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ABSTRACT

We demonstrate how the metallicities of young super star clusters (SSC) can be measured using novel spectroscopic
techniques in the J-band. The near-infrared flux of SSCs older than ~6 Myr is dominated by tens to hundreds of red
supergiant stars. Our technique is designed to harness the integrated light of that population and produces accurate
metallicities for new observations in galaxies above (M83) and below (NGC 6946) solar metallicity. In M83 we find
[Z] = +0.28 = 0.14 dex using a moderate resolution (R ~ 3500) J-band spectrum and in NGC 6496 we report [Z] =
—0.32 &+ 0.20 dex from a low resolution spectrum of R ~ 1800. Recently commissioned low resolution multiplexed
spectrographs on the Very Large Telescope (KMOS) and Keck (MOSFIRE) will allow accurate measurements of
SSC metallicities across the disks of star-forming galaxies up to distances of 70 Mpc with single night observation

campaigns using the method presented in this paper.
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1. INTRODUCTION

The effects of star formation—notably the chemical enrich-
ment of a galaxy’s young stellar population and interstellar
medium—imprint a signature of the initial properties and evo-
lution of that galaxy onto its current generation of stars. Two
critical observables are the central metallicity and radial abun-
dance gradient of iron- and «-group elements. Trends in such
measurements over ranges of galactic mass, redshift, and envi-
ronment constrain the theory of galaxy formation and chemical
evolution.

The central metallicity of a galaxy is dictated by mass and
traces formation properties and evolution (Lequeux et al. 1979;
Tremonti et al. 2004; Maiolino et al. 2008). Radial abundance
gradients provide a signature of the complex dynamics of galaxy
evolution and the growth of galactic disks. The processes af-
fecting abundance gradients include clustering, merging, infall,
galactic winds, star formation history, and initial mass function
(Prantzos & Boissier 2000; Garnett 2004; Colavitti et al. 2008;
Yin et al. 2009; Sinchez-Blazquez et al. 2009; De Lucia et al.
2004; de Rossi et al. 2007; Finlator & Davé 2008; Brooks et al.
2007; Koppen et al. 2007; Wiersma et al. 2009).

Pursuit of these rich areas of research has been undermined
by the difficulty of obtaining reliable metallicities of galaxies.
Techniques providing such measurements must be observation-
ally efficient as well as accurate and precise. These requirements
offer a formidable challenge across extragalactic distances. In
the ideal situation, conclusions are drawn from careful studies
using multiple techniques such as described below. Constraints
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on access to telescopes and the lack of targets which can be
observed over such distances necessitate compromise.

The bulk of investigations rely on spectroscopy of the
emission lines of Hu regions. The “strong line” analysis
methods use the fluxes of the strongest forbidden lines relative
to HB. The requirement for empirical calibration has created a
situation in which different commonly used calibrations yield
varying and sometimes conflicting results from the same set of
observations. Both the slope and absolute scaling of metallicity
are susceptible to choice of calibration: the mass—metallicity
gradient across all galaxies and the radial gradients within
individual galaxies can change from steep to flat while the
overall metallicity can shift by a factor of up to four (Kewley
& Ellison 2008; Kudritzki et al. 2008; Bresolin et al. 2009a).
Even the more physical “T,-based method” (which utilizes
auroral lines to remove the need for “strong line” calibrations)
is potentially subject to biases—especially in the metal rich
regime characteristic of the disks of all massive spiral galaxies
(Bergemann et al. 2014; Stasifiska 2005; Bresolin et al. 2005;
Ercolano et al. 2010; Zurita & Bresolin 2012).

Quantitative spectroscopy of supergiant stars is one alterna-
tive technique which avoids the uncertain calibrations of the
“strong line” H 11 region method. Blue supergiants in particular
have become a powerful tool for measuring metallicities, abun-
dance gradients, and distances to galaxies in and beyond the
Local Group (the WLM galaxy, Bresolin et al. 2006; Urbaneja
et al. 2008; NGC 3109, Evans et al. 2007; IC1613, Bresolin
et al. 2007; M33, U et al. 2009; M81, Kudritzki et al. 2012;
NGC 4258, Kudritzki et al. 2013; NGC 3109, Hosek et al.
2014). This technique, while extremely promising, may also be
subject to systematic uncertainties and needs to be checked by
independent methods. Moreover, it utilizes optical spectroscopy,
while the next generation of telescopes such as the Thirty Meter
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Telescope and E-ELT will be optimized for observations using
adaptive optics at infrared wavelengths (IR). Bright abundance
tracers with their flux-maximum in the IR will have a clear
advantage as these facilities come online.

Red supergiants (RSGs) are extremely luminous stars which
emit 10° to ~10° L/Lg largely in the infrared (Humphreys
& Davidson 1979). With a method to extract metallicities
from these stars at modest resolutions, the RSGs become
ideal targets for measuring extragalactic cosmic abundances.
Studies of RSGs tend to demand high spectral resolutions (R &~
20,000) in order to disentangle the densely packed atomic
and molecular features iconic to such cool, inflated stars. By
searching for a spectral window with minimal contamination
by the strongest molecular lines of OH, H,O, CN, and CO,
Davies et al. (2010) found the J-band (1.15-1.23 um) a suitable
bandpass. Furthermore, the dominant spectral features are
isolated atomic lines of iron, titanium, silicon, and magnesium.
Davies et al. (2010) and, most recently, Gazak et al. (2014)
have demonstrated the extraction of metallicities accurate to
~0.10 dex for a single RSG at resolutions down to R ~ 2000 in
the J-band.

With this J-band method in hand, current instrumentation
on 8 m class telescopes can extract accurate and precise
metallicities using single RSGs out to a limiting distance of
~10 Mpc (Evans et al. 2011). Still, to reach groups and clusters
of galaxies significantly beyond the 10 Mpc, such techniques
must await the next generation of 30 m class telescopes.

In this work we demonstrate a new method for extending the
observational baselines of stellar techniques by exploiting the
integrated light of coeval ensembles of stars. In star forming
galaxies, such populations exist as super star clusters (SSCs),
the result of single bursts of star formation creating a population
with a stellar mass of 10*-10° My in a tight association
(Portegies Zwart et al. 2010). In Gazak et al. (2013) we
hypothesized that a discrete jump in the IR colors of SSCs at ages
beyond 7 Myr was caused by the appearance and flux dominance
of the RSG members of these clusters. We demonstrated this to
be the case by performing population synthesis experiments
with synthetic photometry. The simulations agreed well with
observed near IR colors of SSCs across a range of ages in
MS83 measured by Bastian et al. (2011, 2012). Indeed, by
7 Myr the population of tens to hundreds of RSGs dominates
the near-IR light, commanding >90%-95% of the J-band flux
(Gazak et al. 2013). As a natural extension of that work we
suggested that SSCs older than 7 Myr could be used for
quantitative spectroscopy and the measurement of [Z] at far
greater distances than is possible for single supergiants. It is
the purpose of this paper to demonstrate the practicality of this
spectroscopic technique and present applications significantly
above and below solar metallicity.

The analysis method applied to the J-band spectra is the same
as used very recently in the quantitative spectroscopic J-band
study of individual RSGs in the Milky Way cluster Perseus OB-1
by Gazak et al. (2014).

This novel method allows for the measurement of metal-
licities of young SSCs—and thus the disks of star-forming
galaxies—within ~35 Mpc and across a wide range of galac-
tic metallicity. To this end we have collected J-band spectra
of two SSCs, one in the disk of the super-solar metallicity
galaxy NGC 5236 (M83) at 4.5 Mpc (Thim et al. 2003) and
one in the sub-solar metallicity galaxy NGC 6946 at 5.9 Mpc
(Karachentsev et al. 2000). This represents the pioneering first
step toward studying the disks of star-forming galaxies with
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stellar spectroscopy over distances extending 10 times that of
single-supergiant techniques. To accomplish this we observed
M83-1f-117 (referred to as NGC 5236-805 in Larsen & Richtler
2004), a my = 16.1 SSC at an age of ~20 Myr and mass of
2x10° M, in the nearby spiral galaxy M83. For the sub-solar
case we targeted NGC 6946-1447, a my ~ 13 SSC at an age of
~10-15 Myr with a mass of ~10% M.

2. OBSERVATIONS

Observations of MS83-1f-117 (¢ = 13"37m02%, § =
—29°52"13") were obtained using ISAAC/Very Large Tele-
scope (VLT) (Moorwood et al. 1998) on the night of 2012 March
13 under the ESO program 089.D-0750(A) (PI: N. Bastian). We
employed the 170 slit width with a central wavelength of 1.17
pm and integrated on source for two hours using an A-B-A nod
pattern. We observed a B-type star with a similar airmass as a
telluric standard.

The spectra were reduced following the methodology outlined
in Davies et al. (2012). Briefly, this reduction consists of the
subtraction of nod pairs, flat-fielding, rectification to correct
for distortion in the spatial and dispersion directions, sky
subtraction, and cosmic-ray removal.

NGC 6946-1447 (o« = 20"34™M52%, § = 60°08'14") was
observed on 2011 August 3 and 2011 October 12 with the near-
IR medium resolution SpeX spectrograph mounted on the 3 m
NASA InfraRed Telescope Facility (IRTF) on the summit of
Mauna Kea (Rayner et al. 2003). SpeX was set up in short
wavelength cross-dispersed mode with a 0”3 slit. The data were
reduced and telluric-corrected using the IDL spectral extraction
package Spextool (Vacca et al. 2003; Cushing et al. 2004).

The observed spectra are plotted in Figure 1.

3. SYNTHETIC SUPER STAR CLUSTERS
3.1. Stellar Population Synthesis

Gazak et al. (2014), in their analysis of J-band spectra
of individual RSGs in the Milky Way cluster Perseus OB-1,
synthesized an integrated J-band cluster spectrum by combining
the individual spectra of all RSGs studied. They demonstrate
that the quantitative analysis of the integrated spectrum yields a
metallicity consistent to the mean metallicity of the individual
RSGs. This is the starting point for the population synthesis
experiment described in this section.

Simulations presented in Gazak et al. (2013) successfully
recreated observed trends in the near infrared colors of SSCs
based on the evolution of the first RSG members. RSGs
contribute 90%—-95% of the near-IR flux emitted by young
SSCs older than ~7 Myr. Now we expand on the photometric
results of Gazak et al. (2013) by simulating the full spectra of
SSCs as a function of age. Here we use the same methodology as
that paper to derive theoretical stellar populations of a 10° M,
SSC from 1 to 15 Myr. Notably, we assume a Salpeter initial
mass function with mass boundaries of 0.8—100 My and evolve
the theoretical cluster using the Geneva stellar evolution tracks
which include effects of rotation (Meynet & Maeder 2000).

At each time step we construct a theoretical spectral energy
distribution (SED) at a resolution of R = 10,000 using theo-
retical SEDs from the Pollux database!® (Palacios et al. 2010).
This database draws from three sets of one-dimensional LTE
synthetic spectra, including cMFGEN (Hillier & Miller 1998),

10 Operated at LUPM (Universit Montpellier II-CNRS, France) with the
support of the PNPS and INSU (http://pollux.graal.univ-montp2.fr).
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Figure 1. Observed spectra of two young super star clusters (black): M83-1f-117 (upper panel), and NGC 6946-1447 (lower panel). Each spectrum is overplotted
with a best fitting red supergiant synthetic spectrum (red dashed with gray) in the spectral window analyzed. The critical diagnostic lines of Fe1, Ti1, Si1, and Mg1 are

marked. Spectral fitting is carried out over these diagnostic features.
(A color version of this figure is available in the online journal.)
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Figure 2. Theoretical spectra for a 10° M, super star cluster after 5 Myr (left panel) and 15 Myr (right panel). The black spectrum represents the full SSC SED, blue
represents the main sequence and blue supergiant stars, and red plots flux due to red supergiant members. The J-band is highlighted in gray.

(A color version of this figure is available in the online journal.)

ATLAS12 using the Kurucz stellar atmospheres (Kurucz 2005),
and TURBOSPECTRUM calculations using MARCS atmospheres
(Plez 2012; Gustafsson et al. 2003). For stellar parameters typi-
cal of RSGs we supplant the latter with our own NLTE theoret-
ical spectra in the J-band (Bergemann et al. 2012, 2013). Solar
metallicity is assumed.

In Figure 2 we plot a synthetic SED from 0.3 to 1.5 um at
5 Myr and 15 Myr (before and after the evolution of the first
massive stars into RSGs which begins at roughly 7 Myr). The
evolution of the first RSGs have an overwhelming effect on the
near IR SED, wholly dominating the flux of the cluster. We plot
two panels showing just the J-band in Figure 3.

3.2. Analysis Tests

We test the hypothesis that J-band spectra could yield the
[Z] abundance of that cluster by applying our analysis method
(presented below, Section 4; see also Gazak et al. 2014) to the

synthetic spectra of Figure 3 between ages of 8 and 22 Myr. For
the model SSC spectra at R = 3500 we recover [Z] consistent
with solar metallicity and with measurement errors of 0.10-0.14
(see Figure 4). When we subtract a flat spectrum that is 5% of
the total flux (to simulate the removal of the “main sequence”
contribution), the measured metallicities increase, remaining
consistent with solar.

4. ANALYSIS

We model the observed SSC spectra of M83-1f-117 and
NGC 6946-1447 (see the description of our observations and
data reduction in Section 2) using single-star templates for syn-
thetic spectra. The spectra were computed as follows. The model
atmospheres are one-dimensional LTE maRrcs (Gustafsson et al.
2008). The coverage of the MARCS grid can be found in Table 1.
Synthetic model spectra are calculated in NLTE for iron, tita-
nium, and silicon using the atomic models and codes described
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Figure 3. Theoretical J-band spectrum of a 15 Myr old, 10> M, super star
cluster. Black spectrum plots the SSC spectrum normalized to unity in the
J-band, red shows the contribution of the red supergiants and the lower panel
provides a zoomed view of the 5%—6% level of the blue spectrum which
represents the main sequence and blue supergiant stars.

(A color version of this figure is available in the online journal.)

Table 1
Model Grid

Parameter Units Grid Min Grid Max Spacing
Tett (K) 3400 4000 100

4000 4400 200
log g (cms™2) —-1.0 +1.0 0.5
[Z] —1.00 +1.00 0.25
£ (kms~!) 1.0 6.0 1.0

Note. The parameter space of the MARCS grid of stellar atmospheres used in this
work.

by Bergemann et al. (2012, 2013). These atoms provide the
strong lines crucial for the analysis in the J-band. The contri-
butions by all other atoms and molecules are included in LTE.
We assume solar values for the ratios of alpha elements to iron
(e /Fe).

We begin by iteratively fitting the spectral resolution of our
data by finding the best model and resolution pair by minimizing
the x? fit statistic. Spectral broadening due to cluster dynamics
is inseparable from resolution effects. We find a resolution of
Resr = 3500 for the M83 ISAAC spectrum and Ry = 1800 for
the NGC 6946 object with SpeX. These values are consistent
with the expected capability of the instruments. The measured
R is applied to the entire grid of synthetic spectra and a four-
dimensional x? grid is calculated using the strong isolated
diagnostic features of Fe1, Si1, and Tir across the spectral
window.

Best fit parameters are extracted from the x 2 grid as follows
(a detailed description of the method is given in Gazak et al.
2014). We construct six two-dimensional slices around the
best fit model such that each x2 slice is locked to two “best
model” parameters and varies over the remaining. Each slice is
interpolated onto a new grid at 10x the parameter resolution.
The interpolated x> minimum provides a measurement of
the two “free” parameters for each slice: over six slices we
accumulate three measurements of each parameter. The best fit
values which we tabulate in Table 1 are the average of those
three measurements.

Standard x? statistics requires that the deviations between
data and model in each wavelength bin be Gaussian in nature.

GAZAK ET AL.
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Figure 4. Metallicities extracted from synthetic SSC spectra as a function
of age. Black circles show values extracted from the spectra when a 5% flat
contaminative flux is removed from each spectra, red triangles are a result of the
RSG population alone, and blue squares show metallicities extracted from the
full spectra. Error bars on the black circles are consistent for each of the three
types of measurement. The gray zone is the expected region of uncertainty for
a single solar metallicity red supergiant analyzed with the method used in this
paper and initially presented by Davies et al. (2010) and Gazak et al. (2014).

(A color version of this figure is available in the online journal.)

Gaussian deviates cannot be assumed for the following reasons:
the input spectrum is contaminated by other spectral types at the
~5% level, the models are likely to contain systematic errors,
and residual features due to imperfect telluric corrections are
not randomly normal across the spectrum. Instead we employ a
Monte Carlo test to assess the 1o uncertainties in our parameter
extractions. This test begins by interpolating a model to the
extracted fit parameters. We produce 1000 noise spectra as
follows: generate a random Gaussian deviate for each pixel
such that the global standard deviation of the noise spectrum
is characteristic of the signal-to-noise ratio of the observed
spectrum. We iterate over the noise spectra, adding each to the
interpolated model and feeding the resulting spectrum through
our fitting procedure. Each noisy model produces a set of best
fit parameters, of which the central 68% represents a classic
lo region of uncertainty without assuming Gaussian error
processes.

We experiment with the effect of ~5%—10% contaminative
flux from the remaining stellar flux of the SSC (Gazak et al.
2013). This is accomplished by assuming a flat spectral dilution
and removing 5% and 10% of the median flux of our observed
spectra. The effect is to deepen the absorption features—it is
in the depths of strong lines that the flat spectrum contributes
the largest percent flux. We repeat our fitting procedure after
scaling out 5% of the median flux. These adjusted spectra yield
consistent measurements of [Z]; measurement uncertainties
dominate the shift in metallicity due to deeper absorption
features.

5. DISCUSSION
5.1. M83

Multiple investigations of M83’s chemical enrichment using
both “direct” and “strong line” Hi methods have produced
abundance gradients across the inner and outer disk of the galaxy
(Bresolin & Kennicutt 2002; Bresolin et al. 2005, 2009b). While
plagued by the biases and uncertainties discussed in Section 1,
those papers produce lower limits for the [O/H] enrichment in
the inner disk of M83 of 1.6x solar and admit that the values
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Table 2
Spectral Fits

Parameter MS81-1£-117 NGC 6946-1447
Tetr 3540 £ 80 3940 £ 100
log g +0.48 +0.18 +0.10 £ 0.15
[Z] +0.28 £ 0.14 —0.324+0.20
£ 3.1+0.25 3.0£0.25
Resr [A/8M] 3500 £ 50 1800 + 50

Note. Parameter fits to the observed spectra.

require refinement. In particular, Bresolin et al. (2009b) find
that two common calibrations of the H 11 region method on the
same data set return identical slopes for the metallicity gradient
but the measurements of the overall metallicity level vary by
0.47 dex—a factor of nearly three. Furthermore, early work on
Hu regions returned values of 2—-10x solar oxygen abundance
(Dufour et al. 1980). While current work settles around more
modest values of 1.5-2x, it is clear that the calibration of H1
region metallicities exceeding solar remains problematic.

In Table 2 we tabulate the parameters measured from our
spectra corrected for a flat 5% flux contamination. By applying
our method for extracting metallicities from the J-band spectra
of RSGs we measure a disk metallicity of 1.9x solar ([Z] =
+0.28 &+ 0.14) for M83. This value is consistent with H 11 region
measurements by Bresolin et al. (2005) who report a metallicity
from H 11 region auroral lines in the inner disk of [O/H] = 1.78 x
solar.

5.2. NGC 6946

Measurements of the central abundance and gradient of
NGC 6946 suffer from the same setbacks of the H1I region
method. Using two empirical calibrations, Moustakas et al.
(2010) measure a central metallicity and metallicity at the
isophotal radius Ros (Zy, Zg,,) of 3.0x solar and 1.5x solar for
the calibration of Kobulnicky & Kewley (2004) and 0.6 x solar
and 0.4x solar based on an alternate calibration of Pilyugin
& Thuan (2005). Cedrés et al. (2012), using the same two
calibrations, measure Zy, Zg,, of 3.4 and 1.7x solar for one
and of 0.8 and 0.3x solar for the other. In this case three of
the four measured gradients are consistent but the offsets in
central metallicity between calibrations are factors of four to
five (0.63-0.68 dex). We targeted the SSC NGC 6946-1447
because it has been the target of a careful, high-resolution
analysis: Larsen et al. (2006) use R = 25,000 H and K spectra
and a proprietary spectral synthesis code to measure [Fe/H] =
—0.45 £+ 0.08 (0.35x solar) and [« /Fe] = +0.22 + 0.11.

With our method we measure a metallicity of ~0.5 x solar
([Z] = —0.32 £ 0.20). Our measurement agrees within 1o to
the published value in Larsen et al. (2006), but we note that
the resolution of our NGC 6946-1447 spectrum is less than
ideal. Even with this observation at modest R ~ 1800 we can
claim that the disk of this galaxy is significantly sub-solar
in metallicity, something that Hu region methods cannot do
without an arbitrary choice of calibration. Still, the J-band SSC
method is better suited to spectral resolutions above R = 2500
(see Gazak et al. 2014). It is important to note that Larsen et al.
(2006) also find a significant enrichment in «-elements relative
to iron. Our assumption of a solar «/Fe will then skew our
measured [Z] to higher metallicities. Assuming the SSC does
have a super-solar «/Fe, the silicon and titanium lines in our
models will be globally too shallow relative to iron. In this case
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the best global fit to the spectrum using our grid will require a
model with higher [Z] and may explain the difference between
this work and Larsen et al. (2006).

5.3. Summary

Independent techniques to measure the metallicities and
gradients across the disks of star-forming galaxies are critical
to our understanding of galaxy formation and evolution. Such
techniques are also poised to help disentangle the biases and
poorly understood systematics inherent to ‘“strong line” Hi
methods which are routinely applied to massive data sets of
galaxies. Those techniques which have proven most successful
are based on the quantitative spectroscopy of supergiant stars.
In this paper we have introduced a method capable of avoiding
the extreme systematic uncertainties inherent to H1I region
“strong line” methods. We utilize the reliable quantitative
spectroscopy of RSG stars in a new method which remains
observationally efficient with existing telescopes well beyond
the Local Group galaxies. This is accomplished by targeting
young SSCs—coeval stellar populations dominated in the near-
IR by RSG stars. This J-band technique is ideally suited to multi-
object R ~3000 J-band spectrographs. Two such instruments
have recently been commissioned, KMOS on the VLT and
MOSFIRE on Keck, allowing for studies of SSCs in star-forming
galaxies up to conservative distance estimates of 70 Mpc in
galaxies across the northern and southern skies. Indeed, an
observation campaign is planned to push beyond this pioneering
first observational step and collect spectra of SSCs across the
disk of M83 to provide an independent measurement of central
metallicity and the abundance gradient of this star-forming
galaxy.
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