monocropping, and >1.5 m away 

from nearby crops for both the intercropping sites. Hence oil palm, yam and pineapple were 

denoted in subscripts as POP, PYA, PPA, respectively. The proximal distances were prescribed 

as <1 m and <2.5 m for young and mature oil palm respectively, and <30 cm for yam and 

pineapple, the former concomitant with Matysek et al. (2017) and Dariah et al. (2014), and 

the latter we considered as an appropriate scale for these plants. For the second generation oil 

palm site, some of the measurements were taken proximal to dead standing oil palm tree 

trunks and hence were denoted ‘POPD<1m’. For phospholipid fatty acid (PLFA) analysis (see 

below), 3 random samples were chosen from the wet season sampling period for each 

sampling location within each site.     

2.3 Greenhouse gas measurements 

CO2 and CH4 emissions from soil surface were measured using a Los Gatos (San Jose, 

California, USA) ultraportable greenhouse gas analyser as described in Dhandapani et al 

(2019a, 2019b). The gas analyser works on the principle of laser absorption spectroscopy and 

gives readings of CH4 and CO2 ppm as well as gas temperature. The measurements were 

made using closed chamber method using a chamber with a height of 15 cm and the inner 

diameter of 13.5 cm. The chamber had an inlet and an outlet port that were connected to the 

gas analyser, using a 6.35 mm outer diameter polytetrafluoroethylene (PTFE) tube. During 
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each measurement about 1 cm of the chamber was carefully inserted into the ground until it 

was sealed to the ground surface, and gas measurements were taken for 5 minutes. There was 

no surface vegetation in any of the measurement points. The gas analyser was set to record 

gas flux every 20 seconds, resulting in at least 12 recorded measurement points for each plot. 

The first minute of each measurement was ignored allowing the gas flux to settle down after 

initial disturbance of placing the chambers. The gas measurements in ppm were converted to 

mg CO2 m
-2 hr-1 and µg CH4 m

-2 hr-1 for CO2 and CH4 respectively, as described in (Samuel 

and Evers, 2016), using the ideal gas law PV=nRT. Where: P = atmospheric pressure; V = 

volume of headspace; n = number of moles (mol); R = universal Gas Constant law (8.314J. 

K-1mol-1) and T = temperature in kelvin (K), with conversion factor, 1 mol of CO2 = 44.01g 

and 1 mol CH4 = 16.02g.      

2.4 Soil properties 

Soil temperature and moisture were measured in situ, using a digital thermometer from 

Fischer Scientific® and a theta probe® digital volumetric moisture meter, respectively.  For 

pH measurements, about 5 ml volume of peat sample was diluted in 10 ml deionised water in 

a centrifuge tube and shaken in a rotary shaker for 30 minutes. The pH of the supernatant was 

then measured using Mettler Toledo® pH meter. Oven dried peat samples were used to 

calculate the organic matter content. Dried peat samples were placed in silica crucibles and 

then transferred to a muffle furnace and maintained at 550oC for 4 hours. The organic matter 

content was then determined by the loss on ignition as follows, organic matter content (%) = 

[(weight of oven dried soil – weight of ash) / weight of oven dried soil] ×100. 
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2.5. PLFA Analysis 

2.5.1 PLFA extraction  

Microbial community phenotypic structure was determined by phospholipid fatty acid 

(PLFA) analysis. The surface peat samples collected from the field using hand trowel, were 

stored in the Ziplock bags, transported to local university campus for freeze drying. PLFAs 

were extracted from replicate 1 g freeze-dried tropical peat samples using a modification of 

the method described by Frostegard et al. (1991). The lipids from peat were extracted using 

Bligh & Dyer extraction (Bligh and Dyer, 1959). The extracted lipids were then separated 

into neutral lipids, glycol lipids and polar lipids (containing phospholipids) fractions using 

Megabond Elut® silica gel column supplied by Agilent (Santa Clara, USA). The extracted 

polar lipids were then methylated by mild alkaline methanolysis and converted into fatty acid 

methyl esters, which were then analysed using gas chromatography. 

2.5.2 Gas chromatography and peak identification 

The dried fatty acid methyl esters were suspended in 200 µl of hexane, ready for GC 

injection. One μl of each sample was injected into the GC in split-less mode. The column 

used in the GC for phospholipid analysis was ‘ZB-FFAP’ column, supplied by Phenomenex 

(Torrance, USA). The column was 30 m length x 0.25 mm inner diameter x 0.25 µm film 

thickness. The carrier gas was helium with a constant pressure of 18 psi. The initial oven 

temperature in GC was 120°C; this was maintained for 1 min and then programmed to 250°C 

at the rate of 5°C min-1. The constant temperature of 250oC was maintained throughout the 

run. The results were displayed as a chromatogram of retention times of the compounds and 

the mass spectroscopy provides the ion profile of each compounds. 

The fatty acids were represented by a fatty acid shorthand, showing the number of carbon 

atoms, followed by the number of double bonds separated by colon. The position of the 

double bond is defined by the letter ‘n’ followed by the number of carbons from the methyl 
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end of the fatty acid molecule. The prefixes ‘i’ and ‘a’ were used to represent isomers and 

anti-isomers. 10me indicates a methyl group on the 10th carbon atom from the carboxyl end 

of the molecule. The prefix cyc refers to cyclopropyl fatty acids. The fatty acids i15:0, a15:0, 

i16:0, i17:0, a17:0 were considered as Gram-positive biomarkers (Wilkinson et al., 2002). 

The fatty acids 10me16:0 and 10me18:0 were described as the biomarkers for actinomycetes 

(Wilkinson et al., 2002, Moore-Kucera & Dick, 2008), a group that belongs to Gram-positive 

bacteria. The relative abundances of Gram-negative bacteria were calculated using 16:1n9, 

16:1n7, cyc17:0, 18:1n7 and cyc19:0 as biomarkers (Kaiser et al., 2010; Wilkinson et al., 

2002). 18:2n6 and 18:1n9 were used as fungal biomarkers (Kaiser et al., 2010; Vestal and 

White, 1989; Wilkinson et al., 2002). 14:0, 16:0, 18:0, a17:1 and 20:0 were non-specific fatty 

acids (Wilkinson et al., 2002). The fatty acids with similar mass spectra 18:1n9 and 18:1n7 

were differentiated with the help of neutral lipid fatty acid analysis, by the findings that 

fungal biomarker 18:1n9 should have much greater NLFA/PLFA ratio that the Gram-

negative biomarker 18:1n7 (Baath, 2003). The ratio of cyclopropane fatty acids (cyc17:0& 

cyc19:0) to their monoeionic precursors (16:1n7 & 18:1n7) and the ratio of total saturated 

fatty acids (14:0, 16:0, 18:0, 20:0) to mono-unsaturated fatty acids (16:1n9, 16:1n7, a17:1n, 

18:1n9, 18:1n7) were used indicators of stress and other ecological conditions (Bossio and 

Scow, 1998).   

2.6 Statistical analyses 

All the statistical analyses were carried out using Genstat 17th edition. The significance of 

differences between sites for greenhouse gas emissions, other environmental parameters, 

microbial relative abundance and PLFA ratios were evaluated using linear mixed models with 

restricted maximum likelihood (REML). To meet normality assumptions for the data that 

were not normally distributed, log transformation was used. If the log transformed data was 

not normally distributed, Boxcox transformation was used. Principal component analysis 
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(PCA) was performed on PLFA data using Mol% normalised spectra and the correlation 

matrix. Resultant PCs were analysed by one way analysis of variance (ANOVA). 

3. Results 

3.1 CO2 emissions 

With respect to the difference between CO2 emissions with respect to distance from the 

plants, sampling location within each site was significant only at the 1st generation oil palm 

mono-cropping and yam intercropping sites. In the 1st generation oil palm site, CO2 emissions 

at POP<2.5m were greater than the CO2 emissions further away at D (Fig. 1 & Table 1). In the 

yam intercropping site, CO2 emission were greatest in PYA<30cm and lowest in PPA<30cm, while 

the CO2 emissions did not significantly vary between POP<1m and D in that site. 

3.2 CH4 emissions 

CH4 emissions differed with respect to proximity to crop plants within each site sampling 

location except for 1st generation oil palm site (Fig. 2 and Table 1). For 2nd generation oil 

palm site, POP<1m absorbed CH4 during both seasons, while the other sampling locations 

emitted similar smaller amounts of CH4. CH4 emissions within pineapple intercropping was 

greatest at PPA<30cm followed by POP<1m, while CH4 emissions at D were near zero. CH4 

emissions within the yam intercropping site was greatest at PYA<30cm, and the variations 

between other Sampling locations were insignificant. As for CO2 emissions, planting of a 

new pineapple crop during the dry season did not affect CH4 emissions over the short term.  

3.3 Peat characteristics 

Organic matter contents varied only slightly, albeit statistically significantly, between the 

sampling locations in all studied sites (Table 1 & 2). For 1st generation oil palm POP<2.5m  had 

lower organic matter content than D. For 2nd generation oil palm, organic matter content was 
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greatest at POPD<1m, followed by POP<2m and then D. For pineapple intercropping, organic 

matter content lower in PPA<30cm than at other sampling locations. For yam intercropping, 

organic matter content was greatest at POP<1m and lowest at PYA<30cm. 

The changes in moisture between the sampling locations was significant only for the 1st 

generation oil palm mono-cropping, here POP<2.5m had lower moisture than D.  

The variations in pH between the sampling locations were significant for all sites except the 

pineapple intercropping site, where pH was about 3 for all sampling locations. For 1st 

generation oil palm, pH was greater in POP<2.5m than D. For 2nd generation oil palm, pH was 

greater near the dead oil palm at POPD<1m, while the other sampling locations had a similar 

pH. For the yam intercropping site, the significant difference was because of greater pH at 

PYA<30 cm, while all the other sampling locations had a similar pH. Temperature was 

significantly different between the sampling locations only for yam intercropping site, due to 

greater temperature in D and PPA<30cm region.  

3.4 Microbial phenotypic community structure  

In the PCA of the PLFA profiles, PC1 and 2 collectively accounted 44% of the total variance 

(Fig. 3). PC1 showed significant discrimination between sampling locations (F(10,32) = 3.13, 

p=0.012), while PC2 did not significantly discriminate sampling locations (F(10,32)= 1.21, 

p=0.335). However the discrimination by PC1 was predominantly associated with sampling 

locations from one site i.e., 1st gen OP, which contained higher proportion of actinomycete 

biomarkers (10me18:0 and 10me16:0) along with the bacterial fatty acids i16:0 and cyc19:0. 

The rest of the PLFAs were generally dispersed near zero or on the positive side of the PC1 

graph. Other than the above with respect to sampling locations from 1st gen OP, there were 

no other distinct groupings or discrimination of sampling locations and related PLFAs. 

However, PCA for different sites strongly reinstated the significant discrimination between 
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1st gen OP and the rest of the second generation cropping systems (Supplementary 

information 2). 

The relative abundance of PLFAs did not significantly differ between sampling locations 

within each site for all the identified microbial groups, fungal: bacterial or stress ratios 

(cyc:pre, sat:mono) (Table 3). All of the studied sites were dominated by Gram-positive 

bacterial PLFAs, with very high total relative abundance of bacterial PLFAs to fungal PLFAs 

(Fig. 4). The fungi:bacteria ratio were around 0.1 for all the sampling locations in all sites 

(Fig. 5), while the Gram+:Gram- ratio was between 1.5 and 2 for all the 2nd generation 

cropping systems, and around 2.5 for 1st gen OP (Fig. 5).  

4. Discussion 

4.1 Effect of plant proximity on CO2 emissions 

CO2 emissions were significantly influenced by proximity to oil palms only for the cropping 

system that had mature oil palm trees. The CO2 emissions at POP<2.5m was 33.5% greater than 

the CO2 emission at D, which is in the similar range to the 32.5% autotrophic contribution 

reported in 14 year old 1st generation oil palm plantations in Peninsular Malaysia (Matysek et 

al., 2017). However, it was slightly greater than the 29% autotrophic contribution reported by 

Dariah et al. (2014) under 15 year-old oil palm plantations in Indonesia. It should be noted 

that there was no difference in CO2 emissions between the measurements made near the 

recently dead oil palm trees, POPD<2m and other areas in the 2nd generation oil palm mono-

cropping site, potentially showing the significant contribution of autotrophic root respiration 

from mature oil palm trees is instantaneously reduced after the death of mature oil palms. 

Nonetheless, the second generation mono-cropping site also had oil palm plants about 5 years 

old, and their possible autotrophic contribution to the total soil respiration was not significant 

enough to make a difference in total CO2 emissions near the young palm trees. Indeed, 
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Dariah et al. (2014) concluded that autotrophic respiration from 6 year-old oil palm plants 

contributed only about 14% of the total respiration. This is strikingly different from the 

results of Hergoualc’h et al. (2017) which showed autotrophic emissions from a 6 year old 

plantation contributed 39% to the total CO2 emissions. 

Yam is tuber crop with an adventitious rooting system preceded by a temporary seminal or 

tubercular rooting system (Charles-Dominique et al., 2009). The yam plants in our study were 

mature during wet season measurements, and the dry season measurements were made when 

the older yam plants were harvested and replaced with new younger plants, possibly 

containing the temporary seminal or tubercular rooting system. The root length density of 

yam plants are usually low with a maximum of 0.25 cm cm-3. The root system can grow as 

far as 5 m horizontally and up to 40 cm depth (O'Sullivan, 2008), however Hgaza et al. 

(2012) did not find any roots at 15-30 cm depth at a distance of 50 cm from yam plant. The 

contribution of yam root respiration to total soil respiration has not been studied before, but 

our study has demonstrated that they make a significant contribution to total CO2 emissions, 

with about 23.4% increase in CO2 emissions than what is observed in sampling locations 

further than 1.5 m away from the crops at ‘D’. 

Pineapple root systems are adventitious and shallow and can grow well beyond the length of 

the associated canopy (DHA, 2008). A single plant can produce about 450 main roots, which 

do not regenerate if damaged (DAF, 2009). The shallow root system can grow up to 1- 2 m 

long and about 0.85 m deep (DHA, 2008). The pineapple intercropping system in our study 

was densely planted and none of the POP<1m and D, measurements were more than 1 m distant 

from a mature pineapple plant. It is possible that all the measuring points had some influence 

of pineapple root respiration. The oil palm plants in the pineapple intercropping were less 

than a year old and possible contribution of their root respiration was presumably minimal. 
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Though the CO2 emissions from POP<1m and distant sampling locations ‘D’ did not 

significantly differ between each other.   

4.2 Effect of plant proximity on CH4 emissions 

A high ground water level is essential to create anoxic conditions, required for anaerobic 

decomposition that produces CH4 (Page and Hooijer, 2016). This was clearly reflected by 

distinctly high CH4 emissions in the pineapple intercropping site, which had a water table 

above the surface during the wet season measurements. All the other sites were drained with 

relatively dry surface peat layers, and water tables below the surface. Nonetheless, CH4 

emissions were very low and well under 1 mg m-2 hr-1 at all the sampling locations in the 

studied sites including the pineapple intercropping site. 

Another distinct trend was greater CH4 emissions near the plants with adventitious root 

systems such as yam (PYA<30cm) and pineapple (PPA<30cm), even when the moisture level did 

not spatially vary between different sampling locations within their respective sites (Tables 

1&2). Ground vegetation composition could significantly influence methane emissions from 

soil through root exudates, along with other environmental conditions such as moisture, 

temperature, pH and organic content (Bhullar et al., 2014; Micallef et al., 2009). It is 

plausible that root exudation and rhizosphere communities from yam and pineapple root 

systems support methanogenic communities contributing to the CH4 emissions. Conversely, 

regions near mature live (POP<2.5m) and dead oil palm trees (POPD<1m) oxidised CH4, this might 

be due to the mature trees rhizosphere communities containing methanotrophs, which also 

stayed after the death of the mature palm plants. However, the regions near young oil palm 

plants (POP<1m) and POP<2m) emitted CH4. Rhizosphere communities are known to change with 

different development stage of the plants (Chaparro et al., 2014; Micallef et al., 2009). It is 

possible that oil palm rhizosphere communities changed from greater abundance of 

methanogens to greater abundance of methanotrophs with increasing age. This also explains 
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significantly greater CO2 emissions observed at POP<2.5 m. Another factor that possibly 

influenced greater methane oxidation and increased CO2 emissions near the mature oil palm 

in the first generation mono-cropping, was the observed significantly lower moisture level at 

POP<2.5m than at D, as CO2 emissions in tropical peatlands are known to increase with 

decreasing moisture (Jauhiainen et al., 2005; Couwenberg et al., 2010; Hergoualc’h et al., 

2017; Sangok et al., 2017; Wakhid et al., 2017). 

4.3 Effect of plant proximity on surface peat microbial community structure 

 It is evident that the rhizosphere of proximal plants did not significantly influence the surface 

peat microbial community structure irrespective of the age, generation or the management 

practice of oil palm plantations in this study, however the difference is clear between the 1st 

generation and the 2nd generation plantations (Supplementary information 2). The only 

notable distinction was the greater relative abundance of actinomycetes in the 1st gen OP for 

both proximal and distant sampling locations (Fig. 4). Actinomycetes are filamentous 

prokaryotes with fungi-like characteristics and functions (Barka et al., 2016), and are capable 

of degrading recalcitrant forms of cellulose in plant remains (Bhatti et al., 2017), thus 

explaining greater relative abundance in the 1st gen OP that contained numerous dead forest 

wood from previous generation. However it is surprising that the microbial phenotypic 

community structures were unchanged by the sampling proximity to different plants, this 

might be because the sampling was carried at the surface peat (0-5 cm), not in the deeper 

layers at the actual rhizosphere root zone of each plant. This might also explain the observed 

significant change in CH4 emission but not in CO2 emissions between the proximal and 

distant sampling locations in most sites, as most CO2 is produced by greater activity in the 

surface (Jackson et al., 2013), and CH4 is produced from anaerobic conditions in deeper 

layers that have greater influence of rhizosphere communities.  
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5. Conclusions 

The lack of variations in CO2 emissions in relation to proximity to plants in most of the 

young cropping systems except for mature oil palm and yam crops demonstrate that our 

hypotheses are context dependent, and possibly contingent on the duration the plants or 

cropping system has been established. It is also clear that surface peat microbial phenotypic 

community structure is unchanged by the proximal plant type or age. In addition, without 

appropriate above ground vegetation or hydrology for peat formation, ancient carbon stored 

on these agricultural peatlands are gradually lost into the atmosphere due to potentially high 

heterotrophic respiration under agricultural systems on peat. Although CH4 emissions 

exhibited significant variations depending on the sampling proximity to different plants, the 

emissions were actually very low and their contribution to carbon loss and climate change is 

limited at these sites. 
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Tables 

Table 1: Environmental parameters at different sampling locations under different sites. 

Note 1st gen OP denotes 1st generation oil palm mono-cropping, 2nd gen OP denotes 2nd 

generation oil palm mono-cropping, pineapple denotes 2nd generation oil palm and 

pineapple intercropping yam denotes, 2nd generation oil palm and yam intercropping, 

pineapple denotes 2nd generation oil palm and pineapple intercropping 

Site Position Loss on ignition pH Moisture Temperature 

1st gen 
OP 

Pop<2.5m 81.5 ±0.88 3.29 ±0.07 22.7 ±2.03 29.6 ±0.18 

D 83.5 ±0.53 3.16 ±0.04 30.4 ±1.74 29.3 ±0.12 

2nd gen 
OP 

POP<2m 53.9 ±1.83 3.5 ±0.09 28.4 ±2.88 27.8 ±0.17 

POPD<1m 59.1 ±2.76 3.8 ±0.1 32.4 ±4.63 28.3 ±0.28 

D 49.7 ±1.25 3.47 ±0.05 34.7 ±1.47 28.2 ±0.12 

Pineapple 

POP<1m 88.6 ±1.36 2.94 ±0.07 59.7 ±9.47 28.0 ±0.28 

PPA<30cm 86.6 ±0.84 3.08 ±0.04 64.1 ±2.16 28.1 ±0.10 

D 90.4 ±0.85 3.05 ±0.07 61.9 ±4.06 28.3 ±0.17 

Yam 

Pop<1m 83.8 ±2.37 3.25 ±0.12 34.7 ±7.27 28.5 ±0.33 

PYA<30cm 74.2 ±2.08 4.07 ±0.10 39.6 ±2.41 28.8 ±0.23 

D 79.3 ±1.38 3.24 ±0.08 36.4 ±1.39 29.3 ±0.22 

PPA<30cm 81.2 ±1.80 3.4 ±0.08 35.3 ±1.88 29.7 ±0.07 
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Table 2: Linear mixed model (REML) for GHG emissions and environmental parameters, 

showing statistical significance of the effects of sampling location. 

  1st gen OP 2nd gen OP Pineapple Yam 

CO2 
F(1,88)=16.4, 
P<0.001 

F(2,107)=0.40, 
p=0.670 

F(2,103)=1.11, 
p=0.333 

F(3,146)=5.93, 
p<0.001 

CH4 
F(1,88)=0.85, 
p=0.358 

F(2,107)=3.47, 
p=0.035 

F(2,103)=5.17, 
p=0.007 

F(3,146)=3.52, 
p=0.017 

Organic 
matter % 

F(1,86)=4.19, 
p=0.044 

F(2,107)=6.29, 
p=0.003 

F(2,104)=3.71, 
p=0.028 

F(3,145)=3.25, 
p=0.024 

Moisture 
F(1,88)=6.76, 
p=0.011 

F(2,107)=2, 
p=0.141 

F(2,104)=0.26, 
p=0.775 

F(3,146)=0.80, 
p=0.495 

pH 
F(1,86)=3.15, 
p=0.079 

F(2,107)=4.13, 
p=0.019 

F(2,104)=0.72, 
p=0.489 

F(3,145)=16.30, 
p<0.001 

Temperature 
F(1,88)=2.13, 
p=0.148 

F(2,107)=2.24. 
p=0.111 

F(2,100)=0.88, 
p=0.419 

F(3,146)=4.04, 
p=0.009 
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Table 3: Linear mixed model (REML) for relative abundance of microbial groups and ratios, 

showing statistical significance of the effects of sampling location. 

 

  1st gen OP 
2nd gen 
OP 

Pineapple Yam 

Actinomycetes 
F(1,4)=1.20, 
P=0.335 

F(2,6)=0.21, 
p=0.819 

F(2,6)=1.11, 
p=0.388 

F(2,6)=0.12, 
p=0.891 

Gram-positive 
F(1,4)=2.27, 
p=0.206 

F(2,6)=1.94, 
p=0.223 

F(2,6)=0.39, 
p=0.695 

F(2,6)=0.54, 
p=0.607 

Gram-
negative 

F(1,4)=0.10, 
p=0.763 

F(2,6)=1.35, 
p=0.328 

F(2,6)=0.11, 
p=0.898 

F(2,6)=0.69, 
p=0.535 

Fungi 
F(1,4)=o.11, 
p=0.758 

F(2,6)=0.19, 
p=0.832 

F(2,6)=0.70, 
p=0.533 

F(2,6)=0.47, 
p=0.645 

Non-specific 
F(1,4)=0, 
p=0.961 

F(2,6)=1.22, 
p=0.832 

F(2,6)=0.76, 
p=0.508 

F(2,6)=0.48, 
p=0.640 

F:B 
F(1,4)=0.12, 
p=0.745 

F(2,6)=0.38, 
p=0.697 

F(2,6)=0.73, 
p=0.519 

F(2,6)=0.46, 
p=0.651 

G+:G- 
F(1,4)=0.29, 
p=0.619 

F(2,6)=0.09, 
p=0.919 

F(2,6)=0.23, 
p=0.803 

F(2,6)=0.67, 
p=0.547 

Cyc:pre 
F(1,4)=0.13, 
p=0.741 

F(2,6)=0.60, 
p=0.580 

F(2,6)=2.16, 
p=0.197 

F(2,6)=0.44, 
p=0.662 

Sat:mono 
F(1,4)=0, 
p=0.951 

F(2,6)=0.67, 
p=0.544 

F(2,6)=1.16, 
p=0.375 

F(2,6)=1.59, 
p=0.279 
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Figure captions: 

Figure 1: Effect of sampling location upon CO2 emissions under different oil palm cropping 

systems. Bars denote mean values and whiskers denote standard errors. Note 1st gen OP 

denotes 1st generation oil palm mono-cropping, 2nd gen OP denotes 2nd generation oil palm 

mono-cropping, pineapple denotes 2nd generation oil palm and pineapple intercropping, yam 

intercropping denotes 2nd generation oil palm and yam intercropping. 

Figure 2: Effect of proximity to crop plantssampling location upon CH4 emissions under 

different oil palm cropping systems. Bars denote mean values and whiskers denote standard 

errors. Note 1st gen OP denotes 1st generation oil palm mono-cropping, 2nd gen OP denotes 

2nd generation oil palm mono-cropping, pineapple intercropping denotes 2nd generation oil 

palm and pineapple intercropping, yam denotes 2nd generation oil palm and yam 

intercropping. 

Figure 3: Effects of proximity to cropsampling location upon phenotypic structure of soil 

microbial communities determined by PLFA analysis, as shown by principal component (PC) 

analysis. (a) ordination of PC1 and 2 and (b) associated loadings for individual PLFAs. For 

(a) points denote means (n=3), whiskers denote standard errors. The description for sampling 

locations are given in the section 2.2. Additionally note 1st OP in brackets denotes 1st 

generation oil palm mono-cropping, 2nd OP in brackets denotes 2nd generation oil palm mono-

cropping, PA in brackets denotes oil palm and pineapple intercropping, YA in brackets 

denotes yam and oil palm intercropping.  

Figure 4: Relative abundance of different microbial groups as determined by PLFA analysis. 

Mean values are presented (n=3). Mol% is calculated by dividing the individual PLFA’s peak 

area by the sum of the peak areas of all PLFAs and multiplying it by 100. The description for 

sampling locations is given in the section 2.2.  



23 

 

Figure 5: Ratios between different microbial groups and PLFA ratios used as stress 

indicators, as determined by PLFA analysis. Mean values are presented (n=3). Mol% is 

calculated by dividing the individual PLFA’s peak area by the sum of the peak areas of all 

PLFAs. The description for sampling locations is given in the section 2.2. 

 

Supplementary information 1: Indicative views of the sampled sites. 

 

Supplementary information 2: Effects of site upon phenotypic structure of soil microbial 

communities determined by PLFA analysis, as shown by principal component (PC) analysis. 

(a) ordination of PC1 and 2 and (b) associated loadings for individual PLFAs. For (a) points 

denote means (n= 6 for 1st gen OP and n= 9 for all other sites), whiskers denote standard 

errors. Note 1st gen OP denotes 1st generation oil palm mono-cropping, 2nd gen OP denotes 

2nd generation oil palm mono-cropping, pineapple denotes 2nd generation oil palm and 

pineapple intercropping, yam denotes 2nd generation oil palm and yam intercropping, 

pineapple denotes 2nd generation oil palm and pineapple intercropping. 
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