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The rhythm of life on earth is shaped by seasonal changes in the environment.

Plants and animals show profound annual cycles in physiology, health, mor-

phology, behaviour and demography in response to environmental cues.

Seasonal biology impacts ecosystems and agriculture, with consequences for

humans and biodiversity. Human populations show robust annual rhythms

in health and well-being, and the birth month can have lasting effects that

persist throughout life. This review emphasizes the need for a better understand-

ing of seasonal biology against the backdrop of its rapidly progressing

disruption through climate change, human lifestyles and other anthropogenic

impact. Climate change is modifying annual rhythms to which numerous

organisms have adapted, with potential consequences for industries relating
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to health, ecosystems and food security. Disconcertingly,

human lifestyles under artificial conditions of eternal

summer provide the most extreme example for disconnect

from natural seasons, making humans vulnerable to

increased morbidity and mortality. In this review, we intro-

duce scenarios of seasonal disruption, highlight key aspects

of seasonal biology and summarize from biomedical, anthro-

pological, veterinary, agricultural and environmental

perspectives the recent evidence for seasonal desynchroniza-

tion between environmental factors and internal rhythms.

Because annual rhythms are pervasive across biological sys-

tems, they provide a common framework for trans-

disciplinary research.
Soc.B
282:20151453
1. Introduction
Biological rhythms are ubiquitous in nature and occur on several

temporal scales. Daily rhythms are important for the coordi-

nation of physiological, immunological and behavioural

processes within organisms as well as for biotic interactions.

The proper functioning of these rhythms is disrupted by

modern human lifestyles—including sleep deprivation, light at

night, jet lag and shift work [1,2], which induce temporal mis-

matches between the environment and circadian biology, and

have detrimental effects on health and well-being. Problems of

mismatch extend beyond daily rhythmicity. New research by

Dopico et al. [3] has elegantly demonstrated massive seasonal

changes in human immunity and physiology, adding to evi-

dence for marked annual rhythms in the vast majority of

organisms [4,5]. The disruption of annual rhythms under

global climate change has potentially dramatic consequences

for the health of animals, humans and ecosystems. Whether or

not organisms can adapt to changing seasonality depends on

the regulation of their annual rhythms. Principally, annual

rhythms could be: (i) genetically programmed, i.e. genotype-

dependent responses to the environment resulting from evol-

utionary adaptation to predictable annual change; (ii) direct
environmental effects, e.g. accelerated growth owing to longer

light hours in the day; or (iii) coincidental, e.g. human rhythms

arising as a consequence from holidays.

This review will focus on genetically programmed, internal

cell- and tissue-based mechanisms, which are predicted to track

changes in environmental seasonality. In many species, tissue

function is reprogrammed between subjective winter and

summer states, generating endogenous rhythms that approxi-

mate a year (i.e. circannual rhythms) [3,6–9]. The existence of

innate circannual rhythmicity has been demonstrated when

organisms, from unicells to vertebrates, are maintained in con-

stant environmental conditions for many years [6–11]. Species

with genetically programmed annual rhythmicity occur

globally, from high latitudes to the equator, and even in appar-

ently ‘constant’ environments such as the deep sea [6]. Genetic

programming is seen to be adaptive because it is pre-emptive
and serves to predict and prepare organisms for alternations

in seasonal environmental conditions [12–14].

In humans, the evidence in support of seasonal effects on

disease risk, physiology and immune function is pervasive

([3,15–17]; electronic supplementary material, tables S1 and

S2) and suggests present-day implications of evolutionarily

inherited and refined mechanisms [5]. During the twentieth cen-

tury, our species has developed technologies that allow precise
photic and climate control over our living environments, and

humans in developed societies now spend the vast majority of

their lives in conditions that mimic ‘summer-like’ environments

[15]. These so-called eternal summers are characterized by light

and temperature conditions that lack seasonal rhythmicity. Pre-

sently, many of us no longer live in accordance with the

naturally occurring variation in geophysical rhythms. The con-

sequences of such modified environmental seasonality on

human health are still being elucidated.

Additionally, human activities are also affecting seasonal-

ity in a wider ecological context, with implications for

disease risk, ecosystem health and food security. In agricultu-

ral and natural ecosystems, there is growing evidence that

seasonal patterns and ecological interactions are disrupted by

global climate change [18]. Disruptions in annual rhythms

are expected to become progressively more prevalent and det-

rimental consequences have already been documented [19,20].

Nevertheless, there is a surprising lack of data to determine if,

and how seasonally generated and regulated functions can

adapt [21,22] to altered environmental conditions. Thus, an

overarching, integrated scientific understanding is needed of

the mechanisms that underlie seasonality, including cyclical

biology of humans and of the consequences for all organisms

as they adapt to disrupted seasonality and a fast changing

climate. Addressing the arising practical challenges requires

an integrated, cross-disciplinary approach, as exemplified by

the ‘one health’ initiative for advancing healthcare for

humans, animals and the environment [23,24].

Here, we review current examples of disruption bet-

ween seasonal environmental conditions and internal timing

mechanisms. From this basis, we further emphasize the perva-

siveness of seasonality (with a focus on humans). Finally, we

outline potential threats of disruption for humans, industry,

and managed and natural ecosystems, with a call for the devel-

opment of a synergistic research agenda for seasonal biology.

2. Scenarios of seasonal disruption
Seasonal changes in environmental variables play a signifi-

cant role in the regulation of many physiological and

behavioural processes. Annual changes in day length, temp-

erature and rainfall can all act as cues; they provide vital

information used in the timing of seasonal behaviour and

the synchronization of internal rhythms (electronic sup-

plementary material, figure S1 and figure 1). In this way,

organisms’ behaviour and physiology is timed to optimize

fitness in a given season [12,13,19]. However, the use of

these cues to synchronize (entrain) biological rhythms is

effective only to the extent that temporal relationships

between the external and internal rhythms are predictable.

Timing systems are therefore highly vulnerable to changes

in the constellation of environmental factors under which

they have evolved (figure 1). Changes in the seasonal

timing of organismal functions provided some of the earliest

evidence for biological effects of global climate change [25].

Such changes have now been documented across a wide

range of habitat types and taxonomic groups (electronic sup-

plementary material, figure S2 and [26]). Crucially, species

and populations of wild plants and animals have demon-

strated different rates of change in their overt seasonality [26].

There are multiple, mutually non-exclusive and poten-

tially interactive mechanisms by which altered external cues

could disrupt the relationship between external and internal
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Figure 1. Schematic of annual rhythms. (a) All organisms on earth have
evolved to time their physiology and behaviour (internal rhythm; blue) with
seasonal changes in local climates/resources (external rhythm; green line).
These internal rhythms can precede or follow those of resources, but for adap-
tive timing, the internal and external rhythms need to match. There are three
theoretical scenarios that can account for disruptions of the match between sea-
sonal timing to local climates: (b) phase shifts between internal and external
rhythms; (c) increased (or decreased) duration of favourable environmental con-
ditions (e.g. rising above the red line, which could indicate a rise in minimum
temperature and day length); or (d ) reduction of the amplitude (e.g. under
‘eternal summers’) and/or change in mean levels of seasonal rhythms.
Red lines indicate the average seasonal mean of the rhythms in panel
(a) for reference. Arrows indicate changes in rhythms. (Online version in colour.)
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rhythmicity. For example, climate-change-induced shifts in

the timing of the seasons can result in an abnormally delayed

or advanced internal rhythm with respect to the environment

(figure 1b). Such mismatches in the timing of critical life-

history events can have a large impact on the reproductive

output of plants and animals. Alternatively, disruptions

might be induced if the durations of specific phases of an

external rhythm become extended (e.g. longer growing

season) or reduced (e.g. shorter time of snow cover). This

could occur, for example, if local minimal winter tempera-

tures increase, resulting in higher means in local annual

temperatures with reduced amplitude of seasonal differences

(figure 1c). A scenario with changes in the amplitude of

seasonal differences is particularly relevant for humans

(figure 1d ). Cultural developments, including the ability to

control local environmental conditions through the use of

fire at night for heat and light, marked the beginning of

human manipulation of natural day–night cycles. The sea-

sonality experienced by humans in developed societies (and

that of some closely associated species) is already largely

damped by modern artificially induced photic and indoor

climate conditions reminiscent of eternal summers [15].
3. Molecular, cellular and physiological basis
of seasonal time-keeping

A better understanding of how species respond to seasonal

changes in their environment and how they can adapt to their

disrupted seasonality requires knowledge of the mechanisms

of seasonal time-keeping. Endogenous annual rhythmicity is
evident in a wide range of species (e.g. protists [6], insects

[27], plants [28], fishes [29], birds [30] and mammals [4]), but

is especially strong and widespread among vertebrates,

making it highly likely that seasonal genes and/or intracellular

pathways are also involved in long-term changes in human

physiology and behaviour. Broadly, in multicellular organisms,

the mechanisms for regulating annual rhythms involve cellular

and molecular timers that interact closely with refined input

pathways for transmitting day length (photoperiod) and

other environmental cues (electronic supplementary material,

figure S3). Highly photoperiodic species have been extremely

valuable for the identification of key genetic, cellular and neur-

onal circuits that regulate annual rhythms [31]. Direct evidence

for endogenous seasonal rhythms in humans is scarce owing to

the challenges of collecting data over multiple annual oscil-

lations and the near impossibility of isolating subjects from

exogenous influences for extensive time periods. Historical

and contemporary studies have demonstrated that humans

exhibit seasonal reproduction, hypothesized to be driven by

internal mechanisms [32,33]. Over the past few centuries,

there has been a decrease in seasonal patterns in humans

[32,33] that could have resulted from a reduction in the seasonal

amplitude or desynchronization from environmental cues.

Nevertheless, these data suggest that exogenous cues (i.e. photo-

period) can entrain seasonal human responses [15,33,34]. In

most mammals, annual changes in day length affect seasonal

rhythmicity via the suprachiasmatic nucleus in the hypothala-

mus, and consequently, altering the nocturnal secretion of the

hormone melatonin from the pineal gland ([35]; electronic

supplementary material, figure S3a). Melatonin receptors are

localized in many of the brain regions implicated in cognitive,

affective and homeostatic processes, and thus seasonal changes

in melatonin secretion regulate key genes required for the

neuroendocrine control of physiology, immune function and

behaviour [36–40]. Although exact photoperiodic input

pathways vary among vertebrate groups, similar day length-

induced changes in neuroendocrine brain regions (electronic

supplementary material, figure S3b) occur in fishes [41] and

birds [42], which would suggest that seasonal changes in day

length act to regulate a common, evolutionarily ancient internal

timing system [43]. Recent work suggests that the fundamental

nature of this timer may depend on cyclical histogenesis [44]

and/or epigenetic mechanisms [45,46], potentially operating

in multiple tissues to form a circannual clock-network.

In this framework, the hypothalamus of the brain acts as an

important interface for many processes that are relevant for

health and physiology, coordinating seasonal changes in auto-

nomic and endocrine function. Of note, seasonal timing in

immune function is vital for the survival of many small seaso-

nal animals such as rodents and birds [39–41]. Seasonal- or

light-induced changes in a range of innate humoral and cell-

mediated systems are present in a wide range of species (elec-

tronic supplementary material, table S2). A general finding is

that short days which mimic a winter environment enhance

some immune functions [39]; for species where winter is a

time of increased pathological risk, immune function is

increased presumably in anticipation of increased need. It is

important to note that different aspects of immunity may be

differently regulated across the seasons. For example, rodent

and bird models have shown that short days enhance many

aspects of cell-mediated immunity while suppressing other

specific immune defences ([39,41,47]; electronic supplementary

material, table S2). The precise molecular and cellular
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mechanisms involved in the seasonal restructuring of immune

function are not well described, but recent evidence suggests

that a common molecular switch occurs in hypothalamic

regions and immune tissues (e.g. leucocytes; [3,48]). Recent

developments in next-generation sequencing platforms, tran-

scriptomics and proteomic analyses, provide a powerful means

to identify the precise molecular and cellular pathways that

underlie annual rhythms [3,44,46]. Once the mechanisms that

govern such rhythms are identified, experiments can be devised

for field-based or clinical settings to examine the relationship

between external environment and internal timing.
Proc.R.Soc.B
282:20151453
4. Seasonality and human health
In many tropical and equatorial areas, including the savannah–

woodlands where humans are thought to have originated,

seasonality is highly pronounced although there is little vari-

ation in day length. Indeed, striking seasonal patterns in

behaviour are observed in the migration and breeding rhythms

of many equatorial species, such as the flowering of trees [49]

and the reproductive seasonality of some primates and tra-

ditional human societies [50]. Although at a population level

many species appear to breed asynchronously with respect to

the calendar year, individuals tend to be seasonally cyclical

[51,52] when studied over a full life history. Environmental

stimuli that provide seasonal cues in the tropics are often related

to local non-photic cues, such as rainfall patterns that in turn

determine food abundance (electronic supplementary material,

figure S1c). In the Pleistocene, humans radiated out of the

tropics to higher latitudes where they encountered novel

seasonal environments, in particular marked annual rhythms

in day length and ambient temperature (electronic supplemen-

tary material, figure S1a–c). However, because the underlying

internal mechanisms that govern annual rhythms preceded

the hominin lineage, humans probably possess much of the

ancient molecular and cellular machinery characteristics of

other seasonal species, potentially including genetic variation

in seasonality [53]. Even today, human reproduction is not

evenly spread across the year ([33,54]; electronic supplementary

material, figure S4a–c). For example, a recent analysis indicated

that human birth pulses across the USA fluctuate seasonally

with an amplitude of about 10% ([33]; electronic supplementary

material, figure S4). Despite the decline in birth seasonality

(figure 1d; cf. [15,17,32,33]), it is still substantial for a species

that effectively lives under conditions of eternal summer in its

immediate habitat. Notably, the amplitude of these rhythms

and the timing of their maxima vary with latitude, which

strongly suggests an underlying physiological regulatory mech-

anism. These patterns of birth pulses have longer-term relevance

because of the strong evidence [55] that birth month has life-

long impacts on health, including the likelihood of general,

psychiatric or neurological illnesses ([17,54]; electronic sup-

plementary material, table S1). That these time-of-birth effects

may reflect day-length-dependent mechanisms is signified by

the observation that some diagnoses, e.g. schizophrenia and

multiple sclerosis, show an inverse pattern in the Northern

and Southern Hemispheres (electronic supplementary material,

table S1).

Seasonal human morbidity is observed in non-infectious

diseases, including heart disease [56], cerebrovascular disease

[57] and lung cancer [58]. Behaviour-driven mortality is also

seasonal; cycles in the monthly numbers of suicides are
one of the oldest and most replicated findings, with most,

but not all, studies finding a peak in late spring/early

summer (figure 2a). Interestingly, aggression and other vio-

lent acts such as homicide have a marked seasonal pattern

of occurrence nearly coincident with that found for suicide

(figure 2b). Seasonal patterns in aggression are not limited

to the individual level. Historical records indicate a strong

rhythm in population-level forms of aggression measured

in onset of battles ([59]; figure 2c,d). Whether rhythms rep-

resent simple direct responses to seasonal environmental

changes and/or the manifestation of endogenous seasonal

timing mechanisms, these findings indicate that seasonality

continues to be an important factor in human lives.

Humans also show seasonal changes in immunity and

in the occurrence of infectious diseases [47]. Changes in immu-

nity include seasonal variation in cytokine production [60],

bacterial killing activity [61] and response to vaccination [62].

The most comprehensive characterization so far of annual

cycles in human immunity comes from a recent study by

Dopico et al. [3]. This study presented extensive data from geo-

graphically and ethnically diverse human populations,

including mRNA expression in white blood cells and adipose

tissue, inflammatory markers and blood count data. It reports

seasonal differences in the expression of up to 23% of genes in

peripheral blood mononuclear cells. Furthermore, the seasonal

patterns of gene expression were inverse in Australia relative

to the USA and the UK. The reverse pattern in Australia sup-

ports the idea that in humans, as well as in other animals,

some immune responses may be modulated by day length

[63]. Seasonal infections thus probably mirror internal rhythms

of immunity as well as patterns of exposure. The relative

importance of these mechanisms as drivers of any human

infection remains to be established.
5. Disrupted seasonality and infectious disease
dynamics

One important area for future research is the effect of disrupted

seasonality on the dynamics of infectious disease. A recent

review has highlighted the unprecedented rate at which

vector-borne diseases have changed over the past decade,

and has alerted a wide audience to the impact of changes in

the climate [64]. The review details consequences of modified

environmental seasonality, for example release from severe

winters at higher latitudes and extended phases of seasonal

activity. Environmental seasonal drivers of disease incidence

include climate-sensitive pathogen dissemination and survival;

seasonal variation in host recruitment, contact rates and sus-

ceptibility, and seasonal changes in vector abundance [65,66].

Directly transmitted and epidemic-prone diseases such as

influenza, measles, polio, rotavirus and cholera exhibit pro-

nounced seasonality and substantial heterogeneity in time

and space [65,66]. The dominant seasonal drivers vary not

only by disease, but also by geography. The best understood

examples of climate-driven infections are influenza and cho-

lera. Influenza is best transmitted when temperature and

humidity are low, yielding winter epidemics in temperate

regions [67], whereas cholera outbreaks are intensified by

local increases in temperature during El Niño events [68].

Vector-borne pathogens—including those responsible for

malaria, dengue, Lyme disease, Chagas, West Nile and sleep-

ing sickness—present some of the most notable examples of
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seasonally driven infection [65,66]. Vector-borne diseases are

particularly sensitive to phenological change, because numer-

ous aspects of vector behaviour, demography and population

dynamics are crucially dependent on environmental con-

ditions [69]. For example, the growth rate of malaria vector

populations in Africa explodes during the rainy seasons

owing to the expansion of vector-larval habitat [70,71]. Temp-

erature also has a strong impact on larval development rate,

survival and the duration of the gonotrophic cycle in a wide

range of Diptera [72–75]. Further complexity is introduced

by seasonality in host populations. Examples include seasonal

variation in the immune responsiveness and nutritional quality

of plant hosts to their vectors [72,75]; herd immunity in cattle to

tick-borne Babesia [76] and demonstration that the timing of

peak human exposure to West Nile virus in North America

is driven by seasonal patterns of avian migration [77]. The com-

plexity of the seasonal interactions between vectors, pathogens

and hosts is probably responsible for the lack of consistent evi-

dence on how climate change will influence vector-borne

disease [64,71,74]. While there is compelling evidence that

some vector-borne diseases are being enhanced by climate

change (e.g. Lyme disease; [78,79]; avian malaria; [80]), there

are several other examples of diseases that have failed to
expand as originally predicted (e.g. malaria; [69]). The least

understood seasonal drivers of infection are those potentially

governed by rhythms of host susceptibility and susceptible

recruitment [47], although recent data suggest that annual

cycles in human immune pathways may indeed affect suscep-

tibility to specific diseases [3]. In summary, there is a need for a

detailed understanding of how climate will affect all aspects of

the pathogen life cycle before the consequences for

transmission can be predicted.
6. Disrupted seasonality and ecosystem health
Ecological studies have identified potential problems

associated with disruption of seasonality, owing to the desyn-

chronization of key seasonal interactions among wild species

(figure 1b). However, our existing understanding of the eco-

logical implications of disrupted seasonality is mostly based

upon studies of impacts upon single predator–prey relation-

ships (such as the mismatch that can develop between the

timing of seasonal coat colours and the annual duration of

snow cover [81] and more recently also on plant–pollinator

interactions [82–86]). Importantly, reproductive success in
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many species increases when reproductive timing and peak

food availability are matched. Examples include egg hatch-

ing date in piscivorous seabirds, such as the Atlantic puffin

(Fratercula arctica) [87], and in winter moths (Operophtera
brumata) relative to tree budburst [88]; or calving date relative

to vegetation growth in caribou (Rangifer tarandus) [89] or roe

deer (Capreolus capreolus; [90]). An example that has been devel-

oped in some detail is the reducing match between the timing

of breeding of forest songbirds, such as great tits (Parus major)

and blue tits (Parus caeruleus), and the time that their prey,

caterpillars feeding on oak leaves, are most abundant

([19,91–93]; electronic supplementary material, figure S5).

Great tits that are most mismatched with the food peak have

the fewest surviving offspring [94–96]. These ecological

studies provide clear examples of how disrupted seasonality

can affect the fitness of individuals living in an environment

in which internal and external rhythms no longer match.

The studies give numerous insights into how disrupted

seasonality might also affect human and agricultural health.

Disrupted seasonality in natural systems can also be

expected to affect ecosystem health. However, the effects at

the ecosystem scale are more poorly understood than those at

the individual level, because most studies have adopted the

paradigm of the food chain (e.g. a single consumer population

and a single resource species). While this has rendered the pro-

blem more tractable, patterns of species interaction in nature are

in fact complex networks. Therefore, a major challenge is to

move beyond relatively simple, mostly pairwise ecological

interactions to consider the consequences of disrupted seasonal-

ity on population and community dynamics within broader,

multispecies, interaction networks that include humans.

Despite the limitations of studies on dyadic interactions,

there are already some clues that disrupted seasonality may

affect ecosystem health. Under global change, the flowering

phenology of plants and the seasonal activity phase of polli-

nators may shift to a different extent or even in opposing

directions (electronic supplementary material, figure S2),

thereby potentially leading to temporal mismatches and the

disruption of existing interactions [97–99]. However, recent

studies based on long-term phenology data indicate that

bee emergence keeps pace with advanced plant-flowering,

at least under current climatic conditions and for generalist

plant–pollinator interactions [100]. Importantly, species-rich

pollinator communities may also be able to buffer negative

consequences of global warming [101], because plant pollina-

tor networks exhibit plasticity with lost interactions being

capable of replacement by new ones [102]. This underpins

the importance of sustaining biodiversity for mitigating the

impact of global climate change. Clearly, while there is

ample scope for disrupted seasonality to strongly affect eco-

systems, the few existing examples suggest that at present

the sum impacts appear relatively small. In vertebrates, gen-

etic variation in seasonality in wild populations of mammals

and birds may not be sufficient to track changes in climate

[103,104]. It remains to be seen if our collective perspective

will hold once long-term research has been conducted as

global climate change continues.
7. Disrupted seasonality and agricultural health
Ecological, physiological and epidemiological considerations

suggest that seasonal disruption could also lead to substantial
problems in agricultural industries, impacting both crop pro-

duction and livestock viability, and hence, food security. The

two most prevalent drivers of altered crop yields are changes

in pollination and pest infestation. Notably, 70% of major

crops and 35% of global crop production volume [82], with

an estimated global economic value of $189 billion (E153 bil-

lion) per year [105], depend on seasonal pollination by bees

and other insects. The spread of pest insects is a significant

threat to human food security. For example, aphid outbreaks

are expected to intensify owing to extended growing seasons

(figure 1c) permitted by altered seasonal environmental con-

ditions (reviewed by Bale & Hayward [106]). The peach–

potato aphid and the grain aphid are examples of vectors of

devastating plant virus diseases. In the past 20 years, increased

occurrences of mild winters have resulted in earlier spring

migrations of the winged form of these aphids into crops

during their most vulnerable stages, resulting in epidemic out-

breaks. The complex interactions between crops, pests and

pathogens in the context of climate change urgently need

more research [107].

Neglect of seasonal physiology and of the consequences of

its disruption, negatively impact livestock health. Agricultural

industries, notably the poultry industry, diminish seasonality

by choosing light and temperature conditions to maximize

reproduction and growth and thus profitability on an indus-

trial scale (figure 1d ). Some livestock, especially hens (Gallus
gallus), may therefore be instructive models of longer-time

effects of aseasonal conditions. Without the opportunity to

seasonally pause laying and regenerate, notably by moulting

[108], these hens become morbid and are typically slaughtered;

only by allowing or forcing a moult can these effects be

reversed. In other species used for human food production,

breeding practices that select for animals which are capable

of year round reproduction have also reduced seasonal

rhythms. Farmed cattle (Bos primigenius taurus) have the ability

to reproduce year round, but despite selection for decreased

seasonal physiology, some ancient patterns remain, including

the expression of poorly understood genes relating to hiber-

nation and seasonal biology [109]. Many sheep breeds (Ovis
aries) are excellent models for seasonal reproduction (electronic

supplementary material, figure S6a) because they exhibit

marked seasonal changes that are driven by internal rhythms

synchronized by environmental factors [4]. Similar to the sea-

sonal variation in humans discussed above, both sheep and

cattle exhibit seasonal changes in disease diagnoses (electronic

supplementary material, figure S6b).

To exemplify the possible implications of seasonal biology

for morbidity and management of livestock, we highlight

provisional data from passive surveillance in the UK on

nutritional diseases (electronic supplementary material,

figure S6b). Selenium (Se)-related deficiencies are common in

farmed ruminants [110], so that sheep and cattle are commonly

given supplementary Se. This perceived risk of deficiency and

consequent timing of supplementation is driven by expected

environmental supply and climatic- or management-driven

challenge rather than by knowledge of underlying physiologi-

cal processes that drive vulnerability. The contrasting peak

months of diagnosis of Se deficiency syndromes in sheep

versus cattle (electronic supplementary material, figure S6b)

could be driven by different factors such as livestock manage-

ment or disruptions in internal annual rhythms. Se deficiency

is apparent in humans and is directly linked to viral pathology

[111]. Seasonal variations in Se deficiency or supplementation
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in agriculture could, therefore, have significant implications for

livestock health and human food systems.
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8. Concluding remarks
Although our appreciation of the critical role of seasonal

biology in the health and welfare of organisms (including

humans), natural ecosystems and industries is growing, our

ignorance of the effects of seasonal disruption on these systems

is profound. We call for the development of an integrated,

interdisciplinary, seasonality-focused research agenda (elec-

tronic supplementary material, table S3), inspired by a one

health approach [24]. We propose three primary aims: under-

standing the internal seasonal clock, studying seasonality in

human and veterinary clinical settings, and gaining ecological

network perspectives.

(a) Understanding the internal seasonal clock
The mechanistic basis of the seasonal clock, including its con-

served and variable elements across vertebrates, remains

largely unknown. This is in contrast to remarkable advances

in our understanding of the circadian clock where the

expanding knowledge of individual genetic variation is

paving the way to personalized medicine [112]. Obtaining a

similar level of detail about genes and physiological pro-

cesses involved in the seasonal timing mechanisms and

functional variation in these genes, would aid in identifying

people, livestock and crops susceptible to the impact of seaso-

nal disruption. This research should include genomic and

transcriptomic investigation of seasonal biology across seaso-

nal gradients in nature and also long-term studies of human

and animal health. The current research focus on short-lived

animal models offers limited answers for long-term health

management of humans, relative to the value of incorporat-

ing studies of long-lived seasonal species. Beyond animal

systems, manipulating plant clocks might also enable the

development of crops (by either artificial selection or trans-

genic approaches) that are more resistant to temporal

mismatches owing to climate change, preserving and possibly

improving crop production systems.

(b) Human and veterinary clinical settings
Seasonal patterns in health and physiology can be power-

ful indicators of possible underlying pathways, e.g. the

neuroendocrine regulation of metabolism and obesity [113].

Data from human and veterinary pathology are often
poorly integrated. Both are frequently only locally available,

making it difficult to gain a broad understanding and to

identify possible aetiologies. For example, revealing the

seasonality of human diseases is now becoming possible

as powerful epidemiological approaches are developed [33],

but data often need to be tediously compiled from disper-

sed and poorly accessible sources. We encourage unified

collection of seasonal health data, including possible use of

big data analytics [114]. Analysis using improved empiri-

cal and epidemiological tools can help to identify drivers

of seasonality (e.g. through trends in ambient tempera-

ture, latitude and day length) and also seasonal periods of

particular vulnerability.
(c) Gaining ecological network perspectives
Because organisms are sensitive to changes in the rhythms of

species with which they interact, consequential mismatches

propagate across ecological networks. Most research focuses

on pairwise predator–prey, plant–herbivore or plant–

pollinator interactions, but pairwise interactions need to be

scaled up to more complex food webs and host–vector–

pathogen systems. We emphasize the value of longer-term

monitoring in ecological studies, with a view of multiple

components and ‘neighbours’ in the network of species of

particular interest. There is a real need for large-scale exper-

imental approaches to understand the ecosystem-level

consequences of shifted or disrupted seasonal timing.

Overall, in our view: (i) understanding the internal seaso-

nal clock, (ii) enhancing seasonal analyses in human and

veterinary settings, and (iii) integrating data across ecologi-

cal and agricultural networks, will enable an integrative

platform for addressing seasonal disruptions in a rapidly

changing world.
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